Comprehensive Physiology Wiley Online Library

Lung Endothelial Transcytosis

Full Article on Wiley Online Library



Abstract

Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae‐dependent process that combines receptor‐mediated endocytosis, vesicle trafficking via actin‐cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae‐mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491‐508, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Transcytosis of Au‐albumin in mouse lung. (A) Au‐albumin uptake from the capillary lumen is transported via caveolae toward the subendothelial space. Caveolae reside attached to the plasma membrane and as free intracellular vesicles within lung endothelial cells. Vesicular invaginations of the plasma membrane mediate tracer albumin uptake (black arrows) leading to internalization and exocytosis (arrowhead). The majority of albumin in healthy endothelial cells is transported through caveolae, while paracellular transport is restricted by junctional proteins (green arrow). (B) Absence of Au‐albumin transport in caveolin‐1 knockout (Cav‐1−/−) mouse lung endothelium. Genetic deletion of caveolin‐1 resulted in the elimination of caveolae and thereby vesicular uptake and transport of Au‐albumin tracer. Caveolin‐1 deficiency is associated with increased eNOS activity and loss of junctional integrity (green arrow) resulting in paracellular transport of Au‐albumin in Cav‐1−/− lung endothelium but not healthy controls.
Figure 2. Figure 2. Mechanism of receptor‐mediated endocytosis. (1) Serum albumin binds and activates albumin‐binding protein gp60 in caveolae and on the plasma membrane proper. (2) Ligation of gp60 results in its clustering and Gβγ and nitric oxide‐mediated activation of Src kinase. (3) Src subsequently phosphorylates caveolin‐1 (Y14), destabilizing caveolin‐1 oligomers and causing vesicle swelling. Caveolin‐1 Y14 phosphorylation subsequently inhibits further nitric oxide production, thereby limiting local Src activation in caveolae. Finally, phosphorylated dynamin‐2 is recruited from the cytosol to the caveolar neck via the SH3 domain of intersectin‐1. (4) Dynamin‐2 subsequently oligomerizes and initiates GTP‐dependent fission of caveolae from the plasma membrane. These events result in internalization of caveolae.
Figure 3. Figure 3. Actin dynamics during caveolae internalization. Rat lung microvascular endothelial cells demonstrating actin organization at baseline (A) and following exposure to albumin (B). Actin patches (arrowheads) visible following albumin exposure. (C) Caveolae neck proteins, filamin A, and Rho GTPases work in concert to promote actin polymerization and actin filament stability, thus maintaining a linear array of caveolae at the plasma membrane. (D) Receptor activation by macromolecules results in caveolin‐1 phosphorylation and PKC‐mediated phosphorylation of pacsin2 and filamin A, promoting vesicle internalization. Phospho‐caveolin interacts with several effectors of caveolae internalization, including Cdc42, filamin A, and RalA. Cdc42‐GDP binding to phospho‐caveolin prevents its conversion to the GTP bound state, reducing actin polymerization. RalA is recruited to caveolae along with filamin A, resulting in downstream activation of PLD2, production of phosphatidic acid, and subsequent endocytosis.


Figure 1. Transcytosis of Au‐albumin in mouse lung. (A) Au‐albumin uptake from the capillary lumen is transported via caveolae toward the subendothelial space. Caveolae reside attached to the plasma membrane and as free intracellular vesicles within lung endothelial cells. Vesicular invaginations of the plasma membrane mediate tracer albumin uptake (black arrows) leading to internalization and exocytosis (arrowhead). The majority of albumin in healthy endothelial cells is transported through caveolae, while paracellular transport is restricted by junctional proteins (green arrow). (B) Absence of Au‐albumin transport in caveolin‐1 knockout (Cav‐1−/−) mouse lung endothelium. Genetic deletion of caveolin‐1 resulted in the elimination of caveolae and thereby vesicular uptake and transport of Au‐albumin tracer. Caveolin‐1 deficiency is associated with increased eNOS activity and loss of junctional integrity (green arrow) resulting in paracellular transport of Au‐albumin in Cav‐1−/− lung endothelium but not healthy controls.


Figure 2. Mechanism of receptor‐mediated endocytosis. (1) Serum albumin binds and activates albumin‐binding protein gp60 in caveolae and on the plasma membrane proper. (2) Ligation of gp60 results in its clustering and Gβγ and nitric oxide‐mediated activation of Src kinase. (3) Src subsequently phosphorylates caveolin‐1 (Y14), destabilizing caveolin‐1 oligomers and causing vesicle swelling. Caveolin‐1 Y14 phosphorylation subsequently inhibits further nitric oxide production, thereby limiting local Src activation in caveolae. Finally, phosphorylated dynamin‐2 is recruited from the cytosol to the caveolar neck via the SH3 domain of intersectin‐1. (4) Dynamin‐2 subsequently oligomerizes and initiates GTP‐dependent fission of caveolae from the plasma membrane. These events result in internalization of caveolae.


Figure 3. Actin dynamics during caveolae internalization. Rat lung microvascular endothelial cells demonstrating actin organization at baseline (A) and following exposure to albumin (B). Actin patches (arrowheads) visible following albumin exposure. (C) Caveolae neck proteins, filamin A, and Rho GTPases work in concert to promote actin polymerization and actin filament stability, thus maintaining a linear array of caveolae at the plasma membrane. (D) Receptor activation by macromolecules results in caveolin‐1 phosphorylation and PKC‐mediated phosphorylation of pacsin2 and filamin A, promoting vesicle internalization. Phospho‐caveolin interacts with several effectors of caveolae internalization, including Cdc42, filamin A, and RalA. Cdc42‐GDP binding to phospho‐caveolin prevents its conversion to the GTP bound state, reducing actin polymerization. RalA is recruited to caveolae along with filamin A, resulting in downstream activation of PLD2, production of phosphatidic acid, and subsequent endocytosis.
References
 1.Ahmed SM, Nishida‐Fukuda H, Li Y, McDonald WH, Gradinaru CC, Macara IG. Exocyst dynamics during vesicle tethering and fusion. Nat Commun 9 (1): 5140, 2018.
 2.Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ, Daaka Y. Src‐dependent tyrosine phosphorylation regulates dynamin self‐assembly and ligand‐induced endocytosis of the epidermal growth factor receptor. J Biol Chem 277 (29): 26642‐26651, 2002.
 3.Alexander LD, Ding Y, Alagarsamy S, Cui X. Angiotensin II stimulates fibronectin protein synthesis via a Gbetagamma/arachidonic acid‐dependent pathway. Am J Physiol Renal Physiol 307 (3): F287‐F302, 2014.
 4.Ali T, Bednarska J, Vassilopoulos S, Tran M, Diakonov IA, Ziyadeh‐Isleem A, Guicheney P, Gorelik J, Korchev YE, Reilly MM, Bitoun M, Shevchuk A. Correlative SICM‐FCM reveals changes in morphology and kinetics of endocytic pits induced by disease‐associated mutations in dynamin. FASEB J 33 (7): 8504‐8518, 2019.
 5.Alpern DB, Chisolm GM 3rd, Lewis LJ. The effect of ionophore A23187 on albumin internalization in cultured human umbilical vein endothelial cells. Exp Cell Res 149 (2): 555‐564, 1983.
 6.Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VW. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 311 (2): L453‐L466, 2016.
 7.Andreone BJ, Chow BW, Tata A, Lacoste B, Ben‐Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C. Blood‐brain barrier permeability is regulated by lipid transport‐dependent suppression of caveolae‐mediated transcytosis. Neuron 94 (3): 581‐594.e5, 2017.
 8.Anguita E, Villalobo A. Ca(2+) signaling and Src‐kinases‐controlled cellular functions. Arch Biochem Biophys 650: 59‐74, 2018.
 9.Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin‐1 in the endothelium. Exp Cell Res 253 (2): 629‐636, 1999.
 10.Aranda JF, Reglero‐Real N, Kremer L, Marcos‐Ramiro B, Ruiz‐Saenz A, Calvo M, Enrich C, Correas I, Millan J, Alonso MA. MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol Biol Cell 22 (8): 1252‐1262, 2011.
 11.Ariotti N, Rae J, Leneva N, Ferguson C, Loo D, Okano S, Hill MM, Walser P, Collins BM, Parton RG. Molecular characterization of caveolin‐induced membrane curvature. J Biol Chem 290 (41): 24875‐24890, 2015.
 12.Bardita C, Predescu D, Predescu S. Long‐term silencing of intersectin‐1s in mouse lungs by repeated delivery of a specific siRNA via cationic liposomes. Evaluation of knockdown effects by electron microscopy. J Vis Exp (76), 2013. DOI: 10.3791/50316.
 13.Bartolini F, Ramalingam N, Gundersen GG. Actin‐capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol Biol Cell 23 (20): 4032‐4040, 2012.
 14.Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez‐Rojo M, Breen MR, Gygi SP, Vinten J, Walser PJ, North KN, Hancock JF, Pilch PF, Parton RG. MURC/Cavin‐4 and cavin family members form tissue‐specific caveolar complexes. J Cell Biol 185 (7): 1259‐1273, 2009.
 15.Bhattacharya J, Matthay MA. Regulation and repair of the alveolar‐capillary barrier in acute lung injury. Annu Rev Physiol 75: 593‐615, 2013.
 16.Boopathy GTK, Kulkarni M, Ho SY, Boey A, Chua EWM, Barathi VA, Carney TJ, Wang X, Hong W. Cavin‐2 regulates the activity and stability of endothelial nitric‐oxide synthase (eNOS) in angiogenesis. J Biol Chem 292 (43): 17760‐17776, 2017.
 17.Borza CM, Chen X, Mathew S, Mont S, Sanders CR, Zent R, Pozzi A. Integrin {alpha}1{beta}1 promotes caveolin‐1 dephosphorylation by activating T cell protein‐tyrosine phosphatase. J Biol Chem 285 (51): 40114‐40124, 2010.
 18.Bourseau‐Guilmain E, Menard JA, Lindqvist E, Indira Chandran V, Christianson HC, Cerezo Magana M, Lidfeldt J, Marko‐Varga G, Welinder C, Belting M. Hypoxia regulates global membrane protein endocytosis through caveolin‐1 in cancer cells. Nat Commun 7: 11371, 2016.
 19.Breen MR, Camps M, Carvalho‐Simoes F, Zorzano A, Pilch PF. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin‐2 in a switch‐like fashion. PLoS One 7 (4): e34516, 2012.
 20.Brown DA. Preparation of detergent‐resistant membranes (DRMs) from cultured mammalian cells. Methods Mol Biol 1232: 55‐64, 2015.
 21.Bruns RR, Palade GE. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37 (2): 244‐276, 1968.
 22.Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Caveolin‐3 KO disrupts t‐tubule structure and decreases t‐tubular ICa density in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 315 (5): H1101‐H1111, 2018.
 23.Burgalossi A, Jung S, Meyer G, Jockusch WJ, Jahn O, Taschenberger H, O'Connor VM, Nishiki T, Takahashi M, Brose N, Rhee JS. SNARE protein recycling by alphaSNAP and betaSNAP supports synaptic vesicle priming. Neuron 68 (3): 473‐487, 2010.
 24.Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: Implications for cell physiology. Am J Physiol Cell Physiol 312 (4): C459‐C477, 2017.
 25.Butt Y, Kurdowska A, Allen TC. Acute lung injury: A clinical and molecular review. Arch Pathol Lab Med 140 (4): 345‐350, 2016.
 26.Capozza F, Combs TP, Cohen AW, Cho YR, Park SY, Schubert W, Williams TM, Brasaemle DL, Jelicks LA, Scherer PE, Kim JK, Lisanti MP. Caveolin‐3 knockout mice show increased adiposity and whole body insulin resistance, with ligand‐induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol 288 (6): C1317‐C1331, 2005.
 27.Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus 11 (Suppl 4): s18‐s25, 2013.
 28.Cerecedo D, Martinez‐Vieyra I, Maldonado‐Garcia D, Hernandez‐Gonzalez E, Winder SJ. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: Participation in the adhesion process. J Cell Biochem 116 (11): 2528‐2540, 2015.
 29.Chabot F, Mitchell JA, Gutteridge JM, Evans TW. Reactive oxygen species in acute lung injury. Eur Respir J 11 (3): 745‐757, 1998.
 30.Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeability and pathological angiogenesis in caveolin‐1‐null mice. Am J Pathol 175 (4): 1768‐1776, 2009.
 31.Chatterjee M, Ben‐Josef E, Robb R, Vedaie M, Seum S, Thirumoorthy K, Palanichamy K, Harbrecht M, Chakravarti A, Williams TM. Caveolae‐mediated endocytosis is critical for albumin cellular uptake and response to albumin‐bound chemotherapy. Cancer Res 77 (21): 5925‐5937, 2017.
 32.Chen B, Chou HT, Brautigam CA, Xing W, Yang S, Henry L, Doolittle LK, Walz T, Rosen MK. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. elife 6, 2017. DOI: 10.7554/eLife.29795.
 33.Chen F, Ma L, Parrini MC, Mao X, Lopez M, Wu C, Marks PW, Davidson L, Kwiatkowski DJ, Kirchhausen T, Orkin SH, Rosen FS, Mayer BJ, Kirschner MW, Alt FW. Cdc42 is required for PIP(2)‐induced actin polymerization and early development but not for cell viability. Curr Biol 10 (13): 758‐765, 2000.
 34.Chen Z, Bakhshi FR, Shajahan AN, Sharma T, Mao M, Trane A, Bernatchez P, van Nieuw Amerongen GP, Bonini MG, Skidgel RA, Malik AB, Minshall RD. Nitric oxide‐dependent Src activation and resultant caveolin‐1 phosphorylation promote eNOS/caveolin‐1 binding and eNOS inhibition. Mol Biol Cell 23 (7): 1388‐1398, 2012.
 35.Chen Z, D S Oliveira S, Zimnicka AM, Jiang Y, Sharma T, Chen S, Lazarov O, Bonini MG, Haus JM, Minshall RD. Reciprocal regulation of eNOS and caveolin‐1 functions in endothelial cells. Mol Biol Cell 29 (10): 1190‐1202, 2018.
 36.Cheng JPX, Nichols BJ. Caveolae: One function or many? Trends Cell Biol 26 (3): 177‐189, 2016.
 37.Cheng ZJ, Singh RD, Holicky EL, Wheatley CL, Marks DL, Pagano RE. Co‐regulation of caveolar and Cdc42‐dependent fluid phase endocytosis by phosphocaveolin‐1. J Biol Chem 285 (20): 15119‐15125, 2010.
 38.Chettimada S, Yang J, Moon HG, Jin Y. Caveolae, caveolin‐1 and cavin‐1: Emerging roles in pulmonary hypertension. World J Respirol 5 (2): 126‐134, 2015.
 39.Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A, Singal AG, Zhu H, Yu H. Mitotic regulators and the SHP2‐MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun 10 (1): 1473, 2019.
 40.Chow CW, Herrera Abreu MT, Suzuki T, Downey GP. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29 (4): 427‐431, 2003.
 41.Chuang MC, Lin SS, Ohniwa RL, Lee GH, Su YA, Chang YC, Tang MJ, Liu YW. Tks5 and Dynamin‐2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. J Cell Biol 218 (5): 1670‐1685, 2019.
 42.de Almeida CJ, Witkiewicz AK, Jasmin JF, Tanowitz HB, Sotgia F, Frank PG, Lisanti MP. Caveolin‐2‐deficient mice show increased sensitivity to endotoxemia. Cell Cycle 10 (13): 2151‐2161, 2011.
 43.de Vries HE, Blom‐Roosemalen MC, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J. Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J Pharmacol Exp Ther 277 (3): 1418‐1423, 1996.
 44.Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE‐cadherin in the control of vascular permeability. J Cell Sci 121 (Pt 13): 2115‐2122, 2008.
 45.del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande‐Garcia A, Anderson RG, Schwartz MA. Phospho‐caveolin‐1 mediates integrin‐regulated membrane domain internalization. Nat Cell Biol 7 (9): 901‐908, 2005.
 46.Dewulf M, Koster DV, Sinha B, Viaris de Lesegno C, Chambon V, Bigot A, Bensalah M, Negroni E, Tardif N, Podkalicka J, Johannes L, Nassoy P, Butler‐Browne G, Lamaze C, Blouin CM. Dystrophy‐associated caveolin‐3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat Commun 10 (1): 1974, 2019.
 47.Ding SY, Liu L, Pilch PF. Muscular dystrophy in PTFR/cavin‐1 null mice. JCI Insight 2 (5): e91023, 2017.
 48.Diring J, Mouilleron S, McDonald NQ, Treisman R. RPEL‐family rhoGAPs link Rac/Cdc42 GTP loading to G‐actin availability. Nat Cell Biol 21 (7): 845‐855, 2019.
 49.Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 78: 857‐902, 2009.
 50.Dreja K, Voldstedlund M, Vinten J, Tranum‐Jensen J, Hellstrand P, Sward K. Cholesterol depletion disrupts caveolae and differentially impairs agonist‐induced arterial contraction. Arterioscl Thromb Vas Biol 22 (8): 1267‐1272, 2002.
 51.Dvorak AM, Feng D. The vesiculo‐vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49 (4): 419‐432, 2001.
 52.Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo‐vacuolar organelle (VVO): A distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 59 (1): 100‐115, 1996.
 53.Ellis S, Mellor H. Regulation of endocytic traffic by rho family GTPases. Trends Cell Biol 10 (3): 85‐88, 2000.
 54.Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, NIH NHLBI ARDS Network. Recent trends in acute lung injury mortality: 1996‐2005. Crit Care Med 37 (5): 1574‐1579, 2009.
 55.Ewers H, Helenius A. Lipid‐mediated endocytosis. Cold Spring Harb Perspect Biol 3 (8): a004721, 2011.
 56.Ferreira APA, Boucrot E. Mechanisms of carrier formation during clathrin‐independent endocytosis. Trends Cell Biol 28 (3): 188‐200, 2018.
 57.Filippini A, Sica G, D'Alessio A. The caveolar membrane system in endothelium: From cell signaling to vascular pathology. J Cell Biochem 119 (7): 5060‐5071, 2018.
 58.Flannagan RS, Jaumouille V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 7: 61‐98, 2012.
 59.Fortin C, Fulop T. Isolation of lipid rafts from human neutrophils by density gradient centrifugation. Methods Mol Biol 1343: 1‐7, 2015.
 60.Foster‐Barber A, Bishop JM. Src interacts with dynamin and synapsin in neuronal cells. Proc Natl Acad Sci U S A 95 (8): 4673‐4677, 1998.
 61.Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21‐caveolin. Proc Natl Acad Sci U S A 92 (19): 8655‐8659, 1995.
 62.Fujimoto T, Kogo H, Nomura R, Une T. Isoforms of caveolin‐1 and caveolar structure. J Cell Sci 113 (Pt 19): 3509‐3517, 2000.
 63.Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. SR‐BI mediated transcytosis of HDL in brain microvascular endothelial cells is independent of caveolin, clathrin, and PDZK1. Front Physiol 8: 841, 2017.
 64.Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 19 (1): 5‐18, 2018.
 65.Gabella G. Inpocketings of the cell membrane (caveolae) in the rat myocardium. J Ultrastruct Res 65 (2): 135‐147, 1978.
 66.Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W, Lisanti MP. Caveolin‐3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin‐glycoprotein complex, and t‐tubule abnormalities. J Biol Chem 276 (24): 21425‐21433, 2001.
 67.Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the brain: Homeostasis and disease. Front Immunol 10: 790, 2019.
 68.Gao Y, Bertuccio CA, Balut CM, Watkins SC, Devor DC. Dynamin‐ and Rab5‐dependent endocytosis of a Ca2+‐activated K+ channel, KCa2.3. PLoS One 7 (8): e44150, 2012.
 69.Garcia‐Castillo MD, Chinnapen DJ, Lencer WI. Membrane transport across polarized epithelia. Cold Spring Harb Perspect Biol 9: 9, 2017. DOI: 10.1101/cshperspect.a027912.
 70.Genet G, Boye K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Kunzel S, Pibouin‐Fragner L, Thomas JL, Eichmann A. Endophilin‐A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 10 (1): 2350, 2019.
 71.Gerbod‐Giannone MC, Dallet L, Naudin G, Sahin A, Decossas M, Poussard S, Lambert O. Involvement of caveolin‐1 and CD36 in native LDL endocytosis by endothelial cells. Biochim Biophys Acta Gen Subj 1863 (5): 830‐838, 2019.
 72.Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half‐lives of IgG in beta 2‐microglobulin‐deficient mice. Eur J Immunol 26 (3): 690‐696, 1996.
 73.Gingras D, Gauthier F, Lamy S, Desrosiers RR, Beliveau R. Localization of RhoA GTPase to endothelial caveolae‐enriched membrane domains. Biochem Biophys Res Commun 247 (3): 888‐893, 1998.
 74.Giusti AF, Carroll DJ, Abassi YA, Terasaki M, Foltz KR, Jaffe LA. Requirement of a Src family kinase for initiating calcium release at fertilization in starfish eggs. J Biol Chem 274 (41): 29318‐29322, 1999.
 75.Glenney JR Jr. Tyrosine phosphorylation of a 22‐kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264 (34): 20163‐20166, 1989.
 76.Godlee C, Kaksonen M. Review series: From uncertain beginnings: Initiation mechanisms of clathrin‐mediated endocytosis. J Cell Biol 203 (5): 717‐725, 2013.
 77.Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR. Concerted regulation of focal adhesion dynamics by galectin‐3 and tyrosine‐phosphorylated caveolin‐1. J Cell Biol 180 (6): 1261‐1275, 2008.
 78.Gonzalez‐Jamett AM, Baez‐Matus X, Olivares MJ, Hinostroza F, Guerra‐Fernandez MJ, Vasquez‐Navarrete J, Bui MT, Guicheney P, Romero NB, Bevilacqua JA, Bitoun M, Caviedes P, Cardenas AM. Dynamin‐2 mutations linked to Centronuclear Myopathy impair actin‐dependent trafficking in muscle cells. Sci Rep 7 (1): 4580, 2017.
 79.Gottlieb‐Abraham E, Shvartsman DE, Donaldson JC, Ehrlich M, Gutman O, Martin GS, Henis YI. Src‐mediated caveolin‐1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24 (24): 3881‐3895, 2013.
 80.Grande‐Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman‐Storer CM, Valdivielso JM, del Pozo MA. Caveolin‐1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 177 (4): 683‐694, 2007.
 81.Griffiths G, Simons K. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234 (4775): 438‐443, 1986.
 82.Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 17 (3‐4): 293‐307, 2011.
 83.Grotte G. Passage of dextran molecules across the blood‐lymph barrier. Acta Chir Scand Suppl 211: 1‐84, 1956.
 84.Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S. Direct dynamin‐actin interactions regulate the actin cytoskeleton. EMBO J 29 (21): 3593‐3606, 2010.
 85.Gu Y, Cai R, Zhang C, Xue Y, Pan Y, Wang J, Zhang Z. miR‐132‐3p boosts caveolae‐mediated transcellular transport in glioma endothelial cells by targeting PTEN/PI3K/PKB/Src/Cav‐1 signaling pathway. FASEB J 33 (1): 441‐454, 2019.
 86.Hansen CG, Bright NA, Howard G, Nichols BJ. SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11 (7): 807‐814, 2009.
 87.Hansen CG, Howard G, Nichols BJ. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 124 (Pt 16): 2777‐2785, 2011.
 88.Hansen CG, Shvets E, Howard G, Riento K, Nichols BJ. Deletion of cavin genes reveals tissue‐specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 4: 1831, 2013.
 89.Hashad AM, Harraz OF, Brett SE, Romero M, Kassmann M, Puglisi JL, Wilson SM, Gollasch M, Welsh DG. Caveolae link CaV3.2 channels to BKCa‐mediated feedback in vascular smooth muscle. Arterioscl Thromb Vas Biol 38 (10): 2371‐2381, 2018.
 90.He B, Xi F, Zhang X, Zhang J, Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26 (18): 4053‐4065, 2007.
 91.He J, Zheng YW, Lin YF, Mi S, Qin XW, Weng SP, He JG, Guo CJ. Caveolae restrict tiger frog virus release in HepG2 cells and caveolae‐associated proteins incorporated into virus particles. Sci Rep 6: 21663, 2016.
 92.Head BP, Insel PA. Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol 17 (2): 51‐57, 2007.
 93.Heckel K, Kiefmann R, Dorger M, Stoeckelhuber M, Goetz AE. Colloidal gold particles as a new in vivo marker of early acute lung injury. Am J Physiol Lung Cell Mol Physiol 287 (4): L867‐L878, 2004.
 94.Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin‐mediated internalization of caveolae. J Cell Biol 141 (1): 85‐99, 1998.
 95.Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RG, Michaely P. Cavin‐3 dictates the balance between ERK and Akt signaling. elife 2: e00905, 2013.
 96.Hertzog M, Monteiro P, Le Dez G, Chavrier P. Exo70 subunit of the exocyst complex is involved in adhesion‐dependent trafficking of caveolin‐1. PLoS One 7 (12): e52627, 2012.
 97.Hezel M, de Groat WC, Galbiati F. Caveolin‐3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol Biol Cell 21 (2): 302‐310, 2010.
 98.Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG. PTRF‐Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132 (1): 113‐124, 2008.
 99.Hinze C, Boucrot E. Endocytosis in proliferating, quiescent and terminally differentiated cells. J Cell Sci 131: 23, 2018. DOI: 10.1242/jcs.216804.
 100.Hinze C, Boucrot E. Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 46 (3): 565‐576, 2018.
 101.Hirama T, Das R, Yang Y, Ferguson C, Won A, Yip CM, Kay JG, Grinstein S, Parton RG, Fairn GD. Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. J Biol Chem 292 (34): 14292‐14307, 2017.
 102.Hoernke M, Mohan J, Larsson E, Blomberg J, Kahra D, Westenhoff S, Schwieger C, Lundmark R. EHD2 restrains dynamics of caveolae by an ATP‐dependent, membrane‐bound, open conformation. Proc Natl Acad Sci U S A 114 (22): E4360‐E4369, 2017.
 103.Hoop CL, Sivanandam VN, Kodali R, Srnec MN, van der Wel PC. Structural characterization of the caveolin scaffolding domain in association with cholesterol‐rich membranes. Biochemistry 51 (1): 90‐99, 2012.
 104.Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. Intercellular adhesion molecule‐1‐dependent neutrophil adhesion to endothelial cells induces caveolae‐mediated pulmonary vascular hyperpermeability. Circ Res 102 (12): e120‐31, 2008.
 105.Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling‐Kelly E, Bergaya S, Ahmed M, Michaely P, Luby‐Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW. SR‐B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569 (7757): 565‐569, 2019.
 106.Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche‐Vane N, McPherson PS. Endocytic protein intersectin‐l regulates actin assembly via Cdc42 and N‐WASP. Nat Cell Biol 3 (10): 927‐932, 2001.
 107.Hussain NK, Yamabhai M, Ramjaun AR, Guy AM, Baranes D, O'Bryan JP, Der CJ, Kay BK, McPherson PS. Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem 274 (22): 15671‐15677, 1999.
 108.Inaba T, Kishimoto T, Murate M, Tajima T, Sakai S, Abe M, Makino A, Tomishige N, Ishitsuka R, Ikeda Y, Takeoka S, Kobayashi T. Phospholipase Cbeta1 induces membrane tubulation and is involved in caveolae formation. Proc Natl Acad Sci U S A 113 (28): 7834‐7839, 2016.
 109.Ivanciu L, Lupu C, Lupu F. Caveolin‐1 deficiency in mice leads to increased protection against endotoxemia. Blood 108: 1814, 2006.
 110.Ivaturi S, Wooten CJ, Nguyen MD, Ness GC, Lopez D. Distribution of the LDL receptor within clathrin‐coated pits and caveolae in rat and human liver. Biochem Biophys Res Commun 445 (2): 422‐427, 2014.
 111.Iwamoto DV, Huehn A, Simon B, Huet‐Calderwood C, Baldassarre M, Sindelar CV, Calderwood DA. Structural basis of the filamin A actin‐binding domain interaction with F‐actin. Nat Struct Mol Biol 25 (10): 918‐927, 2018.
 112.Jiang Y, Sverdlov MS, Toth PT, Huang LS, Du G, Liu Y, Natarajan V, Minshall RD. Phosphatidic acid produced by RalA‐activated PLD2 stimulates caveolae‐mediated endocytosis and trafficking in endothelial cells. J Biol Chem 291 (39): 20729‐20738, 2016.
 113.Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, Malik AB, Hu G. Caveolin‐1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88‐dependent signaling and sepsis‐induced lung inflammation. J Immunol 191 (12): 6191‐6199, 2013.
 114.Johansson BR. Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle. Microvasc Res 17 (2): 107‐117, 1979.
 115.John TA, Vogel SM, Minshall RD, Ridge K, Tiruppathi C, Malik AB. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J Physiol 533 (Pt 2): 547‐559, 2001.
 116.John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284 (1): L187‐L196, 2003.
 117.Johnson ER, Matthay MA. Acute lung injury: Epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23 (4): 243‐252, 2010.
 118.Joshi B, Bastiani M, Strugnell SS, Boscher C, Parton RG, Nabi IR. Phosphocaveolin‐1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol 199 (3): 425‐435, 2012.
 119.Jufvas A, Rajan MR, Jonsson C, Stralfors P, Turkina MV. Scaffolding protein IQGAP1: An insulin‐dependent link between caveolae and the cytoskeleton in primary human adipocytes? Biochem J 473 (19): 3177‐3188, 2016.
 120.Kaksonen M, Roux A. Mechanisms of clathrin‐mediated endocytosis. Nat Rev Mol Cell Biol 19 (5): 313‐326, 2018.
 121.Kanai Y, Wang D, Hirokawa N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J Cell Biol 204 (3): 395‐408, 2014.
 122.Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes. Biochim Biophys Acta 1000: 413‐430, 1989.
 123.Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv Exp Med Biol 967: 105‐137, 2017.
 124.Keshavarz M, Skill M, Hollenhorst MI, Maxeiner S, Walecki M, Pfeil U, Kummer W, Krasteva‐Christ G. Caveolin‐3 differentially orchestrates cholinergic and serotonergic constriction of murine airways. Sci Rep 8 (1): 7508, 2018.
 125.Kimura A, Mora S, Shigematsu S, Pessin JE, Saltiel AR. The insulin receptor catalyzes the tyrosine phosphorylation of caveolin‐1. J Biol Chem 277 (33): 30153‐30158, 2002.
 126.Kimura T, Yamaoka M, Taniguchi S, Okamoto M, Takei M, Ando T, Iwamatsu A, Watanabe T, Kaibuchi K, Ishizaki T, Niki I. Activated Cdc42‐bound IQGAP1 determines the cellular endocytic site. Mol Cell Biol 33 (24): 4834‐4843, 2013.
 127.Klein DE, Lee A, Frank DW, Marks MS, Lemmon MA. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273 (42): 27725‐27733, 1998.
 128.Klein IK, Predescu DN, Sharma T, Knezevic I, Malik AB, Predescu S. Intersectin‐2L regulates caveola endocytosis secondary to Cdc42‐mediated actin polymerization. J Biol Chem 284 (38): 25953‐25961, 2009.
 129.Knezevic I, Predescu D, Bardita C, Wang M, Sharma T, Keith B, Neamu R, Malik AB, Predescu S. Regulation of dynamin‐2 assembly‐disassembly and function through the SH3A domain of intersectin‐1s. J Cell Mol Med 15 (11): 2364‐2376, 2011.
 130.Kogo H, Aiba T, Fujimoto T. Cell type‐specific occurrence of caveolin‐1alpha and ‐1beta in the lung caused by expression of distinct mRNAs. J Biol Chem 279 (24): 25574‐25581, 2004.
 131.Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72: 463‐493, 2010.
 132.Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res 120 (1): 179‐206, 2017.
 133.Kooijman EE, Chupin V, de Kruijff B, Burger KN. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4 (3): 162‐174, 2003.
 134.Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci 128 (7): 1269‐1278, 2015.
 135.Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramirez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larrivee B, Folta‐Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernandez‐Hernando C, Sessa WC. Genome‐wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 7: 13516, 2016.
 136.Krishna A, Sengupta D. Interplay between membrane curvature and cholesterol: Role of palmitoylated caveolin‐1. Biophys J 116 (1): 69‐78, 2019.
 137.Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, Gao Y, Winoto‐Morbach S, Drab M, Muhlfeld C, Dombrowsky H, Ochs M, Schutze S, Uhlig S. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol Lung Cell Mol Physiol 310 (8): L720‐L732, 2016.
 138.Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K. VIP21, a 21‐kD membrane protein is an integral component of trans‐Golgi‐network‐derived transport vesicles. J Cell Biol 118 (5): 1003‐1014, 1992.
 139.Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R. Src‐mediated tyrosine phosphorylation of caveolin‐1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279 (50): 52132‐52140, 2004.
 140.Lajoie P, Nabi IR. Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 282: 135‐163, 2010.
 141.Lamaze C, Tardif N, Dewulf M, Vassilopoulos S, Blouin CM. The caveolae dress code: Structure and signaling. Curr Opin Cell Biol 47: 117‐125, 2017.
 142.Lanken PN, Hansen‐Flaschen JH, Sampson PM, Pietra GG, Haselton FR, Fishman AP. Passage of uncharged dextrans from blood to lung lymph in awake sheep. J Appl Physiol 59 (2): 580‐591, 1985.
 143.Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos‐Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP. Constitutive and growth factor‐regulated phosphorylation of caveolin‐1 occurs at the same site (Tyr‐14) in vivo: Identification of a c‐Src/Cav‐1/Grb7 signaling cassette. Mol Endocrinol 14 (11): 1750‐1775, 2000.
 144.Lee H, Woodman SE, Engelman JA, Volonte D, Galbiati F, Kaufman HL, Lublin DM, Lisanti MP. Palmitoylation of caveolin‐1 at a single site (Cys‐156) controls its coupling to the c‐Src tyrosine kinase: Targeting of dually acylated molecules (GPI‐linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c‐Src and caveolin‐1 (TYR‐14). J Biol Chem 276 (37): 35150‐35158, 2001.
 145.Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, Lee WB, Kim KY. Hydrogen peroxide‐induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 68 (3): 231‐238, 2004.
 146.Lee MH, Kundu JK, Chae JI, Shim JH. Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch Pharm Res 42 (6): 481‐491, 2019.
 147.Lee WL, Klip A. Endothelial transcytosis of insulin: Does it contribute to insulin resistance? Physiology (Bethesda) 31 (5): 336‐345, 2016.
 148.Lefort CT, Ley K. Neutrophil arrest by LFA‐1 activation. Front Immunol 3: 157, 2012.
 149.Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 149: 38‐44, 2017.
 150.Li HH, Li J, Wasserloos KJ, Wallace C, Sullivan MG, Bauer PM, Stolz DB, Lee JS, Watkins SC, St Croix CM, Pitt BR, Zhang LM. Caveolae‐dependent and ‐independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS One 8 (11): e81903, 2013.
 151.Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H‐Ras share a common membrane‐anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto‐activation of Src tyrosine kinases. J Biol Chem 271 (46): 29182‐29190, 1996.
 152.Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by src tyrosine kinases. The alpha‐isoform of caveolin is selectively phosphorylated by v‐Src in vivo. J Biol Chem 271 (7): 3863‐3868, 1996.
 153.Li W, Yang X, Zheng T, Xing S, Wu Y, Bian F, Wu G, Li Y, Li J, Bai X, Wu D, Jia X, Wang L, Zhu L, Jin S. TNF‐alpha stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 7: 44659, 2017.
 154.Li Y, Hu H, O'Neil RG. Caveolae facilitate TRPV4‐mediated Ca(2+) signaling and the hierarchical activation of Ca(2+)‐activated K(+) channels in K(+)‐secreting renal collecting duct cells. Am J Physiol Renal Physiol 315 (6): F1626‐F1636, 2018.
 155.Li Y, Li KX, Hu WL, Ojcius DM, Fang JQ, Li SJ, Lin X, Yan J. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife 8, 2019. DOI: 10.7554/eLife.44594.
 156.Lin ZX, Yang LJ, Huang Q, Lin JH, Ren J, Chen ZB, Zhou LY, Zhang PF, Fu J. Inhibition of tumor‐induced edema by antisense VEGF is mediated by suppressive vesiculo‐vacuolar organelles (VVO) formation. Cancer Sci 99 (12): 2540‐2546, 2008.
 157.Liu D, Li X, Shen D, Novick P. Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol Biol Cell 29 (6): 736‐750, 2018.
 158.Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8 (4): 310‐317, 2008.
 159.Liu L, Hansen CG, Honeyman BJ, Nichols BJ, Pilch PF. Cavin‐3 knockout mice show that cavin‐3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS One 9 (7): e102935, 2014.
 160.Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283 (7): 4314‐4322, 2008.
 161.Liu S, Premont RT, Rockey DC. Endothelial nitric‐oxide synthase (eNOS) is activated through G‐protein‐coupled receptor kinase‐interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 289 (26): 18163‐18174, 2014.
 162.Lockett AD, Petrusca DN, Justice MJ, Poirier C, Serban KA, Rush NI, Kamocka M, Predescu D, Predescu S, Petrache I. Scavenger receptor class B, type I‐mediated uptake of A1AT by pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 309 (4): L425‐L434, 2015.
 163.Loeffler B, Heeren J, Blaeser M, Radner H, Kayser D, Aydin B, Merkel M. Lipoprotein lipase‐facilitated uptake of LDL is mediated by the LDL receptor. J Lipid Res 48 (2): 288‐298, 2007.
 164.Ludwig A, Howard G, Mendoza‐Topaz C, Deerinck T, Mackey M, Sandin S, Ellisman MH, Nichols BJ. Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol 11 (8): e1001640, 2013.
 165.Lum AF, Green CE, Lee GR, Staunton DE, Simon SI. Dynamic regulation of LFA‐1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM‐1) in shear flow. J Biol Chem 277 (23): 20660‐20670, 2002.
 166.Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ. Gbetagamma subunits mediate Src‐dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein‐coupled receptor‐mediated Ras activation. J Biol Chem 272 (7): 4637‐4644, 1997.
 167.Luttrell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ. Role of c‐Src tyrosine kinase in G protein‐coupled receptor‐ and Gbetagamma subunit‐mediated activation of mitogen‐activated protein kinases. J Biol Chem 271 (32): 19443‐19450, 1996.
 168.Lutz SE, Smith JR, Kim DH, Olson CVL, Ellefsen K, Bates JM, Gandhi SP, Agalliu D. Caveolin1 is required for Th1 cell infiltration, but not tight junction remodeling, at the blood‐brain barrier in autoimmune neuroinflammation. Cell Rep 21 (8): 2104‐2117, 2017.
 169.Machleidt T, Li WP, Liu P, Anderson RG. Multiple domains in caveolin‐1 control its intracellular traffic. J Cell Biol 148 (1): 17‐28, 2000.
 170.Maniatis NA, Kardara M, Hecimovich D, Letsiou E, Castellon M, Roussos C, Shinin V, Votta‐Vellis EG, Schwartz DE, Minshall RD. Role of caveolin‐1 expression in the pathogenesis of pulmonary edema in ventilator‐induced lung injury. Pulm Circ 2 (4): 452‐460, 2012.
 171.Maniatis NA, Orfanos SE. The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 14 (1): 22‐30, 2008.
 172.Marsboom G, Chen Z, Yuan Y, Zhang Y, Tiruppathi C, Loyd JE, Austin ED, Machado RF, Minshall RD, Rehman J, Malik AB. Aberrant caveolin‐1‐mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: A new perspective in the mechanism of pulmonary hypertension. Mol Biol Cell 28 (9): 1177‐1185, 2017.
 173.Martin‐Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The exocyst complex in health and disease. Front Cell Dev Biol 4: 24, 2016.
 174.Mastick CC, Brady MJ, Saltiel AR. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129 (6): 1523‐1531, 1995.
 175.Mayor S, Parton RG, Donaldson JG. Clathrin‐independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6: 6, 2014. DOI: 10.1101/cshperspect.a016758.
 176.McCall PM, MacKintosh FC, Kovar DR, Gardel ML. Cofilin drives rapid turnover and fluidization of entangled F‐actin. Proc Natl Acad Sci U S A 116 (26): 12629‐12637, 2019.
 177.McIntosh DP, Schnitzer JE. Caveolae require intact VAMP for targeted transport in vascular endothelium. Am J Phys 277 (6): H2222‐H2232, 1999.
 178.McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby‐Phelps K, Anderson RG. SRBC/cavin‐3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28 (8): 1001‐1015, 2009.
 179.Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 86 (1): 279‐367, 2006.
 180.Meng F, Saxena S, Liu Y, Joshi B, Wong TH, Shankar J, Foster LJ, Bernatchez P, Nabi IR. The phospho‐caveolin‐1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Mol Biol Cell 28 (16): 2190‐2201, 2017.
 181.Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin‐more than just a serum protein. Front Physiol 5: 299, 2014.
 182.Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL. Regulation of clathrin‐mediated endocytosis. Annu Rev Biochem 87: 871‐896, 2018.
 183.Michaely PA, Mineo C, Ying YS, Anderson RG. Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 274 (30): 21430‐21436, 1999.
 184.Milici AJ, L'Hernault N, Palade GE. Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56 (5): 709‐717, 1985.
 185.Milici AJ, Watrous NE, Stukenbrok H, Palade GE. Transcytosis of albumin in capillary endothelium. J Cell Biol 105 (6 Pt 1): 2603‐2612, 1987.
 186.Minamino T, Komuro I. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. J Clin Invest 116 (9): 2316‐2319, 2006.
 187.Minguet S, Klasener K, Schaffer AM, Fiala GJ, Osteso‐Ibanez T, Raute K, Navarro‐Lerida I, Hartl FA, Seidl M, Reth M, Del Pozo MA. Caveolin‐1‐dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol 18 (10): 1150‐1159, 2017.
 188.Minshall RD, Tiruppathi C, Vogel SM, Malik AB. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117 (2): 105‐112, 2002.
 189.Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB. Endothelial cell‐surface gp60 activates vesicle formation and trafficking via G(i)‐coupled Src kinase signaling pathway. J Cell Biol 150 (5): 1057‐1070, 2000.
 190.Moissoglu K, Kiessling V, Wan C, Hoffman BD, Norambuena A, Tamm LK, Schwartz MA. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. J Cell Sci 127 (Pt 11): 2565‐2576, 2014.
 191.Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV. Oligomerization of VIP21‐caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett 388 (2‐3): 143‐149, 1996.
 192.Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV. VIP21‐caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6 (7): 911‐927, 1995.
 193.Moon H, Lee CS, Inder KL, Sharma S, Choi E, Black DM, Le Cao KA, Winterford C, Coward JI, Ling MT, Australian Prostate Cancer BioResource, Craik DJ, Parton RG, Russell PJ, Hill MM. PTRF/cavin‐1 neutralizes non‐caveolar caveolin‐1 microdomains in prostate cancer. Oncogene 33 (27): 3561‐3570, 2014.
 194.Moren B, Shah C, Howes MT, Schieber NL, McMahon HT, Parton RG, Daumke O, Lundmark R. EHD2 regulates caveolar dynamics via ATP‐driven targeting and oligomerization. Mol Biol Cell 23 (7): 1316‐1329, 2012.
 195.Moreno‐Vicente R, Pavon DM, Martin‐Padura I, Catala‐Montoro M, Diez‐Sanchez A, Quilez‐Alvarez A, Lopez JA, Sanchez‐Alvarez M, Vazquez J, Strippoli R, Del Pozo MA. Caveolin‐1 modulates mechanotransduction responses to substrate stiffness through actin‐dependent control of YAP. Cell Rep 26 (6): 1679‐1680, 2019.
 196.Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115 (Pt 22): 4327‐4339, 2002.
 197.Muradashvili N, Tyagi R, Lominadze D. A dual‐tracer method for differentiating transendothelial transport from paracellular leakage in vivo and in vitro. Front Physiol 3: 166, 2012.
 198.Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol‐binding protein. Proc Natl Acad Sci U S A 92 (22): 10339‐10343, 1995.
 199.Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin‐1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin‐1 knockout mice. J Exp Med 204 (10): 2373‐2382, 2007.
 200.Muriel O, Echarri A, Hellriegel C, Pavon DM, Beccari L, Del Pozo MA. Phosphorylated filamin A regulates actin‐linked caveolae dynamics. J Cell Sci 124 (Pt 16): 2763‐2776, 2011.
 201.Nakamura F, Stossel TP, Hartwig JH. The filamins: Organizers of cell structure and function. Cell Adhes Migr 5 (2): 160‐169, 2011.
 202.Nethe M, Anthony EC, Fernandez‐Borja M, Dee R, Geerts D, Hensbergen PJ, Deelder AM, Schmidt G, Hordijk PL. Focal‐adhesion targeting links caveolin‐1 to a Rac1‐degradation pathway. J Cell Sci 123 (Pt 11): 1948‐1958, 2010.
 203.Nethe M, Hordijk PL. A model for phospho‐caveolin‐1‐driven turnover of focal adhesions. Cell Adhes Migr 5 (1): 59‐64, 2011.
 204.Nevins AK, Thurmond DC. Caveolin‐1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta‐cells. J Biol Chem 281 (28): 18961‐18972, 2006.
 205.Noguchi Y, Yamamoto T, Shibata Y. Distribution of endothelial vesicles in the microvasculature of skeletal muscle and brain cortex of the rat, as demonstrated by tannic acid tracer analysis. Cell Tissue Res 246 (3): 487‐494, 1986.
 206.Nomura R, Fujimoto T. Tyrosine‐phosphorylated caveolin‐1: Immunolocalization and molecular characterization. Mol Biol Cell 10 (4): 975‐986, 1999.
 207.Ogata T, Naito D, Nakanishi N, Hayashi YK, Taniguchi T, Miyagawa K, Hamaoka T, Maruyama N, Matoba S, Ikeda K, Yamada H, Oh H, Ueyama T. MURC/Cavin‐4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by alpha1‐adrenergic receptors. Proc Natl Acad Sci U S A 111 (10): 3811‐3816, 2014.
 208.Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T, Harada K, Takahashi T, Shioi T, Matsubara H, Oh H. MURC, a muscle‐restricted coiled‐coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol 28 (10): 3424‐3436, 2008.
 209.Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, Schnitzer JE. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25 (3): 327‐337, 2007.
 210.Oh P, Horner T, Witkiewicz H, Schnitzer JE. Endothelin induces rapid, dynamin‐mediated budding of endothelial caveolae rich in ET‐B. J Biol Chem 287 (21): 17353‐17362, 2012.
 211.Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12 (3): 685‐698, 2001.
 212.Okreglak V, Drubin DG. Cofilin recruitment and function during actin‐mediated endocytosis dictated by actin nucleotide state. J Cell Biol 178 (7): 1251‐1264, 2007.
 213.Orlichenko L, Huang B, Krueger E, McNiven MA. Epithelial growth factor‐induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem 281 (8): 4570‐4579, 2006.
 214.Oshikawa J, Otsu K, Toya Y, Tsunematsu T, Hankins R, Kawabe J, Minamisawa S, Umemura S, Hagiwara Y, Ishikawa Y. Insulin resistance in skeletal muscles of caveolin‐3‐null mice. Proc Natl Acad Sci U S A 101 (34): 12670‐12675, 2004.
 215.Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep 8 (1): 7124, 2018.
 216.Palade GE. Fine structure of blood capillaries. J Appl Phys 24: 1424, 1953.
 217.Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Phys 167 (1): 13‐46, 1951.
 218.Parton RG. Caveolae: Structure, function, and relationship to disease. Annu Rev Cell Dev Biol 34: 111‐136, 2018.
 219.Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40‐induced internalization of caveolae. Science 296 (5567): 535‐539, 2002.
 220.Peters KR, Carley WW, Palade GE. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101 (6): 2233‐2238, 1985.
 221.Picco A, Irastorza‐Azcarate I, Specht T, Boke D, Pazos I, Rivier‐Cordey AS, Devos DP, Kaksonen M, Gallego O. The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell 168 (3): 400‐412.e18, 2017.
 222.Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 29 (11): 1346‐1358, 2018.
 223.Pilch PF, Liu L. Fat caves: Caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22 (8): 318‐324, 2011.
 224.Porter GA, Bankston PW. Maturation of myocardial capillaries in the fetal and neonatal rat: An ultrastructural study with a morphometric analysis of the vesicle populations. Am J Anat 178 (2): 116‐125, 1987.
 225.Potje SR, Grando MD, Chignalia AZ, Antoniali C, Bendhack LM. Reduced caveolae density in arteries of SHR contributes to endothelial dysfunction and ROS production. Sci Rep 9 (1): 6696, 2019.
 226.Predescu D, Horvat R, Predescu S, Palade GE. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N‐ethylmaleimide. Proc Natl Acad Sci U S A 91 (8): 3014‐3018, 1994.
 227.Predescu D, Predescu S, McQuistan T, Palade GE. Transcytosis of alpha1‐acidic glycoprotein in the continuous microvascular endothelium. Proc Natl Acad Sci U S A 95 (11): 6175‐6180, 1998.
 228.Predescu D, Vogel SM, Malik AB. Functional and morphological studies of protein transcytosis in continuous endothelia. Am J Physiol Lung Cell Mol Physiol 287 (5): L895‐L901, 2004.
 229.Predescu DN, Neamu R, Bardita C, Wang M, Predescu SA. Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin‐1s expression in mouse lung endothelium. Biochem Res Int 2012: 672705, 2012.
 230.Predescu SA, Predescu DN, Malik AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293 (4): L823‐L842, 2007.
 231.Predescu SA, Predescu DN, Palade GE. Plasmalemmal vesicles function as transcytotic carriers for small proteins in the continuous endothelium. Am J Phys 272 (2 Pt 2): H937‐H949, 1997.
 232.Predescu SA, Predescu DN, Palade GE. Endothelial transcytotic machinery involves supramolecular protein‐lipid complexes. Mol Biol Cell 12 (4): 1019‐1033, 2001.
 233.Predescu SA, Predescu DN, Shimizu K, Klein IK, Malik AB. Cholesterol‐dependent syntaxin‐4 and SNAP‐23 clustering regulates caveolar fusion with the endothelial plasma membrane. J Biol Chem 280 (44): 37130‐37138, 2005.
 234.Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB. Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14 (12): 4997‐5010, 2003.
 235.Priya R, Liang X, Teo JL, Duszyc K, Yap AS, Gomez GA. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA‐mediated contractility at the epithelial zonula adherens. Mol Biol Cell 28 (1): 12‐20, 2017.
 236.Puy C, Ngo ATP, Pang J, Keshari RS, Hagen MW, Hinds MT, Gailani D, Gruber A, Lupu F, McCarty OJT. Endothelial PAI‐1 (plasminogen activator inhibitor‐1) blocks the intrinsic pathway of coagulation, inducing the clearance and degradation of FXIa (activated factor XI). Arterioscl Thromb Vas Biol 39 (7): 1390‐1401, 2019.
 237.Raheel H, Ghaffari S, Khosraviani N, Mintsopoulos V, Auyeung D, Wang C, Kim YH, Mullen B, Sung HK, Ho M, Fairn G, Neculai D, Febbraio M, Heit B, Lee WL. CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: Role in fatty acid delivery. Am J Physiol Lung Cell Mol Physiol 316 (5): L740‐L750, 2019.
 238.Rangel L, Bernabe‐Rubio M, Fernandez‐Barrera J, Casares‐Arias J, Millan J, Alonso MA, Correas I. Caveolin‐1alpha regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep 9 (1): 1116, 2019.
 239.Rantakari P, Auvinen K, Jappinen N, Kapraali M, Valtonen J, Karikoski M, Gerke H, Iftakhar‐E‐Khuda I, Keuschnigg J, Umemoto E, Tohya K, Miyasaka M, Elima K, Jalkanen S, Salmi M. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol 16 (4): 386‐396, 2015.
 240.Rantakari P, Jappinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, Ivaska J, Elima K, Auvinen K, Salmi M. Fetal liver endothelium regulates the seeding of tissue‐resident macrophages. Nature 538 (7625): 392‐396, 2016.
 241.Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP. Caveolin‐1‐deficient mice are lean, resistant to diet‐induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277 (10): 8635‐8647, 2002.
 242.Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP. Caveolin‐1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276 (41): 38121‐38138, 2001.
 243.Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W, Lisanti MP. Caveolin‐2‐deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22 (7): 2329‐2344, 2002.
 244.Reeves VL, Thomas CM, Smart EJ. Lipid rafts, caveolae and GPI‐linked proteins. Adv Exp Med Biol 729: 3‐13, 2012.
 245.Richter T, Floetenmeyer M, Ferguson C, Galea J, Goh J, Lindsay MR, Morgan GP, Marsh BJ, Parton RG. High‐resolution 3D quantitative analysis of caveolar ultrastructure and caveola‐cytoskeleton interactions. Traffic 9 (6): 893‐909, 2008.
 246.Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: The two‐pore theory. Physiol Rev 74 (1): 163‐219, 1994.
 247.Rohlich P, Allison AC. Oriented pattern of membrane‐associated vesicles in fibroblasts. J Ultrastruct Res 57 (1): 94‐103, 1976.
 248.Root KT, Plucinsky SM, Glover KJ. Recent progress in the topology, structure, and oligomerization of caveolin: A building block of caveolae. Curr Top Membr 75: 305‐336, 2015.
 249.Ross JA, Digman MA, Wang L, Gratton E, Albanesi JP, Jameson DM. Oligomerization state of dynamin 2 in cell membranes using TIRF and number and brightness analysis. Biophys J 100 (3): L15‐L17, 2011.
 250.Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell 68 (4): 673‐682, 1992.
 251.Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4: 302‐312, 2010.
 252.Sandvig K, Kavaliauskiene S, Skotland T. Clathrin‐independent endocytosis: An increasing degree of complexity. Histochem Cell Biol 150 (2): 107‐118, 2018.
 253.Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP. Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc Natl Acad Sci U S A 92 (20): 9407‐9411, 1995.
 254.Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP. Cell‐type and tissue‐specific expression of caveolin‐2. Caveolins 1 and 2 co‐localize and form a stable hetero‐oligomeric complex in vivo. J Biol Chem 272 (46): 29337‐29346, 1997.
 255.Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin‐2 defines a caveolin gene family. Proc Natl Acad Sci U S A 93 (1): 131‐135, 1996.
 256.Schlegel A, Schwab RB, Scherer PE, Lisanti MP. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin‐1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274 (32): 22660‐22667, 1999.
 257.Schnitzer JE, Allard J, Oh P. NEM inhibits transcytosis, endocytosis, and capillary permeability: Implication of caveolae fusion in endothelia. Am J Phys 268 (1 Pt 2): H48‐H55, 1995.
 258.Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270 (24): 14399‐14404, 1995.
 259.Schnitzer JE, Oh P. Albondin‐mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269 (8): 6072‐6082, 1994.
 260.Schnitzer JE, Oh P, McIntosh DP. Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274 (5285): 239‐242, 1996.
 261.Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP. Caveolae‐deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276 (52): 48619‐48622, 2001.
 262.Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP. Microvascular hyperpermeability in caveolin‐1 (−/−) knock‐out mice. Treatment with a specific nitric‐oxide synthase inhibitor, L‐NAME, restores normal microvascular permeability in Cav‐1 null mice. J Biol Chem 277 (42): 40091‐40098, 2002.
 263.Seeger W, Hansen T, Rossig R, Schmehl T, Schutte H, Kramer HJ, Walmrath D, Weissmann N, Grimminger F, Suttorp N. Hydrogen peroxide‐induced increase in lung endothelial and epithelial permeability – effect of adenylate cyclase stimulation and phosphodiesterase inhibition. Microvasc Res 50 (1): 1‐17, 1995.
 264.Seemann E, Sun M, Krueger S, Troger J, Hou W, Haag N, Schuler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO‐mediated impairment of caveolar invagination. elife 6, 2017. DOI: 10.7554/eLife.29854.
 265.Sengupta D. Cholesterol modulates the structure, binding modes, and energetics of caveolin‐membrane interactions. J Phys Chem B 116 (50): 14556‐14564, 2012.
 266.Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S. Essential role of PACSIN2/syndapin‐II in caveolae membrane sculpting. J Cell Sci 124 (Pt 12): 2032‐2040, 2011.
 267.Senju Y, Rosenbaum E, Shah C, Hamada‐Nakahara S, Itoh Y, Yamamoto K, Hanawa‐Suetsugu K, Daumke O, Suetsugu S. Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J Cell Sci 128 (15): 2766‐2780, 2015.
 268.Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD. Role of Src‐induced dynamin‐2 phosphorylation in caveolae‐mediated endocytosis in endothelial cells. J Biol Chem 279 (19): 20392‐20400, 2004.
 269.Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD. Gbetagamma activation of Src induces caveolae‐mediated endocytosis in endothelial cells. J Biol Chem 279 (46): 48055‐48062, 2004.
 270.Shang D, Peng T, Gou S, Li Y, Wu H, Wang C, Yang Z. High mobility group box protein 1 boosts endothelial albumin transcytosis through the RAGE/Src/caveolin‐1 pathway. Sci Rep 6: 32180, 2016.
 271.Shitara A, Malec L, Ebrahim S, Chen D, Bleck C, Hoffman MP, Weigert R. Cdc42 negatively regulates endocytosis during apical membrane maintenance in live animals. Mol Biol Cell 30 (3): 324‐332, 2019.
 272.Shpetner HS, Vallee RB. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59 (3): 421‐432, 1989.
 273.Siddiqui MR, Komarova YA, Vogel SM, Gao X, Bonini MG, Rajasingh J, Zhao YY, Brovkovych V, Malik AB. Caveolin‐1‐eNOS signaling promotes p190RhoGAP‐A nitration and endothelial permeability. J Cell Biol 193 (5): 841‐850, 2011.
 274.Siflinger‐Birnboim A, Schnitzer J, Lum H, Blumenstock FA, Shen CP, Del Vecchio PJ, Malik AB. Lectin binding to gp60 decreases specific albumin binding and transport in pulmonary artery endothelial monolayers. J Cell Physiol 149 (3): 575‐584, 1991.
 275.Simionescu M, Simionescu N. Ultrastructure of the microvascular wall: Functional correlations. In: Renkin EM, Michel CC, editors. Handbook of Physiology. Bethesda, MD: American Physiological Society, 1984, p. 78‐91.
 276.Simionescu M, Simionescu N. Endothelial transport of macromolecules: Transcytosis and endocytosis. A look from cell biology. Cell Biol Rev 25 (1): 1‐78, 1991.
 277.Simionescu M, Simionescu N, Palade GE. Morphometric data on the endothelium of blood capillaries. J Cell Biol 60 (1): 128‐152, 1974.
 278.Simionescu N, Simionescu M, Palade GE. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 57 (2): 424‐452, 1973.
 279.Singer II. Microfilament bundles and the control of pinocytotic vesicle distribution at the surfaces of normal and transformed fibroblasts. Exp Cell Res 122 (2): 251‐264, 1979.
 280.Skruzny M, Brach T, Ciuffa R, Rybina S, Wachsmuth M, Kaksonen M. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin‐mediated endocytosis. Proc Natl Acad Sci U S A 109 (38): E2533‐E2542, 2012.
 281.Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. Co‐purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent‐free purification of caveolae microdomains. J Biol Chem 271 (16): 9690‐9697, 1996.
 282.Song KS, Tang Z, Li S, Lisanti MP. Mutational analysis of the properties of caveolin‐1. A novel role for the C‐terminal domain in mediating homo‐typic caveolin‐caveolin interactions. J Biol Chem 272 (7): 4398‐4403, 1997.
 283.Soriano‐Castell D, Chavero A, Rentero C, Bosch M, Vidal‐Quadras M, Pol A, Enrich C, Tebar F. ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin‐independent endocytosis. Sci Rep 7 (1): 6866, 2017.
 284.Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: New insights. Front Physiol 2: 120, 2012.
 285.Stan RV. Multiple PV1 dimers reside in the same stomatal or fenestral diaphragm. Am J Physiol Heart Circ Physiol 286 (4): H1347‐H1353, 2004.
 286.Stan RV. Structure of caveolae. Biochim Biophys Acta 1746 (3): 334‐348, 2005.
 287.Stan RV. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol Med 11 (4): 621‐643, 2007.
 288.Stan RV, Ghitescu L, Jacobson BS, Palade GE. Isolation, cloning, and localization of rat PV‐1, a novel endothelial caveolar protein. J Cell Biol 145 (6): 1189‐1198, 1999.
 289.Stan RV, Kubitza M, Palade GE. PV‐1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci U S A 96 (23): 13203‐13207, 1999.
 290.Stan RV, Tkachenko E, Niesman IR. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell 15 (8): 3615‐3630, 2004.
 291.Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, McGarry CL, Buitendijk M, Nemani KV, Elgueta R, Kobayashi T, Shipman SL, Moodie KL, Daghlian CP, Ernst PA, Lee HK, Suriawinata AA, Schned AR, Longnecker DS, Fiering SN, Noelle RJ, Gimi B, Shworak NW, Carriere C. The diaphragms of fenestrated endothelia: Gatekeepers of vascular permeability and blood composition. Dev Cell 23 (6): 1203‐1218, 2012.
 292.Stapleton NM, Brinkhaus M, Armour KL, Bentlage AEH, de Taeye SW, Temming AR, Mok JY, Brasser G, Maas M, van Esch WJE, Clark MR, Williamson LM, van der Schoot CE, Vidarsson G. Reduced FcRn‐mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Sci Rep 9 (1): 7363, 2019.
 293.Stateva SR, Salas V, Anguita E, Benaim G, Villalobo A. Ca2+/calmodulin and apo‐calmodulin both bind to and enhance the tyrosine kinase activity of c‐Src. PLoS One 10 (6): e0128783, 2015.
 294.Stoeber M, Stoeck IK, Hanni C, Bleck CK, Balistreri G, Helenius A. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31 (10): 2350‐2364, 2012.
 295.Sun SW, Zu XY, Tuo QH, Chen LX, Lei XY, Li K, Tang CK, Liao DF. Caveolae and caveolin‐1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells. Acta Pharmacol Sin 31 (10): 1336‐1342, 2010.
 296.Sun Y, Hu G, Zhang X, Minshall RD. Phosphorylation of caveolin‐1 regulates oxidant‐induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res 105 (7): 676‐685, 15 pp following 685, 2009.
 297.Sun Y, Minshall RD, Hu G. Role of caveolin‐1 in the regulation of pulmonary endothelial permeability. Methods Mol Biol 763: 303‐317, 2011.
 298.Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20 (21): 4531‐4540, 2009.
 299.Tang DD, Gunst SJ. The small GTPase Cdc42 regulates actin polymerization and tension development during contractile stimulation of smooth muscle. J Biol Chem 279 (50): 51722‐51728, 2004.
 300.Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP. Molecular cloning of caveolin‐3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271 (4): 2255‐2261, 1996.
 301.Taniguchi T, Maruyama N, Ogata T, Kasahara T, Nakanishi N, Miyagawa K, Naito D, Hamaoka T, Nishi M, Matoba S, Ueyama T. PTRF/cavin‐1 deficiency causes cardiac dysfunction accompanied by cardiomyocyte hypertrophy and cardiac fibrosis. PLoS One 11 (9): e0162513, 2016.
 302.Tiruppathi C, Finnegan A, Malik AB. Isolation and characterization of a cell surface albumin‐binding protein from vascular endothelial cells. Proc Natl Acad Sci U S A 93 (1): 250‐254, 1996.
 303.Tiruppathi C, Shimizu J, Miyawaki‐Shimizu K, Vogel SM, Bair AM, Minshall RD, Predescu D, Malik AB. Role of NF‐kappaB‐dependent caveolin‐1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. J Biol Chem 283 (7): 4210‐4218, 2008.
 304.Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase‐dependent pathway. J Biol Chem 272 (41): 25968‐25975, 1997.
 305.Tkachenko E, Tse D, Sideleva O, Deharvengt SJ, Luciano MR, Xu Y, McGarry CL, Chidlow J, Pilch PF, Sessa WC, Toomre DK, Stan RV. Caveolae, fenestrae and transendothelial channels retain PV1 on the surface of endothelial cells. PLoS One 7 (3): e32655, 2012.
 306.Toseland CP. Fluorescent labeling and modification of proteins. J Chem Biol 6 (3): 85‐95, 2013.
 307.Triacca V, Guc E, Kilarski WW, Pisano M, Swartz MA. Transcellular pathways in lymphatic endothelial cells regulate changes in solute transport by fluid stress. Circ Res 120 (9): 1440‐1452, 2017.
 308.Tuma P, Hubbard AL. Transcytosis: Crossing cellular barriers. Physiol Rev 83 (3): 871‐932, 2003.
 309.Urra H, Henriquez DR, Canovas J, Villarroel‐Campos D, Carreras‐Sureda A, Pulgar E, Molina E, Hazari YM, Limia CM, Alvarez‐Rojas S, Figueroa R, Vidal RL, Rodriguez DA, Rivera CA, Court FA, Couve A, Qi L, Chevet E, Akai R, Iwawaki T, Concha ML, Glavic A, Gonzalez‐Billault C, Hetz C. IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat Cell Biol 20 (8): 942‐953, 2018.
 310.Urra H, Torres VA, Ortiz RJ, Lobos L, Diaz MI, Diaz N, Hartel S, Leyton L, Quest AF. Caveolin‐1‐enhanced motility and focal adhesion turnover require tyrosine‐14 but not accumulation to the rear in metastatic cancer cells. PLoS One 7 (4): e33085, 2012.
 311.Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123: 134‐145, 2008.
 312.Villaschi S, Johns L, Cirigliano M, Pietra GG. Binding and uptake of native and glycosylated albumin‐gold complexes in perfused rat lungs. Microvasc Res 32 (2): 190‐199, 1986.
 313.Vogel SM, Minshall RD, Pilipovic M, Tiruppathi C, Malik AB. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin‐binding protein. Am J Physiol Lung Cell Mol Physiol 281 (6): L1512‐L1522, 2001.
 314.Wagner RC, Chen SC. Transcapillary transport of solute by the endothelial vesicular system: Evidence from thin serial section analysis. Microvasc Res 42 (2): 139‐150, 1991.
 315.Wang H, Pilch PF, Liu L. Cavin‐1/PTRF mediates insulin‐dependent focal adhesion remodeling and ameliorates high‐fat diet‐induced inflammatory responses in mice. J Biol Chem 294 (27): 10544‐10552, 2019.
 316.Wang H, Wang AX, Aylor K, Barrett EJ. Caveolin‐1 phosphorylation regulates vascular endothelial insulin uptake and is impaired by insulin resistance in rats. Diabetologia 58 (6): 1344‐1353, 2015.
 317.Wang H, Wang AX, Liu Z, Barrett EJ. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57 (3): 540‐547, 2008.
 318.Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow‐induced ATP release. J Clin Invest 126 (12): 4527‐4536, 2016.
 319.Wang Y, Mishra R, Simonson MS. Ca2+/calmodulin‐dependent protein kinase II stimulates c‐fos transcription and DNA synthesis by a Src‐based mechanism in glomerular mesangial cells. J Am Soc Nephrol 14 (1): 28‐36, 2003.
 320.Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: Endothelial signaling processes controlling extravasation. Physiol Rev 99 (3): 1467‐1525, 2019.
 321.Williere Y, Borschewski A, Patzak A, Nikitina T, Dittmayer C, Daigeler AL, Schuelke M, Bachmann S, Mutig K. Caveolin 1 promotes renal water and salt reabsorption. Sci Rep 8 (1): 545, 2018.
 322.Wu B, Guo W. The Exocyst at a glance. J Cell Sci 128 (16): 2957‐2964, 2015.
 323.Xiang B, Zhang G, Stefanini L, Bergmeier W, Gartner TK, Whiteheart SW, Li Z. The Src family kinases and protein kinase C synergize to mediate Gq‐dependent platelet activation. J Biol Chem 287 (49): 41277‐41287, 2012.
 324.Xie L, Frank PG, Lisanti MP, Sowa G. Endothelial cells isolated from caveolin‐2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild‐type counterparts. Am J Physiol Cell Physiol 298 (3): C693‐C701, 2010.
 325.Xie L, Vo‐Ransdell C, Abel B, Willoughby C, Jang S, Sowa G. Caveolin‐2 is a negative regulator of anti‐proliferative function and signaling of transforming growth factor‐beta in endothelial cells. Am J Physiol Cell Physiol 301 (5): C1161‐C1174, 2011.
 326.Xie Z, Singleton PA, Bourguignon LY, Bikle DD. Calcium‐induced human keratinocyte differentiation requires src‐ and fyn‐mediated phosphatidylinositol 3‐kinase‐dependent activation of phospholipase C‐gamma1. Mol Biol Cell 16 (7): 3236‐3246, 2005.
 327.Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1 (5): 445‐458, 1955.
 328.Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, Hotta N, Shimada Y, Isomura H, Suzuki M, Fujimoto T, Takahashi T. ROR1 sustains caveolae and survival signalling as a scaffold of cavin‐1 and caveolin‐1. Nat Commun 7: 10060, 2016.
 329.Yamakuchi M, Ferlito M, Morrell CN, Matsushita K, Fletcher CA, Cao W, Lowenstein CJ. Exocytosis of endothelial cells is regulated by N‐ethylmaleimide‐sensitive factor. Methods Mol Biol 440: 203‐215, 2008.
 330.Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM‐1 regulates neutrophil adhesion and transcellular migration of TNF‐alpha‐activated vascular endothelium under flow. Blood 106 (2): 584‐592, 2005.
 331.Yeow I, Howard G, Chadwick J, Mendoza‐Topaz C, Hansen CG, Nichols BJ, Shvets E. EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr Biol 27 (19): 2951‐2962.e5, 2017.
 332.Yoshida A, Sakai N, Uekusa Y, Imaoka Y, Itagaki Y, Suzuki Y, Yoshimura SH. Morphological changes of plasma membrane and protein assembly during clathrin‐mediated endocytosis. PLoS Biol 16 (5): e2004786, 2018.
 333.Yu M, Yuan X, Lu C, Le S, Kawamura R, Efremov AK, Zhao Z, Kozlov MM, Sheetz M, Bershadsky A, Yan J. mDia1 senses both force and torque during F‐actin filament polymerization. Nat Commun 8 (1): 1650, 2017.
 334.Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 275: 273‐295, 2018.
 335.Zemans RL, Matthay MA. What drives neutrophils to the alveoli in ARDS? Thorax 72 (1): 1‐3, 2017.
 336.Zhang X, Sessa WC, Fernandez‐Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis. Front Cardiovasc Med 5: 130, 2018.
 337.Zhang YN, Liu YY, Xiao FC, Liu CC, Liang XD, Chen J, Zhou J, Baloch AS, Kan L, Zhou B, Qiu HJ. Rab5, Rab7, and Rab11 are required for caveola‐dependent endocytosis of classical swine fever virus in porcine alveolar macrophages. J Virol 92 (15), 2018. DOI: 10.1128/JVI.00797‐18.
 338.Zhao T, Cui L, Yu X, Zhang Z, Shen X, Hua X. Porcine sapelovirus enters PK‐15 cells via caveolae‐dependent endocytosis and requires Rab7 and Rab11. Virology 529: 160‐168, 2019.
 339.Zhao Y, Sudol M, Hanafusa H, Krueger J. Increased tyrosine kinase activity of c‐Src during calcium‐induced keratinocyte differentiation. Proc Natl Acad Sci U S A 89 (17): 8298‐8302, 1992.
 340.Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR. Defects in caveolin‐1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A 99 (17): 11375‐11380, 2002.
 341.Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM, Brovkovych V, Yuan JX, Wharton J, Malik AB. Persistent eNOS activation secondary to caveolin‐1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 119 (7): 2009‐2018, 2009.
 342.Zhou K, Sumigray KD, Lechler T. The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol Biol Cell 26 (11): 1995‐2004, 2015.
 343.Zhu B, Sward K, Ekman M, Uvelius B, Rippe C. Cavin‐3 (PRKCDBP) deficiency reduces the density of caveolae in smooth muscle. Cell Tissue Res 368 (3): 591‐602, 2017.
 344.Zhu Q, Yamakuchi M, Lowenstein CJ. SNAP23 regulates endothelial exocytosis of von Willebrand factor. PLoS One 10 (8): e0118737, 2015.
 345.Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD. Src‐dependent phosphorylation of caveolin‐1 Tyr‐14 promotes swelling and release of caveolae. Mol Biol Cell 27 (13): 2090‐2106, 2016.

Teaching Material

Joshua H. Jones and Richard D. Minshall. Lung Endothelial Transcytosis. Compr Physiol 10 : 2020, 491-508.

Didactic Synopsis

Major teaching points

    1. Endothelial transcytosis is an energy-dependent process in which macromolecules in the blood are internalized via vesicles, trafficked across the cell, and ultimately released into the sub-endothelial space.
    2. Caveolae are 40-80 nm omega shaped vesicles that act as transcytotic carriers for macromolecular cargo.
    3. Cargo receptors that localize to caveolae enable specific uptake into endothelial cells.
    4. Receptor-mediated endocytosis entails ligand-receptor interactions that result in Src activation, caveolin-1 phosphorylation, caveolar vesicle swelling and ultimately vesicle release from the plasma membrane.
    5. Caveolae directly associate with the cellular cytoskeleton via actin binding proteins. Association with actin filaments is required for caveolae invagination from the plasma membrane.
    6. Caveolae internalization and trafficking require post-translational modification of caveolin-1 and actin binding proteins.
    7. Internalized caveolar vesicles eventually tether to the abluminal membrane, followed by vesicle fusion via SNARE proteins and exocytosis of cargo into the sub-endothelial space.
    8. Experimental evaluation of caveolar transcytosis often requires the use of multiple techniques, including transmission electron microscopy and transwell studies.
    9. Lipopolysaccharide, hydrogen peroxide, and activated neutrophils increase transcytotic events in lung endothelial cells, and thus transcytosis contributes to the pathogenesis of Acute Lung Injury.

Didactic Legends

The following legends to the figures that appear throughout the article are written to be useful for teaching.

Figure 1. Teaching Points: Caveolae (Figure 1A, black arrows) comprise the overwhelming majority of endocytic vesicles (vesicles that detach and internalize from the plasma membrane). These vesicles often transport macromolecules from the capillary lumen, into and through the endothelial cell, and finally into the sub-endothelial space. Healthy lung capillary endothelial cells typically restrict passage of large molecules between cells (Figure 1A, green arrow); hence the bulk of macromolecule transport occurs via transcellular transport (transcytosis). Caveolae are responsible for the majority of transcytosis in endothelial cells. Caveolae-associated proteins (e.g. caveolins, cavins, etc) are important for caveolae formation, shape, and function. Consequently, loss of these proteins can result in abnormal caveolae membrane tubulation or absence of caveolae altogether (e.g. caveolin-1 deletion). Loss of caveolae and/or their constituent proteins cause endothelial nitric synthase (eNOS) to become dysregulated, producing reactive oxide species that modify junctional proteins. Compromised junctional integrity results in paracellular transport (Figure 1B, green arrow)

Figure 2. Teaching Points: Caveolae-mediated transcytosis facilitates most of the macromolecule transport through endothelial cells. Transcytosis can be divided into three events: endocytosis, intracellular vesicular trafficking, and exocytosis. The first event, endocytosis, is critical for the initiation of transcytosis. Receptors and signaling effectors are concentrated in caveolae, facilitating efficient signal transduction. Binding of macromolecules stimulates NO production and Src activation, which facilitates caveolin-1 phosphorylation and vesicle swelling. Dynamin-2 behaves as "molecular scissors", facilitating budding of caveolae from the plasma membrane. Dynamin-2 is recruited from the cytosol to the caveolar neck region via Intersectin-1, forming oligomers and ultimately cleaving caveolae from the membrane surface into the cytosol of the cell.

 

Figure 3. Teaching Points: Actin filaments serve as "anchors" to caveolae, providing structural support for these vesicles while they are localized to the plasma membrane. In turn, caveolae-associated proteins contribute to actin assembly and stability, including pacsin2 and filamin A. Pacsin2 binds both EHD2 and F-actin and reportedly increases the stability of F-actin. Filamin A crosslinks actin, binds membrane receptors, and interacts directly with caveolin-1. PKC-mediated phosphorylation of pacsin2 induces its removal from caveolae, thereby weakening the interaction between caveolae and the cytoskeleton. The interaction between Filamin A and caveolin-1 is greater following receptor activation and filamin A phosphorylation promotes trafficking of vesicles from the membrane. Phospho-caveolin interacts with GDP bound Cdc42, restricting GTP loading and actin assembly. Caveolin-1 and filamin A recruit RalA from the cytosol, resulting in downstream phospholipase D2 (PLD2) activation, phosphatidic acid (PA) synthesis, and PA-mediated internalization of caveolae. PA has an important role in endocytosis, as inhibition of PLD2 (and thus PA production) diminishes vesicle internalization.


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Joshua H. Jones, Richard D. Minshall. Lung Endothelial Transcytosis. Compr Physiol 2020, 10: 491-508. doi: 10.1002/cphy.c190012