Comprehensive Physiology Wiley Online Library

Bone Marrow Microvasculature

Full Article on Wiley Online Library



Abstract

The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by‐products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading‐induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age‐related bone loss, is described and age‐ and disease‐related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009‐1046, 2020.

Figure 1. Figure 1. A 3D microCT reconstruction of a scanned (10 μm) rat femur. The epiphyses, metaphyses, and diaphysis have been labeled. The higher magnification inset denotes the femoral head, the lesser trochanter and principle nutrient foramen.
Figure 2. Figure 2. A 3D microCT reconstruction of a scanned (10 μm) rat femur. A frontal section of the distal femur is being displayed. The reconstruction illustrates the interior trabecular bone, which is distinguishable from the outer covering of cortical bone. The growth plate is also observable. Marrow, which not visible in the 3D reconstruction, lies between the trabeculae.
Figure 3. Figure 3. A 3D microCT reconstruction of a scanned (10 μm) rat femur. A frontal section is being displayed. The reconstruction denotes the periosteal surface, the endosteal surface, the diaphyseal cortex, and the marrow cavity.
Figure 4. Figure 4. An illustration of an osteon of cortical bone. The vascular supply is observed in the Haversian and Volkmann's canal. Volkmann's canals run perpendicular to the long axis of the bone and connect with the Haversian canals. In Haversian and Volkmann's canals, sympathetic and sensory nerve fibers (not depicted) either coil around or run linear to the blood vessel. Osteocytes, housed in lacunae, can be observed surrounding and radiating away from the Haversian canal. Osteocytes extend dendritic processes into the interconnected canaliculi. The schematic is not drawn to scale.
Figure 5. Figure 5. The cell‐to‐cell communications among osteocytes, osteoblasts, and osteoclasts. (a) Apoptosis of osteocytes elicits the production of NFκB ligand (RANKL) to ultimately stimulate osteoclastogenesis. (b) Bone marrow stromal cells, osteoblasts/osteoblast lineage cells and osteocytes release RANKL to stimulate fusion and osteoclastogenesis. (c) Bone marrow stromal cells, osteoblasts/osteoblast lineage cells, and osteocytes secrete monocyte‐colony stimulating factor (M‐CSF), causing osteoclast precursors to proliferate and commit to the osteoclast lineage. (d) Bone marrow stromal cells, osteoblasts, and osteocytes release osteoprotegerin (OPG); that is, a decoy receptor for RANKL. The binding of OPG to the receptor, RANK, on pre‐osteoclasts inhibits osteoclastogenesis. (e) Osteoblasts release Dickkopf‐1 (Dkk‐1, a Wnt antagonist), attenuating or preventing continued bone formation. (f) Osteocytes also release Dkk‐1, inhibiting osteoblast activity. (g) Osteocytes secret sclerostin and disrupt Wnt/β‐catenin signaling, diminishing bone formation by osteoblasts.
Figure 6. Figure 6. Coupling factors and osteotransmitters associated with cell‐to‐cell communication. During bone remodeling, osteoclast and osteoblast activity are coupled. During bone resorption matrix‐bound factors [e.g., insulin‐like growth factor‐1 (IGF‐1) and tumor growth factor‐β (TGF‐β)] are released and can influence osteoblast activity. Thus, bone resorption leads to bone formation. In addition, coupling factors secreted directly by osteoclasts contribute more so to coupling than matrix‐secreted factors. These factors include Sema4D, cardiotrophin‐1, Wnt10b, BMP 6, sphingosine‐1 phosphate, and collagen triple helix repeat containing 1 (CTHRC1).
Figure 7. Figure 7. The vascular pattern of long bones. This illustration is a simplified depiction of the vascular density of the skeleton and is not drawn to scale. The afferent (nutrient arteries, arteries, and arterioles), exchange (capillaries, sinusoids, and sinusoidal lobules), and efferent (nutrient veins, veins, and venules) blood vessels are depicted in red, purple and blue, respectively. Epiphyseal and metaphyseal blood vessels service the epiphyses and metaphyses of long bones. The principal nutrient artery and vein service the marrow cavity and inner 2/3rd of the diaphyseal cortex. The periosteal arteries and veins service the outer 1/3rd of the diaphyseal cortex. The vascular supply differs with advancing age, whereby the periosteal arteries provide most of the blood flow. Within cortical bone, blood vessels are contained within Haversian, Volkmann's and transcortical canals. Note that nutrient vessels also supply the distal end of the femur but are not depicted in the schematic.
Figure 8. Figure 8. (A) The basic multicellular unit of cortical bone and (B) the bone remodeling compartment of trabecular bone. The vascular supply is denoted in panels A and B and represents an arteriole (red), capillary (purple) and venule (blue). Remodeling at both trabecular and cortical surfaces begins with bone resorption by osteoclasts. Osteoclasts dig into cortical bone and excavate the surface of trabecular bone. Once resorption has finished, osteoblasts lay down osteoid seams that eventually mineralize into bone. The capillary associated with basic multicellular units and bone remodeling compartments exchange nutrients and precursor cells at the remodeling site. Typically, the vascular supply in similar schematics depicts just the capillary. However, arterioles deliver nutrients and precursor cells and venules collect metabolic by‐products from capillaries. Therefore, it is important to recognize the ingress and egress vessels associated with the exchange network. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. The schematics are not drawn to scale.
Figure 9. Figure 9. The spatial location of marrow capillaries in relation to bone remodeling sites (i.e., osteoid seams and/or eroded surfaces) and quiescent trabecular surfaces 214,302. Note, capillaries are physically closer to the bone‐forming sites in comparison to the quiescent surfaces 214,302. In addition, capillaries next to remodeling sites run tangential to the bone surfaces as opposed to capillaries next to quiescent surfaces, which run perpendicular to the bone surface 214. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. The schematics are not drawn to scale.
Figure 10. Figure 10. The associated figure and legend were originally published in 299. The schematic represents “a sequential scenario by which metabolic activity leads to enhanced vasodilation of the surrounding arterioles and arteries. The schematic represents the bone remodeling compartment with trabecular bone containing osteocytes and the neighboring marrow occupied by osteoclasts, osteoblasts, bone lining cells, and the vascular network (i.e., arteriole, capillary, and venule). Panel A serves to orient the reader to the various cells and structures within this schematic. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. Panel B depicts osteoclasts actively resorbing bone (a). During enhanced metabolism, the osteoclasts release factors (e.g., carbon dioxide (CO2), hydrogen ion (H+), phosphate (PO4), ADP, lactate) that diffuse to the arteriole and initiate metabolic vasodilation (b). The metabolic vasodilation of the arteriole causes ascending vasodilation of the feed and conduit arteries upstream (not depicted). This process is called Conducted Vasodilation and ensures a rise in blood flow to the surrounding tissue undergoing metabolism. Panel C illustrates how vasodilation and the subsequent rise in blood flow (c) augments filtration and pressure from the capillary (d) into the bone interstitial space (e). The increased bone interstitial pressure and fluid flow generate shear stress on bone cells (Panel D, f). Shear‐mediated release of PGE2 and NO from osteoblasts (g) serves to enhanced osteoblast activity and reduced osteoclast activity, slowing down bone degradation and ramping up bone formation. In addition, enhanced blood flow as a result of conducted vasodilation augments shear stress on vascular endothelial cells (Panel E, h). As a result, vascular endothelial cells release factors [e.g., NO, PGE2, prostacyclin (PGI2)] that diffuse into the bone interstitial space to stimulate osteoblast activity and inhibit osteoclast activity (i). The theories of vascular contribution to enhanced bone formation were previously put forth by the laboratory of Michael Delp 88. Note that these processes do not have to begin with osteoclast activity. For example, circulating factors that induce vasodilation in the bone vascular network will serve to commence similar processes.”
Figure 11. Figure 11. The associated figure and legend were originally published in 299. The schematic represents “centrifugal (young) and centripetal (old) blood flow supply in long bones 68. Centrifugal blood flow indicates that blood enters the long bone through the principal nutrient artery (PNA), flows into the middle of the marrow space, radiates to the endosteal network and exits primarily via the periosteal venular network (PVN). Blood is also capable of exiting via the principal nutrient vein (PNV). Progressive ossification of bone marrow blood vessels may contribute to and precipitate the transition of the blood supply from centrifugal in youth to centripetal in old age. By reducing or eliminating the patency of the bone marrow vasculature (i.e., the black X), the blood supply must predominately enter the long bone via the periosteal arterial network (PAN). Centripetal blood supply represents an abnormal blood flow pattern 65 and has been previously represented as a schematic 366.”


Figure 1. A 3D microCT reconstruction of a scanned (10 μm) rat femur. The epiphyses, metaphyses, and diaphysis have been labeled. The higher magnification inset denotes the femoral head, the lesser trochanter and principle nutrient foramen.


Figure 2. A 3D microCT reconstruction of a scanned (10 μm) rat femur. A frontal section of the distal femur is being displayed. The reconstruction illustrates the interior trabecular bone, which is distinguishable from the outer covering of cortical bone. The growth plate is also observable. Marrow, which not visible in the 3D reconstruction, lies between the trabeculae.


Figure 3. A 3D microCT reconstruction of a scanned (10 μm) rat femur. A frontal section is being displayed. The reconstruction denotes the periosteal surface, the endosteal surface, the diaphyseal cortex, and the marrow cavity.


Figure 4. An illustration of an osteon of cortical bone. The vascular supply is observed in the Haversian and Volkmann's canal. Volkmann's canals run perpendicular to the long axis of the bone and connect with the Haversian canals. In Haversian and Volkmann's canals, sympathetic and sensory nerve fibers (not depicted) either coil around or run linear to the blood vessel. Osteocytes, housed in lacunae, can be observed surrounding and radiating away from the Haversian canal. Osteocytes extend dendritic processes into the interconnected canaliculi. The schematic is not drawn to scale.


Figure 5. The cell‐to‐cell communications among osteocytes, osteoblasts, and osteoclasts. (a) Apoptosis of osteocytes elicits the production of NFκB ligand (RANKL) to ultimately stimulate osteoclastogenesis. (b) Bone marrow stromal cells, osteoblasts/osteoblast lineage cells and osteocytes release RANKL to stimulate fusion and osteoclastogenesis. (c) Bone marrow stromal cells, osteoblasts/osteoblast lineage cells, and osteocytes secrete monocyte‐colony stimulating factor (M‐CSF), causing osteoclast precursors to proliferate and commit to the osteoclast lineage. (d) Bone marrow stromal cells, osteoblasts, and osteocytes release osteoprotegerin (OPG); that is, a decoy receptor for RANKL. The binding of OPG to the receptor, RANK, on pre‐osteoclasts inhibits osteoclastogenesis. (e) Osteoblasts release Dickkopf‐1 (Dkk‐1, a Wnt antagonist), attenuating or preventing continued bone formation. (f) Osteocytes also release Dkk‐1, inhibiting osteoblast activity. (g) Osteocytes secret sclerostin and disrupt Wnt/β‐catenin signaling, diminishing bone formation by osteoblasts.


Figure 6. Coupling factors and osteotransmitters associated with cell‐to‐cell communication. During bone remodeling, osteoclast and osteoblast activity are coupled. During bone resorption matrix‐bound factors [e.g., insulin‐like growth factor‐1 (IGF‐1) and tumor growth factor‐β (TGF‐β)] are released and can influence osteoblast activity. Thus, bone resorption leads to bone formation. In addition, coupling factors secreted directly by osteoclasts contribute more so to coupling than matrix‐secreted factors. These factors include Sema4D, cardiotrophin‐1, Wnt10b, BMP 6, sphingosine‐1 phosphate, and collagen triple helix repeat containing 1 (CTHRC1).


Figure 7. The vascular pattern of long bones. This illustration is a simplified depiction of the vascular density of the skeleton and is not drawn to scale. The afferent (nutrient arteries, arteries, and arterioles), exchange (capillaries, sinusoids, and sinusoidal lobules), and efferent (nutrient veins, veins, and venules) blood vessels are depicted in red, purple and blue, respectively. Epiphyseal and metaphyseal blood vessels service the epiphyses and metaphyses of long bones. The principal nutrient artery and vein service the marrow cavity and inner 2/3rd of the diaphyseal cortex. The periosteal arteries and veins service the outer 1/3rd of the diaphyseal cortex. The vascular supply differs with advancing age, whereby the periosteal arteries provide most of the blood flow. Within cortical bone, blood vessels are contained within Haversian, Volkmann's and transcortical canals. Note that nutrient vessels also supply the distal end of the femur but are not depicted in the schematic.


Figure 8. (A) The basic multicellular unit of cortical bone and (B) the bone remodeling compartment of trabecular bone. The vascular supply is denoted in panels A and B and represents an arteriole (red), capillary (purple) and venule (blue). Remodeling at both trabecular and cortical surfaces begins with bone resorption by osteoclasts. Osteoclasts dig into cortical bone and excavate the surface of trabecular bone. Once resorption has finished, osteoblasts lay down osteoid seams that eventually mineralize into bone. The capillary associated with basic multicellular units and bone remodeling compartments exchange nutrients and precursor cells at the remodeling site. Typically, the vascular supply in similar schematics depicts just the capillary. However, arterioles deliver nutrients and precursor cells and venules collect metabolic by‐products from capillaries. Therefore, it is important to recognize the ingress and egress vessels associated with the exchange network. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. The schematics are not drawn to scale.


Figure 9. The spatial location of marrow capillaries in relation to bone remodeling sites (i.e., osteoid seams and/or eroded surfaces) and quiescent trabecular surfaces 214,302. Note, capillaries are physically closer to the bone‐forming sites in comparison to the quiescent surfaces 214,302. In addition, capillaries next to remodeling sites run tangential to the bone surfaces as opposed to capillaries next to quiescent surfaces, which run perpendicular to the bone surface 214. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. The schematics are not drawn to scale.


Figure 10. The associated figure and legend were originally published in 299. The schematic represents “a sequential scenario by which metabolic activity leads to enhanced vasodilation of the surrounding arterioles and arteries. The schematic represents the bone remodeling compartment with trabecular bone containing osteocytes and the neighboring marrow occupied by osteoclasts, osteoblasts, bone lining cells, and the vascular network (i.e., arteriole, capillary, and venule). Panel A serves to orient the reader to the various cells and structures within this schematic. Vascular smooth muscle cells were omitted from the arteriole and venule for simplicity; thus, the cells being depicted are vascular endothelial cells. Panel B depicts osteoclasts actively resorbing bone (a). During enhanced metabolism, the osteoclasts release factors (e.g., carbon dioxide (CO2), hydrogen ion (H+), phosphate (PO4), ADP, lactate) that diffuse to the arteriole and initiate metabolic vasodilation (b). The metabolic vasodilation of the arteriole causes ascending vasodilation of the feed and conduit arteries upstream (not depicted). This process is called Conducted Vasodilation and ensures a rise in blood flow to the surrounding tissue undergoing metabolism. Panel C illustrates how vasodilation and the subsequent rise in blood flow (c) augments filtration and pressure from the capillary (d) into the bone interstitial space (e). The increased bone interstitial pressure and fluid flow generate shear stress on bone cells (Panel D, f). Shear‐mediated release of PGE2 and NO from osteoblasts (g) serves to enhanced osteoblast activity and reduced osteoclast activity, slowing down bone degradation and ramping up bone formation. In addition, enhanced blood flow as a result of conducted vasodilation augments shear stress on vascular endothelial cells (Panel E, h). As a result, vascular endothelial cells release factors [e.g., NO, PGE2, prostacyclin (PGI2)] that diffuse into the bone interstitial space to stimulate osteoblast activity and inhibit osteoclast activity (i). The theories of vascular contribution to enhanced bone formation were previously put forth by the laboratory of Michael Delp 88. Note that these processes do not have to begin with osteoclast activity. For example, circulating factors that induce vasodilation in the bone vascular network will serve to commence similar processes.”


Figure 11. The associated figure and legend were originally published in 299. The schematic represents “centrifugal (young) and centripetal (old) blood flow supply in long bones 68. Centrifugal blood flow indicates that blood enters the long bone through the principal nutrient artery (PNA), flows into the middle of the marrow space, radiates to the endosteal network and exits primarily via the periosteal venular network (PVN). Blood is also capable of exiting via the principal nutrient vein (PNV). Progressive ossification of bone marrow blood vessels may contribute to and precipitate the transition of the blood supply from centrifugal in youth to centripetal in old age. By reducing or eliminating the patency of the bone marrow vasculature (i.e., the black X), the blood supply must predominately enter the long bone via the periosteal arterial network (PAN). Centripetal blood supply represents an abnormal blood flow pattern 65 and has been previously represented as a schematic 366.”
References
 1.Aaron R. Circulatory pathology in osteoarthritis. In: Aaron R, editor. Skeletal Circulation in Clinical Practice. Singapore: World Scientific, 2016, p. 233‐251.
 2.Aaron R, Racine J, Dyke JP. Contribution of circulatory disturbances in subchondral bone to the pathophysiology of osteoarthritis. Curr Rheumatol Rep 19: 49, 2017.
 3.Aaron R, Racine JR, Voisinet A, Evangelista P, Dyke JP. Subchondral bone circulation in asteoarthritis of the human knee. Osteoarthr Cartil 26: 940‐944, 2018.
 4.Abboud C. Human bone marrow microvascular endothelial cells: Elusive cells with unique structural and functional properties. Exp Hematol 23: 1‐3, 1995.
 5.Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby‐Phelps K, Morrison SJS. Deep imaging of bone marrow shows non‐dividing stem cells are mainly perisinusoidal. Nature 526: 126‐130, 2015.
 6.Adamska A, Araszkiewicz A, Pilacinski S, Gandecka A, Grzelka A, Kowalska K, Malinska A, Nowicki M, Zozulinska‐Ziolkiewicz D. Dermal microvessel density and maturity is closely associated with atherogenic dyslipidemia and accumulation of advanced glycation end products in adult patients with type 1 diabetes. Microvasc Res 121: 46‐51, 2019.
 7.Aguirre J, Buttery L, O'Shaughnessy M, Afzal F, Fernandez de Marticorena I, Hukkanen M, Huang P, MacIntyre I, Polak J. Endothelial nitric oxide synthase gene‐deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 158: 247‐257, 2001.
 8.Akamine T, Jee WS, Ke HZ, Li XJ, Lin BY. Prostaglandin E2 prevents bone loss and adds extra bone to immobilized distal femoral metaphysis in female rats. Bone 13: 11‐22, 1992.
 9.Alam A, Gallagher A, Shankar V, Ghate MA, Datta HK, Huang CL, Moonga BS, Chambers TJ, Bloom SR, Zaidi M. Endothelin inhibits osteoclastic bone resorption by a direct effect on cell motility: Implications for the vascular control of bone resorption. Endocrinology 130: 3617‐3624, 1992.
 10.Aldegheri R, Volino C, Ambito Z, Tessari G, Trivella G. Use of ultrasound to monitor limb lengthening by callotasis. J Pediatr Orthop 2: 22‐27, 1993.
 11.Allen M, Hock JM, Burr DB. Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone 35: 1003‐1012, 2004.
 12.Amir L, Becking AG, Jovanovic A, Perdijk FB, Everts V, Bronckers AL. Formation of new bone during vertical distraction osteogenesis of the human mandible is related to the presence of blood vessels. Clin Oral Implants Res 17: 410‐416, 2006.
 13.Amizuka N, Karaplis AC, Henderson JE, Warshawsky H, Lipman ML, Matsuki Y, Ejiri S, Tanaka M, Izumi N, Ozawa H, Goltzman D. Haploinsufficiency of parathyroid hormone‐related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 175: 166‐176, 1996.
 14.Ancill A, Bascal ZA, Whitaker G, Dacke CG. Calcitonin gene‐related peptide promotes transient radiocalcium uptake into chick bone in vivo. Exp Physiol 76: 143‐146, 1991.
 15.Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes‐Hansen F, Plesner TL, Hauge EM, Plesner T, Delaisse JM. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174: 239‐247, 2009.
 16.Anderson D. Studies of lymphatic pathways of bone and bone marrow. J Bone Joint Surg 42: 716‐717, 1960.
 17.Anderson D, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T‐cell growth and dendritic‐cell function. Nature 390: 175‐179, 1997.
 18.Aoki M, Tavassoli M. Identification of microfilaments in marrow sinus endothelial cells: Their possible role in cell egress. J Ultrastruct Res 74: 255‐258, 1981.
 19.Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149‐161, 2004.
 20.Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106: 41‐53, 2007.
 21.Armour K, Armour KJ, Gallagher ME, Gödecke A, Helfrich MH, Reid DM, Ralston SH. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 142: 760‐766, 2001.
 22.Arnett T, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119: 119‐124, 1986.
 23.Arnett T, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196: 2‐8, 2003.
 24.Arnoldi C. Vascular aspects of degenerative joint disorders. A synthesis. Acta Orthop Scand 1‐82, 1994.
 25.Aronson J. Experimental assessment of bone regenerate quality during distraction osteogenesis. In: Brighton C, Friedlander GE, Lane JM, editors. Bone Formation and Repair. Rosemont, IL: The Amercian Academy of Orthopedic Surgeons, 1994, p. 441‐463.
 26.Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301: 124‐131, 1994.
 27.Aronson J, Harrison BH, Stewart CL, Harp JH Jr. The histology of distraction osteogenesis using different external fixators. Clin Orthop Relat Res 241: 106‐116, 1989.
 28.Aronson L. The biology of distraction osteogenesis. In: Maiocchi A, Aronson J, editors. Operative Principles of Ilizarow Fracture Treatment, Nonunion, Osteomyelitis, Lengthening, Deformity Correction. Baltimore: Williams and Wilkins, 1991, p. 42‐52.
 29.Bak B, Andreassen TT. The effect of aging on fracture healing in the rat. Calcif Tissue Int 45: 292‐297, 1989.
 30.Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin‐like growth factors in embryonic and postnatal growth. Cell 75: 73‐82, 1993.
 31.Baldock P, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJ, Enriquez RF, McDonald MM, Zhang L, During MJ, Little DG, Eisman JA, Gardiner EM, Yulyaningsih E, Lin S, Sainsbury A, Herzog H. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 282: 19092‐19102, 2007.
 32.Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman ML, Van Hul W. The binding between sclerostin and LRP5 is altered by DKK1 and by high‐bone mass LRP5 mutations. Calcif Tissue Int 82: 445‐453, 2008.
 33.Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG. LYVE‐1, a new homologue of the CD44 glycoprotein, is a lymph‐specific receptor for hyaluronan. J Cell Biol 144: 789‐801, 1999.
 34.Barvitenko N, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 20: 484‐501, 2013.
 35.Bataille C, Mauprivez C, Haÿ E, Baroukh B, Brun A, Chaussain C, Marie PJ, Saffar JL, Cherruau M. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone 50: 1162‐1172, 2012.
 36.Bazantová I. The blood and lymph bed in Haversian bone. Folia Morphol (Praha) 37: 213‐215, 1989.
 37.Bellido T, Plotkin LI, Bruzzaniti A. Bone cells. In: Burr DB, Allen MR, editors. Basic and Applied Bone Biology. Waltham, MA: Academic Press, 2014, p. 27‐45.
 38.Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, Sabany H, Lu Y, Kadler KE, Zelzer E. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development 143: 3933‐3943, 2016.
 39.Benson T, Menezes T, Campbell J, Bice A, Hood B, Prisby R. Mechanisms of vasodilation to PTH 1‐84, PTH 1‐34, and PTHrP 1‐34 in rat bone resistance arteries. Osteoporos Int 27: 1817‐1826, 2016.
 40.Berendsen A, Pinnow EL, Maeda A, Brown AC, McCartney‐Francis N, Kram V, Owens RT, Robey PG, Holmbeck K, de Castro LF, Kilts TM, Young MF. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol 35: 223‐231, 2014.
 41.Bernard G, Shih C. The osteogenic stimulating effect of neuroactive calcitonin gene‐related peptide. Peptides 11: 625‐632, 1990.
 42.Bick E, Copel JW. The senescent human vertebra; contribution to human osteogeny. III. J Bone Joint Surg Am 34‐A: 110‐114, 1952.
 43.Bixel M, Kusumbe AP, Ramasamy SK, Sivaraj KK, Butz S, Vestweber D, Adams RH. Flow dynamics and HSPC homing in bone marrow microvessels. Cell Rep 18: 1804‐1816, 2017.
 44.Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P‐ and CGRP‐immunoreactive nerves in bone. Peptides 9: 165‐171, 1988.
 45.Bjurholm A, Kreicbergs A, Terenius L, Goldsteinm M, Schultzberg M. Neuropeptide Y‐, tyrosine hydroxylase‐ and vasoactive intestinal polypeptide‐immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25: 119‐125, 1988.
 46.Blake G, Park‐Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F‐fluoride and 99mTc‐methylene diphosphonate. Semin Nucl Med 31: 28‐49, 2001.
 47.Bloomfield S, Hogan HA, Delp MD. Decreases in bone blood flow and bone material properties in aging Fischer‐344 rats. Clin Orthop Relat Res 396: 248‐257, 2002.
 48.Bocchi L, Orso CA, Passarello F, Lio R, Petrelli L, Tanganelli P, Weber G. Atherosclerosis of the microcirculation in the femoral head: Based on a study by optical and electron microscopy of femoral heads removed at operation. Ital J Orthop Traumatol 11: 365‐370, 1985.
 49.Boelkins J, Mazurkiewicz M, Mazur PE, Mueller WJ. Changes in blood flow to bones during the hypocalcemic and hypercalcemic phases of the response to parathyroid hormone. Endocrinology 98: 403‐412, 1976.
 50.Bohn K, Adkins CE, Mittapalli RK, Terrell‐Hall TB, Mohammad AS, Shah N, Dolan EL, Nounou MI, Lockman PR. Semi‐automated rapid quantification of brain vessel density utilizing fluorescent microscopy. J Neurosci Methods 270: 124‐131, 2016.
 51.Bonewald L. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116: 281‐290, 2007.
 52.Borle AB, Nicholes N, Nicholes G Jr. Metabolic studies of bone in vitro. I. Normal bone. J Biol Chem 235: 1206‐1210, 1960.
 53.Borle AB, Nicholes N, Nichols G Jr. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biol Chem 235: 1211‐1214, 1960.
 54.Bouxsein M, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL. Mice lacking β‐adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 150: 144‐152, 2009.
 55.Brandi ML, Collin‐Osdoby P. Vascular biology and the skeleton. J Bone Miner Res 21: 183‐192, 2006.
 56.Branemark P. Experimental investigation of microcirculation in bone marrow. Angiology 12: 293‐305, 1961.
 57.Breiteneder‐Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154: 385‐394, 1999.
 58.Bridgeman G, Brookes M. Blood supply to the human femoral diaphysis in youth and senescence. J Anat 188: 611‐621, 1996.
 59.Briggs PJ, Moran CG, Wood MB. Actions of endothelin‐1, 2, and 3 in the microvasculature of bone. J Orthop Res 16: 340‐347, 1998.
 60.Brinker MR, Lippton HL, Cook SD, Hyman AL. Parmacological regulation of the circulation in bone. J Bone Joint Surg Am 72: 964‐975, 1990.
 61.Bronckers A, Sasaguri K, Cavender AC, D'Souza RN, Engelse MA. Expression of Runx2/Cbfa1/Pebp2alphaA during angiogenesis in postnatal rodent and fetal human orofacial tissues. J Bone Miner Res 20: 428‐437, 2005.
 62.Brookes M. Femoral growth after occlusion of the principal nutrient canal in day‐old rabbits. J Bone Joint Surg Br 39‐B: 563‐571, 1957.
 63.Brookes M. The vascular factor in osteoarthritis. Surg Gynecol Obstet 123: 1255‐1260, 1966.
 64.Brookes M. Blood flow rates in compact and cancellous bone, and bone marrow. J Anat 101: 533‐541, 1967.
 65.Brookes M. La circulation osseuse normale and pathologique. In: Arlet J, Ficat P, editors. Circulation Osseuse. Paris: INSERM, 1973, p. 3‐13.
 66.Brookes M. Blood flow in the diaphysis of long bones. ARCO Bull 2: 75‐85, 1990.
 67.Brookes M, Lloyd EG. Marrow vascularization and oestrogen‐induced endosteal bone formation in mice. J Anat 95: 220‐228, 1961.
 68.Brookes M, Revell WJ. Blood Supply of Bone: Scientific Aspects. London, Great Britain: Springer‐Verlag, 1998.
 69.Brookes M, Singh M. Venous shunt in bone after ligation of the femoral vein. Surg Gynecol Obstet 135: 85‐88, 1972.
 70.Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T. Changes in trabecular bone, hematopoiesis and bone‐marrow vessels in aplastic‐anemia, primary osteoporosis, and old‐age: A comparative histomorphometric study. Bone 8: 157‐164, 1987.
 71.Burkhardt R, Moser W, Bartl R, Mahl G. Is diabetic osteoporosis due to microangiopathy? (Letter). Lancet 317: 844, 1981.
 72.Burt‐Pichat B, Lafage‐Proust MH, Duboeuf F, Laroche N, Itzstein C, Vico L, Delmas PD, Chenu C. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology 146: 503‐510, 2005.
 73.Busse B, Hahn M, Schinke T, Püschel K, Duda GN, Amling M. Reorganization of the femoral cortex due to age‐, sex‐, and endoprosthetic‐related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A 92: 1440‐1451, 2010.
 74.Calvi L, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood 126: 2443‐2451, 2015.
 75.Campbell F. Ultrastructural studies of transmural migration of blood cells in the bone marrow of rats, mice and guinea pigs. Am J Anat 135: 521‐535, 1972.
 76.Catto M. Pathology of aseptic bone necrosis. In: Davidson J, editor. Aseptic Necrosis of Bone. Amsterdam: Netherlands Excerpta Medica, 1976, p. 3‐100.
 77.Cauley J, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos Int 11: 556‐561, 2000.
 78.Chade A, Kelsen S. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: A novel potential therapeutic approach. Am J Physiol Renal Physiol 302: F1342‐F1350, 2012.
 79.Charbon G. Vasodilator action of parathyroid hormone used as bioassay. Arch Int Pharmacodyn Ther 178: 296‐303, 1969.
 80.Charbon G, Brummer F, Reneman RS. Diuretic and vascular action of parathyroid extracts in animals and man. Arch Int Pharmacodyn Ther 171: 1‐11, 1968.
 81.Charbon G, Hulstaert PF. Augmentation of arterial hepatic and renal flow by extracted and synthetic parathyroid hormone. Endocrinology 95: 621‐626, 1974.
 82.Charkes ND, Brookes M, Makler PT. Studies of skeletal tracer kinetics: Evaluation of a five compartmental model of 18F fluoride. J Nucl Med Technol 20: 1150‐1157, 1979.
 83.Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW. The changing sensory and sympathetic innervation of the young, adult and aging mouse femur. Neuroscience 387: 178‐190, 2018.
 84.Choi I, Ahn JH, Chung CY, Cho TJ. Vascular proliferation and blood supply during distraction osteogenesis: A scanning electron microscopic observation. J Orthop Res 18: 698‐705, 2000.
 85.Choi I, Chung CY, Cho TJ, Yoo WJ. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 17: 435‐447, 2002.
 86.Chow D, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys J 81: 675‐684, 2001.
 87.Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3: S131‐S139, 2008.
 88.Colleran PN, Wilkerson MK, Bloomfield SA, Suva LJ, Turner RT, Delp MD. Alterations in skeletal perfusion with simulated microgravity: A possible mechanism for bone remodeling. J Appl Physiol 89: 1046‐1054, 2000.
 89.Compston JE. Bone marrow and bone: A functional unit. J Endocrinol 173: 387‐394, 2002.
 90.Cooper R, Milgram JW, Robinson RA. Morphology of the osteon. An electron microscopic study. J Bone Joint Surg Am 48: 1239‐1271, 1966.
 91.Corbett S, Hukkanen M, Batten J, McCarthy ID, Polak JM, Hughes SP. Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J Bone Joint Surg Br 81: 531‐537, 1999.
 92.Cowin S, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech 48: 842‐854, 2015.
 93.Dabrowski Z, Szyguła Z, Miszta H. Do changes in bone marrow pressure contribute to the egress of cell from bone marrow? Acta Physiol Pol 32: 729‐736, 1981.
 94.Davis T. Endothelial control of long bone vascular resistance. J Orthop Res 10: 344‐349, 1992.
 95.Davis TRC, Wood MB. Bone blood flow. In: Wood MB, Gilber A, editors. Microvascular Bone Reconstruction. London: The Livery House, 1997, p. 13‐17.
 96.De Bruyn P, Michelson S, Thomas TB. The migration of blood cells of the bone marrow through the sinusoidal wall. J Morphol 133: 417‐437, 1971.
 97.de Castro L, Lozano D, Portal‐Núñez S, Maycas M, De la Fuente M, Caeiro JR, Esbrit P. Comparison of the skeletal effects induced by daily administration of PTHrP (1‐36) and PTHrP (107‐139) to ovariectomized mice. J Cell Physiol 227: 1752‐1760, 2012.
 98.Dean M, Wood MB, Vanhoutte PM. Antagonist drugs and bone vascular smooth muscle. J Orthop Res 10: 104‐111, 1992.
 99.Delany A, Canalis E. Growth factors and bone. In: LeRoith D, editor. Growth Factors and Cytokines in Health and Disease. Bondy Greenwich, CT, USA: JAI Press, 1997, p. 127‐155.
 100.Delp MD, Evans MV, Duan C. Effects of aging on cardiac output, regional blood flow, and body composition in Fischer‐344 rats. J Appl Physiol 85: 1813‐1822, 1998.
 101.Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells 20: 205‐214, 2002.
 102.Dillaman R, Roer RD, Gay DM. Fluid movement in bone: Theoretical and empirical. J Biomech 24: 163‐177, 1991.
 103.Dillaman RM. Movement of ferritin in the 2‐day‐old chick femur. Anat Rec 209: 445‐453, 1984.
 104.DiMeglio L, Imel EA. Calcium and phosphate: Hormonal regulation and metabolism. In: Burr D, Allen MR, editors. Basic and Applied Bone Biology. San Diego, CA: Academic Press, 2014, p. 261‐282.
 105.Ding W, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY. Changes of substance P during fracture healing in ovariectomized mice. Regul Pep 159: 28‐34, 2010.
 106.Doll B. Developmental biology of the skeletal system. In: Hollinger J, Einhorn TA, Doll BA, Sfeir C, editors. Bone Tissue Engineering. Boca Raton, FL: CRC Press, 2005, p. 3‐26.
 107.Dominguez JM, Prisby RD, Muller‐Delp JM, Allen MR, Delp MD. Increased nitric oxide‐mediated vasodilation of bone resistance arteries is associated with increased trabecular bone volume after endurance training in rats. Bone 46: 813‐819, 2010.
 108.Driessens M, Vanhoutte PM. Vascular reactivity of the isolated tibia of the dog. Am J Physiol 236: H904‐H908, 1979.
 109.Driessens M, Vanhoutte PM. Effect of calcitonin, hydrocortisone, and parathyroid hormone on canine bone blood vessels. Am J Physiol 241: H91‐H94, 1981.
 110.Drinker CK, Drinker KR. A method for maintaining an artificial circulation through the tibia of the dog, with a demonstration of the vasomotor control of the marrow vessels. Am J Physiol 40: 514‐521, 1916.
 111.Dubový P, Klusáková I, Kučera L, Osičková J, Chovancová J, Loja T, Mayer J, Doubek M, Joukal M. Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition. Auton Neurosci 206: 19‐27, 2017.
 112.Dyke J, Synan M, Ezell P, Ballon D, Racine J, Aaron RK. Characterization of bone perfusion by dynamic contrast‐enhanced magnetic resonance imaging and positron emission tomography in the Dunkin‐Hartley guinea pig model of advanced osteoarthritis. J Orthop Res 33: 366‐372, 2015.
 113.Edwards J, Williams K, Kindblom LG, Meis‐Kindblom JM, Hogendoorn PC, Hughes D, Forsyth RG, Jackson D, Athanasou NA. Lymphatics and bone. Hum Pathol 39: 49‐55, 2008.
 114.Eghbali‐Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S. Circulating osteoblast‐lineage cells in humans. N Engl J Med 352: 1959‐1966, 2005.
 115.Egrise D, Martin D, Neve P, Vienne A, Verhas M, Schoutens A. Bone blood flow and in vitro proliferation of bone marrow and trabecular bone osteoblast‐like cells in ovariectomized rats. Calcif Tissue Int 50: 336‐341, 1992.
 116.Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514‐520, 2005.
 117.Eliasson P, Jönsson JI. The hematopoietic stem cell niche: Low in oxygen but a nice place to be. J Cell Physiol 222: 17‐22, 2010.
 118.Ellies D, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21: 1738‐1749, 2006.
 119.Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT‐LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17: 745‐755, 2013.
 120.Esen E, Lee SY, Wice BM, Long F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J Bone Miner Res 30: 1959‐1968, 2015.
 121.Farr J, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, Amis S, Melton LJ III, Joyner MJ, Khosla S. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab 97: 4219‐4227, 2012.
 122.Faure C, Linossier MT, Malaval L, Lafage‐Proust MH, Peyroche S, Vico L, Guignandon A. Mechanical signals modulated vascular endothelial growth factor‐A (VEGF‐A) alternative splicing in osteoblastic cells through actin polymerisation. Bone 42: 1092‐1101, 2008.
 123.Felix R, Neuman WF, Fleisch H. Aerobic glycolysis in bone: Lactic acid production by rat calvaria cells in culture. Am J Physiol 234: 51‐55, 1978.
 124.Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87: 57‐66, 1999.
 125.Ficat R, Arlet J. Ischemia and Necrosis of Bone. Baltimore: Williams & Wilkins, 1980, p. 196.
 126.Fiorelli G, Orlando C, Benvenuti S, Franceschelli F, Bianchi S, Pioli P, Tanini A, Serio M, Bartucci F, Brandi ML. Characterization, regulation, and function of specific cell membrane receptors for insulin‐like growth factor I on bone endothelial cells. J Bone Miner Res 9: 329‐337, 1994.
 127.Fleming J, Barati MT, Beck DJ, Dodds JC, Malkani AL, Parameswaran D, Soukhova GK, Voor MJ. Bone blood flow and vascular reactivity. Cells Tissues Organs 169: 279‐284, 2001.
 128.Fliedner T, Graessle D, Paulsen C, Reimers K. Structure and function of bone marrow hemopoiesis: Mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 17: 405‐426, 2002.
 129.Forwood M, Parker AW. Repetitive loading, in vivo, of the tibiae and femora of rats: Effects of repeated bouts of treadmill‐running. Bone Miner 13: 35‐46, 1991.
 130.Fritton S, Weinbaum S. Fluid and solute transport in bone: Flow‐induced mechanotransduction. Annu Rev Fluid Mech 41: 347‐374, 2009.
 131.Frost H. A determinant of bone architecture. The minimum effective strain. Clin Orthop Relat Res 175: 286‐292, 1983.
 132.Frost H. The skeletal intermediary organization. Metab Bone Dis Relat Res 4: 281‐290, 1983.
 133.Frost H. From wolff's law to the utah paradigm: Insights about bone physiology and its clinical applications. Anat Rec 262: 398‐419, 2001.
 134.Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137: 4058‐4060, 1996.
 135.Füreder W, Krauth MT, Sperr WR, Sonneck K, Simonitsch‐Klupp I, Müllauer L, Willmann M, Horny HP, Valent P. Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia. Am J Pathol 168: 123‐130, 2006.
 136.Gerber H‐P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Medicinae 5: 623‐628, 1999.
 137.Giordano G, Lichtman MA. Marrow cell egress. The central interaction of barrier pore size and cell maturation. J Clin Invest 52: 1154‐1164, 1973.
 138.Göbel U, Theilen H, Schröck H, Kuschinsky W. Dynamics of capillary perfusion in the brain. Blood Vessels 28: 190‐196, 1991.
 139.Gohin S, Carriero A, Chenu C, Pitsillides AA, Arnett TR, Marenzana M. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide‐mediated vasorelaxation in BALB/c mice. Cell Biochem Funct 34: 52‐62, 2016.
 140.Goldsby RA, Kindt TJ, Osborne BA. Immunology. New York, NY: W.H. Freeman and Company, 2000, p. 670.
 141.Gong JK. Endosteal marrow: A rich source of hematopoietic stem cells. Science 199: 1443‐1445, 1978.
 142.Gonzalez C, Rosas‐Hernandez H, Jurado‐Manzano B, Ramirez‐Lee MA, Salazar‐Garcia S, Martinez‐Cuevas PP, Velarde‐Salcedo AJ, Morales‐Loredo H, Espinosa‐Tanguma R, Ali SF, Rubio R. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol Sin 36: 572‐586, 2015.
 143.Goto T. Introduction to the innvervation of bone. Microsc Res Tech 58: 59‐60, 2002.
 144.Griffith J, Wang YX, Zhou H, Kwong WH, Wong WT, Sun YL, Huang Y, Yeung DK, Qin L, Ahuja AT. Reduced bone perfusion in osteoporosis: Likely causes in an ovariectomy rat model. Radiology 254: 739‐746, 2010.
 145.Griffith JF, Yeung DK, Tsang PH, Choi KC, Kwok TC, Ahuja AT, Leung KS, Leung PC. Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23: 1068‐1075, 2008.
 146.Griffith JF, Yeung DKW, Antonia GE, Lee FKH, Hong AWL, Wong SYS, Lau EMC, Leung PC. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: Dynamic contrast‐enhanced MR imaging and MR Spectroscopy. Radiology 236: 945‐951, 2005.
 147.Groen BBL, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vinks H, van Loon LJC. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol 116: 998‐1005, 2014.
 148.Grönblad M, Liesi P, Korkala O, Karaharju E, Polak J. Innervation of human bone periosteum by peptidergic nerves. Anat Rec 209: 297‐299, 1984.
 149.Gross PM, Heistad DD, Marcus ML. Neurohumoral regulation of blood flow to bones and marrow. Am J Physiol Heart Circ Physiol 237: H440‐H448, 1979.
 150.Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, Brenzel A, Merz S, Bornemann L, Zec K, Wuelling M, Kling L, Hasenberg M, Voortmann S, Lang S, Baum W, Ohs A, Kraff O, Quick HH, Jäger M, Landgraeber S, Dudda M, Danuser R, Stein JV, Rohde M, Gelse K, Garbe AI, Adamczyk A, Westendorf AM, Hoffmann D, Christiansen S, Engel DR, Vortkamp A, Krönke G, Herrmann M, Kamradt T, Schett G, Hasenberg A, Gunzer M. A network of trans‐cortical capillaries as mainstay for blood circulation in long bones. Nat Metab 1(2): 236‐250, 2019.
 151.Guderian S, Lee S, McLane MA, Prisby RD. Progressive ossification of the bone marrow vasculature with advancing age corresponds with reduced red blood cell count and percentage of circulating lymphocytes in male Fischer‐344 rats. Microcirculation 25: e12550, 2019. DOI: 12510.11111/micc.12550.
 152.Guers J, Prisby RD, Edwards DG, Lennon‐Edwards S. Intermittent parathyroid hormone administration attenuates endothelial dysfunction in old rats. J Appl Physiol 122: 76‐81, 2017.
 153.Gurkan U, Akkus O. The mechanical environment of bone marrow: A review. Ann Biomed Eng 36: 1978‐1991, 2008.
 154.Gutterman D, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait‐Aissa K, Beyer AM. The human microcirculation: Regulatin of flow and beyond. Circ Res 118: 157‐172, 2016.
 155.Hansen E. Mircovascularization, osteogenesis, and myelopoiesis in normal and pathological conditions. In: Schoutens A, Arlet J, Gardeniers JWM, Hughes SPF, editors. Bone Circulation and Vascularization in Normal and Pathological Conditions (Nato Science Series: A). New York, NY: Plenum Press, 1993, p. 29‐41.
 156.Hansen V, Forman A, Lundgaard A, Aalkjær C, Skajaa K, Hansen ES. Effects of oophorectomy on functional properties of resistance arteries isolated from the cancellous bone of the rabbit femur. J Orthop Res 19: 391‐397, 2001.
 157.Harrison J, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood 99: 394, 2002.
 158.Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16: 1575‐1582, 2001.
 159.Hayes W, Swenson LW Jr, Schurman DJ. Axisymmetric finite element analysis of the lateral tibial plateau. J Biomech 11: 21‐33, 1978.
 160.Heaney RP. Calcium. In: Bilezkian J, Raisz LG, Martin TJ, editors. Principles of Bone Biology. New York: Elselvier, 2008, p. 1697‐1710.
 161.Heinonen I, Boushel R, Hellsten Y, Kalliokoski K. Regulation of bone blood flow in humans: The role of nitric oxide, prostaglandins, and adenosine. Scand J Med Sci Sports 28: 1552‐1558, 2018.
 162.Heinonen I, Brothers RM, Kemppainen J, Knuuti J, Kalliokoski KK, Crandall CG. Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. J Appl Physiol 111: 818‐824, 2011.
 163.Heinonen I, Kemppainen J, Fujimoto T, Knuuti J, Kalliokoski KK. Increase of glucose uptake in human bone marrow with increasing exercise intensity. Int J Sport Nutr Exerc Metab 29: 254‐258, 2019.
 164.Heinonen I, Kemppainen J, Kaskinoro K, Langberg H, Knuuti J, Boushel R, Kjaer M, Kalliokoski KK. Bone blood flow and metabolism in humans: Effect of muscular exercise and other physiological perturbations. J Bone Miner Res 28: 1068‐1074, 2013.
 165.Heinonen I, Wendelin‐Saarenhovi M, Kaskinoro K, Knuuti J, Scheinin M, Kalliokoski KK. Inhibition of α‐adrenergic tone disturbed the distribution of blood flow in the exercising human limb. Am J Physiol Heart Circ Physiol 305: H163‐H172, 2013.
 166.Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP‐9 mediated release of kit‐ligand. Cell 109: 625‐637, 2002.
 167.Henriksen K, Karsdal MA, Martin TJ. Osteoclast‐derived coupling factors in bone remodeling. Calcif Tissue Int 94: 88‐97, 2014.
 168.Hikiji H, Shin WS, Oida S, Takato T, Koizumi T, Toyo‐Oka T. Direct action of nitric oxide on osteoblastic differentiation. FEBS Lett 410: 238‐242, 1997.
 169.Hill E, Elde R. Calcitonin gene‐related peptide‐immunoreactive nerve fibers in mandibular periosteum of rat: Evidence for primary afferent origin. Neurosci Lett 85: 172‐178, 1988.
 170.Hill E, Elde R. Distribution of CGRP‐, VIP‐, D beta H‐, SP‐, and NPY‐immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264: 469‐480, 1991.
 171.Hilton M, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14: 306‐314, 2008.
 172.Hoebertz A, Meghji S, Burnstock G, Arnett TR. Extracellular ADP is a powerful osteolytic agent: Evidence for signaling through the P2Y(1) receptor on bone cells. FASEB J 15: 1139‐1148, 2001.
 173.Hohmann E, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide‐containing nerve fibers. Science 232: 868‐871, 1986.
 174.Hohmann E, Levine L, Tashjian AH Jr. Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3′,5′‐monophosphate‐dependent mechanism. Endocrinology 112: 1233‐1239, 1983.
 175.Hominick D, Silva A, Khurana N, Liu Y, Dechow PC, Feng JQ, Pytowski B, Rutkowski JM, Alitalo K, Dellinger MT. VEGF‐C promotes the development of lymphatics in bone and bone loss. Elife 7: pii: e34323, 2018.
 176.Horwitz M, Tedesco MB, Gundberg C, Garcia‐Ocana A, Stewart AF. Short‐term, high‐dose parathyroid hormone‐related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88: 569‐575, 2003.
 177.Howard G, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism. Proc Natl Acad Sci U S A 78: 3204‐3208, 1981.
 178.Hsieh Y, Robling AG, Ambrosius WT, Burr DB, Turner CH. Mechanical loading of diaphyseal bone in vivo: The strain threshold for an osteogenic response varies with location. J Bone Miner Res 16: 2291‐2297, 2001.
 179.Hu K, Olsen BR. Osteoblast‐derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126: 509‐526, 2016.
 180.Hu M, Cheng J, Bethel N, Serra‐Hsu F, Ferreri S, Lin L, Qin YX. Interrelation between external oscillatory muscle coupling amplitude and in vivo intramedullary pressure related bone adaptation. Bone 66: 178‐181, 2014.
 181.Hudson G, Yoffey JM. The passage of lymphocytes through the sinusoidal endothelium of guinea‐pig bone marrow. Proc R Soc Lond B Biol Sci 165: 486‐496, 1966.
 182.Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM. Rapid proliferation of calcitonin gene‐related peptide‐immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54: 969‐979, 1993.
 183.Igarashi A, Yamaguchi M. Increase in bone growth factors with healing rat fractures: The enhancing effect of zinc. Int J Mol Med 8: 433‐438, 2001.
 184.Ishida A, Fujita N, Kitazawa R, Tsuruo T. Transforming growth factor‐beta induces expression of receptor activator of NF‐kappa B ligand in vascular endothelial cells derived from bone. J Biol Chem 277: 26217‐26224, 2002.
 185.Itkin T, Gur‐Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532: 323‐328, 2016.
 186.James J, Steijn‐Myagkaya GL. Death of osteocytes. Electron microscopy after in vitro ischaemia. J Bone Joint Surg Br 68: 620‐624, 1986.
 187.Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271: E205‐E208, 1996.
 188.Johnson R, McGregor NE, Brennan HJ, Crimeen‐Irwin B, Poulton IJ, Martin TJ, Sims NA. Glycoprotein130 (Gp130)/interleukin‐6 (IL‐6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone 81: 343‐351, 2015.
 189.Kaczkowski C. Skeletal system. In: Narins B, editor. The Gale Encyclopedia of Nursing and Allied Health. Detroit, MI: Gale, 2013, p. 3042‐3048.
 190.Kage K, Fujita N, Oh‐hara T, Ogata E, Fujita T, Tsuruo T. Basic fibroblast growth factor induces cyclooxygenase‐2 expression in endothelial cells derived from bone. Biochem Biophys Res Commun 254: 259‐263, 1999.
 191.Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: The potential for engineering bone. Eur Cell Mater 15: 100‐114, 2008.
 192.Kapitola J, Andrle J, Kubícková J. Possible participation of prostaglandins in the increase in the bone blood flow in oophorectomized female rats. Exp Clin Endocrinol 102: 414‐416, 1994.
 193.Kapitola J, Kubícková J. Estradiol benzoate decreases the blood flow through the tibia of female rats. Exp Clin Endocrinol 96: 117‐120, 1990.
 194.Kapitola J, Zák J. Effect of parathormone on bone blood flow in rats—Possible role of NO. Sb Lek 104: 133‐137, 2003.
 195.Karner C, Long F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 74: 1649‐1657, 2017.
 196.Kartsogiannism V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, Niforas P, Ng KW, Martin TJ, Gillespie MT. Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25: 525‐534, 1999.
 197.Kasakov L, Ellis J, Kirkpatrick K, Milner P, Burnstock G. Direct evidence for concomitant release of noradrenaline, adenosine 5′‐triphosphate and neuropeptide Y from sympathetic nerve supplying the guinea‐pig Vas Deferens. J Auton Nerv Syst 22: 75‐82, 1988.
 198.Kasten TP, Collin‐Osdoby P, Patel N, Osdoby P, Krukowski M, Misko TP, Settle SL, Currie MG, Nickols GA. Potentiation of osteoclast bone‐resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 91: 3569‐3573, 1994.
 199.Kelly P, Bronk JT. Venous pressure and bone formation. Microvasc Res 39: 364‐375, 1990.
 200.Khazaei M, Salehi E. Myocardial capillary density in normal and diabetic male rats: Effect of bezafibrate. Res Pharm Sci 8: 119‐123, 2013.
 201.Khiao In M, Richardson KC, Loewa A, Hedtrich S, Kaessmeyer S, Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat Histol Embryol 48: 207‐217, 2019.
 202.Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 23: 576‐581, 2012.
 203.Kiaer T, Grønlund J, Sørensen KH. Subchondral pO2, pCO2 pressure, pH, and lactate in human Osteoarthritis of the hip. Clin Orthop Relat Res 229: 149‐155, 1988.
 204.Kiaer T, Pedersen NW, Kristensen KD, Starklint H. Intra‐osseous pressure and oxygen tension in avascular necrosis and osteoarthritis of the hip. J Bone Joint Surg Br 72: 1023‐1030, 1990.
 205.Kiel M, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109‐1121, 2005.
 206.Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8: 290‐301, 2008.
 207.Kita K, Kawai K, Hirohata K. Changes in bone marrow blood flow with aging. J Orthop Res 5: 569‐575, 1987.
 208.Klemm K, Klein MJ. Biochemical markers of bone metabolism. In: McPherson R, Pincus MR, editors. Henry's Clinical Diagnosis and Management of Laboratory Methods. San Diego, CA: Elsevier, 2011, p. 193.
 209.Kobayashi S, Takahashi HE, Ito A, Saito N, Nawata M, Horiuchi H, Ohta H, Ito A, Iorio R, Yamamoto N, Takaoka K. Trabecular minimodeling in human iliac bone. Bone 32: 163‐169, 2003.
 210.Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, Nakashima K, Karsenty G, Noda M. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280: 30192‐30200, 2005.
 211.Kong Y, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira‐dos‐Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph‐node organogenesis. Nature 397: 315‐323, 1999.
 212.Kousteni S, Belezikian JP. Cellular actions of parathyroid hormone. In: Bilezkian J, Raisz LG, Martin TJ, editors. Principles of Bone Biology. San Diego, CA: Academic Press, 2008, p. 639‐656.
 213.Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M. Osteocyte Wnt/beta‐catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30: 3071‐3085, 2010.
 214.Kristensen HB, Andersen TL, Marcussen N, Rolighed L, Delaisse JM. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J Bone Miner Res 28: 574‐585, 2013.
 215.Kumar S, Davis PR, Pickles B. Bone‐marrow pressure and bone strength. Acta Orthop Scand 50: 507‐512, 1979.
 216.Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637‐643, 2013.
 217.Kusumbe A, Ramasamy SK, Adam RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507: 323‐328, 2014.
 218.Kusumbe A, Ramasamy SK, Starsichova A, Adams RH. Sample preparation for high‐resolution 3D confocal imaging of mouse skeletal tissue. Nat Protoc 10: 1904‐1914, 2015.
 219.Kuznetsov S, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol 153: 1133‐1140, 2001.
 220.Kwon R, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 25: 1798‐1807, 2010.
 221.Lacey D, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165‐176, 1998.
 222.Lam H, Brink P, Qin YX. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention. J Orthop Surg Res 5: 18, 2010.
 223.Langille B. Blood flow‐induced remodeling of the artery wall. In: Bevans J, Kaley G, Rubanyi GM, editors. Flow‐Dependent Regulation of Vascular Function. New York, NY: Springer, 1995, p. 277‐299.
 224.Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 106: 1901‐1910, 2005.
 225.Lassailly F, Foster K, Lopez‐Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: Functional implications on hematopoietic stem cells. Blood 122: 1730‐1740, 2013.
 226.Leder B, O'Dea LS, Zanchetta JR, Kumar P, Banks K, McKay K, Lyttle CR, Hattersley G. Effects of abaloparatide, a human parathyroid hormone‐related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100: 697‐706, 2015.
 227.Lee J, Dyke JP, Ballon D, Ciomborm DM, Rosenwasser MP, Aaron RK. Subchondral fluid dynamics in a model of osteoarthritis: Use of dynamic contrast‐enhanced magnetic resonance imaging. Osteoarthr Cartil 17: 1350‐1355, 2009.
 228.Lee S, Bice A, Hood B, Ruiz J, Kim J, Prisby RD. Intermittent PTH 1‐34 administration improves the marrow microenvironment and endothelium‐dependent vasodilation in bone arteries of aged rats. J Appl Physiol 124: 1426‐1437, 2018.
 229.Lee S, Prisby RD. Short‐term intermittent PTH 1‐34 administration and bone marrow blood vessel ossification in Mature and Middle‐Aged C57BL/6 mice. Bone Reports 10, 2019. DOI: 10.1016/j.bonr.2018.100193.
 230.Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 32: 338‐345, 1998.
 231.Lemaire T, Capiez‐Lernout E, Kaiser J, Naili S, Sansalone V. What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J Mech Behav Biomed Mater 4: 909‐920, 2011.
 232.Lemaire T, Pham TT, Capiez‐Lernout E, de Leeuw NH, Naili S. Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow. J Biomech 48: 3066‐3071, 2015.
 233.Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, Baldini N, Avnet S. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 79: 168‐180, 2016.
 234.Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, Bouwmeester T, Schirle M, Bueno‐Lozano M, Fuentes FJ, Itin PH, Boudin E, de Freitas F, Jennes K, Brannetti B, Charara N, Ebersbach H, Geisse S, Lu CX, Bauer A, Van Hul W, Kneissel M. Bone overgrowth‐associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 286: 19489‐19500, 2011.
 235.Levick J. The microcirculation and solute exchange. In: An Introduction to Cardiovascular Physiology. Boca Raton, FL: CRC Press, 2010, p. 166‐187.
 236.Lewinson D, Maor G, Rozen N, Rabinovich I, Stahl S, Rachmiel A. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system. Histochem Cell Biol 116: 381‐388, 2001.
 237.Li G, Simpson AH, Kenwright J, Triffitt JT. Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res 17: 362‐367, 1999.
 238.Li X, Hu Z, Jorgenson ML, Slayton WB. High levels of acetylated low‐density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains‐2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation 120: 1910‐1918, 2009.
 239.Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23: 860‐869, 2008.
 240.Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 19883‐19887, 2005.
 241.Li Y, Wang J, Xing J, Wang Y, Luo Y. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress. J Biomed Mater Res A 104: 2978‐2991, 2016.
 242.Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta‐catenin signaling. J Bone Miner Res 24: 1651‐1661, 2009.
 243.Lin R, Amizuka N, Sasaki T, Aarts MM, Ozawa H, Goltzman D, Henderson JE, White JH. 1Alpha,25‐dihydroxyvitamin D3 promotes vascularization of the chondro‐osseous junction by stimulating expression of vascular endothelial growth factor and matrix metalloproteinase 9. J Bone Miner Res 17: 1604‐1612, 2002.
 244.Liu D, Li H, Zhao CQ, Jiang LS, Dai LY. Changes of substance P‐immunoreactive nerve fiber innervation density in the sublesional bones in young growing rats at an early stage after spinal cord injury. Osteoporos Int 19: 559‐569, 2008.
 245.Loots G, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer‐Frick I, Rubin EM. Genomic deletion of a long‐range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15: 928‐935, 2005.
 246.Lorenz M, Plenk H Jr. A perfusion method of incubation to demonstrate horseradish peroxidase in bone. Histochemistry 53: 257‐263, 1977.
 247.Lu C, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on vascularization during fracture repair. J Orthop Res 26: 1384‐1389, 2008.
 248.Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, Marcucio RS. Cellular basis for age‐related changes in fracture repair. J Orthop Res 23: 1300‐1307, 2005.
 249.Lundgaard A, Aalkjaer C, Bjurholm A, Mulvany MJ, Hansen ES. Vasorelaxation in isolated bone arteries. Vasoactive intestinal peptide, substance P, calcitonin gene‐related peptide, and bradykinin studied in pigs. Acta Orthop Scand 68: 481‐489, 1997.
 250.Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19: 329‐344, 2010.
 251.Maloney M, Forsyth RP, Patt HM. Bone marrow blood flow after marrow removal or nutrient vessel ligation. Proc Soc Exp Biol Med 135: 871‐873, 1970.
 252.Marieb E, Hoehn K. Human Anatomy and Physiology. Boston, MA, USA: Pearson, p. xxxiv, 1107, 2013.
 253.Marks SC, Hermey DC. The structure and development of bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of Bone Biology. San Diego, CA: Academic Press, p. 3‐14, 1996.
 254.Martin C, Burdon PC, Bridger G, Gutierrez‐Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19: 583‐593, 2003.
 255.Martin T, Sims NA. Osteoclast‐derived activity in the coupling of bone formation to resorption. Trends Mol Med 11: 76‐81, 2005.
 256.McAllister TN, Du T, Frangos JA. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow‐derived preosteoclast‐like cells. Biochem Biophys Res Commun 270: 643‐648, 2000.
 257.McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO release in osteoblast through distinct biochemical pathways. J Bone Miner Res 14: 930‐936, 1999.
 258.McCarthy I. The physiology of bone blood flow: A review. J Bone Joint Surg Am 88: 4‐9, 2006.
 259.McCarthy ID, Hughes SPF. Extraction of 99mTC‐methylene dipohsphonate as a function of bone blood flow. In: Artlet J, Ficat RP, Hungerford DS, editors. Bone Circulation. Baltimore: Williams and Wilkins, 1984, p. 167‐170.
 260.Medici D, Olsen BR. The role of endothelial‐mesenchymal transition in heterotopic ossification. J Bone Miner Res 27: 1619‐1622, 2012.
 261.Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem‐like cells. Nat Med 16: 1400‐1406, 2010.
 262.Melsen F, Mosekilde L, Eriksen EF. Spatial distribution of sinusoids in relation to remodeling sites: Evidence for specialized sinusoidal structures associated with formative sites. J Bone Miner Res 10: S209, 1995.
 263.Méndez‐Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829‐834, 2010.
 264.Meyer RJ, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P. Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85‐A: 1243‐1254, 2003.
 265.Miao D, He B, Jiang Y, Kobayashi T, Sorocéanu MA, Zhao J, Su H, Tong X, Amizuka N, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC. Osteoblast‐derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1‐34. J Clin Invest 115: 2402‐2411, 2005.
 266.Mohyeldin A, Garzón‐Muvdi T, Quiñones‐Hinojosa A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 7: 150‐161, 2010.
 267.Montgomery R, Sutker BD, Bronk JT, Smith SR, Kelly PJ. Interstitial fluid flow in cortical bone. Microvasc Res 35: 295‐307, 1988.
 268.Moore A, Blake GM, Taylor KA, Rana AE, Wong M, Chen P, Fogelman I. Assessment of regional changes in skeletal metabolism following 3 and 18 months of teriparatide treatment. J Bone Miner Res 25: 960‐967, 2010.
 269.Moore RE, Smith CK II, Bailey CS, Voelkel EF, Tashjian AH Jr. Characterization of beta‐adrenergic receptors on rat and human osteoblast‐like cells and demonstration that beta‐receptor agonists can stimulate bone resorption in organ culture. Bone Miner 23: 301‐315, 1993.
 270.Morrison M, Turin L, King BF, Burnstock G, Arnett TR. ATP is a potent stimulator of the activation and formation of rodent osteoclasts. J Physiol 511: 495‐500, 1998.
 271.Mr C, Hulsey SM, Bulkley TJ. Use of a new pulsatile perfused rat aorta preparation to study the characteristics of the vasodilator effect of parathyroid hormone. J Pharmacol Exp Ther 245: 723‐734, 1988.
 272.Munka V, Gregor A. Lymphatics and bone marrow. Folia Morphol (Praha) 13: 404‐412, 1965.
 273.Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard‐Blum S, Kram V, Kilts TM, Young MF. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 52‐54: 141‐150, 2016.
 274.Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh‐Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17: 1231‐1234, 2011.
 275.Nannmark U, Buch F, Albrektsson T. Influence of direct currents on bone vascular supply. Scand J Plast Reconstr Surg Hand Surg 22: 113‐115, 1988.
 276.Negishi‐Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17: 1473‐1480, 2011.
 277.Nickols G. Actions of parathyroid hormone in the cardiovascular system. Blood Vessels 24: 120‐124, 1987.
 278.Nickols G, Metz MA, Cline WH Jr. Endothelium‐independent linkage of parathyroid hormone receptors of rat vascular tissue with increased adenosine 3′,5′‐monophosphate and relaxation of vascular smooth muscle. Endocrinology 119: 349‐356, 1986.
 279.Nickols G, Metz MA, Cline WH Jr. Vasodilation of the rat mesenteric vasculature by parathyroid hormone. J Pharmacol Exp Ther 236: 419‐423, 1986.
 280.Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches. Blood 97: 2293‐2299, 2001.
 281.Nombela‐Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15: 533‐543, 2013.
 282.Olszewski W, Sawicki Z. Radiological evidence of lymphatic drainage of bone marrow cavity in long bones. Lymphology 10: 1‐4, 1977.
 283.Ortega N, Wang K, Ferrara N, Werb Z, Vu TH. Complementary interplay between matrix metalloproteinase‐9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Dis Model Mech 3: 224‐235, 2010.
 284.Osol G, Moore LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation 21: 38‐47, 2014.
 285.Pang P, Janssen HF, Yee JA. Effects of synthetic parathyroid hormone on vascular beds of dogs. Pharmacology 21: 213‐222, 1980.
 286.Pang P, Yang MC, Shew R, Tenner TE Jr. The vasorelaxant action of parathyroid hormone fragments on isolated rat tail artery. Blood Vessels 22: 57‐64, 1985.
 287.Paradis G, Kelly PJ. Blood flow and mineral deposition in canine tibial fractures. J Bone Joint Surg Am 57: 220‐226, 1975.
 288.Parfitt A. Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273‐286, 1994.
 289.Parfitt A. The mechanism of coupling: A role for the vasculature. Bone 26: 319‐323, 2000.
 290.Parfitt A. The bone remodeling compartment: A circulatory function for bone lining cells. J Bone Miner Res 16: 1583‐1585, 2001.
 291.Parfitt AM. Mini‐review: Osteoclast precursors as leukocytes: Importance of the area code. Bone 23: 491‐494, 1998.
 292.Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5: S23‐S30, 2010.
 293.Pedersen N, Kiaer T, Kristensen KD, Starklint H. Intraosseous pressure, oxygenation, and histology in arthrosis and osteonecrosis of the hip. Acta Orthop Scand 60: 415‐417, 1989.
 294.Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine‐1‐phosphate. Proc Natl Acad Sci U S A 105: 20764‐20769, 2008.
 295.Penninx B, Guralnik JM, Onder G, Ferrucci L, Wallace RB, Pahor M. Anemia and decline in physical performance among older persons. Am J Med 115: 104‐110, 2003.
 296.Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269: 80‐82, 1977.
 297.Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 146: 873‐887, 2011.
 298.Prisby R. Bone marrow blood vessel ossification and “microvascular dead space” in rat and human long bone. Bone 64: 195‐203, 2014.
 299.Prisby R. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol 235: R77‐R100, 2017.
 300.Prisby R. The clinical relevance of the bone vascular system: Age‐related implications. Clin Rev Bone Miner Metab, 2019.
 301.Prisby R, Behnke BJ, Allen MR, Delp MD. Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery. J Appl Physiol 118: 980‐988, 2015.
 302.Prisby R, Guignandon A, Vanden‐Bossche A, Mac‐Way F, Linossier MT, Thomas M, Laroche N, Malaval L, Langer M, Peter ZA, Peyrin F, Vico L, Lafage‐Proust MH. Intermittent PTH(1‐84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone‐forming sites. J Bone Miner Res 26: 2583‐2596, 2011.
 303.Prisby R, Menezes T, Campbell J. Vasodilation to PTH (1‐84) in bone arteries is dependent upon the vascular endothelium and is mediated partially via VEGF signaling. Bone 54: 68‐75, 2013.
 304.Prisby R, Ross J, Opdenaker L, McLane MA, Lee S, Sun X, Guderian S. Discovery of a bone‐like blood particle in the peripheral circulation of humans and rodents. Microcirculation 26: e12579, 2019.
 305.Prisby R, Swift JM, Bloomfield SA, Hogan HA, Delp MD. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol 199: 379‐388, 2008.
 306.Prisby RD, Dominguez JM II, Muller‐Delp J, Allen MR, Delp MD. Aging and estrogen status: A possible endothelium‐dependent vascular coupling mechanism in bone remodeling. PLoS One 7: e48564, 2012. DOI: 10.1371/journal.pone.0048564.
 307.Prisby RD, Muller‐Delp J, Delp MD, Nurkiewicz TR. Age, gender and hormonal status modulate the vascular toxicity of the diesel exhaust extract phenanthraquinone. J Toxicol Environ Health A 71: 464‐470, 2008.
 308.Prisby RD, Ramsey MW, Behnke BJ, Dominguez JM, Donato AJ, Allen MR, Delp MD. Aging reduces skeletal blood flow, endothelium‐dependent vasodilation and nitric oxide bioavailability in rats. J Bone Miner Res 22: 1280‐1288, 2007.
 309.Qin Y, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech 36: 1427‐1437, 2003.
 310.Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27: 375‐386, 1997.
 311.Ramasamy S, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH. Blood flow controls bone vascular function and osteogenesis. Nat Commun 7, 2016. DOI: 10.1038/ncomms13601.
 312.Ramasamy S, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507: 376‐380, 2014.
 313.Ramseier E. Untersuchungen uber arteriosklerotische veranderungen der knochenarterien. Virchows Archiv Fur die pathologischen anatomie 336: 77‐86, 1962.
 314.Rankin E, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep 9: 46‐52, 2011.
 315.Reilly T, Seldes R, Luchetti W, Brighton CT. Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop Relat Res 346: 95‐103, 1998.
 316.Revell WJ, Brookes M. Haemodynamic changes in the rat femur and tibia following femoral vein ligation. J Anat 184: 625‐633, 1994.
 317.Riancho J, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez‐Luna JL, Gonzalez‐Macias J. Expression and functional role of nitric oxide synthase in osteoblast‐like cells. J Bone Miner Res 10: 439‐446, 1995.
 318.Riddle R, Donahue HJ. From streaming‐potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 27: 143‐149, 2009.
 319.Roche B, David V, Vanden‐Bossche A, Peyrin F, Malaval L, Vico L, Lafage‐Proust MH. Structure and quantification of microvascularisation within mouse long bones: What and how should we measure? Bone 50: 390‐399, 2012.
 320.Roche B, Vanden‐Bossche A, Malaval L, Normand M, Jannot M, Chaux R, Vico L, Lafage‐Proust MH. Parathyroid hormone 1‐84 targets bone vascular structure and perfusion in mice: Impacts of its administration regimen and of ovariectomy. J Bone Miner Res 29: 1608‐1618, 2014.
 321.Roche B, Vanden‐Bossche A, Normand M, Malaval L, Vico L, Lafage‐Proust MH. Validated Laser Doppler protocol for measurement of mouse bone blood perfusion—Response to age or ovariectomy differs with genetic background. Bone 55: 418‐426, 2013.
 322.Rodan G, Martin TJ. Role of osteoblasts in hormonal control of bone resorption—A hypothesis. Calcif Tissue Int 33: 349‐351, 1981.
 323.Rowe N, Mehrara BJ, Luchs JS, Dudziak ME, Steinbrech DS, Illei PB, Fernandez GJ, Gittes GK, Longaker MT. Angiogenesis during mandibular distraction osteogenesis. Ann Plast Surg 42: 470‐475, 1999.
 324.Russell J, Kindig CA, Behnke BJ, Poole DC, Musch TI. Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle. Am J Physiol Heart Circ Physiol 285: H251‐H258, 2003.
 325.Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self‐renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324‐336, 2007.
 326.Schaffler M, Cheung WY, Majeska R, Kennedy O. Osteocytes: Master orchestrators of bone. Calcif Tissue Int 94: 5‐24, 2014.
 327.Schenk R, Willenegger H. Morphological findings in primary fracture healing. Symp Biol Hung 7: 75‐86, 1967.
 328.Schiff L, Poncz M, Bergman A, Frenette PS. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20: 1315‐1320, 2014.
 329.Schipani E, Wu C, Rankin EB, Giaccia AJ. Regulation of bone marrow angiogenesis by osteoblasts during bone development and homeostasis. Front Endocrinol (Lausanne) 4: 85, 2013.
 330.Schofield R. The relationship between the spleen colony‐forming cell and the haemopoietic stem cell. Blood Cells 4: 7‐25, 1978.
 331.Seliger W. Tissue fluid movement in compact bone. Anat Rec 166: 247‐255, 1970.
 332.Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280: 26770‐26775, 2005.
 333.Serné E, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension 38: 238‐242, 2001.
 334.Shaw N. Observations on the intramedullary blood‐flow and marrow‐pressure in bone. Clin Sci 24: 311‐318, 1963.
 335.Shih C, Bernard GW. Neurogenic substance P stimulates osteogenesis in vitro. Peptides 18: 323‐326, 1997.
 336.Shim S, Hawk HE, Yu WY. The relationship between blood flow and marrow cavity pressure of bone. Surg Gynecol Obstet 135: 353‐360, 1972.
 337.Shinozuka K, Hashimoto M, Masumura S, Bjur RA, Westfall DP, Hattori K. In vitro studies of release of adenine nucleotides and adenosine from rat vascular endothelium in response to alpha 1‐adrenoceptor stimulation. Br J Pharmacol 113: 1203‐1208, 1994.
 338.Shore E, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38: 525‐527, 2006.
 339.Sims N. Cell‐specific paracrine actions of IL‐6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 79: 14‐23, 2016.
 340.Sims N, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest 113: 379‐389, 2004.
 341.Sims N, Martin TJ. Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. Bonekey Rep 3: 481, 2014.
 342.Sims N, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 561: 22‐28, 2014.
 343.Sleeman J, Krishnan J, Kirkin V, Baumann P. Markers for the lymphatic endothelium: In search of the holy grail? Microsc Res Tech 55: 61‐69, 2001.
 344.Smalt R, Mitchell FT, Howard RL, Chambers TJ. Induction of NO and prostaglandin E2 in osteoblasts by wall‐shear stress but not mechanical strain. Am J Physiol 273: E751‐E758, 1997.
 345.Smith RJ, Sage HH, Miyazaki M, Kizlay D. The relationship of lymphatics to bone. Bull Hosp Joint Dis 21: 25‐41, 1960.
 346.Song L. Calcium and bone metabolism indices. Adv Clin Chem 82: 1‐46, 2017.
 347.Spencer H, Hausinger A, Laszlo D. The calcium tolerance test in senile osteoporosis. J Am Geriatr Soc 2: 19‐25, 1954.
 348.Spencer J, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Côté D, Vinogradov SA, Scadden DT, Lin CP. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508: 269‐273, 2014.
 349.Spilk S, Herr MD, Sinoway LI, Leuenberger UA. Endothelium‐derived hyperpolarizing factor contributes to hypoxia‐induced skeletal muscle vasodilation in humans. Am J Physiol Heart Circ Physiol 305: H1639‐H1645, 2013.
 350.Stabley J, Moningka NC, Behnke BJ, Delp MD. Exercise training augments regional bone and marrow blood flow during exercise. Med Sci Sports Exerc 46: 2107‐2112, 2014.
 351.Stabley J, Prisby RD, Behnke BJ, Delp MD. Chronic skeletal unloading of the rat femur: Mechanisms and functional consequences of vascular remodeling. Bone 57: 355‐360, 2013.
 352.Stabley J, Prisby RD, Behnke BJ, Delp MD. Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat. J Endocrinol 225: 47‐58, 2015.
 353.Stein AJ, Morgan HC, Reynolds FC. Variations in normal bone‐marrow pressures. J Bone Joint Surg Am 39‐A: 1129‐1134, 1957.
 354.Stein AH Jr, Morgan HC, Porras RF. The effect of pressor and depressor drugs on intramedullary bone‐marrow pressure. J Bone Joint Surg Am 40‐A: 1103‐1110, 1958.
 355.Sterret S. Improved manufacturing techniques for blood flow probes. J Sci Instrum 43B: 791, 1961.
 356.Stewart A, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM. Six‐month daily administration of parathyroid hormone and parathyroid hormone‐related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: A comparison of human parathyroid hormone 1‐34, parathyroid hormone‐related protein 1‐36, and SDZ‐parathyroid hormone 893. J Bone Miner Res 15: 1517‐1525, 2000.
 357.Stocum DL. Regenerative Biology and Medicine. Burlington, MA: Academic Press, 2006, p. 433.
 358.Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345‐357, 1999.
 359.Taichman R. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem‐cell niche. Blood 105: 2631‐2639, 2005.
 360.Takahashi K, Inoue D, Ando K, Matsumoto T, Ikeda K, Fujita T. Parathyroid hormone‐related peptide as a locally produced vasorelaxant: Regulation of its mRNA by hypertension in rats. Biochem Biophys Res Commun 208: 447‐455, 1995.
 361.Takasaki M, Tsurumi N, Harada M, Rokugo N, Ebihara Y, Wakasugi K. Changes of bone marrow arteries with aging. Jpn J Geriat 36: 638‐643, 1999.
 362.Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K. Osteoclast‐secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123: 3914‐3924, 2013.
 363.Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF‐beta1‐induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15: 757‐765, 2009.
 364.Tavassoli M, Crosby WH. Fate of the nucleus of the marrow erythroblast. Science 179: 912‐913, 1973.
 365.Thomas I, Gregg PJ, Walder DN. Intra‐osseous phlebography and intramedullary pressure in the rabbit femur. J Bone Joint Surg 64: 239‐242, 1982.
 366.Thompson B, Towler DA. Arterial calcification and bone physiology: Role of the bone‐vascular axis. Nat Rev Endocrinol 8: 529‐543, 2012.
 367.Thompson T, Owens PD, Wilson DJ. Intramembranous osteogenesis and angiogenesis in the chick embryo. J Anat 166: 55‐65, 1989.
 368.Tran M, Géral JP. The influence of some vasoactive drugs on bone circulation. Eur J Pharmacol 52: 109‐114, 1978.
 369.Trueta J. The role of the blood vessels in osteogenesis. J Bone Joint Surg Br 45: 402‐418, 1993.
 370.Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br 42‐B: 571‐587, 1960.
 371.Trueta J, Harrison MH. The normal vascular anatomy of the femoral head in adult man. J Bone Joint Surg Br 35‐B: 442‐461, 1953.
 372.Trueta J, Little K. The vascular contribution to osteogenesis. II. Studies with the electron microscope. J Bone Joint Surg Br 42‐B: 367‐376, 1960.
 373.Trueta J, Morgan JD. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg Br 42‐B: 97‐109, 1960.
 374.Trueta J, Trias A. The vascular contribution to osteogenesis. IV. The effect of pressure upon the epiphysial cartilage of the rabbit. J Bone Joint Surg Br 43‐B: 800‐813, 1961.
 375.Turner C, Woltman TA, Belongia DA. Structural changes in rat bone subjected to long‐term, in vivo mechanical loading. Bone 13: 417‐422, 1992.
 376.Utting J, Robins SP, Brandao‐Burch A, Orriss IR, Behar J, Arnett TR. Hypoxia inhibits the growth, differentiation and bone‐forming capacity of rat osteoblasts. Exp Cell Res 312: 1693‐1702, 2006.
 377.Vendégh Z, Melly A, Tóth B, Wolf K, Farkas T, Kádas I, Hamar J. Calcitonin gene‐related peptide, substance P, nitric oxide and epinephrine modulate bone marrow micro circulation of the rabbit tibia and femur. Clin Hemorheol Microcirc 45: 9‐17, 2010.
 378.Viboolvorakul S, Niimi H, Wongeak‐in N, Eksakulkla S, Patumraj S. Increased capillary vascularity in the femur of aged rats by exercise training. Microvasc Res 78: 459‐463, 2009.
 379.Vittas D, Hainau B. Lymphatic capillaries of the periosteum: Do they exist? Lymphology 22: 173‐177, 1989.
 380.Vizi E, Sperlágh B, Baranyi M. Evidence that ATP released from the postsynaptic site by noradrenaline, is involved in mechanical responses of guinea‐pig vas deferens: Cascade transmission. Neuroscience 50: 455‐465, 1992.
 381.Vogt M, Cauley JA, Kuller LH, Nevitt MC. Bone mineral density and blood flow to the lower extremities: The study of osteoporotic fractures. J Bone Miner Res 12: 283‐289, 1997.
 382.Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 1850: 2422‐2438, 2015.
 383.Walker E, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JM, Gillespie MT, Martin TJ, Sims NA. Cardiotrophin‐1 is an osteoclast‐derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23: 2025‐2032, 2008.
 384.Warden S, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, Barker RG, Fuchs RK. Cortical and trabecular bone benefits of mechanical loading are maintained long term in mice independent of ovariectomy. J Bone Miner Res 29: 1131‐1140, 2014.
 385.Watt I. Osteoarthritis revisited—Again! Skeletal Radiol 38: 419‐423, 2009.
 386.Weiss L. The structure of bone marrow. Functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: An electron microscopic study. J Morphol 117: 467‐537, 1965.
 387.Weiss R, Root WS. Innervation of the vessels of the marrow cavity of certain bones. Am J Physiol 1959: 1255‐1257, 1959.
 388.Wen Q, Lee KO, Sim SZ, Xu XG, Sim MK. Des‐aspartate‐angiotensin I causes specific release of PGE2 and PGI2 in HUVEC via the angiotensin AT1 receptor and biased agonism. Eur J Pharmacol 768: 173‐181, 2015.
 389.Westerlind K, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A 94: 4199‐4204, 1997.
 390.Wickramasinghe S. Observations on the ultrastructure of sinusoids and reticular cells in human bone marrow. Clin Lab Haematol 13: 263‐278, 1991.
 391.Wigle J, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769‐778, 1999.
 392.Winkler D, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling‐Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267‐6276, 2003.
 393.Winkler I, Barbier V, Wadley R, Zannettino AC, Williams S, Lévesque JP. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: Serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116: 375‐385, 2010.
 394.Witte M, Way DL, Witte CL, Bernas M. Lymphangiogenesis: Mechanisms, significance and clinical implications. EXS 79: 65‐112, 1997.
 395.Wolff J. The Law of Bone Remodeling. Berlin: Springer, 1986.
 396.Wootton R, Reeve J, Spellacy E, Tellez‐Yudilevich M. Skeletal blood flow in Paget's disease of bone and its response to calcitonin therapy. Clin Sci Mol Med 54: 69‐74, 1978.
 397.Wootton R, Reeve J, Veall N. The clinical measurement of skeletal blood flow. Clin Sci Mol Med 50: 261‐268, 1976.
 398.Wu P, Gibbons M, Foreman SC, Carballido‐Gamio J, Han M, Krug R, Liu J, Link TM, Kazakia GJ. Cortical bone vessel identification and quantification on contrast‐enhanced MR images. Quant Imaging Med Surg 9: 928‐941, 2019.
 399.Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix‐embedded cells control osteoclast formation. Nat Med 17: 1235‐1241, 2011.
 400.Yao Z, Lafage‐Proust MH, Plouët J, Bloomfield S, Alexandre C, Vico L. Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J Bone Miner Res 19: 1471‐1480, 2004.
 401.Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis‐inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95: 3597‐3602, 1998.
 402.Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br 79: 824‐830, 1997.
 403.Yin T, Li L. The stem cell niches in bone. J Clin Invest 116: 1195‐1201, 2006.
 404.Zaidi M, Chambers TJ, Gaines Das RE, Morris HR, MacIntyre I. A direct action of human calcitonin gene‐related peptide on isolated osteoclasts. J Endocrinol 115: 511‐518, 1987.
 405.Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14: 1123‐1131, 1999.
 406.Zamboni L, Pease DC. The vascular bed of red bone marrow. J Ultrastruct Res 5: 65‐85, 1961.
 407.Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O'Keefe RJ, Guldberg RE. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J Bone Miner Res 20: 2124‐2137, 2005.
 408.Zhang Y, Fujita N, Oh‐hara T, Morinaga Y, Nakagawa T, Yamada M, Tsuruo T. Production of interleukin‐11 in bone‐derived endothelial cells and its role in the formation of osteolytic bone metastasis. Oncogene 16: 693‐703, 1998.
 409.Zheng W, Aspelund A, Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest 124: 878‐887, 2014.
 410.Zheng X, Zhao ED, He JY, Zhang YH, Jiang SD, Jiang LS. Inhibition of substance P signaling aggravates the bone loss in ovariectomy‐induced osteoporosis. Prog Biophys Mol Biol, 2016. DOI: 10.1016/j.pbiomolbio.2016.1005.1011.
 411.Zvaifler N, Marinova‐Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2: 477‐488, 2000.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Rhonda D. Prisby. Bone Marrow Microvasculature. Compr Physiol 2020, 10: 1009-1046. doi: 10.1002/cphy.c190009