Comprehensive Physiology Wiley Online Library

Neural Basis of Touch and Proprioception in Primate Cortex

Full Article on Wiley Online Library



ABSTRACT

The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues—skin, muscles, tendons, ligaments, or joints—into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects—their shape, motion, and texture, for example—are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher‐order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575‐1602, 2018.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. The four classes of cutanueous afferents of the glabrous skin. (A) Morphology of the different mechanoreceptors and their respective locations in the skin. (B) Adaptation properties and receptive field (RF) size of the four classes of cutaneous afferents. Rapidly adapting (sometimes referred to as fast adapting, particularly for humans) versus slowly adapting refers to responses to indentations (transient vs. sustained, respectively). Type I versus type II refers to the size of the RFs, determined in part by the depth of the mechanoreceptors in the skin: Type I fibers have small RFs whereas type II fibers have large ones. The density of innervation depends on the fiber type: Type I fibers innervate the skin more densely than do type II fibers. For example, rapidly adapting afferent type II (PC) afferents show rapidly adapting responses with large RFs and relatively low innervation density (type II). Adapted, with permission, from (183).
Figure 2. Figure 2. Typical responses of proprioceptive afferents. (A) Responses of a primary (left) and secondary (right) spindle afferent from the finger extensors muscles to passive ramp and hold stretches applied to the metacarpophalangeal (MCP) joint. Primary afferents tend to be more sensitive to changes in length than secondary ones. Adapted, with permission, from (95). (B) Golgi tendon organ (GTO) do not respond to passive ramp and hold stretches (left) but respond robustly to isometric contraction (right). Adapted, with permission, from (96). (C) Responses of a joint afferent associated with the proximal interphalangeal joint of the index finger during passive manipulations. Joint receptors tend to only respond at the extrema of joint movements, perhaps to signal the threat of injury. Adapted, with permission, from (30).
Figure 3. Figure 3. Pathways from somatosensory periphery to cortex. Afferent fibers at the periphery bundle in fascicles that join to form the nerves. Afferent cell bodies are gathered in the dorsal root ganglia (DRG). When entering the spinal cord through the dorsal root, afferent axons branch, sending one projection to the dorsal horn and one projection to the dorsal column nuclei (DCN) through the dorsal column. The DCN projects contralaterally through the medial lemniscus to the ventroposterior complex of the thalamus, which in turns relays the information to cortex. Abbreviations: Dorsal root ganglion (DRG); spinomedullothalamic (SM), and spinocervicothalamic (SC) tracts. Thalamus: ventral posterior (VP), posterolateral (VPL), posteromedial (VPM), posterior inferior (VPI) and posterior superior (VPS) nuclei, posterior division (VLp) of the ventral lateral nucleus (VL), lateral posterior nucleus (LP).
Figure 4. Figure 4. Organization of somatosensory cortical areas. (A) A lateral view of the brain showing the different somatosensory areas in macaque monkey cortex. Adapted, with permission, from (198). Inset: Horizontal section of the postcentral gyrus at the level of the hand representation, showing the position of the different APC modules relative to the central and the intraparietal sulci. (B) Detailed view of the somatotopic representation of the body in the four fields of APC (areas 3a, 3b, 1, and 2) and in area 5L. Adapted, with permission, from (262,333). (C) Coronal section showing the location of LPC in the lateral sulcus. Adapted, with permission, from (214). Abbreviations: Anterior parietal cortex (APC); second somatosensory area (S2); parietal ventral area (PV); parietal reaching region (PRR); anterior (AIP), ventral (VIP) and lateral (LIP) intraparietal areas; post central sulcus (PCS); intraparietal sulcus (IPS). Somatotopic map: Upper lip (UL); lower lip (LL); chin (CN); snout/jaw (SN/J); digits of the hand (1,2,3,4,5); (cutaneous) forearm ((CUT) FA); occiput (OCC); trunk (TR); toes (T1‐5); hindlimb (HL).
Figure 5. Figure 5. Major connections between somatosensory areas. Schematic representation of the major connections between somatosensory areas in the central nervous system, split into four major regions: the thalamus, the anterior parietal cortex (APC), the lateral parietal cortex (LPC), and the posterior parietal cortex (PPC). Abbreviations: Ventral posterior nucleus (VP), anterior pulvinar nucleus (Pla), secondary somatoensory cortex (S2), parietal ventral area (PV), parietal reach region (PRR). Area 5 also receive input from the lateral posterior nucleus in thalamus (LP, not shown in the chart).
Figure 6. Figure 6. Submodality convergence in APC. (A) Trajectory of a punctate stimulus indented 2 mm into the center of a neuron's receptive field. (B) Typical response of a slowly adapting type 1 (SA1) and rapidly adapting (RA) afferent to 60 repeated presentations of the stimulus. (C) Response of typical neurons in area 3b. Some neurons respond throughout the stimulation interval and do not show phasic off responses, similar to SA1 fibers; others respond with phasic on‐off responses, similar to RA1 fibers, but the majority respond with a mixture of sustained and phasic responses, implying input from both fiber types. Adapted, with permission, from (275).
Figure 7. Figure 7. Spatial structure of receptive fields of a neuron in area 3b. The two squares in each group display the RF estimated from the raw data (left) and the positions of the modeled Gaussian representations (right). Left: The experimental RF was obtained by continuously scanning the finger with a random pattern of raised dots, and then computing an RF map using reverse correlation (see (82)). Dark regions are excitatory, white regions are inhibitory. Right: The locations of the excitatory (solid ellipse) and fixed inhibitory components are unaffected by scanning direction and the lagged inhibitory component (dotted ellipse) trails the center by a fixed distance in each direction. Reproduced, with permission, from (81).
Figure 8. Figure 8. In contrast to their counterparts in primary somatosensory cortex, neurons in secondary somatosensory cortex exhibit task‐dependent modulation in their responses to identical vibratory stimuli. (A) Spiking responses recorded from one neuron in APC and one in LPC (adapted, with permission, from (152) and from (312), respectively). Each row shows the response to a pair of stimuli: 10 or 26 Hz in the first stimulus period (f1) and 18 Hz in the second (f2). In APC, the response to f2 is independent of f1, while in LPC, the response to f2 is greater when f2 > f1. (B) LPC firing rates as a function of the frequency of vibration in the tactile stimulus. During the first stimulation period (f1), rates decrease monotonically as stimulus frequency increases. During the comparison period (f2), neurons respond preferentially when f2 > f1 (shown here) or vice versa (black points show trials on which f2 > f1; green traces denote trials on which f2 < f1).
Figure 9. Figure 9. Temporal patterning in peripheral and cortical responses to sinusoidal vibrations applied to the skin. (A) Typical response of peripheral afferents (two SAI in green, two RA in blue, and two PC in orange) to sinusoidal vibrations (amplitude = 250 microns) of different frequencies applied in the center of their RF. The responses of tactile fibers are strongly phase‐locked to the stimulus and highly repeatable. Data adapted, with permission, from (253). (B) Responses of two typical APC neurons to sinusoidal vibrations. APC neurons show various degrees of phase‐locking and greater trial‐to‐trial variability. Within this low‐frequency range, the frequency of the stimulus can be extracted from both the temporal patterning of the response and the mean firing rate. Reproduced, with permission, from (152,315).
Figure 10. Figure 10. Spatial processing in the somatosensory system. (A) Reconstructed response of tactile nerve fibers to embossed letters scanned across the skin. As in the retina, the spatial configuration of the stimulus is reflected in the spatial pattern of activation it evokes in SA1 and RA populations. Reproduced, with permission, from (283). (B) Responses of a neuron in area 3b to oriented edges indented into the skin (eight orientations, three indentation depths). This neuron is strongly tuned for edge orientation, as are neurons in primary visual cortex. Reproduced, with permission, from (11). (C) Responses of an LPC neuron to curvatures indented into the skin. This neuron prefers intermediate curvatures with the convex end pointing proximally. This type of feature selectivity is not observed in early stages of cortical processing (e.g., in area 3b). Reproduced, with permission, from (392). (D) Responses of an LPC neuron to bars indented into the skin. This neuron exhibits the similar preferred orientation over large swaths of skin (position‐invariant orientation tuning). Reproduced, with permission, from (107).
Figure 11. Figure 11. Motion coding in APC. (A) Direction tuning of a neuron in area 3b to bars scanned across its receptive field. Adapted, with permission, from (277). (B) The geometry of the aperture problem. The orange arrows show the actual motion of the bar; the blue arrow shows the motion of the bar as observed through the circular aperture (dashed circle). When an edge is observed through a circular aperture, the only available information about its direction of motion is along the axis perpendicular to its orientation. In other words, no time‐varying information is conveyed along the parallel axis. In the example, a bar oriented at 45° and moving upward at speed s seems to be moving up and to the right with speed s = sin(45°). Neurons in early stages of processing (APC or V1) experience the portion of a stimulus that impinges upon their small RFs, so through the equivalent of an aperture. (C) Response of a neuron in area 1 that responds to the motion of the component gratings but not to the global motion of the plaid. This neuron will respond if either of the component gratings is moving in its preferred direction. (D) Response of a neuron in area 1 that responds to the global motion of the plaid. This neuron's response reflects the integration of local motion cues, each subject to the aperture problem, except those emanating from intersections, which convey unambiguous information about motion direction. Reproduced, with permission, from (278).
Figure 12. Figure 12. Neuron in area 2 that exhibits both tactile and proprioceptive responses (courtesy of Sung Soo Kim, see (206)). This neuron's activity is modulated when the hand is placed in different configurations using a motorized apparatus (left panel). However, responses are further modulated by cutaneous stimulation, consisting of edges indented into the skin (right panel). The neuron's response is a complex function of hand conformation and cutaneous input.


Figure 1. The four classes of cutanueous afferents of the glabrous skin. (A) Morphology of the different mechanoreceptors and their respective locations in the skin. (B) Adaptation properties and receptive field (RF) size of the four classes of cutaneous afferents. Rapidly adapting (sometimes referred to as fast adapting, particularly for humans) versus slowly adapting refers to responses to indentations (transient vs. sustained, respectively). Type I versus type II refers to the size of the RFs, determined in part by the depth of the mechanoreceptors in the skin: Type I fibers have small RFs whereas type II fibers have large ones. The density of innervation depends on the fiber type: Type I fibers innervate the skin more densely than do type II fibers. For example, rapidly adapting afferent type II (PC) afferents show rapidly adapting responses with large RFs and relatively low innervation density (type II). Adapted, with permission, from (183).


Figure 2. Typical responses of proprioceptive afferents. (A) Responses of a primary (left) and secondary (right) spindle afferent from the finger extensors muscles to passive ramp and hold stretches applied to the metacarpophalangeal (MCP) joint. Primary afferents tend to be more sensitive to changes in length than secondary ones. Adapted, with permission, from (95). (B) Golgi tendon organ (GTO) do not respond to passive ramp and hold stretches (left) but respond robustly to isometric contraction (right). Adapted, with permission, from (96). (C) Responses of a joint afferent associated with the proximal interphalangeal joint of the index finger during passive manipulations. Joint receptors tend to only respond at the extrema of joint movements, perhaps to signal the threat of injury. Adapted, with permission, from (30).


Figure 3. Pathways from somatosensory periphery to cortex. Afferent fibers at the periphery bundle in fascicles that join to form the nerves. Afferent cell bodies are gathered in the dorsal root ganglia (DRG). When entering the spinal cord through the dorsal root, afferent axons branch, sending one projection to the dorsal horn and one projection to the dorsal column nuclei (DCN) through the dorsal column. The DCN projects contralaterally through the medial lemniscus to the ventroposterior complex of the thalamus, which in turns relays the information to cortex. Abbreviations: Dorsal root ganglion (DRG); spinomedullothalamic (SM), and spinocervicothalamic (SC) tracts. Thalamus: ventral posterior (VP), posterolateral (VPL), posteromedial (VPM), posterior inferior (VPI) and posterior superior (VPS) nuclei, posterior division (VLp) of the ventral lateral nucleus (VL), lateral posterior nucleus (LP).


Figure 4. Organization of somatosensory cortical areas. (A) A lateral view of the brain showing the different somatosensory areas in macaque monkey cortex. Adapted, with permission, from (198). Inset: Horizontal section of the postcentral gyrus at the level of the hand representation, showing the position of the different APC modules relative to the central and the intraparietal sulci. (B) Detailed view of the somatotopic representation of the body in the four fields of APC (areas 3a, 3b, 1, and 2) and in area 5L. Adapted, with permission, from (262,333). (C) Coronal section showing the location of LPC in the lateral sulcus. Adapted, with permission, from (214). Abbreviations: Anterior parietal cortex (APC); second somatosensory area (S2); parietal ventral area (PV); parietal reaching region (PRR); anterior (AIP), ventral (VIP) and lateral (LIP) intraparietal areas; post central sulcus (PCS); intraparietal sulcus (IPS). Somatotopic map: Upper lip (UL); lower lip (LL); chin (CN); snout/jaw (SN/J); digits of the hand (1,2,3,4,5); (cutaneous) forearm ((CUT) FA); occiput (OCC); trunk (TR); toes (T1‐5); hindlimb (HL).


Figure 5. Major connections between somatosensory areas. Schematic representation of the major connections between somatosensory areas in the central nervous system, split into four major regions: the thalamus, the anterior parietal cortex (APC), the lateral parietal cortex (LPC), and the posterior parietal cortex (PPC). Abbreviations: Ventral posterior nucleus (VP), anterior pulvinar nucleus (Pla), secondary somatoensory cortex (S2), parietal ventral area (PV), parietal reach region (PRR). Area 5 also receive input from the lateral posterior nucleus in thalamus (LP, not shown in the chart).


Figure 6. Submodality convergence in APC. (A) Trajectory of a punctate stimulus indented 2 mm into the center of a neuron's receptive field. (B) Typical response of a slowly adapting type 1 (SA1) and rapidly adapting (RA) afferent to 60 repeated presentations of the stimulus. (C) Response of typical neurons in area 3b. Some neurons respond throughout the stimulation interval and do not show phasic off responses, similar to SA1 fibers; others respond with phasic on‐off responses, similar to RA1 fibers, but the majority respond with a mixture of sustained and phasic responses, implying input from both fiber types. Adapted, with permission, from (275).


Figure 7. Spatial structure of receptive fields of a neuron in area 3b. The two squares in each group display the RF estimated from the raw data (left) and the positions of the modeled Gaussian representations (right). Left: The experimental RF was obtained by continuously scanning the finger with a random pattern of raised dots, and then computing an RF map using reverse correlation (see (82)). Dark regions are excitatory, white regions are inhibitory. Right: The locations of the excitatory (solid ellipse) and fixed inhibitory components are unaffected by scanning direction and the lagged inhibitory component (dotted ellipse) trails the center by a fixed distance in each direction. Reproduced, with permission, from (81).


Figure 8. In contrast to their counterparts in primary somatosensory cortex, neurons in secondary somatosensory cortex exhibit task‐dependent modulation in their responses to identical vibratory stimuli. (A) Spiking responses recorded from one neuron in APC and one in LPC (adapted, with permission, from (152) and from (312), respectively). Each row shows the response to a pair of stimuli: 10 or 26 Hz in the first stimulus period (f1) and 18 Hz in the second (f2). In APC, the response to f2 is independent of f1, while in LPC, the response to f2 is greater when f2 > f1. (B) LPC firing rates as a function of the frequency of vibration in the tactile stimulus. During the first stimulation period (f1), rates decrease monotonically as stimulus frequency increases. During the comparison period (f2), neurons respond preferentially when f2 > f1 (shown here) or vice versa (black points show trials on which f2 > f1; green traces denote trials on which f2 < f1).


Figure 9. Temporal patterning in peripheral and cortical responses to sinusoidal vibrations applied to the skin. (A) Typical response of peripheral afferents (two SAI in green, two RA in blue, and two PC in orange) to sinusoidal vibrations (amplitude = 250 microns) of different frequencies applied in the center of their RF. The responses of tactile fibers are strongly phase‐locked to the stimulus and highly repeatable. Data adapted, with permission, from (253). (B) Responses of two typical APC neurons to sinusoidal vibrations. APC neurons show various degrees of phase‐locking and greater trial‐to‐trial variability. Within this low‐frequency range, the frequency of the stimulus can be extracted from both the temporal patterning of the response and the mean firing rate. Reproduced, with permission, from (152,315).


Figure 10. Spatial processing in the somatosensory system. (A) Reconstructed response of tactile nerve fibers to embossed letters scanned across the skin. As in the retina, the spatial configuration of the stimulus is reflected in the spatial pattern of activation it evokes in SA1 and RA populations. Reproduced, with permission, from (283). (B) Responses of a neuron in area 3b to oriented edges indented into the skin (eight orientations, three indentation depths). This neuron is strongly tuned for edge orientation, as are neurons in primary visual cortex. Reproduced, with permission, from (11). (C) Responses of an LPC neuron to curvatures indented into the skin. This neuron prefers intermediate curvatures with the convex end pointing proximally. This type of feature selectivity is not observed in early stages of cortical processing (e.g., in area 3b). Reproduced, with permission, from (392). (D) Responses of an LPC neuron to bars indented into the skin. This neuron exhibits the similar preferred orientation over large swaths of skin (position‐invariant orientation tuning). Reproduced, with permission, from (107).


Figure 11. Motion coding in APC. (A) Direction tuning of a neuron in area 3b to bars scanned across its receptive field. Adapted, with permission, from (277). (B) The geometry of the aperture problem. The orange arrows show the actual motion of the bar; the blue arrow shows the motion of the bar as observed through the circular aperture (dashed circle). When an edge is observed through a circular aperture, the only available information about its direction of motion is along the axis perpendicular to its orientation. In other words, no time‐varying information is conveyed along the parallel axis. In the example, a bar oriented at 45° and moving upward at speed s seems to be moving up and to the right with speed s = sin(45°). Neurons in early stages of processing (APC or V1) experience the portion of a stimulus that impinges upon their small RFs, so through the equivalent of an aperture. (C) Response of a neuron in area 1 that responds to the motion of the component gratings but not to the global motion of the plaid. This neuron will respond if either of the component gratings is moving in its preferred direction. (D) Response of a neuron in area 1 that responds to the global motion of the plaid. This neuron's response reflects the integration of local motion cues, each subject to the aperture problem, except those emanating from intersections, which convey unambiguous information about motion direction. Reproduced, with permission, from (278).


Figure 12. Neuron in area 2 that exhibits both tactile and proprioceptive responses (courtesy of Sung Soo Kim, see (206)). This neuron's activity is modulated when the hand is placed in different configurations using a motorized apparatus (left panel). However, responses are further modulated by cutaneous stimulation, consisting of edges indented into the skin (right panel). The neuron's response is a complex function of hand conformation and cutaneous input.
References
 1.Ackerley R, Backlund Wasling H, Liljencrantz J, Olausson H, Johnson RD, Wessberg J. Human C‐tactile afferents are tuned to the temperature of a skin‐stroking caress. J Neurosci 34: 2879‐2883, 2014.
 2.Ageranioti‐Bélanger SA, Chapman CE. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. II. Area 2 as compared to areas 3b and 1. Exp brain Res 91: 207‐228, 1992.
 3.Agnew Z, Wise RJS. Separate areas for mirror responses and agency within the parietal operculum. J Neurosci 28(47): 12268‐12273, 2008.
 4.Andersen RA, Asanuma C, Essick GK, Siegel RM. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296: 65‐113, 1990.
 5.Andersen RA, Buneo CA. Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25: 189‐220, 2002.
 6.Apkarian AV, Shi T. Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14: 6779‐6795, 1994.
 7.Ashaber M, Pálfi E, Friedman RM, Palmer C, Jákli B, Chen LM, Kántor O, Roe AW, Négyessy L. Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J Comp Neurol 522: 1769‐1785, 2014.
 8.Augurelle A‐S, Smith AM, Lejeune T, Thonnard J‐L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand‐held objects. J Neurophysiol 89: 665‐671, 2003.
 9.Bell J, Bolanowski SJ, Holmes MH. The structure and function of Pacinian corpuscles: A review. Prog Neurobiol 42: 79‐128, 1994.
 10.Bengtsson F, Brasselet R, Johansson RS, Arleo A, Jörntell H. Integration of sensory quanta in cuneate nucleus neurons in vivo. PLoS One 8: e56630, 2013.
 11.Bensmaia SJ, Denchev PVP V, Dammann JF, III, Craig JC, Hsiao SS, Dammann JF. The representation of stimulus orientation in the early stages of somatosensory processing. J Neurosci 28: 776‐786, 2008.
 12.Bensmaia SJ, Hollins M. The vibrations of texture. Somatosens Mot Res 20: 33‐43, 2003.
 13.Bensmaia SJ, Hollins M. Pacinian representations of fine surface texture. Percept Psychophys 67: 842‐854, 2005.
 14.Bensmaia SJ, Hsiao SS, Denchev P V, Killebrew JH, Craig JC. The tactile perception of stimulus orientation. Somatosens Mot Res 25: 49‐59, 2008.
 15.Bensmaia SJ, Killebrew JH, Craig JC. Influence of visual motion on tactile motion perception. J Neurophysiol 96: 1625‐1637, 2006.
 16.Bensmaia SJ, Tillery SIH. Tactile feedback from the hand. Springer Tracts Adv Robot 95: 143‐157, 2014.
 17.Bentivoglio M, Rustioni A. Corticospinal neurons with branching axons to the dorsal column nuclei in the monkey. J Comp Neurol 253: 260‐276, 1986.
 18.Berg JA, Dammann JF, Tenore F V, Tabot GA, Boback JL, Manfredi LR, Peterson ML, Katyal KD, Johannes MS, Makhlin A, Wilcox R, Franklin RK, Vogelstein RJ, Hatsopoulos NG, Bensmaia SJ. Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21: 500‐507, 2013.
 19.Birznieks I, Jenmalm P, Goodwin AW, Johansson RS. Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21: 8222‐8237, 2001.
 20.Birznieks I, Macefield VG, Westling G, Johansson RS. Slowly adapting mechanoreceptors in the borders of the human fingernail encode fingertip forces. J Neurosci 29: 9370‐9379, 2009.
 21.Birznieks I, Vickery RM. Spike timing matters in novel neuronal code involved in vibrotactile frequency perception. Curr Biol 27(10): 1485‐1490.e2, 2017. doi: 10.1016/j.cub.2017.04.011.
 22.Björnsdotter M, Löken L, Olausson H, Vallbo AB, Wessberg J. Somatotopic organization of gentle touch processing in the posterior insular cortex. J Neurosci 29: 9314‐9320, 2009.
 23.Blankenburg F. Evidence for a rostral‐to‐caudal somatotopic organization in human primary somatosensory cortex with mirror‐reversal in areas 3b and 1. Cereb Cortex 13: 987‐993, 2003.
 24.Boundy‐Singer ZM, Saal HP, Bensmaia SJ. Speed invariance of tactile texture perception. J Neurophysiol 118: 2371‐2377, 2017.
 25.Bourgeon S, Dépeault A, Meftah E‐M, Chapman CE. Tactile texture signals in primate primary somatosensory cortex and their relation to subjective roughness intensity. J Neurophysiol 115: 1767‐1785, 2016.
 26.Breveglieri R. Somatosensory cells in area PEc of macaque posterior parietal cortex. J Neurosci 26: 3679‐3684, 2006.
 27.Brisben AJ, Hsiao SS, Johnson KO. Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol 81: 1548‐1558, 1999.
 28.Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13: 87‐100, 1996.
 29.Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion: A comparison of neuronal and psychophysical performance. J Neurosci 12: 4745‐4765, 1992.
 30.Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol 402: 347‐361, 1988.
 31.Burton H. Corticothalamic connections from the second somatosensory area and neighboring regions in the lateral sulcus of macaque monkeys. Brain Res 309: 367‐372, 1984.
 32.Burton H, Carlson M. Second somatic sensory cortical area (sii) in a prosimian primate, galago crassicaudatus. J Comp Neurol 247: 200‐220, 1986.
 33.Burton H, Fabri M. Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and 1 of macaque monkeys: Projections in the vicinity of the central sulcus. J Comp Neurol 355: 508‐538, 1995.
 34.Burton H, Fabri M, Alloway K. Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeys. J Comp Neurol 355: 539‐562, 1995.
 35.Burton H, Sinclair RJ. Second somatosensory cortical areas in macaque monkeys. 1. Neuronal response to controlled, punctate indentations of glabrous skin on the hand. Brain Res 520: 262‐271, 1990.
 36.Burton H, Sinclair RJ. Second somatosensory cortical area in macaque monkeys: 2. Neuronal responses to punctate vibrotactile stimulation of glabrous skin on the hand. Brain Res 538: 127‐135, 1991.
 37.Burton H, Sinclair RJ. Representation of tactile roughness in thalamus and somatosensory cortex. Can J Physiol Pharmacol 72: 546‐557, 1994.
 38.Burton H, Sinclair RJ. Tactile‐spatial and cross‐modal attention effects in the primary somatosensory cortical areas 3b and 1‐2 of rhesus monkeys. Somatosens Mot Res 17: 213‐228, 2000.
 39.Burton H, Sinclair RJ, Hong SY, Pruett JR, Whang KC. Tactile‐spatial and cross‐modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosens Mot Res 14: 237‐267, 1997.
 40.Bushnell MC, Duncan GH. Mechanical response properties of ventroposterior medial thalamic neurons in the alert monkey. Exp Brain Res 67: 4‐7, 1987.
 41.Camarillo L, Luna R, Nácher V, Romo R. Coding perceptual discrimination in the somatosensory thalamus. Proc Natl Acad Sci Unites States Am 109: 21093‐21098, 2012.
 42.Caminiti R, Borra E, Visco‐Comandini F, Battaglia‐Mayer A, Averbeck BB, Luppino G. Computational architecture of the parieto‐frontal network underlying cognitive‐motor control in monkeys. eNeuro 4: ENEURO.0306‐16.2017, 2017.
 43.Cappe C, Morel A, Rouiller EM. Thalamocortical and the dual pattern of corticothalamic projections of the posterior parietal cortex in macaque monkeys. Neuroscience 146: 1371‐1387, 2007.
 44.Carlson M. Characteristics of sensory deficits following lesions of Brodmann's areas 1 and 2 in the postcentral gyrus of Mococo mulatto. Brain Res 204: 424‐430, 1981.
 45.Case LK, Laubacher CM, Olausson H, Wang B, Spagnolo PA, Bushnell MC. Encoding of touch intensity but not pleasantness in human primary somatosensory cortex. J Neurosci 36: 5850‐5860, 2016.
 46.Cauna N. Nerve supply and nerve endings in Meissner's corpuscles. Am J Anat 99: 315‐350, 1956.
 47.Cauna N. The mode of termination of the sensory nerves and its significance. J Comp Neurol 113: 169‐209, 1959.
 48.Cauna N, Ross LL. The fine structure of Meissner's touch corpuscles of human fingers. J Biophys Biochem Cytol 8: 467‐482, 1960.
 49.Cavada C, Goldman‐Rakic PS. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287: 422‐445, 1989.
 50.Cavada C, Goldman‐Rakic PS. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287: 393‐421, 1989.
 51.Chapman CE, Bushnell MC, Miron D, Duncan GH, Lund JP. Sensory perception during movement in man. Exp Brain Res 68: 516‐524, 1987.
 52.Chapman CE, Meftah E‐M. Independent controls of attentional influences in primary and secondary somatosensory cortex. J Neurophysiol 94: 4094‐4107, 2005.
 53.Chapman CE, Tremblay F, Jiang W, Belingard L, Meftah E‐M. Central neural mechanisms contributing to the perception of tactile roughness. Behav Brain Res 135: 225‐233, 2002.
 54.Cheema S, Whitsel BL, Rustioni A. The corticocuneate pathway in the cat: Relations among terminal distribution patterns, cytoarchitecture, and single neuron functional properties. Somatosens Res 1: 169‐205, 1983.
 55.Chen J, Reitzen SD, Kohlenstein JB, Gardner EP. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey. J Neurophysiol 102: 3310‐3328, 2009.
 56.Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW. Fine‐scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86: 3011‐3029, 2001.
 57.Chen LM, Friedman RM, Roe AW. Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302: 881‐885, 2003.
 58.Cheney PD, Preston JB. Classification and response characteristics of muscle spindle afferents in the primate. J Neurophysiol 39: 1‐8, 1976.
 59.Cohen DA, Prud'homme MJ, Kalaska JF. Tactile activity in primate primary somatosensory cortex during active arm movements: Correlation with receptive field properties. J Neurophysiol 71: 161‐172, 1994.
 60.Cohen YE, Cohen IS, Gifford GW. Modulation of LIP activity by predictive auditory and visual cues. Cereb Cortex 14: 1287‐1301, 2004.
 61.Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler‐Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB. High‐performance neuroprosthetic control by an individual with tetraplegia. Lancet 381: 557‐564, 2013.
 62.Connor CE, Hsiao SS, Phillips JR, Johnson KO. Tactile roughness: Neural codes that account for psychophysical magnitude estimates. J Neurosci 10: 3823‐3836, 1990.
 63.Connor CE, Johnson KO. Neural coding of tactile texture: Comparison of spatial and temporal mechanisms for roughness perception. J Neurosci 12: 3414‐3426, 1992.
 64.Cooke DF, Goldring AB, Baldwin MKL, Recanzone GH, Chen A, Pan T, Simon SI, Krubitzer LA. Reversible deactivation of higher‐order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing. J Neurophysiol 112: 2529‐2544, 2014.
 65.Costanzo RM, Gardner EP. A quantitative analysis of responses of direction‐sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43: 1319‐1341, 1980.
 66.Costanzo RM, Gardner EP. Multiple‐joint neurons in somatosensory cortex of awake monkeys. Brain Res 214: 321‐333, 1981.
 67.Craig AD. Retrograde analyses of spinothalamic projections in the macaque monkey: Input to ventral posterior nuclei. J Comp Neurol 499: 965‐978, 2006.
 68.Cusick CG, Gould HJ. Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys. J Comp Neurol 292: 83‐102, 1990.
 69.Dadarlat MC, O'Doherty JE, Sabes PN. A learning‐based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 18: 138‐144, 2015.
 70.Darian‐Smith C, Darian‐Smith I, Burman K, Ratcliffe N. Ipsilateral cortical projections to areas 3a, 3b, and 4 in the macaque monkey. J Comp Neurol 335: 200‐213, 1993.
 71.Darian‐Smith C, Darian‐Smith I, Cheema SS. Thalamic projections to sensorimotor cortex in the macaque monkey: Use of multiple retrograde fluorescent tracers. J Comp Neurol 299: 17‐46, 1990.
 72.Darian‐Smith C, Tan A, Edwards S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J Comp Neurol 410: 211‐234, 1999.
 73.Darian‐Smith I. The sense of touch: Performance and peripheral neural processes. In: Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011.
 74.Darian‐Smith I, Sugitani M, Heywood J, Karita K, Goodwin AW. Touching textured surfaces: Cells in somatosensory cortex respond both to finger movement and to surface features. Science 218: 906‐909, 1982.
 75.Delhaye BP, Hayward V, Lefèvre P, Thonnard J‐L. Texture‐induced vibrations in the forearm during tactile exploration. Front Behav Neurosci 6: 37, 2012.
 76.Delhaye BP, Saal HP, Bensmaia SJ. Key considerations in designing a somatosensory neuroprosthesis. J Physiol 110: 402‐408, 2016.
 77.Dépeault A, Meftah E‐M, Chapman CE. Tactile speed scaling: Contributions of time and space. J Neurophysiol 99: 1422‐1434, 2008.
 78.Dépeault A, Meftah el‐M, Chapman CE. Neuronal correlates of tactile speed in primary somatosensory cortex. J Neurophysiol 110(7): 1554‐1566, 2013. doi: 10.1152/jn.00675.2012.
 79.Desmedt JE, Tomberg C. Transient phase‐locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett 168: 126‐129, 1994.
 80.DiCarlo JJ, Johnson KO. Velocity invariance of receptive field structure in somatosensory cortical area 3b of the alert monkey. J Neurosci 19: 401‐419, 1999.
 81.DiCarlo JJ, Johnson KO. Spatial and temporal structure of receptive fields in primate somatosensory area 3b: Effects of stimulus scanning direction and orientation. J Neurosci 20: 495‐510, 2000.
 82.DiCarlo JJ, Johnson KO, Hsiao SS. Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J Neurosci 18: 2626‐2645, 1998.
 83.Dimitriou M, Edin BB. Discharges in human muscle spindle afferents during a key‐pressing task. J Physiol 586: 5455‐5470, 2008.
 84.Dimitriou M, Edin BB. Discharges in human muscle receptor afferents during block grasping. J Neurosci 28: 12632‐12642, 2008.
 85.Disbrow E. Thalamocortical connections of the parietal ventral area (PV) and the second somatosensory area (S2) in macaque monkeys. Thalamus Relat Syst 1: 289‐302, 2002.
 86.Disbrow E, Litinas E, Recanzone GH, Padberg J, Krubitzer LA. Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys. J Comp Neurol 462: 382‐399, 2003.
 87.Disbrow E, Roberts T, Krubitzer LA. Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV. J Comp Neurol 418: 1‐21, 2000.
 88.Disbrow E, Roberts T, Poeppel D, Krubitzer LA. Evidence for interhemispheric processing of inputs from the hands in human S2 and PV. J Neurophysiol 85: 2236‐2244, 2001.
 89.Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. Somatosensory, multisensory, and task‐related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72: 542‐564, 1994.
 90.Dykes RW. Parallel processing of somatosensory information: A theory. Brain Res Rev 6: 47‐115, 1983.
 91.Dykes RW, Rasmusson DD, Sretavan D, Rehman NB. Submodality segregation and receptive‐field sequences in cuneate, gracile, and external cuneate nuclei of the cat. J Neurophysiol 47: 389‐416, 1982.
 92.Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol 67: 1105‐1113, 1992.
 93.Edin BB. Cutaneous afferents provide information about knee joint movements in humans. J Physiol 531: 289‐297, 2001.
 94.Edin BB. Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. J Neurophysiol 92: 3233‐3243, 2004.
 95.Edin BB, Vallbo AB. Dynamic response of human muscle spindle afferents to stretch. J Neurophysiol 63: 1297‐1306, 1990.
 96.Edin BB, Vallbo AB. Muscle afferent responses to isometric contractions and relaxations in humans. J Neurophysiol 63: 1307‐1313, 1990.
 97.Eickhoff SB, Amunts K, Mohlberg H, Zilles K. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16: 268‐279, 2006.
 98.Eickhoff SB, Schleicher A, Zilles K, Amunts K. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16: 254‐267, 2006.
 99.Ergenzinger ER, Glasier MM, Hahm JO, Pons TP. Cortically induced thalamic plasticity in the primate somatosensory system. Nat Neurosci 1: 226‐229, 1998.
 100.Essick GK, Bredehoeft KR, McLaughlin DF, Szaniszlo JA. Directional sensitivity along the upper limb in humans. Somatosens Mot Res 8: 13‐22, 1991.
 101.Essick GK, Franzén O, Whitsel BL, Franzen O, Whitsel BL. Discrimination and scaling of velocity of stimulus motion across the skin. Somatosens Mot Res 6: 21‐40, 1988.
 102.Essick GK, Whitsel BL. Assessment of the capacity of human subjects and S‐I neurons to distinguish opposing directions of stimulus motion across the skin. Brain Res Rev 10: 187‐212, 1985.
 103.Etzel JA, Gazzola V, Keysers C, Rotte M, Drescher D. Testing simulation theory with cross‐modal multivariate classification of fMRI data. PLoS One 3: e3690, 2008.
 104.Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1‐47, 1991.
 105.Fitzgerald PJ, Lane JW, Thakur PH, Hsiao SS. Receptive field properties of the macaque second somatosensory cortex: Evidence for multiple functional representations. J Neurosci 24: 11193‐11204, 2004.
 106.Fitzgerald PJ, Lane JW, Thakur PH, Hsiao SS. Receptive field (RF) properties of the macaque second somatosensory cortex: RF size, shape, and somatotopic organization. J Neurosci 26: 6485‐6495, 2006.
 107.Fitzgerald PJ, Lane JW, Thakur PH, Hsiao SS. Receptive field properties of the macaque second somatosensory cortex: Representation of orientation on different finger pads. J Neurosci 26: 6473‐6484, 2006.
 108.Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE, Tyler‐Kabara EC, Bensmaia SJ, Schwartz AB, Boninger ML, Gaunt RA. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 8: 361ra141, 2016.
 109.Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol 15: 626‐631, 2005.
 110.Fortier‐Poisson P, Langlais JS, Smith AM. Correlation of fingertip shear force direction with somatosensory cortical activity in monkey. J Neurophysiol 115: 100‐111, 2016.
 111.Fortier‐Poisson P, Smith AM. Neuronal activity in somatosensory cortex related to tactile exploration. J Neurophysiol 115: 112‐126, 2016.
 112.Freeman AW, Johnson KO. A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey. J Physiol 323: 43‐64, 1982.
 113.Freeman AW, Johnson KO. Cutaneous mechanoreceptors in macaque monkey: Temporal discharge patterns evoked by vibration, and a receptor model. J Physiol 323: 21‐41, 1982.
 114.Freund HJ. The parietal lobe as a sensorimotor interface: A perspective from clinical and neuroimaging data. Neuroimage 14: S142‐S146, 2001.
 115.Friedman DP, Jones EG. Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol 45: 59‐85, 1981.
 116.Friedman DP, Murray EA. Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252: 348‐373, 1986.
 117.Friedman DP, Murray EA, O'Neill JB, Mishkin M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. J Comp Neurol 252: 323‐347, 1986.
 118.Friedman RM, Chen LM, Roe AW. Modality maps within primate somatosensory cortex. Proc Natl Acad Sci U S A 101: 12724‐12729, 2004.
 119.Friedman RM, Chen LM, Roe AW. Responses of areas 3b and 1 in anesthetized squirrel monkeys to single‐ and dual‐site stimulation of the digits. J Neurophysiol 100: 3185‐3196, 2008.
 120.Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560‐1563, 2001.
 121.Frohlich PF, Meston CM. Tactile sensitivity in women with sexual arousal disorder. Arch Sex Behav 34: 207‐217, 2005.
 122.Fyffe RE, Cheema SS, Rustioni A. Intracellular staining study of the feline cuneate nucleus. I. Terminal patterns of primary afferent fibers. J Neurophysiol 56: 1268‐1283, 1986.
 123.Gardner EP. Dorsal and ventral streams in the sense of touch. Senses A Compr Ref 6: 233‐258, 2010.
 124.Gardner EP, Babu KS, Reitzen SD, Ghosh S, Brown AS, Chen J, Hall AL, Herzlinger MD, Kohlenstein JB, Ro JY. Neurophysiology of prehension. I. Posterior parietal cortex and object‐oriented hand behaviors. J Neurophysiol 97: 387‐406, 2007.
 125.Gardner EP, Costanzo RM. Temporal integration of multiple‐point stimuli in primary somatosensory cortical receptive fields of alert monkeys. J Neurophysiol 43: 444‐468, 1980.
 126.Gardner EP, Costanzo RM. Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys. J Neurophysiol 43: 1342‐1354, 1980.
 127.Gardner EP, Costanzo RM. Properties of kinesthetic neurons in somatosensory cortex of awake monkeys. Brain Res 214: 301‐319, 1981.
 128.Gardner EP, Debowy DJ, Ro JY, Ghosh S, Srinivasa Babu K. Sensory monitoring of prehension in the parietal lobe: A study using digital video. Behav Brain Res 135: 213‐224, 2002.
 129.Gardner EP, Ro JY, Debowy D, Ghosh S. Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension. Exp Brain Res 127: 329‐354, 1999.
 130.Garraghty PE, Florence SL, Kaas JH. Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res 528: 165‐169, 1990.
 131.Garraghty PE, Florence SL, Tenhula WN, Kaas JH. Parallel thalamic activation of the first and second somatosensory areas in prosimian primates and tree shrews. J Comp Neurol 311: 289‐299, 1991.
 132.Garraghty PE, Pons TP, Kaas JH. Ablations of areas 3b (SI proper) and 3a of somatosensory cortex in marmosets deactivate the second and parietal ventral somatosensory areas. Somat Mot Res 7: 125‐135, 1990.
 133.Garraghty PE, Pons TP, Sur M, Kaas JH. The arbors of axons terminating in middle cortical layers of somatosensory area 3b in owl monkeys. Somatosens Mot Res 6: 401‐411, 1989.
 134.Gazzola V, Spezio ML, Etzel JA, Castelli F, Adolphs R, Keysers C. Primary somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad Sci U S A 109: 10, 2012.
 135.Geyer S, Schleicher A, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10: 63‐83, 1999.
 136.Geyer S, Schormann T, Mohlberg H, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage 11: 684‐696, 2000.
 137.Gharbawie OA, Stepniewska I, Kaas JH. Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21: 1981‐2002, 2011.
 138.Gharbawie OA, Stepniewska I, Qi H‐X, Kaas JH. Multiple parietal‐frontal pathways mediate grasping in macaque monkeys. J Neurosci 31: 11660‐11677, 2011.
 139.Ghez C, Gordon J, Ghilardi MF, Sainburg R. Contributions of Vision and Proprioception to Accuracy in Limb Movements. The MIT Press, Cambridge, MA, US, 1995.
 140.Goldring AB, Cooke DF, Baldwin MKL, Recanzone GH, Gordon AG, Pan T, Simon SI, Krubitzer LA. Reversible deactivation of higher‐order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 112: 2545‐2560, 2014.
 141.Goodman JM, Bensmaia SJ. A variation code accounts for the perceived roughness of coarsely textured surfaces. Sci Rep 7: 46699, 2017.
 142.Goodwin AW, Wheat HE. How is tactile information affected by parameters of the population such as non‐uniform fiber sensitivity, innervation geometry and response variability? Behav Brain Res 135: 5‐10, 2002.
 143.Grefkes C, Fink GR. The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207: 3‐17, 2005.
 144.Gregoriou GG, Borra E, Matelli M, Luppino G. Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comp Neurol 496: 422‐451, 2006.
 145.Grigg P, Greenspan BJ. Response of primate joint afferent neurons to mechanical stimulation of knee joint. J Neurophysiol 40: 1‐8, 1977.
 146.Guest S, Catmur C, Lloyd D, Spence C. Audiotactile interactions in roughness perception. Exp Brain Res 146: 161‐171, 2002.
 147.Hansen EW. The development of maternal and infant behavior in the rhesus monkey. Behaviour 27: 107‐148, 1966.
 148.Harlow HF. The nature of love. Am Psychol 13: 673‐685, 1958.
 149.Harvey MA, Saal HP, Dammann JF, III, Bensmaia SJ, Dammann JF. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol 11: e1001558, 2013.
 150.Hayward V, Terekhov A V, Wong S, Geborek P, Bengtsson F, Jörntell H. Spatio‐temporal skin strain distributions evoke low variability spike responses in cuneate neurons. J R Soc Interface 11: 20131015, 2014.
 151.Hernández A, Nácher V, Luna R, Zainos A, Lemus L, Alvarez M, Vázquez Y, Camarillo L, Romo R. Decoding a perceptual decision process across cortex. Neuron 66: 300‐314, 2010.
 152.Hernández A, Zainos A, Romo R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci U S A 97: 6191‐6196, 2000.
 153.Hertenstein M. The communicative functions of touch in adulthood. In: Hertenstein MJ, Weiss SJ, editors. The Handbook of Touch: Neuroscience, Behavioral, and Health Perspectives. New York, USA: Springer, 2011, pp. 299‐327.
 154.Hihara S, Taoka M, Tanaka M, Iriki A. Visual responsiveness of neurons in the secondary somatosensory area and its surrounding parietal operculum regions in awake macaque monkeys. Cereb Cortex 25: 4535‐4550, 2015.
 155.Hollins M, Risner SR. Evidence for the duplex theory of tactile texture perception. Percept Psychophys 62: 695‐705, 2000.
 156.Hsiao SS. Central mechanisms of tactile shape perception. Curr Opin Neurobiol 18: 418‐424, 2008.
 157.Hsiao SS, O'Shaughnessy DM, Johnson KO. Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. J Neurophysiol 70: 444‐447, 1993.
 158.Huerta MF, Pons TP. Primary motor cortex receives input from area 3a in macaques. Brain Res 537: 367‐371, 1990.
 159.Huffman KJ, Krubitzer LA. Area 3a: Topographic organization and cortical connections in marmoset monkeys. Cereb Cortex 11: 849‐867, 2001.
 160.Hulliger M. The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol 101: 1‐110, 1984.
 161.Hummelsheim H, Wiesendanger R, Wiesendanger M, Bianchetti M. The projection of low‐threshold muscle afferents of the forelimb to the main and external cuneate nuclei of the monkey. Neuroscience 16: 979‐987, 1985.
 162.Hwang EJ, Hauschild M, Wilke M, Andersen RA. Inactivation of the parietal reach region causes optic ataxia, impairing reaches but not saccades. Neuron 76: 1021‐1029, 2012.
 163.Hyvärinen J. Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206: 287‐303, 1981.
 164.Hyvärinen J. Posterior parietal lobe of the primate brain. Physiol Rev 62: 1060‐1129, 1982.
 165.Hyvärinen J, Poranen A. Receptive field integration and submodality convergence in the hand area of the post‐central gyrus of the alert monkey. J Physiol 283: 539‐556, 1978.
 166.Hyvärinen J, Poranen A. Movement‐sensitive and direction and orientation‐selective cutaneous receptive fields in the hand area of the post‐central gyrus in monkeys. J Physiol 283: 523‐537, 1978.
 167.Hyvärinen J, Poranen A, Jokinen Y. Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J Neurophysiol 43: 870‐882, 1980.
 168.Iriki A, Tanaka M, Iwamura Y. Attention‐induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci Res 25: 173‐181, 1996.
 169.Iwamura Y. Hierarchical somatosensory processing. Curr Opin Neurobiol 8: 522‐528, 1998.
 170.Iwamura Y, Iriki A, Tanaka M. Bilateral hand representation in the postcentral somatosensory cortex. Nature 369: 554‐556, 1994.
 171.Iwamura Y, Tanaka M. Postcentral neurons in hand region of area 2: Their possible role in the form discrimination of tactile objects. Brain Res 150: 662‐666, 1978.
 172.Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51: 327‐337, 1983.
 173.Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51: 569‐576, 1983.
 174.Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58: 400‐411, 1985.
 175.Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. Vertical neuronal arrays in the postcentral gyrus signaling active touch: A receptive field study in the conscious monkey. Exp Brain Res 58: 412‐420, 1985.
 176.Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey's postcentral gyrus. Exp Brain Res 92: 360‐368, 1993.
 177.Jain N, Catania KC, Kaas JH. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 386: 495‐498, 1997.
 178.Jain N, Catania KC, Kaas JH. A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long‐term deafferentations. Cereb Cortex 8: 227‐236, 1998.
 179.Jain N, Florence SL, Kaas JH. Reorganization of Somatosensory cortex after nerve and spinal cord injury. News Physiol Sci 13: 143‐149, 1998.
 180.Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. Grasping objects: The cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314‐320, 1995.
 181.Jiang W, Tremblay F, Chapman CE. Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. J Neurophysiol 77: 1656‐1662, 1997.
 182.Johansson RS. Tactile sensibility in the human hand: Receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol 281: 101‐125, 1978.
 183.Johansson RS, Flanagan JR. Somatosensation. In: Gardner E, Kaas JH, editors. The Senses: A Comprehensive Reference. San Diego: Academic Press, 2008, pp. 67‐86.
 184.Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10: 345‐359, 2009.
 185.Johansson RS, Landström U, Lundström R. Sensitivity to edges of mechanoreceptive afferent units innervating the glabrous skin of the human head. Brain Res 244: 27‐235, 1982.
 186.Johansson RS, Landström U, Lundström R, Landstrom U, Lundstrom R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res 244: 17‐25, 1982.
 187.Johansson RS, Vallbo AB. Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286: 283‐300, 1979.
 188.Johansson RS, Vallbo AB. Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184: 353‐366, 1980.
 189.Johnson KO. The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11: 455‐461, 2001.
 190.Johnson KO, Lamb GD. Neural mechanisms of spatial tactile discrimination: Neural patterns evoked by braille‐like dot patterns in the monkey. J Physiol 310: 117‐144, 1981.
 191.Johnson LA, Wander JD, Sarma D, Su DK, Fetz EE, Ojemann JG. Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: A qualitative and quantitative report. J Neural Eng 10: 36021, 2013.
 192.Jones EG. Lamination and differential distribution of thalamic afferents within the sensory‐motor cortex of the squirrel monkey. J Comp Neurol 160: 167‐203, 1975.
 193.Jones EG. Lack of collateral thalamocortical projections to fields of the first somatic sensory cortex in monkeys. Exp Brain Res 52: 375‐384, 1983.
 194.Jones EG, Coulter JD, Hendry SHC. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181: 291‐347, 1978.
 195.Jones EG, Friedman DP. Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48: 521‐544, 1982.
 196.Jörntell H, Bengtsson F, Geborek P, Spanne A, Terekhov A V, Hayward V. Segregation of tactile input features in neurons of the cuneate nucleus. Neuron 83: 1‐15, 2014.
 197.Kaas JH. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol Rev 63: 206‐231, 1983.
 198.Kaas JH, Gharbawie OA, Stepniewska I. The organization and evolution of dorsal stream multisensory motor pathways in primates. Front Neuroanat 5: 34, 2011.
 199.Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204: 521‐523, 1979.
 200.Kalaska JF, Caminiti R, Georgopoulos AP. Cortical mechanisms related to the direction of two‐dimensional arm movements: Relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51: 247‐260, 1983.
 201.Kalaska JF, Cohen DAD, Prud'homme M, Hyde ML. Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80: 351‐364, 1990.
 202.Kalaska JF, Scott SH, Cisek P, Sergio LE. Cortical control of reaching movements. Curr Opin Neurobiol 7: 849‐859, 1997.
 203.Keysers C, Kaas JH, Gazzola V. Somatosensation in social perception. Nat Rev Neurosci 11: 417‐428, 2010.
 204.Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 27: 4995‐5004, 2007.
 205.Kim S, Callier T, Tabot GA, Gaunt RA, Tenore FV, Bensmaia SJ. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc Natl Acad Sci 112: 15202‐15207, 2015.
 206.Kim SS, Gomez‐Ramirez M, Thakur PH, Hsiao SS. Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex. Neuron 86(2): 555‐566, 2015. doi: 10.1016/j.neuron.2015.03.020.
 207.Klaes C, Shi Y, Kellis S, Minxha J, Revechkis B, Andersen RA. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J Neural Eng 11: 56024, 2014.
 208.Klocker A, Arnould C, Penta M, Thonnard J‐L. Rasch‐built measure of pleasant touch through active fingertip explorations. Front Neurorobot 6: 1‐9, 2012.
 209.Klöcker A, Wiertlewski M, Théate V, Hayward V, Thonnard J‐L. Physical factors influencing pleasant touch during tactile exploration. PLoS One 8: e79085, 2013.
 210.Knibestöl M. Stimulus‐response functions of rapidly adapting mechanoreceptors in human glabrous skin area. J Physiol 232: 427‐452, 1973.
 211.Knibestöl M. Stimulus‐response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J Physiol 245: 63‐80, 1975.
 212.Krubitzer LA, Baldwin MKL. Revisiting Kaas and colleagues–‐The homunculus: The discovery of multiple representations within the “primary” somatosensory cortex. In: Kolb B, Whishaw I, editors. Revisiting the Classic Studies in Behavioral Neuroscience. Los Angeles: Sage, 2017, pp. 33‐54.
 213.Krubitzer LA, Calford MB. Five topographically organized fields in the somatosensory cortex of the flying fox: Microelectrode maps, myeloarchitecture, and cortical modules. J Comp Neurol 317: 1‐30, 1992.
 214.Krubitzer LA, Clarey J, Tweedale R, Elston G, Calford MB. A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821‐3839, 1995.
 215.Krubitzer LA, Huffman KJ, Disbrow E, Recanzone G. Organization of area 3a in macaque monkeys: Contributions to the cortical phenotype. J Comp Neurol 471: 97‐111, 2004.
 216.Krubitzer LA, Kaas JH. The organization and connections of somatosensory cortex in marmosets. J Neurosci 10: 952‐974, 1990.
 217.Krubitzer LA, Kaas JH. The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319: 123‐140, 1992.
 218.de Lafuente V, Romo R. Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc Natl Acad Sci U S A 103: 14266‐14271, 2006.
 219.Lederman SJ. Tactile roughness of grooved surfaces: The touching process and effects of macro‐ and microsurface structure. Percept Psychophys 16: 385‐395, 1974.
 220.Lederman SJ. Tactual roughness perception: Spatial and temporal determinants. Can J Psychol 37: 498‐511, 1983.
 221.Lederman SJ, Klatzky RL. Hand movements: A window into haptic object recognition. Cogn Psychol 19: 342‐368, 1987.
 222.Lederman SJ, Taylor MM. Fingertip force, surface geometry, and the perception of roughness by active touch. Percept Psychophys 12: 401‐408, 1972.
 223.Leinonen L, Hyvärinen J, Nyman G, Linnankoski I. I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34: 299‐320, 1979.
 224.Leinonen L, Nyman G. II. Functional properties of cells in anterolateral part of area 7 associative face area of awake monkeys. Exp Brain Res 34: 321‐333, 1979.
 225.Lenz FA, Seike M, Lin YC, Baker FH, Rowland LH, Gracely RH, Richardson RT. Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623: 235‐240, 1993.
 226.Lewis JW, Van Essen DC. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex. J Comp Neurol 428: 79‐111, 2000.
 227.Lewis JW, Van Essen DC. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428: 112‐137, 2000.
 228.Liu XB, Honda CN, Jones EG. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol 352: 69‐91, 1995.
 229.Löken LS, Wessberg J, Morrison I, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12: 547‐548, 2009.
 230.London BM, Jordan LR, Jackson CR, Miller LE. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans Neural Syst Rehabil Eng 16: 32‐36, 2008.
 231.London BM, Miller LE. Responses of somatosensory area 2 neurons to actively and passively generated limb movements. J Neurophysiol 109: 1505‐1513, 2013.
 232.Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77: 24‐42, 1997.
 233.Mackevicius EL, Best MD, Saal HP, Bensmaia SJ. Millisecond precision spike timing shapes tactile perception. J Neurosci 32: 15309‐15317, 2012.
 234.Makous JC, Friedman RM, Vierck CJ. Effects of a dorsal column lesion on temporal processing within the somatosensory system of primates. Exp Brain Res 112: 253‐267, 1996.
 235.Manfredi LR, Saal HP, Brown KJ, Zielinski MC, Dammann JF, Polashock VS, Bensmaia SJ. Natural scenes in tactile texture. J Neurophysiol 111: 1792‐1802, 2014.
 236.Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134: 747‐758, 2011.
 237.Marconi B, Genovesio A, Battaglia‐Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R. Eye‐hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11: 513‐527, 2001.
 238.Matthews BH. Nerve endings in mammalian muscle. J Physiol 78: 1‐53, 1933.
 239.Maunsell JHR, Cook EP. The role of attention in visual processing. Philos Trans R Soc B Biol Sci 357: 1063‐1072, 2002.
 240.Mcglone F, Olausson H, Boyle JA, Jones‐Gotman M, Dancer C, Guest S, Essick GK. Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. Eur J Neurosci 35: 1782‐1788, 2012.
 241.McGlone F, Reilly D. The cutaneous sensory system. Neurosci Biobehav Rev 34: 148‐159, 2010.
 242.Meftah E‐M, Belingard L, Chapman CE. Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp brain Res 132: 351‐361, 2000.
 243.Meftah E‐M, Bourgeon S, Chapman CE. Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task. J Neurophysiol 101: 2649‐2667, 2009.
 244.Meftah E‐M, Shenasa J, Chapman CE. Effects of a cross‐modal manipulation of attention on somatosensory cortical neuronal responses to tactile stimuli in the monkey. J Neurophysiol 88: 3133‐3149, 2002.
 245.Mima T, Nagamine T, Nakamura K, Shibasaki H. Attention modulates both primary and second somatosensory cortical activities in humans: A magnetoencephalographic study. J Neurophysiol 80: 2215‐2221, 1998.
 246.Mishkin M. Analogous neural models for tactual and visual learning. Neuropsychologia 17: 139‐151, 1979.
 247.Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science 229: 782‐784, 1985.
 248.Morrison I, Björnsdotter M, Olausson H. Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. J Neurosci 31: 9554‐9562, 2011.
 249.Mountcastle VB. Central nervous mechanisms in mechanoreceptive sensibility. In: Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011, pp. 33‐89.
 250.Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuña C. Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J Neurophysiol 38: 871‐908, 1975.
 251.Mountcastle VB, Talbot WH, Sakata H, Hyvärinen J. Cortical neuronal mechanisms in flutter‐vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol 32: 452‐484, 1969.
 252.Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ. The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J Neurosci 27: 11687‐11699, 2007.
 253.Murata A, Gallese V, Luppino G, Kaseda M, Sakata H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83: 2580‐2601, 2000.
 254.Murray EA, Mishkin M. Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67‐83, 1984.
 255.Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa‐Schioppa C, Pasternak T, Seo H, Lee D, Wang X‐J. A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 17: 1661‐1663, 2014.
 256.Murthy VN, Fetz EE. Coherent 25‐ to 35‐Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A 89: 5670‐5674, 1992.
 257.Nakatani M, Maksimovic S, Baba Y, Lumpkin EA. Mechanotransduction in epidermal Merkel cells. Pflugers Arch 467(1): 101‐108, 2015. doi: 10.1007/s00424‐014‐1569‐0.
 258.Neal JW, Pearson RC, Powell TPS. The cortico‐cortical connections of area‐7b, PF, in the parietal lobe of the monkey. Brain Res 419: 341‐346, 1987.
 259.Neal JW, Pearson RCA, Powell TPS. The ipsilateral cortico‐cortical connections of area 7b, PF, in the parietal and temporal lobes of the monkey. Brain Res 524: 119‐132, 1990.
 260.Nelson RJ. Activity of monkey primary somatosensory cortical neurons changes prior to active movement. Brain Res 406: 402‐407, 1987.
 261.Nelson RJ, Sur M, Felleman DJ, Kaas JH. Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 192: 611‐643, 1980.
 262.Newman HF. Vibratory sensitivity of the penis. Fertil Steril 21: 791‐793, 1970.
 263.Niu J, Ding L, Li J, Kim H, Liu J, Li H, Moberly A, Badea T, Duncan I, Son Y‐J, Scherer S, Luo W. Modality‐based organization of ascending somatosensory axons in the direct dorsal column pathway. J Neurosci 33: 17691‐17709, 2013.
 264.Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer‐Crabb G, Kennedy WR, Santoro L. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54: 197‐205, 2003.
 265.Olausson H, Cole J, Rylander K, McGlone F, Lamarre Y, Wallin BG, Krämer H, Wessberg J, Elam M, Bushnell MC, Vallbo AB. Functional role of unmyelinated tactile afferents in human hairy skin: Sympathetic response and perceptual localization. Exp Brain Res 184: 135‐140, 2008.
 266.Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BGG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MCC. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5: 900‐904, 2002.
 267.Olshausen BA, Field DJ. Emergence of simple‐cell receptive field properties by learning a sparse code for natural images. Nature 381: 607‐609, 1996.
 268.Pack CC, Bensmaia SJ. Seeing and feeling motion: Canonical computations in vision and touch. PLOS Biol 13: e1002271, 2015.
 269.Padberg J, Cerkevich C, Engle J, Rajan AT, Recanzone G, Kaas JH, Krubitzer LA. Thalamocortical connections of parietal somatosensory cortical fields in macaque monkeys are highly divergent and convergent. Cereb Cortex 19: 2038‐2064, 2009.
 270.Padberg J, Recanzone G, Engle J, Cooke D, Goldring A, Krubitzer LA. Lesions in posterior parietal area 5 in monkeys result in rapid behavioral and cortical plasticity. J Neurosci 30: 12918‐12935, 2010.
 271.Pandya DN, Seltzer B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204: 196‐210, 1982.
 272.Pearson RCA, Brodal P, Powell TPS. The projection of the thalamus upon the parietal lobe in the monkey. Brain Res 144: 143‐148, 1978.
 273.Pearson RCA, Powell TPS. The projection of the primary somatic sensory cortex upon area 5 in the monkey. Brain Res Rev 9: 89‐107, 1985.
 274.Pei Y‐C, Denchev P V, Hsiao SS, Craig JC, Bensmaia SJ. Convergence of submodality‐specific input onto neurons in primary somatosensory cortex. J Neurophysiol 102: 1843‐1853, 2009.
 275.Pei Y‐C, Hsiao SS, Bensmaia SJ. The tactile integration of local motion cues is analogous to its visual counterpart. Proc Natl Acad Sci U S A 105: 8130‐8135, 2008.
 276.Pei Y‐C, Hsiao SS, Craig JC, Bensmaia SJ. Shape invariant coding of motion direction in somatosensory cortex. PLoS Biol 8: e1000305, 2010.
 277.Pei Y‐C, Hsiao SS, Craig JC, Bensmaia SJ. Neural mechanisms of tactile motion integration in somatosensory cortex. Neuron 69: 536‐547, 2011.
 278.Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389‐443, 1937.
 279.Petrides M, Pandya DN. Projections to the frontal‐cortex from the posterior parietal region in the rhesus‐monkey. J Comp Neurol 228: 105‐116, 1984.
 280.Phillips JR, Johansson RS, Johnson KO. Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin. J Neurosci 12: 827‐839, 1992.
 281.Phillips JR, Johnson KO. Tactile spatial resolution. II. Neural representation of bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46: 1192‐1203, 1981.
 282.Phillips JR, Johnson KO, Hsiao SS. Spatial pattern representation and transformation in monkey somatosensory cortex. Proc Natl Acad Sci U S A 85: 1317‐1321, 1988.
 283.Pons TP, Garraghty PE, Cusick CG, Kaas JH. The somatotopic organization of area 2 in macaque monkeys. J Comp Neurol 241: 445‐466, 1985.
 284.Pons TP, Garraghty PE, Friedman DP, Mishkin M. Physiological evidence for serial processing in somatosensory cortex. Science 237: 417‐420, 1987.
 285.Pons TP, Garraghty PE, Mishkin M. Serial and parallel processing of tactual information in somatosensory cortex of rhesus‐monkeys. J Neurophysiol 68: 518‐527, 1992.
 286.Pons TP, Kaas JH. Corticocortical connections of area 2 of somatosensory cortex in macaque monkeys: A correlative anatomical and electrophysiological study. J Comp Neurol 248: 313‐335, 1986.
 287.Poranen A, Hyvärinen J. Effects of attention on multiunit responses to vibration in the somatosensory regions of the monkey's brain. Electroencephalogr Clin Neurophysiol 53: 525‐537, 1982.
 288.Prud'homme MJ, Cohen DA, Kalaska JF. Tactile activity in primate primary somatosensory cortex during active arm movements: Cytoarchitectonic distribution. J Neurophysiol 71: 173‐181, 1994.
 289.Prud'homme MJ, Kalaska JF. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements. J Neurophysiol 72: 2280‐2301, 1994.
 290.Pruett JR, Sinclair RJ, Burton H. Response patterns in second somatosensory cortex (SII) of awake monkeys to passively applied tactile gratings. J Neurophysiol 84, 2000.
 291.Pruszynski JA, Flanagan JR, Johansson RS. Fast and accurate edge orientation processing during object manipulation. Elife 7: pii: e31200, 2017. doi: 10.1101/163790.
 292.Pruszynski JA, Johansson RS. Edge‐orientation processing in first‐order tactile neurons. Nat Neurosci 17: 1404‐1409, 2014.
 293.Qi H‐X, Gharbawie OA, Wong P, Kaas JH. Cell‐poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol 519: 738‐758, 2011.
 294.Qi H‐X, Kaas JH. Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys. J Comp Neurol 477: 172‐187, 2004.
 295.Qi H‐X, Lyon DC, Kaas JH. Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). J Comp Neurol 443: 168‐182, 2002.
 296.Randolph M, Semmes J. Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res 70: 55‐70, 1974.
 297.Rasmussen AT, Peyton WT. The course and termination of the medial lemniscus in man. J Comp Neurol 88: 411‐424, 1948.
 298.Rathelot J‐A, Dum RP, Strick PL. Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci U S A 114(16): 4255‐4260, 2017. doi: 10.1073/pnas.1608132114.
 299.Rathelot J‐A, Strick PL. Muscle representation in the macaque motor cortex: An anatomical perspective. Proc Natl Acad Sci U S A 103: 8257‐8262, 2006.
 300.Reed JL, Pouget P, Qi H‐X, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds a B, Kaas JH. Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci U S A 105: 10233‐10237, 2008.
 301.Reed JL, Qi H‐X, Kaas JH. Spatiotemporal properties of neuron response suppression in owl monkey primary somatosensory cortex when stimuli are presented to both hands. J Neurosci 31: 3589‐3601, 2011.
 302.Reed JL, Qi H‐X, Pouget P, Burish MJ, Bonds a B, Kaas JH. Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 104: 3136‐3145, 2010.
 303.Reed JL, Qi H, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH. Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 103(4): 2139‐2157, 2010. doi: 10.1152/jn.00709.2009.
 304.Richardson AG, Weigand PK, Sritharan SY, Lucas TH. A chronic neural interface to the macaque dorsal column nuclei. J Neurophysiol 115(5): 2255‐2264, 2016. doi: 10.1152/jn.01083.2015.
 305.Rincon‐Gonzalez L, Warren JP, Meller DM, Helms Tillery S. Haptic interaction of touch and proprioception: Implications for neuroprosthetics. IEEE Trans Neural Syst Rehabil Eng 19: 490‐500, 2011.
 306.Rinvik E, Walberg F. Studies on the cerebellar projections from the main and external cuneate nuclei in the cat by means of retrograde axonal transport of horseradish peroxidase. Brain Res 95: 371‐381, 1975.
 307.Ro T, Ellmore TM, Beauchamp MS. A neural link between feeling and hearing. Cereb Cortex 23: 1724‐1730, 2013.
 308.Robinson CJ, Burton H. Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comp Neurol 192: 43‐67, 1980.
 309.Robinson CJ, Burton H. Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 192: 93‐108, 1980.
 310.Robinson CJ, Burton H. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69‐92, 1980.
 311.Romo R, Hernández A, Zainos A, Lemus L, Brody CD. Neuronal correlates of decision‐making in secondary somatosensory cortex. Nat Neurosci 5: 1217‐1225, 2002.
 312.Romo R, Hernández A, Zainos A, Salinas E. Somatosensory discrimination based on cortical microstimulation. Nature 392: 387‐390, 1998.
 313.Romo R, de Lafuente V. Conversion of sensory signals into perceptual decisions. Prog Neurobiol 103: 41‐75, 2013.
 314.Romo R, Salinas E. Cognitive neuroscience: Flutter discrimination: Neural codes, perception, memory and decision making. Nat Rev Neurosci 4: 203‐218, 2003.
 315.Rouiller EM, Welker E. A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53: 727‐741, 2000.
 316.Rowe MJ, Turman a B, Murray GM, Zhang HQ. Parallel organization of somatosensory cortical areas I and II for tactile processing. Clin Exp Pharmacol Physiol 23: 931‐938, 1996.
 317.Rowland DL. Penile sensitivity in men: A composite of recent findings. Urology 52: 1101‐1105, 1998.
 318.Roy A, Steinmetz PN, Hsiao SS, Johnson KO, Niebur E. Synchrony: A neural correlate of somatosensory attention. J Neurophysiol 98: 1645‐1661, 2007.
 319.Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16: 1389‐1417, 2006.
 320.Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A. Somatotopic organization of human secondary somatosensory cortex. Cerbral Cortex 11: 463‐473, 2001.
 321.Saal HP, Bensmaia SJ. Touch is a team effort: Interplay of submodalities in cutaneous sensibility. Trends Neurosci 2: 1‐9, 2014.
 322.Saal HP, Harvey MA, Bensmaia SJ. Rate and timing of cortical responses driven by separate sensory channels. Elife 4: e10450, 2015.
 323.Saal HP, Wang X, Bensmaia SJ. Importance of spike timing in touch: An analogy with hearing? Curr Opin Neurobiol 40: 142‐149, 2016.
 324.Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73: 820‐835, 1995.
 325.Sakata H, Takaoka Y, Kawarasaki A, Shibutani H. Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64: 85‐102, 1973.
 326.Salimi I, Brochier T, Smith AM. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations. J Neurophysiol 81: 845‐857, 1999.
 327.Salimi I, Brochier T, Smith AM. Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. J Neurophysiol 81: 825‐834, 1999.
 328.Salimi I, Brochier T, Smith AM. Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses to object texture and weights. J Neurophysiol 81: 835‐844, 1999.
 329.Salinas E, Hernandez A, Zainos A, Romo R, Hernández A. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20: 5503‐5515, 2000.
 330.Sánchez‐Panchuelo RM, Besle J, Mougin O, Gowland P, Bowtell R, Schluppeck D, Francis S. Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex. Neuroimage 93: 221‐230, 2014.
 331.Seal J, Commenges D. A quantitative analysis of stimulus‐ and movement‐related responses in the posterior parietal cortex of the monkey. Exp Brain Res 58: 144‐153, 1985.
 332.Seelke AMH, Padberg J, Disbrow E, Purnell SM, Recanzone G, Krubitzer LA. Topographic maps within Brodmann's area 5 of macaque monkeys. Cereb Cortex 22: 1834‐1850, 2012.
 333.Semmes J, Porter L, Randolph M. Further studies of anterior postcentral lesions in monkeys. Cortex 10: 55‐68, 1974.
 334.Semmes J, Turner B. Effects of cortical lesions on somatosensory tasks. J Invest Dermatol 69: 181‐189, 1977.
 335.Sinclair RJ, Burton H. Neuronal activity in the primary somatosensory cortex in monkeys (Macaca mulatta) during active touch of textured surface gratings: Responses to groove width, applied force, and velocity of motion. J Neurophysiol 66: 153‐169, 1991.
 336.Sinclair RJ, Burton H. Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J Neurophysiol 70: 331‐350, 1993.
 337.Skedung L, Arvidsson M, Chung JY, Stafford CM, Berglund B, Rutland MW. Feeling small: Exploring the tactile perception limits. Sci Rep 3: 2617, 2013.
 338.Smith MC, Deacon P. Topographical anatomy of the posterior columns of the spinal cord in man. The long ascending fibres. Brain 107 (Pt 3): 671‐698, 1984.
 339.Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature 386: 167‐170, 1997.
 340.Snyder LH, Grieve KL, Brotchie P, Andersen RA. Separate body‐ and world‐referenced representations of visual space in parietal cortex. Nature 394: 887‐891, 1998.
 341.Soso MJ, Fetz EE. Responses of identified cells in postcentral cortex of awake monkeys during comparable active and passive joint movements. J Neurophysiol 43: 1090‐1110, 1980.
 342.Squatrito S, Raffi M, Maioli MG, Battaglia‐Mayer A. Visual motion responses of neurons in the caudal area pe of macaque monkeys. J Neurosci 21: RC130, 2001.
 343.Sripati AP, Denchev P, Szczepanski S, Yoshioka T, Johnson KO. Spatiotemporal receptive fields from white noise and complex orthogonal pattern stimulation in SI cortex of the alert monkey. J Neurosci 26(7): 2101‐2114, 2006.
 344.Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404: 187‐190, 2000.
 345.Stepniewska I, Preuss TM, Kaas JH. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J Comp Neurol 330: 238‐271, 1993.
 346.Sur M, Garraghty PE, Bruce CJ. Somatosensory cortex in macaque monkeys: Laminar differences in receptive field size in areas 3b and 1. Brain Res 342: 391‐395, 1985.
 347.Sur M, Merzenich MM, Kaas JH. Magnification, receptive‐field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44: 295‐311, 1980.
 348.Sur M, Wall JT, Kaas JH. Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212: 1059‐1061, 1981.
 349.Sur M, Wall JT, Kaas JH. Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51: 724‐744, 1984.
 350.Suresh AK, Winberry J, Versteeg C, Chowdhury RH, Tomlinson T, Rosenow JM, Miller LE, Bensmaia SJ. Methodological considerations for a chronic neural interface with the cuneate nucleus of macaques. J Neurophysiol 118(6): 3271‐3281, 2017.
 351.Suzuki Y, Gyoba J, Sakamoto S. Selective effects of auditory stimuli on tactile roughness perception. Brain Res 1242: 87‐94, 2008.
 352.Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A 110: 18279‐18284, 2013.
 353.Tabot GA, Kim SS, Winberry JE, Bensmaia SJ. Restoring tactile and proprioceptive sensation through a brain interface. Neurobiol Dis 83: 191‐198, 2014.
 354.Talbot WH, Darian‐Smith I, Kornhuber HH, Mountcastle VB. The sense of flutter‐vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31: 301‐334, 1968.
 355.Taoka M, Toda T, Hihara S, Tanaka M, Iriki A, Iwamura Y. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys. J Neurophysiol 116: 2152‐2162, 2016.
 356.Taoka M, Toda T, Iriki A, Tanaka M, Iwamura Y. Bilateral receptive field neurons in the hind limb region of the postcentral somatosensory cortex in awake macaque monkeys. Exp Brain Res 134: 139‐146, 2000.
 357.Taoka M, Toda T, Iwamura Y. Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex. Exp Brain Res 123: 315‐322, 1998.
 358.Taylor MM, Lederman SJ. Tactile roughness of grooved surfaces: A model and the effect of friction. Percept Psychophys 17: 23‐36, 1975.
 359.Thakur PH, Fitzgerald PJ, Hsiao SS. Second‐order receptive fields reveal multidigit interactions in area 3b of the macaque monkey. J Neurophysiol 108: 243‐262, 2012.
 360.Tomlinson T, Miller LE. Toward a proprioceptive neural interface that mimics natural cortical activity. Adv Exp Med Biol 957: 367‐388, 2016.
 361.Tommerdahl M. Ipsilateral input modifies the primary somatosensory cortex response to contralateral skin flutter. J Neurosci 26: 5970‐5977, 2006.
 362.Tommerdahl M, Delemos KA, Favorov OV, Metz CB, Vierck CJ, Whitsel BL. Response of anterior parietal cortex to different modes of same‐site skin stimulation. J Neurophysiol 80: 3272‐3283, 1998.
 363.Tommerdahl M, Delemos KA, Vierck CJ, Favorov O V, Whitsel BL. Anterior parietal cortical response to tactile and skin‐heating stimuli applied to the same skin site. J Neurophysiol 75: 2662‐2670, 1996.
 364.Tommerdahl M, Favorov OV, Whitsel BL. Effects of high‐frequency skin stimulation on SI cortex: Mechanisms and functional implications. Somatosens Mot Res 22: 151‐169, 2005.
 365.Tommerdahl M, Favorov O, Whitsel BL, Nakhle B, Gonchar YA. Minicolumnar activation patterns in cat and monkey si cortex. Cereb Cortex 3: 399‐411, 1993.
 366.Tommerdahl M, Whitsel BL, Favorov OV, Metz CB, O'Quinn BL. Responses of contralateral SI and SII in cat to same‐site cutaneous flutter versus vibration. J Neurophysiol 82: 1982‐1992, 1999.
 367.Tremblay N, Bushnell MC, Duncan GH. Thalamic VPM nucleus in the behaving monkey. II. Response to air‐puff stimulation during discrimination and attention tasks. J Neurophysiol 69: 753‐763, 1993.
 368.Treue S, Maunsell JHR. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382: 539‐541, 1996.
 369.Vallbo AB, Johansson RS. Skin mechanoreceptors in the human hand: Neural and psychophysical thresholds. In Sensory Functions of the Skin in Primates. Elsevier, 1976 (pp. 185‐199). doi: 10.1016/B978‐0‐08‐021208‐1.50021‐7.
 370.Vallbo AB, Olausson H, Wessberg J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81: 2753‐2763, 1999.
 371.Vallbo AB, Olausson H, Wessberg J, Kakuda N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J Physiol 483: 783‐795, 1995.
 372.Vazquez Y, Zainos A, Alvarez M, Salinas E, Romo R. Neural coding and perceptual detection in the primate somatosensory thalamus. Proc Natl Acad Sci 109: 15006‐15011, 2012.
 373.Vega‐Bermudez F, Johnson KO. SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J Neurophysiol 81: 2701‐2710, 1999.
 374.de Vito JL. Corticothalamic connections of suprasylvian cortex in monkey. Exp Neurol 32: 489‐501, 1971.
 375.Wang X, Zhang M, Cohen IS, Goldberg ME. The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10: 640‐646, 2007.
 376.Warren S, Hamalainen HA, Gardner EP. Objective classification of motion‐ and direction‐sensitive neurons in primary somatosensory cortex of awake monkeys. Journal of Neurophysiol 56: 598‐622, 1986.
 377.Warren S, Hamalainen HA, Gardner EP. Coding of the spatial period of gratings rolled across the receptive fields of somatosensory cortical neurons in awake monkeys. J Neurophysiol 56: 623‐639, 1986.
 378.Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 7: 847‐854, 2004.
 379.Weber AI, Saal HP, Lieber JD, Cheng J‐WWJW, Manfredi LR, Dammann JF, III, Bensmaia SJ, Dammann JF. Spatial and temporal codes mediate the tactile perception of natural textures. Proc Natl Acad Sci 110: 17107‐17112, 2013.
 380.Weber JT, Yin TC. Subcortical projections of the inferior parietal cortex (area 7) in the stump‐tailed monkey. J Comp Neurol 224: 206‐230, 1984.
 381.Wheat HE, Salo LM, Goodwin AW. Cutaneous afferents from the monkeys fingers: Responses to tangential and normal forces. J Neurophysiol 103: 950‐961, 2010.
 382.Whitsel BL, Franzen O, Dreyer DA, Hollins M, Young M, Essick GK, Wong C. Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosens Res 3: 185‐196, 1986.
 383.Whitsel BL, Petrucelli LM, Werner G. Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J Neurophysiol 32: 170‐183, 1969.
 384.Witham CL, Baker SN. Modulation and transmission of peripheral inputs in monkey cuneate and external cuneate nuclei. J Neurophysiol 106: 2764‐2775, 2011.
 385.Witney AG, Wing AM, Thonnard J‐L, Smith AM. The cutaneous contribution to adaptive precision grip. Trends Neurosci 27: 637‐643, 2004.
 386.Woolsey CN, Fairman D. Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery 19: 684‐702, 1946.
 387.Xu J, Wall JT. Cutaneous representations of the hand and other body parts in the cuneate nucleus of a primate, and some relationships to previously described cortical representations. Somatosens Mot Res 13: 187‐197, 1996.
 388.Xu J, Wall JT. Functional organization of tactile inputs: From the hand in the cuneate nucleus and its relationship to organization in the somatosensory cortex. J Comp Neurol 411: 369‐389, 1999.
 389.Yau JM, Connor CE, Hsiao SS. Representation of tactile curvature in macaque somatosensory area 2. J Neurophysiol 109: 2999‐3012, 2013.
 390.Yau JM, Kim SS, Thakur PH, Bensmaia SJ. Feeling form: the neural basis of haptic shape perception. J Neurophysiol 115: 631‐642, 2016.
 391.Yau JM, Pasupathy A, Fitzgerald PJ, Hsiao SS, Connor CE. Analogous intermediate shape coding in vision and touch. Proc Natl Acad Sci U S A 106: 16457‐16462, 2009.
 392.Yeterian EH, Pandya DN. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol 237: 408‐426, 1985.
 393.Yumiya H, Kubota K, Asanuma H. Activities of neurons in area 3a of the cerebral cortex during voluntary movements in the monkey. Brain Res 78: 169‐177, 1974.
 394.Zhang HQ, Zachariah MK, Coleman GT, Rowe MJ. Hierarchical equivalence of somatosensory areas I and II for tactile processing in the cerebral cortex of the marmoset monkey. J Neurophysiol 85: 1823‐35, 2001.
 395.Zimny ML. Mechanoreceptors in articular tissues. Am J Anat 182: 16‐32, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Benoit P. Delhaye, Katie H. Long, Sliman J. Bensmaia. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018, 8: 1575-1602. doi: 10.1002/cphy.c170033