References |
1. |
Adler
G
,
Beglinger
C
,
Braun
U
,
Reinshagen
M
,
Koop
I
,
Schafmayer
A
,
Rovati
L
,
Arnold
R
. Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology
100: 537‐543, 1991. |
2. |
Aktories
K
,
Hall
A
. Botulinum ADP‐ribosyltransferase C3: A new tool to study low molecular weight GTP‐binding proteins. Trends Pharmacol Sci
10: 415‐418, 1989. |
3. |
Alexandre
M
,
Thrower
EC
. PKC. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2012.13, 2012. |
4. |
Amsterdam
A
,
Jamieson
JD
. Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci U S A
69: 3028‐3032, 1972. |
5. |
Antal
CE
,
Newton
AC
. Tuning the signalling output of protein kinase C. Biochem Soc Trans
42: 1477‐1483, 2014. |
6. |
Aparicio
IM
,
Garcia‐Marin
LJ
,
Andreolotti
AG
,
Bodega
G
,
Jensen
RT
,
Bragado
MJ
. Hepatocyte growth factor activates several transduction pathways in rat pancreatic acini. Biochim Biophys Acta
1643: 37‐46, 2003. |
7. |
Argent
BE
,
Gray
MA
,
MSteward
MC
,
Case
RM
. Cell physiology of pancreatic ducts. In: Physiol of the Gastrointest Tract, edited by
Johnson
LR.
Boston: Academic Press, 2012, pp. 1399‐1423. |
8. |
Ashby
MC
,
Camello‐Almaraz
C
,
Gerasimenko
OV
,
Petersen
OH
,
Tepikin
AV
. Long distance communication between muscarinic receptors and Ca2+ release channels revealed by carbachol uncaging in cell‐attached patch pipette. J Biol Chem
278: 20860‐20864, 2003. |
9. |
Aslan
JE
,
McCarty
OJ
. Rho GTPases in platelet function. J Thromb Haemost
11: 35‐46, 2013. |
10. |
Bar‐Peled
L
,
Sabatini
DM
. Regulation of mTORC1 by amino acids. Trends Cell Biol
24: 400‐406, 2014. |
11. |
Bartolome
A
,
Guillen
C
. Role of the mammalian target of rapamycin (mTOR) complexes in pancreatic beta‐cell mass regulation. Vitam Horm
95: 425‐469, 2014. |
12. |
Bastani
B
,
Yang
L
,
Baldassare
JJ
,
Pollo
DA
,
Gardner
JD
. Cellular distribution of isoforms of protein kinase C (PKC) in pancreatic acini. Biochim Biophys Acta
1269: 307‐315, 1995. |
13. |
Baumler
MD
,
Nelson
DW
,
Ney
DM
,
Groblewski
GE
. Loss of exocrine pancreatic stimulation during parenteral feeding suppresses digestive enzyme expression and induces Hsp70 expression. Am J Physiol Gastrointest Liver Physiol
292: G857‐G866, 2007. |
14. |
Beglinger
C
,
Fried
M
,
Whitehouse
I
,
Jansen
JB
,
Lamers
CB
,
Gyr
K
. Pancreatic enzyme response to a liquid meal and to hormonal stimulation. Correlation with plasma secretin and cholecystokinin levels. J Clin Invest
75: 1471‐1476, 1985. |
15. |
Bentzinger
CF
,
Romanino
K
,
Cloetta
D
,
Lin
S
,
Mascarenhas
JB
,
Oliveri
F
,
Xia
J
,
Casanova
E
,
Costa
CF
,
Brink
M
,
Zorzato
F
,
Hall
MN
,
Ruegg
MA
. Skeletal muscle‐specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab
8: 411‐424, 2008. |
16. |
Berna
MJ
,
Hoffmann
KM
,
Tapia
JA
,
Thill
M
,
Pace
A
,
Mantey
SA
,
Jensen
RT
. CCK causes PKD1 activation in pancreatic acini by signaling through PKC‐delta and PKC‐independent pathways. Biochim Biophys Acta
1773: 483‐501, 2007. |
17. |
Berridge
MJ
. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J
212: 849‐858, 1983. |
18. |
Berridge
MJ.
Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu Rev Biochem
56: 159‐193, 1987. |
19. |
Bi
Y
,
Page
SL
,
Williams
JA
. Rho and Rac promote acinar morphological changes, actin reorganization, and amylase secretion. Am J Physiol Gastrointest Liver Physiol
289: G561‐G570, 2005. |
20. |
Bi
Y
,
Williams
JA
. A role for Rho and Rac in secretagogue‐induced amylase release by pancreatic acini. Am J Physiol Cell Physiol
289: C22‐C32, 2005. |
21. |
Blandino‐Rosano
M
,
Barbaresso
R
,
Jimenez‐Palomares
M
,
Bozadjieva
N
,
Werneck‐de‐Castro
JP
,
Hatanaka
M
,
Mirmira
RG
,
Sonenberg
N
,
Liu
M
,
Ruegg
MA
,
Hall
MN
,
Bernal‐Mizrachi
E
. Loss of mTORC1 signalling impairs beta‐cell homeostasis and insulin processing. Nat Commun
8: 16014, 2017. |
22. |
Bragado
MJ
,
Dabrowski
A
,
Groblewski
GE
,
Williams
JA
. CCK activates p90rsk in rat pancreatic acini through protein kinase C. Am J Physiol
272: G401‐G407, 1997. |
23. |
Bragado
MJ
,
Groblewski
GE
,
Williams
JA
. p70s6k is activated by CCK in rat pancreatic acini. Am J Physiol
273: C101‐C109, 1997. |
24. |
Bragado
MJ
,
Groblewski
GE
,
Williams
JA
. Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS‐I and the p70 S6 kinase pathway. Gastroenterology
115: 733‐742, 1998. |
25. |
Bragado
MJ
,
Tashiro
M
,
Williams
JA
. Regulation of the initiation of pancreatic digestive enzyme protein synthesis by cholecystokinin in rat pancreas in vivo. Gastroenterology
119: 1731‐1739, 2000. |
26. |
Brown
EJ
,
Albers
MW
,
Shin
TB
,
Ichikawa
K
,
Keith
CT
,
Lane
WS
,
Schreiber
SL
. A mammalian protein targeted by G1‐arresting rapamycin‐receptor complex. Nature
369: 756‐758, 1994. |
27. |
Bruce
JIE.
Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium
69: 28‐36, 2018. |
28. |
Bruzzone
R
,
Regazzi
R
,
Wollheim
CB
. Caerulein causes translocation of protein kinase C in rat acini without increasing cytosolic free Ca2+. Am J Physiol
255: G33‐G39, 1988. |
29. |
Burnham
DB
. Characterization of Ca2+‐activated protein phosphatase activity in exocrine pancreas. Biochem J
231: 335‐341, 1985. |
30. |
Busca
R
,
Pouyssegur
J
,
Lenormand
P
. ERK1 and ERK2 map kinases: Specific roles or functional redundancy? Front Cell Dev Biol
4: 53, 2016. |
31. |
Cantor
P
,
Olsen
O
,
Gertz
BJ
,
Gjorup
I
,
Worning
H
. Inhibition of cholecystokinin‐stimulated pancreaticobiliary output in man by the cholecystokinin receptor antagonist MK‐329. Scand J Gastroenterol
26: 627‐637, 1991. |
32. |
Carriere
A
,
Romeo
Y
,
Acosta‐Jaquez
HA
,
Moreau
J
,
Bonneil
E
,
Thibault
P
,
Fingar
DC
,
Roux
PP
. ERK1/2 phosphorylate Raptor to promote Ras‐dependent activation of mTOR complex 1 (mTORC1). J Biol Chem
286: 567‐577, 2011. |
33. |
Caunt
CJ
,
Keyse
SM
. Dual‐specificity MAP kinase phosphatases (MKPs): Shaping the outcome of MAP kinase signalling. FEBS J
280: 489‐504, 2013. |
34. |
Cawston
EE
,
Lam
PC
,
Harikumar
KG
,
Dong
M
,
Ball
AM
,
Augustine
ML
,
Akgun
E
,
Portoghese
PS
,
Orry
A
,
Abagyan
R
,
Sexton
PM
,
Miller
LJ
. Molecular basis for binding and subtype selectivity of 1,4‐benzodiazepine antagonist ligands of the cholecystokinin receptor. J Biol Chem
287: 18618‐18635, 2012. |
35. |
Cendrowski
J
,
Lobo
VJ
,
Sendler
M
,
Salas
A
,
Kuhn
JP
,
Molero
X
,
Fukunaga
R
,
Mayerle
J
,
Lerch
MM
,
Real
FX
. Mnk1 is a novel acinar cell‐specific kinase required for exocrine pancreatic secretion and response to pancreatitis in mice. Gut
64: 937‐947, 2015. |
36. |
Chandra
R
,
Samsa
LA
,
Vigna
SR
,
Liddle
RA
. Pseudopod‐like basal cell processes in intestinal cholecystokinin cells. Cell Tissue Res
341: 289‐297, 2010. |
37. |
Chandrasekhar
R
,
Yule
DI
,
Wang
L
. Inositol 1,4,5‐trisphosphate receptors (InsP3R). Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.07, 2017. |
38. |
Chang
TM
,
Chey
WY
. Radioimmunoassay of cholecystokinin. Dig Dis Sci
28: 456‐468, 1983. |
39. |
Chen
LA
,
Li
J
,
Silva
SR
,
Jackson
LN
,
Zhou
Y
,
Watanabe
H
,
Ives
KL
,
Hellmich
MR
,
Evers
BM
. PKD3 is the predominant protein kinase D isoform in mouse exocrine pancreas and promotes hormone‐induced amylase secretion. J Biol Chem
284: 2459‐2471, 2009. |
40. |
Chey
WY
,
Chang
T‐M
. Secretin, 100 years later. Journal of Gastroenterology
38: 1025‐1035, 2003. |
41. |
Chin
D
,
Means
AR
. Calmodulin: A prototypical calcium sensor. Trends Cell Biol
10: 322‐328, 2000. |
42. |
Cosen‐Binker
LI
,
Lam
PP
,
Binker
MG
,
Gaisano
HY
. Alcohol‐induced protein kinase Calpha phosphorylation of Munc18c in carbachol‐stimulated acini causes basolateral exocytosis. Gastroenterology
132: 1527‐1545, 2007. |
43. |
Cosen‐Binker
LI
,
Lam
PP
,
Binker
MG
,
Reeve
J
,
Pandol
S
,
Gaisano
HY
. Alcohol/cholecystokinin‐evoked pancreatic acinar basolateral exocytosis is mediated by protein kinase C alpha phosphorylation of Munc18c. J Biol Chem
282: 13047‐13058, 2007. |
44. |
Crozier
SJ
,
D'Alecy
LG
,
Ernst
SA
,
Ginsburg
LE
,
Williams
JA
. Molecular mechanisms of pancreatic dysfunction induced by protein malnutrition. Gastroenterology
137: 1093‐1101, 1101 e1091‐1093, 2009. |
45. |
Crozier
SJ
,
Sans
MD
,
Guo
L
,
D'Alecy
LG
,
Williams
JA
. Activation of the mTOR signalling pathway is required for pancreatic growth in protease‐inhibitor‐fed mice. J Physiol
573: 775‐786, 2006. |
46. |
Crozier
SJ
,
Sans
MD
,
Lang
CH
,
D'Alecy
LG
,
Ernst
SA
,
Williams
JA
. CCK‐induced pancreatic growth is not limited by mitogenic capacity in mice. Am J Physiol Gastrointest Liver Physiol
294: G1148‐1157, 2008. |
47. |
Crozier
SJ
,
Sans
MD
,
Wang
JY
,
Lentz
SI
,
Ernst
SA
,
Williams
JA
. CCK‐independent mTORC1 activation during dietary protein‐induced exocrine pancreas growth. Am J Physiol Gastrointest Liver Physiol
299: G1154‐G1163, 2010. |
48. |
Cuadrado
A
,
Nebreda
AR
. Mechanisms and functions of p38 MAPK signalling. Biochem J
429: 403‐417, 2010. |
49. |
Dabrowski
A
,
Boguslowicz
C
,
Dabrowska
M
,
Tribillo
I
,
Gabryelewicz
A
. Reactive oxygen species activate mitogen‐activated protein kinases in pancreatic acinar cells. Pancreas
21: 376‐384, 2000. |
50. |
Dabrowski
A
,
Detjen
KM
,
Logsdon
CD
,
Williams
JA
. Stimulation of both CCK‐A and CCK‐B receptors activates MAP kinases in AR42J and receptor‐transfected CHO cells. Digestion
58: 361‐367, 1997. |
51. |
Dabrowski
A
,
Grady
T
,
Logsdon
CD
,
Williams
JA
. Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J Biol Chem
271: 5686‐5690, 1996. |
52. |
Dabrowski
A
,
Groblewski
GE
,
Schafer
C
,
Guan
KL
,
Williams
JA
. Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am J Physiol
273: C1472‐C1479, 1997. |
53. |
Dabrowski
A
,
Tribillo
I
,
Dabrowska
MI
,
Wereszczynska‐Siemiatkowska
U
,
Gabryelewicz
A
. Activation of mitogen‐activated protein kinases in different models of pancreatic acinar cell damage. Z Gastroenterol
38: 469‐481, 2000. |
54. |
Dabrowski
A
,
VanderKuur
JA
,
Carter‐Su
C
,
Williams
JA
. Cholecystokinin stimulates formation of shc‐grb2 complex in rat pancreatic acinar cells through a protein kinase C‐dependent mechanism. J Biol Chem
271: 27125‐27129, 1996. |
55. |
Daniluk
J
,
Dabrowski
A
. The effect of concomitant stimulation with cholecystokinin and epidermal growth factor on extracellular signal‐regulated kinase (ERK) activity in pancreatic acinar cells. J Physiol Pharmacol
58: 441‐453, 2007. |
56. |
Daniluk
J
,
Liu
Y
,
Deng
D
,
Chu
J
,
Huang
H
,
Gaiser
S
,
Cruz‐Monserrate
Z
,
Wang
H
,
Ji
B
,
Logsdon
CD
. An NF‐kappaB pathway‐mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest
122: 1519‐1528, 2012. |
57. |
Daulhac
L
,
Kowalski‐Chauvel
A
,
Pradayrol
L
,
Vaysse
N
,
Seva
C
. Src‐family tyrosine kinases in activation of ERK‐1 and p85/p110‐phosphatidylinositol 3‐kinase by G/CCKB receptors. J Biol Chem
274: 20657‐20663, 1999. |
58. |
Davis
RJ
. Signal transduction by the JNK group of MAP kinases. Cell
103: 239‐252, 2000. |
59. |
Dawson
ES
,
Henne
RM
,
Miller
LJ
,
Lybrand
TP
. Molecular models for cholecystokinin‐A receptor. Pharmacology & Toxicology
91: 290‐296, 2002. |
60. |
de Lartigue
G
,
Barbier de la Serre
C
,
Espero
E
,
Lee
J
,
Raybould
HE
. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One
7: e32967, 2012. |
61. |
Desai
AJ
,
Dong
M
,
Langlais
BT
,
Dueck
AC
,
Miller
LJ
. Cholecystokinin responsiveness varies across the population dependent on metabolic phenotype. Am J Clin Nutr
106: 447‐456, 2017. |
62. |
Desai
AJ
,
Miller
LJ
. Cholecystokinin type 1 receptor. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2013.9, 2013. |
63. |
Desai
AJ
,
Miller
LJ
. Changes in the plasma membrane in metabolic disease: Impact of the membrane environment on G protein‐coupled receptor structure and function. Br J Pharmacol
175: 4009‐4025, 2017. |
64. |
Dibble
CC
,
Manning
BD
. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol
15: 555‐564, 2013. |
65. |
Dirice
E
,
Walpita
D
,
Vetere
A
,
Meier
BC
,
Kahraman
S
,
Hu
J
,
Dancik
V
,
Burns
SM
,
Gilbert
TJ
,
Olson
DE
,
Clemons
PA
,
Kulkarni
RN
,
Wagner
BK
. Inhibition of DYRK1A stimulates human beta‐cell proliferation. Diabetes
65: 1660‐1671, 2016. |
66. |
Dockray
GJ
. The action of scretin, cholecystokinin‐pancreozymin and caerulein on pancreatic secretion in the rat. J Physiol
225: 679‐692, 1972. |
67. |
Dockray
GJ
. Gastrointestinal hormones: Gastrin, cholecystokinin, somatostatin, and ghrelin. In: Physiology of the Gastrointestinal Tract (Fourth Edition). Ed.
Johnson
LR
, Burlington: Academic Press, 2006, pp. 91‐120. |
68. |
Dockray
GJ
. Cholecystokinin and gut‐brain signalling. Regul Pept
155: 6‐10, 2009. |
69. |
Dormer
RL
,
Williams
JA
. Secretagogue‐induced changes in subcellular Ca2+ distribution in isolated pancreatic acini. Am J Physiol
240: G130‐G140, 1981. |
70. |
Duan
RD
,
Williams
JA
. Cholecystokinin rapidly activates mitogen‐activated protein kinase in rat pancreatic acini. Am J Physiol
267: G401‐G408, 1994. |
71. |
Duan
RD
,
Zheng
CF
,
Guan
KL
,
Williams
JA
. Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol
268: G1060‐G1065, 1995. |
72. |
Dudley
DT
,
Pang
L
,
Decker
SJ
,
Bridges
AJ
,
Saltiel
AR
. A synthetic inhibitor of the mitogen‐activated protein kinase cascade. Proc Natl Acad Sci U S A
92: 7686‐7689, 1995. |
73. |
Dufresne
M
,
Seva
C
,
Fourmy
D
. Cholecystokinin and gastrin receptors. Physiol Rev
86: 805‐847, 2006. |
74. |
Eberlein
GA
,
Eysselein
VE
,
Hesse
WH
,
Goebell
H
,
Schaefer
M
,
Reeve
JR, Jr.
Detection of cholecystokinin‐58 in human blood by inhibition of degradation. Am J Physiol
253: G477‐G482, 1987. |
75. |
Elghazi
L
,
Blandino‐Rosano
M
,
Alejandro
E
,
Cras‐Meneur
C
,
Bernal‐Mizrachi
E
. Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Mol Metab
6: 560‐573, 2017. |
76. |
Escos
A
,
Risco
A
,
Alsina‐Beauchamp
D
,
Cuenda
A
. p38gamma and p38delta mitogen activated protein kinases (MAPKs), new stars in the MAPK galaxy. Front Cell Dev Biol
4: 31, 2016. |
77. |
Etienne‐Manneville
S
,
Hall
A
. Rho GTPases in cell biology. Nature
420: 629‐635, 2002. |
78. |
Fan
BG
,
Axelson
J
,
Sternby
B
,
Rehfeld
J
,
Ihse
I
,
Ekelund
M
. Total parenteral nutrition affects the tropic effect of cholecystokinin on the exocrine pancreas. Scand J Gastroenterol
32: 380‐386, 1997. |
79. |
Fingar
DC
,
Blenis
J
. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene
23: 3151‐3171, 2004. |
80. |
Fleming
AK
,
Storz
P
. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal
40: 1‐9, 2017. |
81. |
Fogarty
KE
,
Kidd
JF
,
Tuft
DA
,
Thorn
P
. Mechanisms underlying InsP3‐evoked global Ca2+ signals in mouse pancreatic acinar cells. J Physiol 526 Pt
3: 515‐526, 2000. |
82. |
Folsch
UR
,
Winckler
K
,
Wormsley
KG
. Influence of repeated administration of cholecystokinin and secretin on the pancreas of the rat. Scand J Gastroenterol
13: 663‐671, 1978. |
83. |
Fukuhara
S
,
Chikumi
H
,
Gutkind
JS
. RGS‐containing RhoGEFs: The missing link between transforming G proteins and Rho? Oncogene
20: 1661‐1668, 2001. |
84. |
Furuichi
T
,
Yoshikawa
S
,
Miyawaki
A
,
Wada
K
,
Maeda
N
,
Mikoshiba
K
. Primary structure and functional expression of the inositol 1,4,5‐trisphosphate‐binding protein P400. Nature
342: 32‐38, 1989. |
85. |
Futatsugi
A
,
Nakamura
T
,
Yamada
MK
,
Ebisui
E
,
Nakamura
K
,
Uchida
K
,
Kitaguchi
T
,
Takahashi‐Iwanaga
H
,
Noda
T
,
Aruga
J
,
Mikoshiba
K
. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science
309: 2232‐2234, 2005. |
86. |
Gaestel
M
. MAPKAP kinases‐MKs‐two's company, three's a crowd. Nat Rev Mol Cell Biol
7: 120‐130, 2006. |
87. |
Gallo
KA
,
Johnson
GL
. Mixed‐lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol
3: 663‐672, 2002. |
88. |
Garcia
LJ
,
Rosado
JA
,
Gonzalez
A
,
Jensen
RT
. Cholecystokinin‐stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C‐dependent and ‐independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho. Biochem J
327(Pt 2): 461‐472, 1997. |
89. |
Gardner
JD
,
Sutliff
VE
,
Walker
MD
,
Jensen
RT
. Effects of inhibitors of cyclic nucleotide phosphodiesterase on actions of cholecystokinin, bombesin, and carbachol on pancreatic acini. Am J Physiol
245: G676‐G680, 1983. |
90. |
Gazzaneo
MC
,
Orellana
RA
,
Suryawan
A
,
Tuckow
AP
,
Kimball
SR
,
Wilson
FA
,
Nguyen
HV
,
Torrazza
RM
,
Fiorotto
ML
,
Davis
TA
. Differential regulation of protein synthesis and mTOR signaling in skeletal muscle and visceral tissues of neonatal pigs after a meal. Pediatr Res
70: 253‐260, 2011. |
91. |
Gerasimenko
JV
,
Gryshchenko
O
,
Ferdek
PE
,
Stapleton
E
,
Hebert
TO
,
Bychkova
S
,
Peng
S
,
Begg
M
,
Gerasimenko
OV
,
Petersen
OH
. Ca2+ release‐activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A
110: 13186‐13191, 2013. |
92. |
Geron
E
,
Schejter
ED
,
Shilo
BZ
. Directing exocrine secretory vesicles to the apical membrane by actin cables generated by the formin mDia1. Proc Natl Acad Sci U S A
110: 10652‐10657, 2013. |
93. |
Goberdhan
DC
,
Wilson
C
,
Harris
AL
. Amino acid sensing by mTORC1: Intracellular transporters mark the spot. Cell Metab
23: 580‐589, 2016. |
94. |
Gonzalez
A
,
Schmid
A
,
Sternfeld
L
,
Krause
E
,
Salido
GM
,
Schulz
I
. Cholecystokinin‐evoked Ca(2+) waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A(2), phospholipase D, and protein kinase C. Biochem Biophys Res Commun
261: 726‐733, 1999. |
95. |
Goodyer
WR
,
Gu
X
,
Liu
Y
,
Bottino
R
,
Crabtree
GR
,
Kim
SK
. Neonatal beta cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell
23: 21‐34, 2012. |
96. |
Grady
T
,
Dabrowski
A
,
Williams
JA
,
Logsdon
CD
. Stress‐activated protein kinase activation is the earliest direct correlate to the induction of secretagogue‐induced pancreatitis in rats. Biochem Biophys Res Commun
227: 1‐7, 1996. |
97. |
Green
GM
,
Levan
VH
,
Liddle
RA
. Plasma cholecystokinin and pancreatic growth during adaptation to dietary protein. Am J Physiol
251: G70‐G74, 1986. |
98. |
Green
GM
,
Lyman
RL
. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor‐induced hypersecretion in rats. Proc Soc Exp Biol Med
140: 6‐12, 1972. |
99. |
Gresset
A
,
Sondek
J
,
Harden
TK
. The phospholipase C isozymes and their regulation. Subcell Biochem
58: 61‐94, 2012. |
100. |
Groblewski
GE
,
Grady
T
,
Mehta
N
,
Lambert
H
,
Logsdon
CD
,
Landry
J
,
Williams
JA
. Cholecystokinin stimulates heat shock protein 27 phosphorylation in rat pancreas both in vivo and in vitro. Gastroenterology
112: 1354‐1361, 1997. |
101. |
Groblewski
GE
,
Wagner
AC
,
Williams
JA
. Cyclosporin A inhibits Ca2+/calmodulin‐dependent protein phosphatase and secretion in pancreatic acinar cells. J Biol Chem
269: 15111‐15117, 1994. |
102. |
Groblewski
GE
,
Yoshida
M
,
Bragado
MJ
,
Ernst
SA
,
Leykam
J
,
Williams
JA
. Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem
273: 22738‐22744, 1998. |
103. |
Guo
L
,
Sans
MD
,
Gurda
GT
,
Lee
SH
,
Ernst
SA
,
Williams
JA
. Induction of early response genes in trypsin inhibitor‐induced pancreatic growth. Am J Physiol Gastrointest Liver Physiol
292: G667‐G677, 2007. |
104. |
Guo
L
,
Sans
MD
,
Hou
Y
,
Ernst
SA
,
Williams
JA
. c‐Jun/AP‐1 is required for CCK‐induced pancreatic acinar cell dedifferentiation and DNA synthesis in vitro. Am J Physiol Gastrointest Liver Physiol
302: G1381‐G1396, 2012. |
105. |
Gurda
GT
,
Crozier
SJ
,
Ji
B
,
Ernst
SA
,
Logsdon
CD
,
Rothermel
BA
,
Williams
JA
. Regulator of calcineurin 1 controls growth plasticity of adult pancreas. Gastroenterology
139: 609‐619, 619 e601‐606, 2010. |
106. |
Gurda
GT
,
Guo
L
,
Lee
SH
,
Molkentin
JD
,
Williams
JA
. Cholecystokinin activates pancreatic calcineurin‐NFAT signaling in vitro and in vivo. Mol Biol Cell
19: 198‐206, 2008. |
107. |
Haga
RB
,
Ridley
AJ
. Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases
7: 207‐221, 2016. |
108. |
Halbrook
CJ
,
Wen
HJ
,
Ruggeri
JM
,
Takeuchi
KK
,
Zhang
Y
,
di Magliano
MP
,
Crawford
HC
. Mitogen‐activated protein kinase kinase activity maintains acinar‐to‐ductal metaplasia and is required for organ regeneration in pancreatitis. Cell Mol Gastroenterol Hepatol
3: 99‐118, 2017. |
109. |
Hara
K
,
Maruki
Y
,
Long
X
,
Yoshino
K
,
Oshiro
N
,
Hidayat
S
,
Tokunaga
C
,
Avruch
J
,
Yonezawa
K
. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell
110: 177‐189, 2002. |
110. |
Harada
E
,
Kanno
T
. Progressive enhancement in the secretory functions of the digestive system of the rat in the course of cold acclimation. J Physiol
260: 629‐645, 1976. |
111. |
Harikumar
KG
,
Cawston
EE
,
Lam
PC
,
Patil
A
,
Orry
A
,
Henke
BR
,
Abagyan
R
,
Christopoulos
A
,
Sexton
PM
,
Miller
LJ
. Molecular basis for benzodiazepine agonist action at the type 1 cholecystokinin receptor. J Biol Chem
288: 21082‐21095, 2013. |
112. |
Harper
AA
,
Raper
HS
. Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J Physiol
102: 115‐125, 1943. |
113. |
Hashi
M
,
Yoshizawa
F
,
Onozuka
E
,
Ogata
M
,
Hara
H
. Adaptive changes in translation initiation activities for rat pancreatic protein synthesis with feeding of a high‐protein diet. J Nutr Biochem
16: 507‐512, 2005. |
114. |
Hashimoto
N
,
Hara
H
. Dietary amino acids promote pancreatic protease synthesis at the translation stage in rats. J Nutr
133: 3052‐3057, 2003. |
115. |
Heit
JJ
,
Apelqvist
AA
,
Gu
X
,
Winslow
MM
,
Neilson
JR
,
Crabtree
GR
,
Kim
SK
. Calcineurin/NFAT signalling regulates pancreatic beta‐cell growth and function. Nature
443: 345‐349, 2006. |
116. |
Henin
J
,
Maigret
B
,
Tarek
M
,
Escrieut
C
,
Fourmy
D
,
Chipot
C
. Probing a model of a GPCR/ligand complex in an explicit membrane environment: The human cholecystokinin‐1 receptor. Biophys J
90: 1232‐1240, 2006. |
117. |
Hildebrand
P
,
Beglinger
C
,
Gyr
K
,
Jansen
JB
,
Rovati
LC
,
Zuercher
M
,
Lamers
CB
,
Setnikar
I
,
Stalder
GA
. Effects of a cholecystokinin receptor antagonist on intestinal phase of pancreatic and biliary responses in man. J Clin Invest
85: 640‐646, 1990. |
118. |
Himeno
S
,
Tarui
S
,
Kanayama
S
,
Kuroshima
T
,
Shinomura
Y
,
Hayashi
C
,
Tateishi
K
,
Imagawa
K
,
Hashimura
E
,
Hamaoka
T
. Plasma cholecystokinin responses after ingestion of liquid meal and intraduodenal infusion of fat, amino acids, or hydrochloric acid in man: Analysis with region specific radioimmunoassay. Am J Gastroenterol
78: 703‐707, 1983. |
119. |
Hocker
M
,
Waschulewski
IH
,
Kern
HF
,
Domagk
KA
,
Schwarzhoff
R
,
Folsch
UR
,
Schmidt
WE
. Cyclosporine A inhibits protein‐kinase‐C‐mediated amylase release from isolated rat pancreatic acini. Digestion
55: 380‐388, 1994. |
120. |
Hodge
RG
,
Ridley
AJ
. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol
17: 496‐510, 2016. |
121. |
Hoffmann
P
,
Eberlein
GA
,
Reeve
JR, Jr.
,
Bunte
RH
,
Grandt
D
,
Goebell
H
,
Eysselein
VE
. Comparison of clearance and metabolism of infused cholecystokinins 8 and 58 in dogs. Gastroenterology
105: 1732‐1736, 1993. |
122. |
Hofken
T
,
Keller
N
,
Fleischer
F
,
Goke
B
,
Wagner
AC
. Map kinase phosphatases (MKP's) are early responsive genes during induction of cerulein hyperstimulation pancreatitis. Biochem Biophys Res Commun
276: 680‐685, 2000. |
123. |
Holtz
BJ
,
Lodewyk
KB
,
Sebolt‐Leopold
JS
,
Ernst
SA
,
Williams
JA
. ERK activation is required for CCK‐mediated pancreatic adaptive growth in mice. Am J Physiol Gastrointest Liver Physiol
307: G700‐G710, 2014. |
124. |
Hong
JH
,
Park
S
,
Shcheynikov
N
,
Muallem
S
. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch
466: 1487‐1499, 2014. |
125. |
Hou
H
,
Wang
F
,
Zhang
W
,
Wang
D
,
Li
X
,
Bartlam
M
,
Yao
X
,
Rao
Z
. Structure‐functional analyses of CRHSP‐24 plasticity and dynamics in oxidative stress response. J Biol Chem
286: 9623‐9635, 2011. |
126. |
Huang
CY
,
Tan
TH
. DUSPs, to MAP kinases and beyond. Cell Biosci
2: 24, 2012. |
127. |
Husain
SZ
,
Grant
WM
,
Gorelick
FS
,
Nathanson
MH
,
Shah
AU
. Caerulein‐induced intracellular pancreatic zymogen activation is dependent on calcineurin. Am J Physiol Gastrointest Liver Physiol
292: G1594‐G1599, 2007. |
128. |
Ishizuka
T
,
Ito
Y
,
Kajita
K
,
Miura
K
,
Nagao
S
,
Nagata
K
,
Nozawa
Y
. Redistribution of protein kinase C in pancreatic acinar cells stimulated with caerulein or carbachol. Biochem Biophys Res Commun
144: 551‐559, 1987. |
129. |
Ivy
AC
. A hormone mechanism for gall‐bladder contraction & evacuation. Amer J Physiology
86: 599‐613, 1928. |
130. |
Jaffe
AB
,
Hall
A
. Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol
21: 247‐269, 2005. |
131. |
Jang
Y
,
Soekmadji
C
,
Mitchell
JM
,
Thomas
WG
,
Thorn
P
. Real‐time measurement of F‐actin remodelling during exocytosis using Lifeact‐EGFP transgenic animals. PLoS One
7: e39815, 2012. |
132. |
Jebbink
MC
,
Jansen
JB
,
Masclee
AA
,
Lamers
CB
. Lack of effect of the specific cholecystokinin receptor antagonist loxiglumide on cholecystokinin clearance from plasma in man. Br J Clin Pharmacol
29: 770‐773, 1990. |
133. |
Jensen
RT
,
Wank
SA
,
Rowley
WH
,
Sato
S
,
Gardner
JD
. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol Sci
10: 418‐423, 1989. |
134. |
Jewell
JL
,
Russell
RC
,
Guan
KL
. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol
14: 133‐139, 2013. |
135. |
Ji
B
,
Bi
Y
,
Simeone
D
,
Mortensen
RM
,
Logsdon
CD
. Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. Gastroenterology
121: 1380‐1390, 2001. |
136. |
Jun
I
,
Lee
MG
,
Muallem
S
. Molecular mechanisms of pancreatic bicarbonate secretion. Pancreapedia
2017. |
137. |
Kanayama
S
,
Himeno
S
,
Kurokawa
M
,
Shinomura
Y
,
Kuroshima
T
,
Okuno
M
,
Tsuji
K
,
Higashimoto
Y
,
Ikei
N
,
Hashimura
E
, et al. Marked prolongation in disappearance half‐time of plasma cholecystokinin‐octapeptide in patients with hepatic cirrhosis. Am J Gastroenterol
80: 557‐560, 1985. |
138. |
Kasai
H
,
Augustine
GJ
. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature
348: 735‐738, 1990. |
139. |
Kasai
H
,
Li
YX
,
Miyashita
Y
. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell
74: 669‐677, 1993. |
140. |
Kaufmann
A
,
Rossler
OG
,
Thiel
G
. Expression of the transcription factor Egr‐1 in pancreatic acinar cells following stimulation of cholecystokinin or Galphaq‐coupled designer receptors. Cell Physiol Biochem
33: 1411‐1425, 2014. |
141. |
Kidger
AM
,
Keyse
SM
. The regulation of oncogenic Ras/ERK signalling by dual‐specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol
50: 125‐132, 2016. |
142. |
Kiehne
K
,
Herzig
KH
,
Folsch
UR
. CCK‐stimulated changes in pancreatic acinar morphology are mediated by rho. Digestion
65: 47‐55, 2002. |
143. |
Kim
J
,
Guan
KL
. Amino acid signaling in TOR activation. Annu Rev Biochem
80: 1001‐1032, 2011. |
144. |
Kim
M
,
Nozu
F
,
Kusama
K
,
Imawari
M
. Cholecystokinin stimulates the recruitment of the Src‐RhoA‐phosphoinositide 3‐kinase pathway by Vav‐2 downstream of G(alpha13) in pancreatic acini. Biochem Biophys Res Commun
339: 271‐276, 2006. |
145. |
Kim
MJ
,
Lee
KH
,
Min
DS
,
Yoon
SH
,
Hahn
SJ
,
Kim
MS
,
Jo
YH
. Distributional patterns of phospholipase C isozymes in rat pancreas. Pancreas
22: 47‐52, 2001. |
146. |
Kim
MJ
,
Lee
YS
,
Lee
KH
,
Min
DS
,
Yoon
SH
,
Hahn
SJ
,
Kim
MS
,
Jo
YH
. Site‐specific localization of protein kinase C isoforms in rat pancreas. Pancreatology
1: 36‐42, 2001. |
147. |
Kim
MS
,
Hong
JH
,
Li
Q
,
Shin
DM
,
Abramowitz
J
,
Birnbaumer
L
,
Muallem
S
. Deletion of TRPC3 in mice reduces store‐operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology
137: 1509‐1517, 2009. |
148. |
Kim
YS
,
Kim
WJ
,
Kim
HK
,
Hong
SS
. Effect of cold and hot environments on the exocrine pancreas of rats. Yonsei Med J
11: 1‐9, 1970. |
149. |
Klee
CB
,
Ren
H
,
Wang
X
. Regulation of the calmodulin‐stimulated protein phosphatase, calcineurin. J Biol Chem
273: 13367‐13370, 1998. |
150. |
Kolch
W
. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol
6: 827‐837, 2005. |
151. |
Kraft
AS
,
Anderson
WB
. Phorbol esters increase the amount of Ca2+, phospholipid‐dependent protein kinase associated with plasma membrane. Nature
301: 621‐623, 1983. |
152. |
Krishna
M
,
Narang
H
. The complexity of mitogen‐activated protein kinases (MAPKs) made simple. Cell Mol Life Sci
65: 3525‐3544, 2008. |
153. |
Lacourse
KA
,
Swanberg
LJ
,
Gillespie
PJ
,
Rehfeld
JF
,
Saunders
TL
,
Samuelson
LC
. Pancreatic function in CCK‐deficient mice: Adaptation to dietary protein does not require CCK. Am J Physiol Gastrointest Liver Physiol
276: G1302‐G1309, 1999. |
154. |
Laplante
M
,
Sabatini
DM
. mTOR signaling in growth control and disease. Cell
149: 274‐293, 2012. |
155. |
Lawrence
MC
,
Bhatt
HS
,
Watterson
JM
,
Easom
RA
. Regulation of insulin gene transcription by a Ca(2+)‐responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol Endocrinol
15: 1758‐1767, 2001. |
156. |
Le Page
SL
,
Bi
Y
,
Williams
JA
. CCK‐A receptor activates RhoA through G alpha 12/13 in NIH3T3 cells. Am J Physiol Cell Physiol
285: C1197‐C1206, 2003. |
157. |
Lee
M
,
Chung
S
,
Uhm
DY
,
Park
MK
. Regulation of zymogen granule exocytosis by Ca2+, cAMP, and PKC in pancreatic acinar cells. Biochem Biophys Res Commun
334: 1241‐1247, 2005. |
158. |
Lee
MG
,
Xu
X
,
Zeng
W
,
Diaz
J
,
Kuo
TH
,
Wuytack
F
,
Racymaekers
L
,
Muallem
S
. Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem
272: 15771‐15776, 1997. |
159. |
Lee
S
,
Wishart
MJ
,
Williams
JA
. Identification of calcineurin regulated phosphorylation sites on CRHSP‐24. Biochem Biophys Res Commun
385: 413‐417, 2009. |
160. |
Leser
J
,
Luhrs
H
,
Beil
MF
,
Adler
G
,
Lutz
MP
. Cholecystokinin‐induced redistribution of paxillin in rat pancreatic acinar cells. Biochem Biophys Res Commun
254: 400‐405, 1999. |
161. |
Li
C
,
Chen
X
,
Williams
JA
. Regulation of CCK‐induced amylase release by PKC‐delta in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
287: G764‐G771, 2004. |
162. |
Li
C
,
Williams
JA
. Regulation of CCK‐induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells. AIMS Molecular Sci
4: 463‐477, 2017. |
163. |
Li
H
,
Rao
A
,
Hogan
PG
. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol
21: 91‐103, 2011. |
164. |
Li
W
,
Zhang
H
,
Nie
A
,
Ni
Q
,
Li
F
,
Ning
G
,
Li
X
,
Gu
Y
,
Wang
Q
. mTORC1 pathway mediates beta cell compensatory proliferation in 60 % partial‐pancreatectomy mice. Endocrine
53: 117‐128, 2016. |
165. |
Li
Y
,
Owyang
C
. Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic enzyme secretion. J Clin Invest
92: 418‐424, 1993. |
166. |
Liang
T
,
Dolai
S
,
Xie
L
,
Winter
E
,
Orabi
AI
,
Karimian
N
,
Cosen‐Binker
LI
,
Huang
YC
,
Thorn
P
,
Cattral
MS
,
Gaisano
HY
. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology. J Biol Chem
292: 5957‐5969, 2017. |
167. |
Liddle
RA
. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Physiol
269: G319‐G327, 1995. |
168. |
Liddle
RA
. Cholecystokinin cells. Annu Rev Physiol
59: 221‐242, 1997. |
169. |
Liddle
RA
. Regulation of Pancreatic Secretion. In: Physiology of the Gastrointestinal Tract (Fifth Edition), edited by
Johnson
LR
,
Ghishan
FK
,
Kaunitz
JD
,
Merchant
JL
,
Said
HM
,
Wood
JD
. Boston: Academic Press, 2012, pp. 1425‐1460. |
170. |
Liddle
RA
,
Goldfine
ID
,
Rosen
MS
,
Taplitz
RA
,
Williams
JA
. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest
75: 1144‐1152, 1985. |
171. |
Liddle
RA
,
Goldfine
ID
,
Williams
JA
. Bioassay of plasma cholecystokinin in rats: Effects of food, trypsin inhibitor, and alcohol. Gastroenterology
87: 542‐549, 1984. |
172. |
Liener
IE
,
Goodale
RL
,
Deshmukh
A
,
Satterberg
TL
,
Ward
G
,
DiPietro
CM
,
Bankey
PE
,
Borner
JW
. Effect of a trypsin inhibitor from soybeans (Bowman‐Birk) on the secretory activity of the human pancreas. Gastroenterology
94: 419‐427, 1988. |
173. |
Liou
J
,
Kim
ML
,
Heo
WD
,
Jones
JT
,
Myers
JW
,
Ferrell
JE, Jr.
,
Meyer
T
. STIM is a Ca2+ sensor essential for Ca2+‐store‐depletion‐triggered Ca2+ influx. Curr Biol
15: 1235‐1241, 2005. |
174. |
Litosch
I
. Decoding Galphaq signaling. Life Sci
152: 99‐106, 2016. |
175. |
Logsdon
CD
. Stimulation of pancreatic acinar cell growth by CCK, epidermal growth factor, and insulin in vitro. Am J Physiol
251: G487‐G494, 1986. |
176. |
Logsdon
CD
,
Williams
JA
. Pancreatic acinar cells in monolayer culture: Direct trophic effects of caerulein in vitro. Am J Physiol
250: G440‐G447, 1986. |
177. |
Lur
G
,
Haynes
LP
,
Prior
IA
,
Gerasimenko
OV
,
Feske
S
,
Petersen
OH
,
Burgoyne
RD
,
Tepikin
AV
. Ribosome‐free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol
19: 1648‐1653, 2009. |
178. |
Lynch
G
,
Kohler
S
,
Leser
J
,
Beil
M
,
Garcia‐Marin
LJ
,
Lutz
MP
. The tyrosine kinase Yes regulates actin structure and secretion during pancreatic acinar cell damage in rats. Pflugers Arch
447: 445‐451, 2004. |
179. |
Machado‐de Domenech
E
,
Soling
HD
. Effects of stimulation of muscarinic and of beta‐catecholamine receptors on the intracellular distribution of protein kinase C in guinea pig exocrine glands. Biochem J
242: 749‐754, 1987. |
180. |
Malo
A
,
Kruger
B
,
Goke
B
,
Kubisch
CH
. 4‐Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Pancreas
42: 92‐101, 2013. |
181. |
Malo
A
,
Kruger
B
,
Seyhun
E
,
Schafer
C
,
Hoffmann
RT
,
Goke
B
,
Kubisch
CH
. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol
299: G877‐G886, 2010. |
182. |
Marino
CR
,
Leach
SD
,
Schaefer
JF
,
Miller
LJ
,
Gorelick
FS
. Characterization of cAMP‐dependent protein kinase activation by CCK in rat pancreas. FEBS Lett
316: 48‐52, 1993. |
183. |
Matozaki
T
,
Goke
B
,
Tsunoda
Y
,
Rodriguez
M
,
Martinez
J
,
Williams
JA
. Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV‐180. J Biol Chem
265: 6247‐6254, 1990. |
184. |
Matozaki
T
,
Williams
JA
. Multiple sources of 1,2‐diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis. J Biol Chem
264: 14729‐14734, 1989. |
185. |
McCormack
JG
,
Halestrap
AP
,
Denton
RM
. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev
70: 391‐425, 1990. |
186. |
McLaughlin
CL
,
Baile
CA
,
Peikin
SR
. Hyperphagia during lactation: Satiety response to CCK and growth of the pancreas. Am J Physiol
244: E61‐E65, 1983. |
187. |
Means
AR
. Regulatory cascades involving calmodulin‐dependent protein kinases. Mol Endocrinol
14: 4‐13, 2000. |
188. |
Meloche
S
,
Pouyssegur
J
. The ERK1/2 mitogen‐activated protein kinase pathway as a master regulator of the G1‐ to S‐phase transition. Oncogene
26: 3227‐3239, 2007. |
189. |
Merritt
JE
,
Rubin
RP
. Pancreatic amylase secretion and cytoplasmic free calcium. Effects of ionomycin, phorbol dibutyrate and diacylglycerols alone and in combination. Biochem J
230: 151‐159, 1985. |
190. |
Mignen
O
,
Thompson
JL
,
Yule
DI
,
Shuttleworth
TJ
. Agonist activation of arachidonate‐regulated Ca2+‐selective (ARC) channels in murine parotid and pancreatic acinar cells. J Physiol
564: 791‐801, 2005. |
191. |
Miller
LJ
,
Gao
F
. Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther
119: 83‐95, 2008. |
192. |
Miller
WE
,
Lefkowitz
RJ
. Expanding roles for beta‐arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol
13: 139‐145, 2001. |
193. |
Minami
T.
Calcineurin‐NFAT activation and DSCR‐1 auto‐inhibitory loop: How is homoeostasis regulated? J Biochem
155: 217‐226, 2014. |
194. |
Mishra
V
,
Cline
R
,
Noel
P
,
Karlsson
J
,
Baty
CJ
,
Orlichenko
L
,
Patel
K
,
Trivedi
RN
,
Husain
SZ
,
Acharya
C
,
Durgampudi
C
,
Stolz
DB
,
Navina
S
,
Singh
VP
. Src dependent pancreatic acinar injury can be initiated independent of an increase in cytosolic calcium. PLoS One
8: e66471, 2013. |
195. |
Miyasaka
K
,
Shinozaki
H
,
Jimi
A
,
Funakoshi
A
. Amylase secretion from dispersed human pancreatic acini: Neither cholecystokinin a nor cholecystokinin B receptors mediate amylase secretion in vitro. Pancreas
25: 161‐165, 2002. |
196. |
Mochly‐Rosen
D.
Localization of protein kinases by anchoring proteins: A theme in signal transduction. Science
268: 247‐251, 1995. |
197. |
Morisset
J
,
Aliaga
JC
,
Calvo
EL
,
Bourassa
J
,
Rivard
N
. Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration. Am J Physiol Gastrointest Liver Physiol
277: G953‐G959, 1999. |
198. |
Morisset
J
,
Guan
D
,
Jurkowska
G
,
Rivard
N
,
Green
GM
. Endogenous cholecystokinin, the major factor responsible for dietary protein‐induced pancreatic growth. Pancreas
7: 522‐529, 1992. |
199. |
Morisset
JA
,
Webster
PD
. Effects of fasting and feeding on protein synthesis by the rat pancreas. J Clin Invest
51: 1‐8, 1972. |
200. |
Muili
KA
,
Jin
S
,
Orabi
AI
,
Eisses
JF
,
Javed
TA
,
Le
T
,
Bottino
R
,
Jayaraman
T
,
Husain
SZ
. Pancreatic acinar cell nuclear factor kappaB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem
288: 21065‐21073, 2013. |
201. |
Murali
A
,
Rajalingam
K
. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci
71: 1703‐1721, 2014. |
202. |
Murphy
JA
,
Criddle
DN
,
Sherwood
M
,
Chvanov
M
,
Mukherjee
R
,
McLaughlin
E
,
Booth
D
,
Gerasimenko
JV
,
Raraty
MG
,
Ghaneh
P
,
Neoptolemos
JP
,
Gerasimenko
OV
,
Tepikin
AV
,
Green
GM
,
Reeve
JR, Jr.
,
Petersen
OH
,
Sutton
R
. Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. Gastroenterology
135: 632‐641, 2008. |
203. |
Nakamura
Y
,
Fukami
K
. Regulation and physiological functions of mammalian phospholipase C. J Biochem
161: 315‐321, 2017. |
204. |
Nathanson
MH
,
Fallon
MB
,
Padfield
PJ
,
Maranto
AR
. Localization of the type 3 inositol 1,4,5‐trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem
269: 4693‐4696, 1994. |
205. |
Nathanson
MH
,
Padfield
PJ
,
O'Sullivan
AJ
,
Burgstahler
AD
,
Jamieson
JD
. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem
267: 18118‐18121, 1992. |
206. |
Nemoto
T
,
Kojima
T
,
Oshima
A
,
Bito
H
,
Kasai
H
. Stabilization of exocytosis by dynamic F‐actin coating of zymogen granules in pancreatic acini. J Biol Chem
279: 37544‐37550, 2004. |
207. |
Newton
AC.
Regulation of the ABC kinases by phosphorylation: Protein kinase C as a paradigm. Biochem J
370: 361‐371, 2003. |
208. |
Nicke
B
,
Tseng
MJ
,
Fenrich
M
,
Logsdon
CD
. Adenovirus‐mediated gene transfer of RasN17 inhibits specific CCK actions on pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
276: G499‐G506, 1999. |
209. |
Niederau
C
,
Liddle
RA
,
Williams
JA
,
Grendell
JH
. Pancreatic growth: Interaction of exogenous cholecystokinin, a protease inhibitor, and a cholecystokinin receptor antagonist in mice. Gut
28(Suppl): 63‐69, 1987. |
210. |
Nishizuka
Y.
Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science
258: 607‐614, 1992. |
211. |
Nobes
CD
,
Hall
A
. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell
81: 53‐62, 1995. |
212. |
Noguchi
M
,
Adachi
H
,
Gardner
JD
,
Jensen
RT
. Calcium‐activated, phospholipid‐dependent protein kinase in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
248: G692‐G701, 1985. |
213. |
Nozu
F
,
Owyang
C
,
Tsunoda
Y
. Involvement of phosphoinositide 3‐kinase and its association with pp60src in cholecystokinin‐stimulated pancreatic acinar cells. Eur J Cell Biol
79: 803‐809, 2000. |
214. |
Nozu
F
,
Tsunoda
Y
,
Ibitayo
AI
,
Bitar
KN
,
Owyang
C
. Involvement of RhoA and its interaction with protein kinase C and Src in CCK‐stimulated pancreatic acini. Am J Physiol Gastrointest Liver Physiol
276: G915‐G923, 1999. |
215. |
Nuche‐Berenguer
B
,
Jensen
RT
. Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim Biophys Acta
1853: 2371‐2382, 2015. |
216. |
Nuche‐Berenguer
B
,
Moreno
P
,
Jensen
RT
. Elucidation of the roles of the Src kinases in pancreatic acinar cell signaling. J Cell Biochem
116: 22‐36, 2015. |
217. |
Nuche‐Berenguer
B
,
Ramos‐Alvarez
I
,
Jensen
RT
. Src kinases play a novel dual role in acute pancreatitis affecting severity but no role in stimulated enzyme secretion. Am J Physiol Gastrointest Liver Physiol
310: G1015‐G1027, 2016. |
218. |
Osipchuk
YV
,
Wakui
M
,
Yule
DI
,
Gallacher
DV
,
Petersen
OH
. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G‐protein activation, internal application of inositol trisphosphate or Ca2+: Simultaneous microfluorimetry and Ca2+ dependent Cl‐ current recording in single pancreatic acinar cells. EMBO J
9: 697‐704, 1990. |
219. |
Owyang
C
,
Logsdon
CD
. New insights into neurohormonal regulation of pancreatic secretion. Gastroenterology
127: 957‐969, 2004. |
220. |
Pace
A
,
Garcia‐Marin
LJ
,
Tapia
JA
,
Bragado
MJ
,
Jensen
RT
. Phosphospecific site tyrosine phosphorylation of p125FAK and proline‐rich kinase 2 is differentially regulated by cholecystokinin receptor type A activation in pancreatic acini. J Biol Chem
278: 19008‐19016, 2003. |
221. |
Pace
A
,
Tapia
JA
,
Garcia‐Marin
LJ
,
Jensen
RT
. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. Biochim Biophys Acta
1763: 356‐365, 2006. |
222. |
Pandol
SJ
,
Schoeffield
MS
. 1,2‐Diacylglycerol, protein kinase C, and pancreatic enzyme secretion. J Biol Chem
261: 4438‐4444, 1986. |
223. |
Park
AM
,
Kudo
M
,
Hagiwara
S
,
Tabuchi
M
,
Watanabe
T
,
Munakata
H
,
Sakurai
T
. p38MAPK suppresses chronic pancreatitis by regulating HSP27 and BAD expression. Free Radic Biol Med
52: 2284‐2291, 2012. |
224. |
Parker
EM
,
Zaman
MM
,
Freedman
SD
. GP2, a GPI‐anchored protein in the apical plasma membrane of the pancreatic acinar cell, co‐immunoprecipitates with src kinases and caveolin. Pancreas
21: 219‐225, 2000. |
225. |
Patel
R
,
Atherton
P
,
Wackerhage
H
,
Singh
J
. Signaling proteins associated with diabetic‐induced exocrine pancreatic insufficiency in rats. Ann N Y Acad Sci
1084: 490‐502, 2006. |
226. |
Peikin
SR
,
Rottman
AJ
,
Batzri
S
,
Gardner
JD
. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol
235: E743‐E749, 1978. |
227. |
Peiris
H
,
Raghupathi
R
,
Jessup
CF
,
Zanin
MP
,
Mohanasundaram
D
,
Mackenzie
KD
,
Chataway
T
,
Clarke
JN
,
Brealey
J
,
Coates
PT
,
Pritchard
MA
,
Keating
DJ
. Increased expression of the glucose‐responsive gene, RCAN1, causes hypoinsulinemia, beta‐cell dysfunction, and diabetes. Endocrinology
153: 5212‐5221, 2012. |
228. |
Petersen
OH
,
Tepikin
AV
. Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol
70: 273‐299, 2008. |
229. |
Pfeiffer
CJ
,
Chernenko
GA
,
Kohli
Y
,
Barrowman
JA
. Trophic effects of cholecystokinin octapeptide on the pancreas of the Syrian hamster. Can J Physiol Pharmacol
60: 358‐362, 1982. |
230. |
Piiper
A
,
Elez
R
,
You
SJ
,
Kronenberger
B
,
Loitsch
S
,
Roche
S
,
Zeuzem
S
. Cholecystokinin stimulates extracellular signal‐regulated kinase through activation of the epidermal growth factor receptor, Yes, and protein kinase C. Signal amplification at the level of Raf by activation of protein kinase Cepsilon. J Biol Chem
278: 7065‐7072, 2003. |
231. |
Piiper
A
,
Gebhardt
R
,
Kronenberger
B
,
Giannini
CD
,
Elez
R
,
Zeuzem
S
. Pertussis toxin inhibits cholecystokinin‐ and epidermal growth factor‐induced mitogen‐activated protein kinase activation by disinhibition of the cAMP signaling pathway and inhibition of c‐Raf‐1. Mol Pharmacol
58: 608‐613, 2000. |
232. |
Piiper
A
,
Stryjek‐Kaminska
D
,
Klengel
R
,
Zeuzem
S
. CCK, carbachol, and bombesin activate distinct PLC‐beta isoenzymes via Gq/11 in rat pancreatic acinar membranes. Am J Physiol Gastrointest Liver Physiol
272: G135‐G140, 1997. |
233. |
Pozo‐Guisado
E
,
Campbell
DG
,
Deak
M
,
Alvarez‐Barrientos
A
,
Morrice
NA
,
Alvarez
IS
,
Alessi
DR
,
Martin‐Romero
FJ
. Phosphorylation of STIM1 at ERK1/2 target sites modulates store‐operated calcium entry. J Cell Sci
123: 3084‐3093, 2010. |
234. |
Proud
CG
. Control of the translational machinery by amino acids. Am J Clin Nutr
99: 231S‐236S, 2014. |
235. |
Raman
M
,
Chen
W
,
Cobb
MH
. Differential regulation and properties of MAPKs. Oncogene
26: 3100‐3112, 2007. |
236. |
Ramnath
RD
,
Sun
J
,
Adhikari
S
,
Bhatia
M
. Effect of mitogen‐activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells. J Cell Mol Med
11: 1326‐1341, 2007. |
237. |
Ramnath
RD
,
Sun
J
,
Bhatia
M
. Involvement of SRC family kinases in substance P‐induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. J Pharmacol Exp Ther
329: 418‐428, 2009. |
238. |
Ramos
JW.
The regulation of extracellular signal‐regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol
40: 2707‐2719, 2008. |
239. |
Rao
A
,
Luo
C
,
Hogan
PG
. Transcription factors of the NFAT family: Regulation and function. Annu Rev Immunol
15: 707‐747, 1997. |
240. |
Redondo
PC
,
Lajas
AI
,
Salido
GM
,
Gonzalez
A
,
Rosado
JA
,
Pariente
JA
. Evidence for secretion‐like coupling involving pp60src in the activation and maintenance of store‐mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem J
370: 255‐263, 2003. |
241. |
Reeve
JR, Jr.
,
Green
GM
,
Chew
P
,
Eysselein
VE
,
Keire
DA
. CCK‐58 is the only detectable endocrine form of cholecystokinin in rat. Am J Physiol Gastrointest Liver Physiol
285: G255‐G265, 2003. |
242. |
Rehfeld
JF
. Accurate measurement of cholecystokinin in plasma. Clin Chem
44: 991‐1001, 1998. |
243. |
Rehfeld
JF
. Cholecystokinin‐from local gut hormone to ubiquitous messenger. Front Endocrinol (Lausanne)
8: 47, 2017. |
244. |
Rehfeld
JF
. Four basic characteristics of the gastrin‐cholecystokinin system. Am J Physiol Gastrointest Liver Physiol
240: G255‐G266, 1981. |
245. |
Rehfeld
JF
,
Sun
G
,
Christensen
T
,
Hillingso
JG
. The predominant cholecystokinin in human plasma and intestine is cholecystokinin‐33. J Clin Endocrinol Metab
86: 251‐258, 2001. |
246. |
Renckens
BA
,
van Emst‐de Vries
SE
,
de Pont
JJ
,
Bonting
SL
. Rat pancreas adenylate cyclase: VII. Effect of extracellular calcium on pancreozymin‐induced cyclic AMP formation. Biochim Biophys Acta
630: 511‐518, 1980. |
247. |
Rey
O
,
Reeve
JR, Jr.
,
Zhukova
E
,
Sinnett‐Smith
J
,
Rozengurt
E
. G protein‐coupled receptor‐mediated phosphorylation of the activation loop of protein kinase D: Dependence on plasma membrane translocation and protein kinase Cepsilon. J Biol Chem
279: 34361‐34372, 2004. |
248. |
Rindler
MJ
,
Xu
CF
,
Gumper
I
,
Smith
NN
,
Neubert
TA
. Proteomic analysis of pancreatic zymogen granules: Identification of new granule proteins. J Proteome Res
6: 2978‐2992, 2007. |
249. |
Rodriguez‐Martin
E
,
Boyano‐Adanez
MC
,
Bodega
G
,
Martin
M
,
Hernandez
C
,
Quin
Y
,
Vadillo
M
,
Arilla‐Ferreiro
E
. Redistribution of protein kinase C isoforms in rat pancreatic acini during lactation and weaning. FEBS Lett
445: 356‐360, 1999. |
250. |
Rosado
JA
,
Salido
GM
,
Jensen
RT
,
Garcia
LJ
. Are tyrosine phosphorylation of p125(FAK) and paxillin or the small GTP binding protein, rho, needed for CCK‐stimulated pancreatic amylase secretion? Biochim Biophys Acta
1404: 412‐426, 1998. |
251. |
Roskoski
R, Jr.
ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res
66: 105‐143, 2012. |
252. |
Rossman
KL
,
Der
CJ
,
Sondek
J
. GEF means go: Turning on RHO GTPases with guanine nucleotide‐exchange factors. Nat Rev Mol Cell Biol
6: 167‐180, 2005. |
253. |
Rousseau
A
,
Bertolotti
A
. An evolutionarily conserved pathway controls proteasome homeostasis. Nature
536: 184‐189, 2016. |
254. |
Rozengurt
E.
Protein kinase D signaling: Multiple biological functions in health and disease. Physiology (Bethesda)
26: 23‐33, 2011. |
255. |
Rubin
RP
,
Godfrey
PP
,
Chapman
DA
,
Putney
JW, Jr.
Secretagogue‐induced formation of inositol phosphates in rat exocrine pancreas. Implications for a messenger role for inositol trisphosphate. Biochem J
219: 655‐659, 1984. |
256. |
Rubin
RP
,
Hundley
TR
,
Adolf
MA
. Regulation of diacylglycerol levels in carbachol‐stimulated pancreatic acinar cells: Relationship to the breakdown of phosphatidylcholine and metabolism to phosphatidic acid. Biochim Biophys Acta
1133: 127‐132, 1992. |
257. |
Rusnak
F
,
Mertz
P
. Calcineurin: Form and function. Physiol Rev
80: 1483‐1521, 2000. |
258. |
Sabatini
DM
,
Erdjument‐Bromage
H
,
Lui
M
,
Tempst
P
,
Snyder
SH
. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin‐dependent fashion and is homologous to yeast TORs. Cell
78: 35‐43, 1994. |
259. |
Sabbatini
ME
. Cyclic nucleotides as mediators of acinar and ductal function. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2016.2, 2016. |
260. |
Sabbatini
ME
,
Bi
Y
,
Ji
B
,
Ernst
SA
,
Williams
JA
. CCK activates RhoA and Rac1 differentially through Galpha13 and Galphaq in mouse pancreatic acini. Am J Physiol Cell Physiol
298: C592‐C601, 2010. |
261. |
Sabbatini
ME
,
Chen
X
,
Ernst
SA
,
Williams
JA
. Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem
283: 23884‐23894, 2008. |
262. |
Sabbatini
ME
,
D'Alecy
L
,
Lentz
SI
,
Tang
T
,
Williams
JA
. Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation. J Physiol
591: 3693‐3707, 2013. |
263. |
Sabbatini
ME
,
Williams
JA
. Cholecystokinin‐mediated RhoGDI phosphorylation via PKCalpha promotes both RhoA and Rac1 signaling. PLoS One
8: e66029, 2013. |
264. |
Sakamoto
C
,
Goldfine
ID
,
Roach
E
,
Williams
JA
. Localization of saturable CCK binding sites in rat pancreatic islets by light and electron microscope autoradiography. Diabetes
34: 390‐394, 1985. |
265. |
Samuel
I
,
Zaheer
A
,
Fisher
RA
. In vitro evidence for role of ERK, p38, and JNK in exocrine pancreatic cytokine production. J Gastrointest Surg
10: 1376‐1383, 2006. |
266. |
Sancak
Y
,
Bar‐Peled
L
,
Zoncu
R
,
Markhard
AL
,
Nada
S
,
Sabatini
DM
. Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell
141: 290‐303, 2010. |
267. |
Sancho
V
,
Nuche‐Berenguer
B
,
Jensen
RT
. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules. Biochim Biophys Acta
1823: 1285‐1294, 2012. |
268. |
Sans
M
,
Amin
R
,
Vogel
N
,
D'Alecy
L
,
Kahn
R
,
Williams
J
. Specific deletion of insulin receptors on pancreatic acinar cells defines the insulin‐acinar axis: Implications for pancreatic insufficiency in diabetes. Gastroenterology
140: S‐156, 2011. |
269. |
Sans
MD
,
Lee
SH
,
D'Alecy
LG
,
Williams
JA
. Feeding activates protein synthesis in mouse pancreas at the translational level without increase in mRNA. Am J Physiol Gastrointest Liver Physiol
287: G667‐G675, 2004. |
270. |
Sans
MD
,
Sabbatini
ME
,
Ernst
SA
,
D'Alecy
LG
,
Nishijima
I
,
Williams
JA
. Secretin is not necessary for exocrine pancreatic development and growth in mice. Am J Physiol Gastrointest Liver Physiol
301: G791‐G798, 2011. |
271. |
Sans
MD
,
Tashiro
M
,
Vogel
NL
,
Kimball
SR
,
D'Alecy
LG
,
Williams
JA
. Leucine activates pancreatic translational machinery in rats and mice through mTOR independently of CCK and insulin. J Nutr
136: 1792‐1799, 2006. |
272. |
Sans
MD
,
Williams
JA
. Calcineurin is required for translational control of protein synthesis in rat pancreatic acini. Am J Physiol Cell Physiol
287: C310‐C319, 2004. |
273. |
Sans
MD
,
Williams
JA
. The mTOR signaling pathway and regulation of pancreatic function. Pancreapedia
2017. |
274. |
Sans
MD
,
Xie
Q
,
Williams
JA
. Regulation of translation elongation and phosphorylation of eEF2 in rat pancreatic acini. Biochem Biophys Res Commun
319: 144‐151, 2004. |
275. |
Sato
N
,
Suzuki
S
,
Kanai
S
,
Ohta
M
,
Jimi
A
,
Noda
T
,
Takiguchi
S
,
Funakoshi
A
,
Miyasaka
K
. Different effects of oral administration of synthetic trypsin inhibitor on the pancreas between cholecystokinin‐A receptor gene knockout mice and wild type mice. Jpn J Pharmacol
89: 290‐295, 2002. |
276. |
Satoh
A
,
Gukovskaya
AS
,
Nieto
JM
,
Cheng
JH
,
Gukovsky
I
,
Reeve
JR, Jr.
,
Shimosegawa
T
,
Pandol
SJ
. PKC‐delta and ‐epsilon regulate NF‐kappaB activation induced by cholecystokinin and TNF‐alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
287: G582‐G591, 2004. |
277. |
Satoh
K
,
Narita
T
,
Katsumata‐Kato
O
,
Sugiya
H
,
Seo
Y
. Involvement of myristoylated alanine‐rich C kinase substrate phosphorylation and translocation in cholecystokinin‐induced amylase release in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol
310: G399‐G409, 2016. |
278. |
Saxton
RA
,
Sabatini
DM
. mTOR signaling in growth, metabolism, and disease. Cell
169: 361‐371, 2017. |
279. |
Schafer
C
,
Clapp
P
,
Welsh
MJ
,
Benndorf
R
,
Williams
JA
. HSP27 expression regulates CCK‐induced changes of the actin cytoskeleton in CHO‐CCK‐A cells. Am J Physiol
277: C1032‐C1043, 1999. |
280. |
Schafer
C
,
Ross
SE
,
Bragado
MJ
,
Groblewski
GE
,
Ernst
SA
,
Williams
JA
. A role for the p38 mitogen‐activated protein kinase/Hsp 27 pathway in cholecystokinin‐induced changes in the actin cytoskeleton in rat pancreatic acini. J Biol Chem
273: 24173‐24180, 1998. |
281. |
Schafer
C
,
Williams
JA
. Stress kinases and heat shock proteins in the pancreas: Possible roles in normal function and disease. J Gastroenterol
35: 1‐9, 2000. |
282. |
Schmelzle
T
,
Hall
MN
. TOR, a central controller of cell growth. Cell
103: 253‐262, 2000. |
283. |
Schwarzendrube
J
,
Niederau
M
,
Luthen
R
,
Niederau
C
. Effects of cholecystokinin‐receptor blockade on pancreatic and biliary function in healthy volunteers. Gastroenterology
100: 1683‐1690, 1991. |
284. |
Sebolt‐Leopold
JS
,
Bridges
AJ
. Road to PD0325901 and beyond: The MEK Inhibitor Quest. In: Kinase Inhibitor Drugs. Hoboken, NJ: John Wiley & Sons, Inc., 2009, pp. 203‐227. |
285. |
Sengupta
S
,
Peterson
TR
,
Sabatini
DM
. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell
40: 310‐322, 2010. |
286. |
Sewell
WA
,
Young
JA
. Secretion of electrolytes by the pancreas of the anaestetized rat. J Physiol
252: 379‐396, 1975. |
287. |
Shin
DM
,
Luo
X
,
Wilkie
TM
,
Miller
LJ
,
Peck
AB
,
Humphreys‐Beher
MG
,
Muallem
S
. Polarized expression of G protein‐coupled receptors and an all‐or‐none discharge of Ca2+ pools at initiation sites of [Ca2+]i waves in polarized exocrine cells. J Biol Chem
276: 44146‐44156, 2001. |
288. |
Simeone
DM
,
Zhang
L
,
Graziano
K
,
Nicke
B
,
Pham
T
,
Schaefer
C
,
Logsdon
CD
. Smad4 mediates activation of mitogen‐activated protein kinases by TGF‐beta in pancreatic acinar cells. Am J Physiol Cell Physiol
281: C311‐C319, 2001. |
289. |
Sinagoga
KL
,
Stone
WJ
,
Schiesser
JV
,
Schweitzer
JI
,
Sampson
L
,
Zheng
Y
,
Wells
JM
. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development
144: 2402‐2414, 2017. |
290. |
Singh
VP
. Src: Regulation and function in the exocrine pancreas. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2012.5, 2012. |
291. |
Singh
VP
,
McNiven
MA
. Src‐mediated cortactin phosphorylation regulates actin localization and injurious blebbing in acinar cells. Mol Biol Cell
19: 2339‐2347, 2008. |
292. |
Sjodin
L
,
Gardner
JD
. Effect of cholecystokinin variant (CCK39) on dispersed acinar cells from guinea pig pancreas. Gastroenterology
73: 1015‐1018, 1977. |
293. |
Smith
GP
,
Gibbs
J
. Satiating effect of cholecystokinin. Ann N Y Acad Sci
713: 236‐241, 1994. |
294. |
Smrcka
AV
,
Sternweis
PC
. Regulation of purified subtypes of phosphatidylinositol‐specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem
268: 9667‐9674, 1993. |
295. |
Solomon
TE
,
Petersen
H
,
Elashoff
J
,
Grossman
MI
. Interaction of caerulein and secretin on pancreatic size and composition in rat. Am J Physiol
235: E714‐E719, 1978. |
296. |
Solomon
TE
,
Vanier
M
,
Morisset
J
. Cell site and time course of DNA synthesis in pancreas after caerulein and secretin. Am J Physiol Gastrointest Liver Physiol
245: G99‐G105, 1983. |
297. |
Soudah
HC
,
Lu
Y
,
Hasler
WL
,
Owyang
C
. Cholecystokinin at physiological levels evokes pancreatic enzyme secretion via a cholinergic pathway. Am J Physiol Gastrointest Liver Physiol
263: G102‐G107, 1992. |
298. |
Stauffer
PL
,
Zhao
H
,
Luby‐Phelps
K
,
Moss
RL
,
Star
RA
,
Muallem
S
. Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini. J Biol Chem
268: 19769‐19775, 1993. |
299. |
Straub
SV
,
Giovannucci
DR
,
Yule
DI
. Calcium wave propagation in pancreatic acinar cells: Functional interaction of inositol 1,4,5‐trisphosphate receptors, ryanodine receptors, and mitochondria. J Gen Physiol
116: 547‐560, 2000. |
300. |
Streb
H
,
Irvine
RF
,
Berridge
MJ
,
Schulz
I
. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature
306: 67‐69, 1983. |
301. |
Sung
CK
,
Hootman
SR
,
Stuenkel
EL
,
Kuroiwa
C
,
Williams
JA
. Downregulation of protein kinase C in guinea pig pancreatic acini: Effects on secretion. Am J Physiol Gastrointest Liver Physiol
254: G242‐G248, 1988. |
302. |
Sung
CK
,
Williams
JA
. Insulin and ribosomal protein S6 kinase in rat pancreatic acini. Diabetes
38: 544‐549, 1989. |
303. |
Sung
CK
,
Williams
JA
. Cholecystokinin stimulates a specific ribosomal S6 kinase in rat pancreatic acini. Pancreas
5: 668‐676, 1990. |
304. |
Szalmay
G
,
Varga
G
,
Kajiyama
F
,
Yang
XS
,
Lang
TF
,
Case
RM
,
Steward
MC
. Bicarbonate and fluid secretion evoked by cholecystokinin, bombesin and acetylcholine in isolated guinea‐pig pancreatic ducts. J Physiol
535: 795‐807, 2001. |
305. |
Takiguchi
S
,
Suzuki
S
,
Sato
Y
,
Kanai
S
,
Miyasaka
K
,
Jimi
A
,
Shinozaki
H
,
Takata
Y
,
Funakoshi
A
,
Kono
A
,
Minowa
O
,
Kobayashi
T
,
Noda
T
. Role of CCK‐A receptor for pancreatic function in mice: A study in CCK‐A receptor knockout mice. Pancreas
24: 276‐283, 2002. |
306. |
Tapia
JA
,
Ferris
HA
,
Jensen
RT
,
Garcia
LJ
. Cholecystokinin activates PYK2/CAKbeta by a phospholipase C‐dependent mechanism and its association with the mitogen‐activated protein kinase signaling pathway in pancreatic acinar cells. J Biol Chem
274: 31261‐31271, 1999. |
307. |
Tapia
JA
,
Garcia‐Marin
LJ
,
Jensen
RT
. Cholecystokinin‐stimulated protein kinase C‐delta kinase activation, tyrosine phosphorylation, and translocation are mediated by Src tyrosine kinases in pancreatic acinar cells. J Biol Chem
278: 35220‐35230, 2003. |
308. |
Tashiro
M
,
Dabrowski
A
,
Guo
L
,
Sans
MD
,
Williams
JA
. Calcineurin‐dependent and calcineurin‐independent signal transduction pathways activated as part of pancreatic growth. Pancreas
32: 314‐320, 2006. |
309. |
Tashiro
M
,
Samuelson
LC
,
Liddle
RA
,
Williams
JA
. Calcineurin mediates pancreatic growth in protease inhibitor‐treated mice. Am J Physiol Gastrointest Liver Physiol
286: G784‐G790, 2004. |
310. |
Taylor
SJ
,
Chae
HZ
,
Rhee
SG
,
Exton
JH
. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature
350: 516‐518, 1991. |
311. |
Tcherkezian
J
,
Lamarche‐Vane
N
. Current knowledge of the large RhoGAP family of proteins. Biol Cell
99: 67‐86, 2007. |
312. |
Tepikin
AV
,
Voronina
SG
,
Gallacher
DV
,
Petersen
OH
. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor‐activated cytosolic Ca2+ spiking. J Biol Chem
267: 14073‐14076, 1992. |
313. |
Thompson
JL
,
Shuttleworth
TJ
. Molecular basis of activation of the arachidonate‐regulated Ca2+ (ARC) channel, a store‐independent Orai channel, by plasma membrane STIM1. J Physiol
591: 3507‐3523, 2013. |
314. |
Thorn
P
,
Lawrie
AM
,
Smith
PM
,
Gallacher
DV
,
Petersen
OH
. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell
74: 661‐668, 1993. |
315. |
Thorn
P
,
Petersen
OH
. Calcium oscillations in pancreatic acinar cells, evoked by the cholecystokinin analogue JMV‐180, depend on functional inositol 1,4,5‐trisphosphate receptors. J Biol Chem
268: 23219‐23221, 1993. |
316. |
Thrower
EC
,
Osgood
S
,
Shugrue
CA
,
Kolodecik
TR
,
Chaudhuri
AM
,
Reeve
JR, Jr.
,
Pandol
SJ
,
Gorelick
FS
. The novel protein kinase C isoforms ‐delta and ‐epsilon modulate caerulein‐induced zymogen activation in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
294: G1344‐G1353, 2008. |
317. |
Thrower
EC
,
Wang
J
,
Cheriyan
S
,
Lugea
A
,
Kolodecik
TR
,
Yuan
J
,
Reeve
JR, Jr.
,
Gorelick
FS
,
Pandol
SJ
. Protein kinase C delta‐mediated processes in cholecystokinin‐8‐stimulated pancreatic acini. Pancreas
38: 930‐935, 2009. |
318. |
Thrower
EC
,
Yuan
J
,
Usmani
A
,
Liu
Y
,
Jones
C
,
Minervini
SN
,
Alexandre
M
,
Pandol
SJ
,
Guha
S
. A novel protein kinase D inhibitor attenuates early events of experimental pancreatitis in isolated rat acini. Am J Physiol Gastrointest Liver Physiol
300: G120‐G129, 2011. |
319. |
Tietz
AB
,
Malo
A
,
Diebold
J
,
Kotlyarov
A
,
Herbst
A
,
Kolligs
FT
,
Brandt‐Nedelev
B
,
Halangk
W
,
Gaestel
M
,
Goke
B
,
Schafer
C
. Gene deletion of MK2 inhibits TNF‐alpha and IL‐6 and protects against cerulein‐induced pancreatitis. Am J Physiol Gastrointest Liver Physiol
290: G1298‐G1306, 2006. |
320. |
Toescu
EC
,
Lawrie
AM
,
Petersen
OH
,
Gallacher
DV
. Spatial and temporal distribution of agonist‐evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J
11: 1623‐1629, 1992. |
321. |
Torrazza
RM
,
Suryawan
A
,
Gazzaneo
MC
,
Orellana
RA
,
Frank
JW
,
Nguyen
HV
,
Fiorotto
ML
,
El‐Kadi
S
,
Davis
TA
. Leucine supplementation of a low‐protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR‐dependent translation initiation. J Nutr
140: 2145‐2152, 2010. |
322. |
Tsunoda
Y
,
Stuenkel
EL
,
Williams
JA
. Characterization of sustained [Ca2+]i increase in pancreatic acinar cells and its relation to amylase secretion. Am J Physiol Gastrointest Liver Physiol
259: G792‐G801, 1990. |
323. |
Tsunoda
Y
,
Stuenkel
EL
,
Williams
JA
. Oscillatory mode of calcium signaling in rat pancreatic acinar cells. Am J Physiol Cell Physiol
258: C147‐C155, 1990. |
324. |
Tsunoda
Y
,
Yoshida
H
,
Africa
L
,
Steil
GJ
,
Owyang
C
. Src kinase pathways in extracellular Ca(2+)‐dependent pancreatic enzyme secretion. Biochem Biophys Res Commun
227: 876‐884, 1996. |
325. |
Uchida
T
,
Iwashita
N
,
Ohara‐Imaizumi
M
,
Ogihara
T
,
Nagai
S
,
Choi
JB
,
Tamura
Y
,
Tada
N
,
Kawamori
R
,
Nakayama
KI
,
Nagamatsu
S
,
Watada
H
. Protein kinase Cdelta plays a non‐redundant role in insulin secretion in pancreatic beta cells. J Biol Chem
282: 2707‐2716, 2007. |
326. |
Unal
EB
,
Uhlitz
F
,
Bluthgen
N
. A compendium of ERK targets. FEBS Lett
591: 2607‐2615, 2017. |
327. |
Urano
F
,
Wang
X
,
Bertolotti
A
,
Zhang
Y
,
Chung
P
,
Harding
HP
,
Ron
D
. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science
287: 664‐666, 2000. |
328. |
Valentijn
JA
,
Valentijn
K
,
Pastore
LM
,
Jamieson
JD
. Actin coating of secretory granules during regulated exocytosis correlates with the release of rab3D. Proc Natl Acad Sci U S A
97: 1091‐1095, 2000. |
329. |
Vander Haar
E
,
Lee
SI
,
Bandhakavi
S
,
Griffin
TJ
,
Kim
DH
. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol
9: 316‐323, 2007. |
330. |
Vigna
SR
,
Thorndyke
MC
,
Williams
JA
. Evidence for a common evolutionary origin of brain and pancreas cholecystokinin receptors. Proc Natl Acad Sci U S A
83: 4355‐4359, 1986. |
331. |
von Kriegsheim
A
,
Baiocchi
D
,
Birtwistle
M
,
Sumpton
D
,
Bienvenut
W
,
Morrice
N
,
Yamada
K
,
Lamond
A
,
Kalna
G
,
Orton
R
,
Gilbert
D
,
Kolch
W
. Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol
11: 1458‐1464, 2009. |
332. |
von Manteuffel
SR
,
Dennis
PB
,
Pullen
N
,
Gingras
AC
,
Sonenberg
N
,
Thomas
G
. The insulin‐induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin‐sensitive point immediately upstream of p70s6k. Mol Cell Biol
17: 5426‐5436, 1997. |
333. |
Voronina
S
,
Sukhomlin
T
,
Johnson
PR
,
Erdemli
G
,
Petersen
OH
,
Tepikin
A
. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol
539: 41‐52, 2002. |
334. |
Voronina
S
,
Tepikin
A
. Mitochondrial calcium in the life and death of exocrine secretory cells. Cell Calcium
52: 86‐92, 2012. |
335. |
Voronina
SG
,
Barrow
SL
,
Simpson
AW
,
Gerasimenko
OV
,
da Silva Xavier
G
,
Rutter
GA
,
Petersen
OH
,
Tepikin
AV
. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology
138: 1976‐1987, 2010. |
336. |
Wang
S
,
Lukinius
A
,
Zhou
Y
,
Stalberg
P
,
Gobl
A
,
Oberg
K
,
Skogseid
B
. Subcellular distribution of phospholipase C isoforms in rodent pancreas and gastric mucosa. Endocrinology
141: 2589‐2593, 2000. |
337. |
Wank
SA
. G protein‐coupled receptors in gastrointestinal physiology. I. CCK receptors: An exemplary family. Am J Physiol Gastrointest Liver Physiol
274: G607‐G613, 1998. |
338. |
Waschulewski
IH
,
Hall
DV
,
Kern
HF
,
Edwardson
JM
. Effects of the immunosuppressants cyclosporin A and FK 506 on exocytosis in the rat exocrine pancreas in vitro. Br J Pharmacol
108: 892‐900, 1993. |
339. |
Watanabe
H
,
Saito
H
,
Rychahou
PG
,
Uchida
T
,
Evers
BM
. Aging is associated with decreased pancreatic acinar cell regeneration and phosphatidylinositol 3‐kinase/Akt activation. Gastroenterology
128: 1391‐1404, 2005. |
340. |
Weston
CR
,
Davis
RJ
. The JNK signal transduction pathway. Curr Opin Genet Dev
12: 14‐21, 2002. |
341. |
Whitmarsh
AJ
,
Cavanagh
J
,
Tournier
C
,
Yasuda
J
,
Davis
RJ
. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science
281: 1671‐1674, 1998. |
342. |
Williams
JA
. Regulation of normal and adaptive pancreatic growth. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2017.2, 2017. |
343. |
Williams
JA
. Isolation of rodent pancreatic acinar cells and acini by collagenase digestion. Pancreapedia; Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2010.18, 2010. |
344. |
Williams
JA
,
Chen
X
,
Sabbatini
ME
. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab
296: E405‐E414, 2009. |
345. |
Williams
JA
,
Holtz
BJ
. ERK activation and its role in pancreatic acinar cell function. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10,3998/panc.2017.6, 2017. |
346. |
Williams
JA
,
Korc
M
,
Dormer
RL
. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol
235: 517‐524, 1978. |
347. |
Williams
JA
,
Sans
MD
,
Tashiro
M
,
Schafer
C
,
Bragado
MJ
,
Dabrowski
A
. Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells. Pharmacol Toxicol
91: 297‐303, 2002. |
348. |
Williams
JA
,
Yule
DI
. Stimulus‐secretion coupling in pancreatic acinar cells In: Physiology of the Gastrointestinal Tract (Fifth Edition), edited by
Johnson
LR
,
Ghishan
FK
,
Merchant
JL
,
Said
HM
, and
Wood
JD
. Boston: Academic Press, 2012, pp. 1361‐1398. |
349. |
Willoughby
EA
,
Perkins
GR
,
Collins
MK
,
Whitmarsh
AJ
. The JNK‐interacting protein‐1 scaffold protein targets MAPK phosphatase‐7 to dephosphorylate JNK. J Biol Chem
278: 10731‐10736, 2003. |
350. |
Wishart
MJ
,
Groblewski
G
,
Goke
BJ
,
Wagner
AC
,
Williams
JA
. Secretagogue regulation of pancreatic acinar cell protein phosphorylation shown by large‐scale 2D‐PAGE. Am J Physiol Gastrointest Liver Physiol
267: G676‐G686, 1994. |
351. |
Wooten
MW
,
Wrenn
RW
. Phorbol ester induces intracellular translocation of phospholipid/Ca2+‐dependent protein kinase and stimulates amylase secretion in isolated pancreatic acini. FEBS Lett
171: 183‐186, 1984. |
352. |
Wooten
MW
,
Wrenn
RW
. Redistribution of phospholipid/calcium‐dependent protein kinase and altered phosphorylation of its soluble and particulate substrate proteins in phorbol ester‐treated rat pancreatic acini. Cancer Res
45: 3912‐3917, 1985. |
353. |
Wu‐Zhang
AX
,
Newton
AC
. Protein kinase C pharmacology: Refining the toolbox. Biochem J
452: 195‐209, 2013. |
354. |
Wu
H
,
Peisley
A
,
Graef
IA
,
Crabtree
GR
. NFAT signaling and the invention of vertebrates. Trends Cell Biol
17: 251‐260, 2007. |
355. |
Wu
L
,
Cai
B
,
Zheng
S
,
Liu
X
,
Cai
H
,
Li
H
. Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation
36: 1020‐1029, 2013. |
356. |
Wu
SV
,
Yang
M
,
Avedian
D
,
Birnbaumer
M
,
Walsh
JH
. Single amino acid substitution of serine82 to asparagine in first intracellular loop of human cholecystokinin (CCK)‐B receptor confers full cyclic AMP responses to CCK and gastrin. Mol Pharmacol
55: 795‐803, 1999. |
357. |
Wu
V
,
Yang
M
,
McRoberts
JA
,
Ren
J
,
Seensalu
R
,
Zeng
N
,
Dagrag
M
,
Birnbaumer
M
,
Walsh
JH
. First intracellular loop of the human cholecystokinin‐A receptor is essential for cyclic AMP signaling in transfected HEK‐293 cells. J Biol Chem
272: 9037‐9042, 1997. |
358. |
Yamamoto
M
,
Otani
M
,
Jia
DM
,
Fukumitsu
K
,
Yoshikawa
H
,
Akiyama
T
,
Otsuki
M
. Differential mechanism and site of action of CCK on the pancreatic secretion and growth in rats. Am J Physiol Gastrointest Liver Physiol
285: G681‐G687, 2003. |
359. |
Yamanishi
R
,
Kotera
J
,
Fushiki
T
,
Soneda
T
,
Iwanaga
T
,
Sugimoto
E
. Characteristic and localization of the monitor peptide receptor. Biosci Biotechnol Biochem
57: 1153‐1156, 1993. |
360. |
Yamasaki
M
,
Thomas
JM
,
Churchill
GC
,
Garnham
C
,
Lewis
AM
,
Cancela
JM
,
Patel
S
,
Galione
A
. Role of NAADP and cADPR in the induction and maintenance of agonist‐evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol
15: 874‐878, 2005. |
361. |
Yang
J
,
Waldron
RT
,
Su
HY
,
Moro
A
,
Chang
HH
,
Eibl
G
,
Ferreri
K
,
Kandeel
FR
,
Lugea
A
,
Li
L
,
Pandol
SJ
. Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol
311: G675‐G687, 2016. |
362. |
Yao
Z
,
Seger
R
. The ERK signaling cascade–views from different subcellular compartments. Biofactors
35: 407‐416, 2009. |
363. |
Yoon
S
,
Seger
R
. The extracellular signal‐regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors
24: 21‐44, 2006. |
364. |
You
CH
,
Rominger
JM
,
Chey
WY
. Potentiation effect of cholecystokinin‐octapeptide on pancreatic bicarbonate secretion stimulated by a physiologic dose of secretin in humans. Gastroenterology
85: 40‐45, 1983. |
365. |
Yuan
HX
,
Xiong
Y
,
Guan
KL
. Nutrient sensing, metabolism, and cell growth control. Mol Cell
49: 379‐387, 2013. |
366. |
Yuan
J
,
Lugea
A
,
Zheng
L
,
Gukovsky
I
,
Edderkaoui
M
,
Rozengurt
E
,
Pandol
SJ
. Protein kinase D1 mediates NF‐kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol
295: G1190‐G1201, 2008. |
367. |
Yuan
J
,
Tan
T
,
Geng
M
,
Tan
G
,
Chheda
C
,
Pandol
SJ
. Novel small molecule inhibitors of protein kinase D suppress NF‐kappaB activation and attenuate the severity of rat cerulein pancreatitis. Front Physiol
8: 1014, 2017. |
368. |
Yule
DI
. Ca2+ signaling in pancreatic acinar cells. Pancreapedia: Exocrine Pancreas Knowledge Base, DOI: 10.3998/panc.2015.24, 2015. |
369. |
Yule
DI
,
Baker
CW
,
Williams
JA
. Calcium signaling in rat pancreatic acinar cells: A role for Galphaq, Galpha11, and Galpha14. Am J Physiol Gastrointest Liver Physiol
276: G271‐G279, 1999. |
370. |
Yule
DI
,
Ernst
SA
,
Ohnishi
H
,
Wojcikiewicz
RJ
. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5‐trisphosphate receptors in pancreatic acinar cells. J Biol Chem
272: 9093‐9098, 1997. |
371. |
Yule
DI
,
Lawrie
AM
,
Gallacher
DV
. Acetylcholine and cholecystokinin induce different patterns of oscillating calcium signals in pancreatic acinar cells. Cell Calcium
12: 145‐151, 1991. |
372. |
Yule
DI
,
Stuenkel
E
,
Williams
JA
. Intercellular calcium waves in rat pancreatic acini: Mechanism of transmission. Am J Physiol Cell Physiol
271: C1285‐C1294, 1996. |
373. |
Yule
DI
,
Tseng
MJ
,
Williams
JA
,
Logdson
CD
. A cloned CCK‐A receptor transduces multiple signals in response to full and partial agonists. Am J Physiol Gastrointest Liver Physiol
265: G999‐G1004, 1993. |
374. |
Yutsudo
Y
,
Kido
Y
,
Okabayashi
Y
,
Matsumoto
M
,
Ogawa
W
,
Ohba
M
,
Kuroki
T
,
Kasuga
M
. Protein kinase Calpha is implicated in cholecystokinin‐induced activation of 70‐kd S6 kinase in AR42J cells. Pancreas
30: 50‐53, 2005. |
375. |
Zarbin
MA
,
Wamsley
JK
,
Innis
RB
,
Kuhar
MJ
. Cholecystokinin receptors: Presence and axonal flow in the rat vagus nerve. Life Sci
29: 697‐705, 1981. |
376. |
Zhang
X
,
Wen
J
,
Aletta
JM
,
Rubin
RP
. Inhibition of expression of PKC‐alpha by antisense mRNA is associated with diminished cell growth and inhibition of amylase secretion by AR4‐2J cells. Exp Cell Res
233: 225‐231, 1997. |
377. |
Zoncu
R
,
Efeyan
A
,
Sabatini
DM
. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol
12: 21‐35, 2011. |
378. |
Zucker
KA
,
Adrian
TE
,
Bilchik
AJ
,
Modlin
IM
. Effects of the CCK receptor antagonist L364,718 on pancreatic growth in adult and developing animals. Am J Physiol Gastrointest Liver Physiol
257: G511‐G516, 1989. |