References |
1. |
Agrawal
P
,
Heimbruch
KE
,
Rao
S
. Genome‐wide maps of transcription regulatory elements and transcription enhancers in development and disease. Compr Physiol
9: 439‐455, 2019. DOI: 10.1002/cphy.c180028
|
2. |
Ahsan
M
,
Li
X
,
Lundberg
AE
,
Kierczak
M
,
Siegel
PB
,
Carlborg
O
,
Marklund
S
. Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP‐chip data. Front Genet
4: 1‐8, 2013, article 226. DOI: 10.3389/fgene.2013.00226
|
3. |
Alam
I
,
Koller
DL
,
Cañete
T
,
Blázquez
G
,
Mont‐Cardona
C
,
López‐Aumatell
R
,
Martínez‐Membrives
E
,
Díaz‐Morán
S
,
Tobeña
A
,
Fernández‐Teruel
A
,
Stridh
P
,
Diez
M
,
Olsson
T
,
Johannesson
M
,
Baud
A
,
Econs
MJ
,
Foroud
T
. Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone
81: 417‐442, 2015. DOI: 10.1016/j.bone.2015.08.013
|
4. |
Ariyarajah
A
,
Palijan
A
,
Dutil
J
,
Prithiviraj
K
,
Deng
Y
,
Deng
AY
. Dissecting quantitative trait loci into opposite blood pressure effects on Dahl rat chromosome 8 by congenic strains. J Hypertens
22: 1495‐1502, 2004. |
5. |
Armstrong
NJ
,
Brodnicki
TC
,
Speed
TP
. Mind the gap: Analysis of marker‐assisted breeding strategies for inbred mouse strains. Mamm Genome
17: 273‐287, 2006. |
6. |
Arnheim
N
,
Calabrese
P
,
Teimann‐Boege
I
. Mammalian meiotic recombination hot spots. Annu Rev Genet
41: 369‐399, 2007. |
7. |
Besnier
F
,
Wahlberg
P
,
Rönnegård
L
,
Ek
W
,
Andersson
L
,
Siegel
PB
,
Carlborg
O
. Fine mapping and replication of QTL in outbred chicken advanced intercross lines. Genet Select Evol
43: 3, pp. 1‐10, 2011. DOI: 10.1186/1297‐9686‐43‐3
|
8. |
Bishop
JE
. They smell a rat and it really raises their blood pressure. Wall Street J
75(168): 1, 1994. |
9. |
Brandt
M
,
Ahsan
M
,
Honaker
CF
,
Siegel
PB
,
Carlborg
Ö
. Imputation‐based fine‐mapping suggests that most QTL in an outbred chicken advanced intercross body weight line are due to multiple, linked loci. Genes Genomes Genet G3
5: 119‐128, 2017. DOI: 10.1534/g3.116.036012
|
10. |
Carlborg
O
,
Jacobsson
L
,
Ahgren
P
,
Siegel
P
,
Anderson
L
. Epistasis and the release of genetic variation during long‐term selection. Nat Genet
38: 418‐420, 2006. |
11. |
Carmelo
VAO
,
Kogelman
LJA
,
Madsen
MB
,
Kadarmideen
HN
. WISH‐R – A fast and efficient tool for construction of epistatic networks for complex traits and diseases. BMC Bioinf
19: 277, pages 2‐7, 2018. DOI: 10.1186/s12859‐018‐2291‐2
|
12. |
Charron
S
,
Duong
C
,
Menard
A
,
Roy
J
,
Eliopoulos
V
,
Lambert
R
,
Deng
AY
. Epistasis, not numbers, regulates functions of clustered Dahl rat quantitative trait loci applicable to human hypertension. Hypertension
46: 1300‐1308, 2005. |
13. |
Charron
S
,
Lambert
R
,
Eliopoulos
V
,
Duong
C
,
Menard
A
,
Roy
J
,
Deng
AY
. A loss of genome buffering capacity of Dahl salt‐sensitive model to modulate blood pressure as a cause of hypertension. Hum Mol Genet
14: 3877‐3884, 2005. |
14. |
Chauvet
C
,
Crespo
K
,
Menard
A
,
Roy
J
,
Deng
AY
. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci. Hum Mol Genet
22: 4451‐4459, 2013. DOI: 10.1093/hmg/ddt294
|
15. |
Chauvet
C
,
Menard
A
,
Deng
AY
. Two candidate genes for two quantitative trait loci epistatically attenuate hypertension in a novel pathway. J Hypertens
33: 1791‐1801, 2015. DOI: 10.1097/HJH.0000000000000626
|
16. |
Chen
H
,
Levo
M
,
Barinov
L
,
Fujioka
M
,
Jaynes
JB
,
Gregor
T
. Dynamic interplay between enhancer‐promoter topology and gene activity. Nat Genet
50: 1296‐1303, 2018. DOI: 10.1038/s41588‐018‐0175‐z
|
17. |
Cheng
X
,
Waghulde
H
,
Mell
B
,
Smedlund
K
,
Vazquez
G
,
Joe
B
. Pleiotropic effect of a high resolution mapped blood pressure QTL on tumorigenesis. PLoS ONE
11: e0153519, 2016. DOI: 10.1371/journal.pone.0153519
|
18. |
Cheng
X
,
Waghulde
H
,
Mell
B
,
Morgan
EE
,
Pruett‐Miller
SM
,
Joe
B
. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT‐interval by targeted CRISPR/Cas9 editing of a novel long non‐coding RNA. PLoS Genet
13: e1006961, 2017. DOI: 10.1371/journal.pgen.1006961
|
19. |
Chitre
AS
,
Polesskaya
O
,
Holl
K
,
Gao
J
,
Cheng
R
,
Martinez
AG
,
George
T
,
Gileta
AF
,
Han
W
,
Horvath
A
,
Hughson
A
,
Ishiwari
K
,
King
CP
,
Lamparelli
A
,
Versaggi
CL
,
Martin
C
,
St. Pierre
CL
,
Tripi
JA
,
Wang
T
,
Wladecki
H
,
Chen
H
,
Flagel
SB
,
Meyer
P
,
Richards
J
,
Robinson
TE
,
Palmer
AA
,
Solberg Woods
LC
. Genome wide association study of body weight, body mass index, adiposity, and fasting glucose in 3,173 outbred rats. bioRxiv, 2018. DOI: https://doi.org/10.1101/422428
|
20. |
Churchill
GA
. Eric Lander and David Botstein on mapping quantitative traits. Genetics
203: 1‐2, 2016. DOI: 10.1534/genetics.116.189803
|
21. |
Cicila
GT
,
Rapp
JP
,
Wang
J‐M
,
St. Lezin
E
,
Ng
SC
,
Kurtz
TW
. Linkage of 11β‐hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet
3: 346‐353, 1993. |
22. |
Cicila
GT
,
Rapp
JP
,
Bloch
KD
,
Kurtz
TW
,
Pravenec
M
,
Kren
V
,
Hong
CC
,
Quertermous
T
,
Ng
SC
. Cosegregation of the endothelin‐3 locus with blood pressure and relative heart weight in inbred Dahl rats. J Hypertens
12: 643‐651, 1994. |
23. |
Cicila
GT
,
Dukhanina
OI
,
Kurtz
TW
,
Walder
R
,
Garrett
MR
,
Dene
H
,
Rapp
JP
. Blood pressure and survival of a chromosome 7 congenic strain bred from Dahl rats. Mamm Genome
8: 896‐902, 1997. |
24. |
Cicila
GT
,
Garrett
MG
,
Lee
SJ
,
Liu
J
,
Dene
H
,
Rapp
JP
. High resolution mapping of the blood pressure QTL on chromosome 7 using Dahl rat congenic strains. Genomics
72: 51‐60, 2001. |
25. |
Cowley
AW
Jr
,
Moreno
C
,
Jacob
HJ
,
Peterson
CB
,
Stingo
FC
,
Ahn
KW
,
Liu
P
,
Vannucci
M
,
Laud
PW
,
Reddy
P
,
Lazar
J
,
Evans
L
,
Yang
C
,
Kurth
T
,
Liang
M
. Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats. Physiol Genom
46: 398‐410, 2014. DOI: 10.1152/physiolgenomics.00179.2013
|
26. |
Cowley
AW
Jr
,
Yang
C
,
Kumar
V
,
Lazar
J
,
Jacob
H
,
Geurts
AM
,
Liu
P
,
Dayton
A
,
Kurth
T
,
Liang
M
. Pappa2 is linked to salt‐sensitive hypertension in Dahl S rats. Physiol Genomics
48: 62‐72, 2016. DOI: 10.1152/physiolgenomics.00097.2015
|
27. |
Crespo
K
,
Menard
A
,
Deng
AY
. Hypertension suppression, not cumulative thrust of quantitative trait loci, predisposes blood pressure homeostasis to normotension. Circ Cardiovasc Genet
8: 610‐617, 2015. DOI: 10.1161/CIRCGENETICS.114.000965
|
28. |
Dahl
LK
,
Heine
M
,
Tassinari
L
. Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med
115: 1173‐1190, 1962. |
29. |
Dahl
LK
,
Heine
M
,
Tassinari
L
. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature
194: 480‐482, 1962. |
30. |
Darvasi
A
,
Soller
M
. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics
141: 1199‐1207, 1995. |
31. |
Darvasi
A
,
Weinreb
A
,
Minke
V
,
Weller
JI
,
Soller
M
. Detecting marker‐QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics
134: 943‐945, 1993. |
32. |
DeMarco
VG
,
Johnson
MS
,
Ma
L
,
Pulakat
L
,
Mugerfeld
I
,
Hayden
MR
,
Garro
M
,
Knight
W
,
Britton
SL
,
Koch
LG
,
Sowers
JR
. Overweight female rats selectively breed for low aerobic capacity exhibit increased myocardial fibrosis and diastolic dysfunction. Am J Physiol Heart Circ Physiol
302: H1667‐H1682, 2012. DOI: 10.1152/ajpheart.01027.2011
|
33. |
Duong
C
,
Charron
S
,
Deng
Y
,
Xiao
C
,
Menard
A
,
Roy
J
,
Deng
AY
. Individual QTLs controlling quantitative variation in blood pressure inherited in a Mendelian mode. Heredity
98: 165‐171, 2007. |
34. |
Dutil
J
,
Eliopoulos
V
,
Tremblay
J
,
Hamet
P
,
Charron
S
,
Deng
AY
. Multiple quantitative trait loci for blood pressure interacting epistatically and additively on Dahl rat chromosome 2. Hypertension
45: 557‐564, 2005. |
35. |
Eitan
Y
,
Soller
M
. Selection induced genetic variation: A new model to explain direct and indirect effects of sixty years of commercial selection for juvenile growth rate in broiler chickens, with implications for episodes of rapid evolutionary change. In:
Wasser
SP
, editor. Evolutionary Theory and Processes: Modern Horizons. Papers in Honor of Eviatar Nevo. Dordrecht, The Netherlands: Kluwer Academic, 2004, p. 153‐176. |
36. |
Eliopoulos
V
,
Dutil
J
,
Deng
Y
,
Grondin
M
,
Deng
AY
. Severe hypertension caused by alleles from normotensive Lewis for a quantitative trait locus on chromosome 2. Physiol Genomics
22: 70‐75, 2005. |
37. |
Fergus
P
,
Montanez
A
,
Abdulaimma
B
,
Lisboa
P
,
Chalmers
C
,
Pineles
B
. Utilising deep learning and genome wide association studies for epistatic‐driven preterm birth classification in African–American women. IEEE/ACM Trans Comput Biol Bioinform
Sep 3, 2018. DOI: 10.1109/TCBB.2018.2868667. [Epub ahead of print], PMID: 30183645. |
38. |
Flint
J
,
Valdar
W
,
Shifman
S
,
Mott
R
. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet
6: 271‐286, 2005. |
39. |
Garrett
MR
,
Rapp
JP
. Multiple blood pressure QTL on rat Chromosome 2 defined by congenic Dahl rats. Mamm Genome
13: 41‐44, 2002. |
40. |
Garrett
MR
,
Rapp
JP
. Two closely linked interactive blood pressure QTL on rat chromosome 5 defined using congenic Dahl rats. Physiol Genomics
8: 81‐86, 2002. |
41. |
Garrett
MR
,
Rapp
JP
. Defining the blood pressure QTL on chromosome 7 in Dahl rats by a 177‐kb congenic segment containing Cyp11b1. Mamm Genome
14: 268‐273, 2003. |
42. |
Garrett
MR
,
Dene
H
,
Walder
R
,
Zhang
Q‐Y
,
Cicila
GT
,
Assidnia
S
,
Deng
AY
,
Rapp
JP
. Genome scan and congenic strains for blood pressure QTL using Dahl salt‐sensitive rats. Genome Res
8: 711‐723, 1998. |
43. |
Garrett
MR
,
Saad
Y
,
Dene
H
,
Rapp
JP
. Blood pressure QTL that differentiate Dahl salt‐sensitive and spontaneously hypertensive rats. Physiol Genomics
3: 33‐38, 2000. |
44. |
Garrett
MR
,
Zhang
X
,
Dukhanina
OI
,
Deng
AY
,
Rapp
JP
. Two linked blood pressure quantitative trait loci on chromosome 10 defined by Dahl rat congenic strains. Hypertension
38: 779‐785, 2001. |
45. |
Giresi
PG
,
Kim
J
,
McDaniell
RM
,
Iyer
VR
,
Lieb
JD
. FAIRE (Formaldehyde‐Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res
17: 877‐885, 2007. DOI: 10.1101/gr.5533506
|
46. |
Gopalakrishnan
K
,
Morgan
EE
,
Yerga‐Woolwine
S
,
Farms
P
,
Kumarasamy
S
,
Kalinoski
A
,
Liu
X
,
Wu
J
,
Liu
L
,
Joe
B
. Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short‐QT interval and hypertension. Hypertension
57: 764‐771, 2011. DOI: 10.1161/HYPERTENSIONAHA.110.165803
|
47. |
Gopalakrishnan
K
,
Kumarasamy
S
,
Yan
Y
,
Liu
J
,
Kalinoski
A
,
Kothandapani
A
,
Farms
P
,
Joe
B
. Increased expression of rififylin in a <330 kb congenic strain is linked to impaired endosomal recycling in proximal tubules. Front Genet
3: article 138: 1‐10, 2012. DOI: 10.3389/fgene.2012.00138
|
48. |
Hanlon
P
,
Lorenz
WA
,
Shao
Z
,
Harper
JM
,
Galecki
AT
,
Miller
RA
,
Burke
DT
. Three‐locus and four‐locus QTL interactions influence mouse insulin‐like growth factor‐1. Physiol Genomics
26: 46‐54, 2006. |
49. |
Hansen
C
,
Spuhler
K
. Development of the National Institutes of Health genetically heterogeneous rat stocks. Alcohol Clin Exp Res
8: 477‐479, 1984. |
50. |
Hansen
AS
,
Cattoglio
C
,
Darzacq
X
,
Tjian
R
. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus
9: 20‐32, 2018. DOI: 10.1080/19491034.2017.1389365
|
51. |
Hartman
JL
,
Garvik
B
,
Hartwell
L
. Principles for the buffering of genetic variation. Science
291: 1001‐1004, 2001. |
52. |
Hilbert
P
,
Lindpaintner
K
,
Beckmann
JS
,
Serikawa
T
,
Soubrier
F
,
Dubay
C
,
Cartwright
P
,
De Gouyon
B
,
Julier
C
,
Takahasi
S
,
Vincent
M
,
Ganten
D
,
Georges
M
,
Lathrop
GM
. Chromosomal mapping of two genetic loci associated with blood‐pressure regulation in hereditary hypertensive rats. Nature
353: 521‐529, 1991. |
53. |
Hnisz
D
,
Abraham
BJ
,
Lee
TI
,
Lau
A
,
Saint‐André
V
,
Sigova
AA
,
Hoke
HA
,
Young
RA
. Super‐enhancers in the control of cell identity and disease. Cell
155: 934‐947, 2013. DOI: 10.1016/j.cell.2013.09.053
|
54. |
Huang
BS
,
Ahmad
M
,
Deng
AY
,
Leenen
HH
. Neuronal responsiveness to central Na+ in 2 congenic strains of Dahl salt‐sensitive rats. Hypertension
49: 1315‐1320, 2007. |
55. |
Inoko
M
,
Kihara
Y
,
Morii
I
,
Fujiwara
H
,
Sasayama
S
. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt‐sensitive rats. Am J Physiol
267: H2471‐H2482, 1994. |
56. |
Iwai
J
,
Heine
M
. Dahl salt‐sensitive rats and human essential hypertension. J Hypertens
4 (suppl 3): S29‐S31, 1986. |
57. |
Jacob
HJ
,
Lindpaintner
K
,
Lincoln
SE
,
Kusumi
K
,
Bunker
RK
,
Mao
YP
,
Ganten
D
,
Dzau
VJ
,
Lander
ES
. Genetic mapping of a gene causing hypertension in the stroke‐prone spontaneously hypertensive rat. Cell
67: 213‐224, 1991. |
58. |
Johannesson
M
,
Lopez‐Aumatell
R
,
Stridh
P
,
Diez
M
,
Tuncel
J
,
Blázquez
G
,
Martinez‐Membrives
E
,
Cañete
T
,
Vicens‐Costa
E
,
Graham
D
,
Copley
RR
,
Hernandez‐Pliego
P
,
Beyeen
AD
,
Ockinger
J
,
Fernández‐Santamaría
C
,
Gulko
PS
,
Brenner
M
,
Tobeña
A
,
Guitart‐Masip
M
,
Giménez‐Llort
L
,
Dominiczak
A
,
Holmdahl
R
,
Gauguier
D
,
Olsson
T
,
Mott
R
,
Valdar
W
,
Redei
EE
,
Fernández‐Teruel
A
,
Flint
J
. A resource for the simultaneous high‐resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock. Genome Res
19: 150‐158, 2009. DOI: 10.1101/gr.081497.108
|
59. |
Kauppi
L
,
Jeffreys
AJ
,
Keeney
S
. Where the crossovers are: Recombination distributions in mammals. Nat Rev Genet
5: 403‐424, 2004. |
60. |
Keele
GR
,
Prokop
JW
,
He
H
,
Holl
K
,
Littrell
J
,
Deal
A
,
Francic
S
,
Cui
L
,
Gatti
DM
,
Broman
KW
,
Tschannen
M
,
Tsaih
SW
,
Zagloul
M
,
Kim
Y
,
Baur
B
,
Fox
J
,
Robinson
M
,
Levy
S
,
Flister
MJ
,
Mott
R
,
Valdar
W
,
Solberg Woods
LC
. Genetic fine‐mapping and identification of candidate genes and variants for adiposity traits in outbred rats. Obesity
26: 213‐222, 2018. DOI: 10.1002/oby.22075
|
61. |
Knudsen
KD
,
Dahl
LK
,
Thompson
K
,
Iwai
J
,
Heine
M
,
Leitl
G
. Effects of chronic excess salt ingestion: Inheritance of hypertension in the rat. J Exp Med
132: 967‐1000, 1970. |
62. |
Koch
LG
,
Britton
SL
. Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics
5: 45‐52, 2001. |
63. |
Koch
LG
,
Kemi
OJ
,
Qi
N
,
Leng
SX
,
Bijma
P
,
Gilligan
LJ
,
Wilkinson
JE
,
Wisløff
H
,
Høydal
MA
,
Rolim
N
,
Abadir
PM
,
van
Grevenhof
EM
,
Smith
GL
,
Burant
CF
,
Ellingsen
O
,
Britton
SL
,
Wisløff
U
. Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res
109: 1162‐1172, 2011. DOI: 10.1161/CIRCRESAHA.111.253807
|
64. |
Koch
LG
,
Pollot
GE
,
Britton
SL
. Selectively bred rat model for low and high response to exercise training. Physiol Genomics
45: 606‐614, 2013. DOI: 10.1152/physiolgenomics.00021.2013
|
65. |
Kumarasamy
S
,
Gopalakrishnan
K
,
Toland
EJ
,
Yerga‐Woolwine
S
,
Farms
P
,
Morgan
EE
,
Joe
B
. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res
34: 1263‐1270, 2011. DOI: 10.1038/hr.2011.116
|
66. |
Kurtz
TW
,
Morris
RC
. Hypertension in the recently weaned Dahl salt‐sensitive rat despite a diet deficient in sodium chloride. Science
230: 808‐810, 1985. |
67. |
Lander
ES
,
Botstein
D
. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics
121: 185‐199, 1989. |
68. |
Lander
E
,
Krugylak
L
. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet
11: 241‐247, 1995. |
69. |
Lehner
B
. Molecular mechanisms of epistasis within and between genes. Trends Genet
27: 323‐331, 2011. DOI: 10.1016/j.tig.2011.05.007
|
70. |
Li
X
,
Quigg
RJ
,
Zhou
J
,
Xu
S
,
Masinde
G
,
Mohan
S
,
Baylink
DJ
. A critical evaluation of the effect of population size and phenotypic measurement on QTL detection and localization using a large F2 murine mapping population. Genet Mol Biol
29: 166‐173, 2006. |
71. |
Littrell
J
,
Tsaih
S‐W
,
Baud
A
,
Rastas
P
,
Solberg‐Woods
L
,
Flister
MJ
. A high‐resolution genetic map for the laboratory rat. Genes Genomes Genet G3
8: 2241‐2248, 2018. DOI: 10.1534/g3.118.200187
|
72. |
Markel
P
,
Shu
P
,
Ebeling
C
,
Carlson
GA
,
Nagle
DL
,
Smutko
JS
,
Moore
KJ
. Theoretical and empirical issues for marker‐assisted breeding of congenic mouse strains. Nat Genet
17: 280‐284, 1997. |
73. |
Martinez
O
,
Curnow
RN
. Estimating the localizations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet
85: 480‐488, 1992. |
74. |
Matsukawa
N
,
Nonaka
Y
,
Higaki
J
,
Nagano
M
,
Mikami
H
,
Ogihara
T
,
Okamoto
M
. Dahl's salt‐resistant normotensive rat has mutations in cytochrome P450(11 beta), but the salt‐sensitive hypertensive rat does not. J Biol Chem
268: 9117‐9121, 1993. |
75. |
Mattson
DL
,
Dwinell
MR
,
Greene
AS
,
Kwitek
AE
,
Roman
RJ
,
Jacob
HJ
,
Cowley
AW
. Chromosome substitution revels the genetic basis of Dahl salt‐sensitive hypertension and renal disease. Am J Renal Physiol
295: F837‐F842, 2008. DOI: 10.1152/ajprenal.90341.2008
|
76. |
Maurano
MT
,
Humbert
R
,
Rynes
E
,
Thurman
RE
,
Haugen
E
,
Wang
H
,
Reynolds
AP
,
Sandstrom
R
,
Qu
H
,
Brody
J
,
Shafer
A
,
Neri
F
,
Lee
K
,
Kutyavin
T
,
Stehling‐Sun
S
,
Johnson
AK
,
Canfield
TK
,
Giste
E
,
Diegel
M
,
Bates
D
,
Hansen
RS
,
Neph
S
,
Sabo
PJ
,
Heimfeld
S
,
Raubitschek
A
,
Ziegler
S
,
Cotsapas
C
,
Sotoodehnia
N
,
Glass
I
,
Sunyaev
SR
,
Kaul
R
,
Stamatoyannopoulos
JA
. Systematic localization of common disease‐associated variation in regulatory DNA. Science
337(6099): 1190‐1195, 2012. DOI: 10.1126/science.1222794
|
77. |
Moreno
C
,
Kaldunski
ML
,
Wang
T
,
Roman
RJ
,
Greene
AS
,
Lazar
J
,
Jacob
HJ
,
Cowley
AW, Jr
. Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiol Genomics
31: 228‐235, 2007. |
78. |
Morgan
AP
,
Gatti
DM
,
Najarian
ML
,
Keane
TM
,
Galante
RJ
,
Pack
AI
,
Mott
R
,
Churchill
GA
,
de
Villena
FP
. Structural variation shapes the landscape of recombination in mouse. Genetics
206: 603‐619, 2017. DOI: 10.1534/genetics.116.197988
|
79. |
Mott
R
,
Talbot
CJ
,
Turri
MG
,
Collins
AC
,
Flint
J
. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci
97: 12649‐12654, 2000. |
80. |
Nelson
RM
,
Pettersson
ME
,
Carlborg
O
. A century after Fisher: Time for a new paradigm in quantitative genetics. Trends Genet
29: 669‐676, 2013. DOI: 10.1016/j.tig.2013.09.006
|
81. |
Nie
Y
,
Kumarasamy
S
,
Waghulde
H
,
Cheng
X
,
Mell
B
,
Czernik
PJ
,
Lecka‐Czernik
B
,
Joe
B
. High‐resolution mapping of a novel rat blood pressure locus on chromosome 9 to a region containing the Spp2 gene and colocalization of a QTL for bone mass. Physiol Genomics
48: 409‐419, 2016. DOI: 10.1152/physiolgenomics.00004.2016
|
82. |
Niel
C
,
Sinoquet
C
,
Dina
C
,
Rocheleau
G
. A survey about methods dedicated to epistasis detection. Front Genet
6: 285, 2015. DOI: 10.3389/fgene.2015.00285
|
83. |
Nonaka
Y
,
Fujii
T
,
Kagawa
N
,
Waterman
MR
,
Takemori
H
,
Okamoto
M
. Structure/function relationship of CYP11B1 associated with Dahl's salt‐resistant rats: Expression of rat CYP11B1 and CYP11B2 in Escherichia coli
. Eur J Biochem
258: 869‐878, 1998. |
84. |
Noonan
JP
,
McCallion
AS
. Genomics of long‐range regulatory elements. Annu Rev Genomics Hum Genet
11: 1‐23, 2010. DOI: 10.1146/annurev‐genom‐082509‐141651. Review. |
85. |
Ogonuki
N
,
Inoue
K
,
Hirose
M
,
Miura
I
,
Mochida
K
,
Sato
T
,
Mise
N
,
Mekada
K
,
Yoshiki
A
,
Abe
K
,
Kurihara
H
,
Wakana
S
,
Ogura
A
. A high‐speed congenic strategy using first‐wave male germ cells. PLoS ONE
4(3): e4943, 2009. DOI: 10.1371/journal.pone.0004943
|
86. |
Okamoto
K
,
Aoki
K
. Development of a strain of spontaneously hypertensive rats. Jpn Circ J
27: 282‐293, 1963. |
87. |
Padmanabhan
S
,
Joe
B
. Towards precision medicine for hypertension: A review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental models and humans. Physiol Rev
97: 1469‐1528, 2017. DOI: 10.1152/physrev.00035.2016
|
88. |
Paigen
K
,
Petkov
P
. Mammalian recombination hot spots: Properties, control and evolution. Nat Rev Genet
11: 221‐233, 2010. DOI: 10.1038/nrg2712. Review. |
89. |
Palijan
A
,
Dutil
J
,
Deng
AY
. Quantitative trait loci with opposing blood pressure effects demonstrating epistasis on Dahl rat chromosome 3. Physiol Genomics
15: 1‐8, 2003. |
90. |
Paterson
AH
,
Lander
ES
,
Hewitt
JD
,
Peterson
S
,
Lincoln
SE
,
Tanksley
SD
. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature
335: 721‐726, 1988. |
91. |
Pettersson
M
,
Bernier
F
,
Siegel
PB
,
Carlborg
O
. Replication and explorations of high‐order epistasis using a large advanced intercross line pedigree. PLoS Genet
7(7): e1002180, 2011. DOI: 10.1371/journal.pgen.1002180
|
92. |
Phillips
PC
. Epistasis – The essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet
9: 855‐867, 2008. DOI: 10.1038/nrg2452. Review |
93. |
Pillai
R
,
Waghulde
H
,
Nie
Y
,
Gopalakrishnan
K
,
Kumarasamy
S
,
Farms
P
,
Garrett
MR
,
Atanur
SS
,
Maratou
K
,
Aitman
TJ
,
Joe
B
. Isolation and high‐throughput sequencing of two closely linked epistatic hypertension susceptibility loci with a panel of bicongenic strains. Physiol Genomics
45: 729‐736, 2013. DOI: 10.1152/physiolgenomics.00077.2013
|
94. |
Pravenec
M
,
Klir
P
,
Kren
V
,
Zicha
J
,
Kunes
J
. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens
7: 217‐221, 1989. |
95. |
Rao
SS
,
Huntley
MH
,
Durand
NC
,
Stamenova
EK
,
Bochkov
ID
,
Robinson
JT
,
Sanborn
AL
,
Machol
I
,
Omer
AD
,
Lander
ES
,
Aiden
EL
. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell
159: 1665‐1680, 2014. DOI: 10.1016/j.cell.2014.11.021 Erratum in: Cell 162:687‐688, 2015. |
96. |
Rapp
JP
. Genetic analysis of inherited hypertension in the rat. Physiol Rev
80: 135‐172, 2000. |
97. |
Rapp
JP
. Theoretical model for gene–gene, gene–environment, and gene–sex interactions based on congenic‐strain analysis of blood pressure in Dahl salt‐sensitive rats. Physiol Genomics
45: 737‐750, 2013. DOI: 10.1152/physiolgenomics.00046.2013
|
98. |
Rapp
JP
,
Dahl
LK
. Adrenal steroidogenesis in rats bred for susceptibility and resistance to the hypertensive effect of salt. Endocrinology
88: 52‐65, 1971. |
99. |
Rapp
JP
,
Dahl
LK
. Mendelian inheritance of 18‐ and 11‐beta‐steroid hydroxylase activities in the adrenals of rats genetically susceptible or resistant to hypertension. Endocrinology
90: 1435‐1446, 1972. |
100. |
Rapp
JP
,
Dahl
LK
. Possible role of 18 hydroxy‐deoxy‐corticosterone in hypertension. Nature
237: 338‐339, 1972. |
101. |
Rapp
JP
,
Dahl
LK
. Mutant forms of cytochrome P‐450 controlling both 18‐ and 11beta‐steroid hydroxylation in the rat. Biochemistry
15: 1235‐1242, 1976. |
102. |
Rapp
JP
,
Dene
H
. Development and characteristics of inbred strains of Dahl salt‐sensitive and salt‐resistant rats. Hypertension
7: 340‐349, 1985. |
103. |
Rapp
JP
,
Deng
AY
. Detection and positional cloning of blood pressure quantitative trait loci: Is it possible?
Hypertension
25: 1121‐1128, 1995. |
104. |
Rapp
JP
,
Joe
B
. Use of contiguous congenic strains in analyzing compound QTLs. Physiol Genomics
44: 117‐120, 2012. DOI: 10.1152/physiolgenomics.00136.2011
|
105. |
Rapp
JP
,
Joe
B
. Do epistatic modules exist in the genetic control of blood pressure in Dahl rats? A critical perspective. Physiol Genomics
45: 1193‐1195, 2013. |
106. |
Rapp
JP
,
Wang
SM
,
Dene
H
. Effect of genetic background on cosegregation of renin alleles and blood pressure in Dahl rats. Am J Hypertens
3: 391‐396, 1990. |
107. |
Rapp
JP
,
Garrett
MR
,
Deng
AY
. Construction of a double congenic strain to prove an epistatic interaction on blood pressure between rat chromosomes 2 and 10. J Clin Invest
101: 1591‐1595, 1998. |
108. |
Rat Genome Sequencing and Mapping Consortium,
Baud
A
,
Hermsen
R
,
Guryev
V
,
Stridh
P
,
Graham
D
,
McBride
MW
,
Foroud
T
,
Calderari
S
,
Diez
M
,
Ockinger
J
,
Beyeen
AD
,
Gillett
A
,
Abdelmagid
N
,
Guerreiro‐Cacais
AO
,
Jagodic
M
,
Tuncel
J
,
Norin
U
,
Beattie
E
,
Huynh
N
,
Miller
WH
,
Koller
DL
,
Alam
I
,
Falak
S
,
Osborne‐Pellegrin
M
,
Martinez‐Membrives
E
,
Canete
T
,
Blazquez
G
,
Vicens‐Costa
E
,
Mont‐Cardona
C
,
Diaz‐Moran
S
,
Tobena
A
,
Hummel
O
,
Zelenika
D
,
Saar
K
,
Patone
G
,
Bauerfeind
A
,
Bihoreau
MT
,
Heinig
M
,
Lee
YA
,
Rintisch
C
,
Schulz
H
,
Wheeler
DA
,
Worley
KC
,
Muzny
DM
,
Gibbs
RA
,
Lathrop
M
,
Lansu
N
,
Toonen
P
,
Ruzius
FP
,
de
Bruijn
E
,
Hauser
H
,
Adams
DJ
,
Keane
T
,
Atanur
SS
,
Aitman
TJ
,
Flicek
P
,
Malinauskas
T
,
Jones
EY
,
Ekman
D
,
Lopez‐Aumatell
R
,
Dominiczak
AF
,
Johannesson
M
,
Holmdahl
R
,
Olsson
T
,
Gauguier
D
,
Hubner
N
,
Fernandez‐Teruel
A
,
Cuppen
E
,
Mott
R
,
Flint
J
. Combined sequence‐based and genetic mapping of complex traits in outbred rats. Nat Genet
45: 767‐775, 2013. DOI: 10.1038/ng.2644
|
109. |
Ren
Y
,
Overmyer
KA
,
Qi
NR
,
Treutelaar
MK
,
Heckenkamp
L
,
Kalahar
M
,
Koch
LG
,
Britton
SL
,
Burant
CF
,
Li
JZ
. Genetic analysis of a rat model of aerobic capacity and metabolic fitness. PLoS ONE
8(10): e77588, 2013. DOI: 10.1371/journal.pone.0077588
|
110. |
Saad
Y
,
Garrett
MR
,
Rapp
JP
. Multiple blood pressure QTL on rat chromosome 1 defined by Dahl rat congenic strains. Physiol Genomics
4: 201‐214, 2001. |
111. |
Saad
Y
,
Garrett
MR
,
Manickavasagam
E
,
Yerga‐Woolwine
S
,
Farms
P
,
Radecki
T
,
Joe
B
. Fine‐mapping and comprehensive transcript analysis reveals nonsynonymous variants within a novel 1.17 Mb blood pressure QTL region on rat chromosome 10. Genomics
89: 343‐353, 2007. |
112. |
Saad
Y
,
Yerga‐Woolwine
S
,
Saikumar
J
,
Farms
P
,
Manickavasagam
E
,
Toland
EJ
,
Joe
B
. Congenic interval mapping of RNO10 reveals a complex cluster of closely‐linked genetic determinants of blood pressure. Hypertension
50: 891‐898, 2007. |
113. |
Sabourin
J
,
Nobel
AB
,
Valdar
W
. Fine‐mapping additive and dominant SNP effects using group‐LASSO and fractional resample model averaging. Genet Epidemiol
39: 77‐88, 2015. DOI: 10.1002/gepi.21869 Epub 2014 Nov 21. |
114. |
Sax
K
. The association of size differences with seed‐coat pattern and pigmentation in Phaseolus vulgaris
. Genetics
8: 552‐560, 1923. |
115. |
Shao
H
,
Burrage
LC
,
Sinasac
DS
,
Hill
AE
,
Ernest
SR
,
O'Brien
WO
,
Courtland
HW
,
Jepsen
KJ
,
Kirby
A
,
Kulbokas
EJ
,
Daly
MJ
,
Broman
KW
,
Lander
ES
,
Nadeau
JH
. Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci
105: 19910‐19914, 2008. DOI: 10.1073/pnas.0810388105
|
116. |
Smidt
K
,
Jessen
N
,
Petersen
AB
,
Larsen
A
,
Magnusson
N
,
Jeppesen
JB
,
Stoltenberg
M
,
Culvenor
JG
,
Tsatsanis
A
,
Brock
B
,
Schmitz
O
,
Wogensen
L
,
Bush
AI
,
Rungby
J
. SLC30A3 responds to glucose‐ and zinc variations in beta‐cells and is critical for insulin production and in vivo glucose‐metabolism during beta‐cell stress. PLoS ONE
4(5): e5684, 2009. DOI: 10.1371/journal.pone.0005684
|
117. |
Snell
GD
. Methods for the study of histocompatibility genes. J Genet
49: 87‐108, 1948. |
118. |
Spicuglia
S
,
Vanhille
L
. Chromatin signatures of active enhancers. Nucleus
3: 126‐131, 2012. DOI: 10.4161/nucl.19232
|
119. |
Steinmetz
LM
,
Sinha
H
,
Richards
DR
,
Spiegelman
JI
,
Oefner
PJ
,
McCusker
JH
,
Davis
RW
. Dissecting the architecture of a quantitative trait locus in yeast. Nature
416: 326‐330, 2002. |
120. |
Taylor
MB
,
Ehrenreich
IM
. Higher‐order interactions and their contribution to complex traits. Trends Genet
31: 34‐40, 2015. DOI: 10.1016/j.tig.2014.09.001
|
121. |
Tsaih
SW
,
Holl
K
,
Jia
S
,
Kaldunski
M
,
Tschannen
M
,
He
H
,
Andrae
JW
,
Li
SH
,
Stoddard
A
,
Wiederhold
A
,
Parrington
J
,
Ruas da Silva
M
,
Galione
A
,
Meigs
J
, Meta‐Analyses of Glucose and Insulin‐Related Traits Consortium (MAGIC) Investigators,
Hoffmann
RG
,
Simpson
P
,
Jacob
H
,
Hessner
M
,
Solberg Woods
LC
. Identification of a novel gene for diabetic traits in rats, mice, and humans. Genetics
198: 17‐29, 2014. DOI: 10.1534/genetics.114.162982
|
122. |
Tyler
AL
,
Donahue
LR
,
Churchill
GA
,
Carter
GW
. Weak epistasis generally stabilizes phenotypes in a mouse intercross. PLoS Genet
12(2): e1005805, 2016. DOI: 10.1371/journal.pgen.1005805
|
123. |
Valdar
W
,
Solberg
LC
,
Gauguier
D
,
Burnett
S
,
Klenerman
P
,
Cookson
WO
,
Taylor
MS
,
Rawlins
JN
,
Mott
R
,
Flint
J
. Genome‐wide genetic association of complex traits in heterogeneous stock mice. Nat Genet
38: 879‐887, 2006. |
124. |
Visel
A
,
Rubin
EM
,
Pennacchio
LA
. Genomic views of distant enhancers. Nature
461: 199‐205, 2009. DOI: 10.1038/nature08451
|
125. |
Visser
M
,
Kayser
M
,
Palstra
R‐J
. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin‐loop formation between a long‐range enhancer and the OCA2 promoter. Genome Res
22: 446‐455, 2012. DOI: 10.1101/gr.128652.111
|
126. |
Waghulde
H
,
Pillai
R
,
Cheng
X
,
Nie
Y
,
Mell
B
,
Joe
B
. Fine mapping of epistatic genetic determinants of blood pressure on rat chromosome 5. J Hypertens
36: 1486‐1491, 2018. DOI: 10.1097/HJH.0000000000001732
|
127. |
Wakeland
E
,
Morel
L
,
Achey
K
,
Yui
M
,
Longmate
J
. Speed congenics: A classic technique in the fast lane (relatively speaking). Immunol Today
18: 472‐477, 1997. |
128. |
Wang
X
,
Johnson
AC
,
Williams
JM
,
White
T
,
Chade
AR
,
Zhang
J
,
Liu
R
,
Roman
RJ
,
Lee
JW
,
Kyle
PB
,
Solberg‐Woods
L
,
Garrett
MR
. Nephron deficiency and predisposition to renal Injury in a novel one‐kidney genetic model. J Am Soc Nephrol
26: 1634‐1646, 2015. DOI: 10.1681/ASN.2014040328
|
129. |
Williamson
I
,
Hill
RE
,
Bickmore
WA
. Enhancers: From developmental genetics to the genetics of common human diseases. Dev Cell
21: 17‐19, 2011. DOI: 10.1016/j.devcel.2011.06.008
|
130. |
Wisløff
U
,
Najjar
SM
,
Ellingsen
O
,
Haram
PM
,
Swoap
S
,
Al‐Share
Q
,
Fernström
M
,
Rezaei
K
,
Lee
SJ
,
Koch
LG
,
Britton
SL
. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science
307: 418‐420, 2005. |
131. |
Yamazaki
K
,
Katoh
H
,
Yamamoto
N
,
Kurihara
K
,
Iobe
H
,
Sonoda
J
,
Kuwabara
M
,
Kodama
M
,
Kawaguchi
A
,
Funami
Y
,
Kumazawa
A
,
Wakabayashi
T
. Characterization of new inbred strains of Dahl–Iwai salt‐sensitive and salt‐resistant rats. Lab Anim Sci
44: 462‐467, 1994. |
132. |
Yamazaki
K
,
Katoh
H
,
Yamamoto
N
,
Kurihara
K
,
Kuwabara
M
,
Kodama
M
,
Kawaguchi
A
,
Funami
Y
,
Wakabayashi
T
. Genetic profiles of newly inbred Dahl/Iwai salt‐sensitive and salt‐resistant rats. Am J Hypertens
10(5 Pt 2): 94S‐97S, 1997. |
133. |
Yamori
Y
,
Ooshima
A
,
Okamoto
K
. Genetic factors involved in spontaneous hypertension in rats an analysis of F2 segregate generation. Jpn Circ J
36: 561‐568, 1972. |
134. |
Zhang
W
,
Dai
X
,
Wang
Q
,
Xu
S
,
Zhao
PX
. PEPIS: A pipeline for estimating epistatic effects in quantitative trait locus mapping and genome‐wide association studies. PLoS Comput Biol
12: e1004925, 2016. DOI: 10.1371/journal.pcbi.1004925
|