Comprehensive Physiology Wiley Online Library

Islet Epigenetic Impacts on β‐Cell Identity and Function

Full Article on Wiley Online Library



Abstract

The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β‐cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell‐fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1961‐1978, 2021.

Figure 1. Figure 1. This figure illustrates the known epigenetic modifiers that influence the transcription factor cascade governing differentiation and maintenance of the major pancreatic endocrine cell types. To this point, investigation has focused on the β cell.
Figure 2. Figure 2. This figure illustrates how CpG methylation can be inherited or passively lost through cell division. Newly synthesized DNA strands are made without methylation, but maintenance methyltransferases recognize the modification on the original strand and place a methyl group on the complementary cytosine on the new strand. In some cases, especially in aging, the newly replicated strand does not receive CpG methylation at some loci. Subsequent divisions result in a reduced percentage of cells with methylated DNA at the locus in question.
Figure 3. Figure 3. This figure illustrates genomic imprinting at the CDKNIC/KCN1Q loci. In this case, both imprinted genes are normally expressed from the maternal allele. On the maternal allele, an ICR upstream of KCN1Q is unmethylated on the maternal allele, which allows a distal enhancer to loop around to the promoters of both CDKN1C and KCN1Q. The ICR of the paternal allele is methylated, which allows the binding of the insulator protein CTCF, thereby preventing access of the enhancer to the promoters of these two genes. Modified, with permission, from Stampone E, et al., 2018 163.
Figure 4. Figure 4. This figure illustrates how topologically associated domains (TADs) restrict interactions between certain chromatin territories. The ring‐shaped protein complex cohesin and the zinc finger protein CTCF work together to loop chromatin domains and insulate them from other open chromatin, thereby decreasing contact between promoters and enhancers across TADs and encouraging them within TADs. Modified, with permission, from Ghirlando R and Felsenfeld G, 2016 71.


Figure 1. This figure illustrates the known epigenetic modifiers that influence the transcription factor cascade governing differentiation and maintenance of the major pancreatic endocrine cell types. To this point, investigation has focused on the β cell.


Figure 2. This figure illustrates how CpG methylation can be inherited or passively lost through cell division. Newly synthesized DNA strands are made without methylation, but maintenance methyltransferases recognize the modification on the original strand and place a methyl group on the complementary cytosine on the new strand. In some cases, especially in aging, the newly replicated strand does not receive CpG methylation at some loci. Subsequent divisions result in a reduced percentage of cells with methylated DNA at the locus in question.


Figure 3. This figure illustrates genomic imprinting at the CDKNIC/KCN1Q loci. In this case, both imprinted genes are normally expressed from the maternal allele. On the maternal allele, an ICR upstream of KCN1Q is unmethylated on the maternal allele, which allows a distal enhancer to loop around to the promoters of both CDKN1C and KCN1Q. The ICR of the paternal allele is methylated, which allows the binding of the insulator protein CTCF, thereby preventing access of the enhancer to the promoters of these two genes. Modified, with permission, from Stampone E, et al., 2018 163.


Figure 4. This figure illustrates how topologically associated domains (TADs) restrict interactions between certain chromatin territories. The ring‐shaped protein complex cohesin and the zinc finger protein CTCF work together to loop chromatin domains and insulate them from other open chromatin, thereby decreasing contact between promoters and enhancers across TADs and encouraging them within TADs. Modified, with permission, from Ghirlando R and Felsenfeld G, 2016 71.
References
 1.Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci 55: 71‐101, 2018.
 2.Aguayo‐Mazzucato C, Sanchez‐Soto C, Godinez‐Puig V, Gutierrez‐Ospina G, Hiriart M. Restructuring of pancreatic islets and insulin secretion in a postnatal critical window. PLoS One 1: e35, 2006.
 3.Angeloni A, Bogdanovic O. Enhancer DNA methylation: Implications for gene regulation. Essays Biochem 63: 707‐715, 2019.
 4.Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11: 1033‐1041, 2003.
 5.Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R. MafB is required for islet beta cell maturation. Proc Natl Acad Sci U S A 104: 3853‐3858, 2007.
 6.Avrahami D, Li C, Zhang J, Schug J, Avrahami R, Rao S, Stadler MB, Burger L, Schubeler D, Glaser B, Kaestner KH. Aging‐dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function. Cell Metab 22: 619‐632, 2015.
 7.Aynsley‐Green A, Hussain K, Hall J, Saudubray JM, Nihoul‐Fekete C, De Lonlay‐Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley KJ. Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed 82: F98‐F107, 2000.
 8.Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF, Cheung P, Allis CD. The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S‐phase is evolutionarily conserved. Chromosoma 112: 360‐371, 2004.
 9.Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High‐resolution profiling of histone methylations in the human genome. Cell 129: 823‐837, 2007.
 10.Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. Genome‐wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25: 2254‐2265, 2011.
 11.Baxter JS, Leavy OC, Dryden NH, Maguire S, Johnson N, Fedele V, Simigdala N, Martin LA, Andrews S, Wingett SW, Assiotis I, Fenwick K, Chauhan R, Rust AG, Orr N, Dudbridge F, Haider S, Fletcher O. Capture Hi‐C identifies putative target genes at 33 breast cancer risk loci. Nat Commun 9: 1028, 2018.
 12.Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics 98: 288‐295, 2011.
 13.Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, Zurawska M, Drzewoski J. DNA damage and repair in type 2 diabetes mellitus. Mutat Res 554: 297‐304, 2004.
 14.Blondeau B, Garofano A, Czernichow P, Breant B. Age‐dependent inability of the endocrine pancreas to adapt to pregnancy: A long‐term consequence of perinatal malnutrition in the rat. Endocrinology 140: 4208‐4213, 1999.
 15.Boehmer BH, Limesand SW, Rozance PJ. The impact of IUGR on pancreatic islet development and beta‐cell function. J Endocrinol 235: R63‐R76, 2017.
 16.Bramswig NC, Everett LJ, Schug J, Dorrell C, Liu C, Luo Y, Streeter PR, Naji A, Grompe M, Kaestner KH. Epigenomic plasticity enables human pancreatic alpha to beta cell reprogramming. J Clin Invest 123: 1275‐1284, 2013.
 17.Brandt MM, Meddens CA, Louzao‐Martinez L, van den Dungen NAM, Lansu NR, Nieuwenhuis EES, Duncker DJ, Verhaar MC, Joles JA, Mokry M, Cheng C. Chromatin conformation links distal target genes to CKD loci. J Am Soc Nephrol 29: 462‐476, 2018.
 18.Brickner DG, Cajigas I, Fondufe‐Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH. H2A.Z‐mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5: e81, 2007.
 19.Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD. Gene silencing: Trans‐histone regulatory pathway in chromatin. Nature 418: 498, 2002.
 20.Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL. Signaling kinase AMPK activates stress‐promoted transcription via histone H2B phosphorylation. Science 329: 1201‐1205, 2010.
 21.Bysani M, Agren R, Davegardh C, Volkov P, Ronn T, Unneberg P, Bacos K, Ling C. ATAC‐seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Sci Rep 9: 7785, 2019.
 22.Cao R, Tsukada Y, Zhang Y. Role of Bmi‐1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845‐854, 2005.
 23.Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 20: 290‐299, 2013.
 24.Cavalli M, Baltzer N, Umer HM, Grau J, Lemnian I, Pan G, Wallerman O, Spalinskas R, Sahlen P, Grosse I, Komorowski J, Wadelius C. Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases. Sci Rep 9: 2695, 2019.
 25.Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152: 375‐384, 2001.
 26.Chakravarthy H, Gu X, Enge M, Dai X, Wang Y, Damond N, Downie C, Liu K, Wang J, Xing Y, Chera S, Thorel F, Quake S, Oberholzer J, MacDonald PE, Herrera PL, Kim SK. Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25: 622‐634, 2017.
 27.Chandrasekharan MB, Huang F, Sun ZW. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci U S A 106: 16686‐16691, 2009.
 28.Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. Developmental changes in histone macroH2A1‐mediated gene regulation. Mol Cell Biol 27: 2758‐2764, 2007.
 29.Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6: 943‐957, 2017.
 30.Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A, Kim SK. Polycomb protein Ezh2 regulates pancreatic beta‐cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23: 975‐985, 2009.
 31.Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res 24: 570‐579, 2014.
 32.Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht BD. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell 53: 979‐992, 2014.
 33.Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL. Diabetes recovery by age‐dependent conversion of pancreatic delta‐cells into insulin producers. Nature 514: 503‐507, 2014.
 34.Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 15: 656‐660, 2005.
 35.Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL. Pancreatic islet‐autonomous insulin and smoothened‐mediated signalling modulate identity changes of glucagon(+) alpha‐cells. Nat Cell Biol 20: 1267‐1277, 2018.
 36.Cinti F, Bouchi R, Kim‐Muller JY, Ohmura Y, Sandoval PR, Masini M, Marselli L, Suleiman M, Ratner LE, Marchetti P, Accili D. Evidence of beta‐cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab 101: 1044‐1054, 2016.
 37.Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12: 461‐473, 2003.
 38.Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A, Skrzypczak M, Aymard F, Fongang B, Dojer N, Iacovoni JS, Rowicka M, Ginalski K, Cote J, Legube G. Comprehensive mapping of histone modifications at DNA double‐strand breaks deciphers repair pathway chromatin signatures. Mol Cell 72: 250‐262 e256, 2018.
 39.Coleman‐Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8: e1002988, 2012.
 40.Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22: 3157‐3173, 2002.
 41.Dai C, Hang Y, Shostak A, Poffenberger G, Hart N, Prasad N, Phillips N, Levy SE, Greiner DL, Shultz LD, Bottino R, Kim SK, Powers AC. Age‐dependent human beta cell proliferation induced by glucagon‐like peptide 1 and calcineurin signaling. J Clin Invest 127: 3835‐3844, 2017.
 42.Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Ronn T, Bacos K, Ling C. Genome‐wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non‐diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10: e1004160, 2014.
 43.de la Serna IL, Ohkawa Y, Imbalzano AN. Chromatin remodelling in mammalian differentiation: Lessons from ATP‐dependent remodellers. Nat Rev Genet 7: 461‐473, 2006.
 44.De Leon ER, Brinkman JA, Fenske RJ, Gregg T, Schmidt BA, Sherman DS, Cummings NE, Peter DC, Kimple ME, Lamming DW, Merrins MJ. Age‐dependent protection of insulin secretion in diet induced obese mice. Sci Rep 8: 17814, 2018.
 45.De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, Helin K, Hornick JL, Mautner V, Kehrer‐Sawatzki H, Clapp W, Bradner J, Vidaud M, Upadhyaya M, Legius E, Cichowski K. PRC2 loss amplifies Ras‐driven transcription and confers sensitivity to BRD4‐based therapies. Nature 514: 247‐251, 2014.
 46.Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet‐enriched genes. Diabetes 58: 185‐193, 2009.
 47.Della Ragione F, Vacca M, Fioriniello S, Pepe G, D'Esposito M. MECP2, a multi‐talented modulator of chromatin architecture. Brief Funct Genomics 15: 420‐431, 2016.
 48.Densham RM, Morris JR. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus 8: 116‐125, 2017.
 49.Devaskar SU, Chu A. Intrauterine growth restriction: Hungry for an answer. Physiology (Bethesda) 31: 131‐146, 2016.
 50.Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic beta cell identity is maintained by DNA methylation‐mediated repression of Arx. Dev Cell 20: 419‐429, 2011.
 51.Dhawan S, Tschen SI, Bhushan A. Bmi‐1 regulates the Ink4a/Arf locus to control pancreatic beta‐cell proliferation. Genes Dev 23: 906‐911, 2009.
 52.Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, Bhushan A. DNA methylation directs functional maturation of pancreatic beta cells. J Clin Invest 125: 2851‐2860, 2015.
 53.Dhillon N, Oki M, Szyjka SJ, Aparicio OM, Kamakaka RT. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol 26: 489‐501, 2006.
 54.DiGruccio MR, Mawla AM, Donaldson CJ, Noguchi GM, Vaughan J, Cowing‐Zitron C, van der Meulen T, Huising MO. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metab 5: 449‐458, 2016.
 55.Docherty LE, Poole RL, Mattocks CJ, Lehmann A, Temple IK, Mackay DJ. Further refinement of the critical minimal genetic region for the imprinting disorder 6q24 transient neonatal diabetes. Diabetologia 53: 2347‐2351, 2010.
 56.Dong X, Weng Z. The correlation between histone modifications and gene expression. Epigenomics 5: 113‐116, 2013.
 57.Dumortier O, Blondeau B, Duvillie B, Reusens B, Breant B, Remacle C. Different mechanisms operating during different critical time‐windows reduce rat fetal beta cell mass due to a maternal low‐protein or low‐energy diet. Diabetologia 50: 2495‐2503, 2007.
 58.Earnshaw WC, Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313‐321, 1985.
 59.Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, Kaestner KH, Stein R, Stoffers DA, May CL. Islet‐1 Is essential for pancreatic beta‐cell function. Diabetes 63: 4206‐4217, 2014.
 60.Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10: 23, 2017.
 61.Faust C, Lawson KA, Schork NJ, Thiel B, Magnuson T. The Polycomb‐group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125: 4495‐4506, 1998.
 62.Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D. Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53: 49‐62, 2014.
 63.Fierz B, Chatterjee C, McGinty RK, Bar‐Dagan M, Raleigh DP, Muir TW. Histone H2B ubiquitylation disrupts local and higher‐order chromatin compaction. Nat Chem Biol 7: 113‐119, 2011.
 64.Fleming AB, Kao CF, Hillyer C, Pikaart M, Osley MA. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31: 57‐66, 2008.
 65.Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx‐1 links histone H3‐Lys‐4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem 280: 36244‐36253, 2005.
 66.Garofano A, Czernichow P, Breant B. In utero undernutrition impairs rat beta‐cell development. Diabetologia 40: 1231‐1234, 1997.
 67.Garofano A, Czernichow P, Breant B. Beta‐cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 41: 1114‐1120, 1998.
 68.Garofano A, Czernichow P, Breant B. Effect of ageing on beta‐cell mass and function in rats malnourished during the perinatal period. Diabetologia 42: 711‐718, 1999.
 69.Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, Zhang CL. Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 12: 29, 2014.
 70.Gevry N, Hardy S, Jacques PE, Laflamme L, Svotelis A, Robert F, Gaudreau L. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 23: 1522‐1533, 2009.
 71.Ghirlando R, Felsenfeld G. CTCF: Making the right connections. Genes Dev 30: 881‐891, 2016.
 72.Giunta S, Funabiki H. Integrity of the human centromere DNA repeats is protected by CENP‐A, CENP‐C, and CENP‐T. Proc Natl Acad Sci U S A 114: 1928‐1933, 2017.
 73.Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AH. Gene silencing and Polycomb group proteins: An overview of their structure, mechanisms and phylogenetics. OMICS 17: 283‐296, 2013.
 74.Golden MG, Dasen JS. Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. Genes Dev 26: 2236‐2250, 2012.
 75.Golson ML, Kaestner KH. Fox transcription factors: From development to disease. Development 143: 4558‐4570, 2016.
 76.Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 6: 1066‐1076, 2017.
 77.Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA‐(cytosine‐C5)‐methyltransferases by Dnmt3L. J Biol Chem 280: 13341‐13348, 2005.
 78.Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34: 1182‐1188, 2006.
 79.Greenwald WW, Chiou J, Yan J, Qiu Y, Dai N, Wang A, Nariai N, Aylward A, Han JY, Kadakia N, Regue L, Okino ML, Drees F, Kramer D, Vinckier N, Minichiello L, Gorkin D, Avruch J, Frazer KA, Sander M, Ren B, Gaulton KJ. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat Commun 10: 2078, 2019.
 80.Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, Baar EL, Fernandez LA, Denu JM, Eliceiri KW, Rogers JD, Kimple ME, Lamming DW, Merrins MJ. Pancreatic beta‐cells from mice offset age‐associated mitochondrial deficiency with reduced KATP channel activity. Diabetes 65: 2700‐2710, 2016.
 81.Gupta J, Kumar S, Li J, Krishna Murthy Karuturi R, Tikoo K. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): Distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells. Biochimie 94: 2656‐2664, 2012.
 82.Hall E, Dekker Nitert M, Volkov P, Malmgren S, Mulder H, Bacos K, Ling C. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 472: 57‐67, 2018.
 83.Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105: 17046‐17049, 2008.
 84.Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401: 301‐304, 1999.
 85.Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett‐Jones DP, Allis CD. Mitosis‐specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348‐360, 1997.
 86.Hochner H, Friedlander Y, Calderon‐Margalit R, Meiner V, Sagy Y, Avgil‐Tsadok M, Burger A, Savitsky B, Siscovick DS, Manor O. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: The Jerusalem Perinatal Family Follow‐up Study. Circulation 125: 1381‐1389, 2012.
 87.Horwitz E, Krogvold L, Zhitomirsky S, Swisa A, Fischman M, Lax T, Dahan T, Hurvitz N, Weinberg‐Corem N, Klochendler A, Powers AC, Brissova M, Jorns A, Lenzen S, Glaser B, Dahl‐Jorgensen K, Dor Y. beta‐Cell DNA damage response promotes islet inflammation in type 1 diabetes. Diabetes 67: 2305‐2318, 2018.
 88.Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97: 1148‐1153, 2000.
 89.Hruby A, Hu FB. The epidemiology of obesity: A big picture. Pharmacoeconomics 33: 673‐689, 2015.
 90.Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11: 261‐266, 2003.
 91.Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 49: e324, 2017.
 92.Ji X, Dadon DB, Powell BE, Fan ZP, Borges‐Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI, Misteli T, Jaenisch R, Young RA. 3D Chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18: 262‐275, 2016.
 93.Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10: 805‐811, 2009.
 94.Kaiser VB, Semple CA. When TADs go bad: Chromatin structure and nuclear organisation in human disease. F1000Res 6, 314, 2017.
 95.Kalb R, Mallery DL, Larkin C, Huang JT, Hiom K. BRCA1 is a histone‐H2A‐specific ubiquitin ligase. Cell Rep 8: 999‐1005, 2014.
 96.Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, Chen Y, Choi I, Vourekas A, Won KJ, Liu C, Vivek K, Naji A, Friedman JR, Kaestner KH. Epigenetic regulation of the DLK1‐MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19: 135‐145, 2014.
 97.Kameswaran V, Golson ML, Ramos‐Rodriguez M, Ou K, Wang YJ, Zhang J, Pasquali L, Kaestner KH. The dysregulation of the DLK1‐MEG3 locus in islets from patients with type 2 diabetes is mimicked by targeted epimutation of its promoter with TALE‐DNMT constructs. Diabetes 67: 1807‐1815, 2018.
 98.Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 99: 79‐114, 2019.
 99.Kassem SA, Ariel I, Thornton PS, Hussain K, Smith V, Lindley KJ, Aynsley‐Green A, Glaser B. p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes 50: 2763‐2769, 2001.
 100.Kim BJ, Chan DW, Jung SY, Chen Y, Qin J, Wang Y. The histone variant MacroH2A1 Is a BRCA1 ubiquitin ligase substrate. Cell Rep 19: 1758‐1766, 2017.
 101.Kim H, Langohr IM, Faisal M, McNulty M, Thorn C, Kim J. Ablation of Ezh2 in neural crest cells leads to aberrant enteric nervous system development in mice. PLoS One 13: e0203391, 2018.
 102.Kim J, Hake SB, Roeder RG. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20: 759‐770, 2005.
 103.Koppens MA, Bounova G, Gargiulo G, Tanger E, Janssen H, Cornelissen‐Steijger P, Blom M, Song JY, Wessels LF, van Lohuizen M. Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology 151: 684‐697 e612, 2016.
 104.Kouzarides T. Chromatin modifications and their function. Cell 128: 693‐705, 2007.
 105.Kumar SV, Wigge PA. H2A.Z‐containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: 136‐147, 2010.
 106.Laster J, Frame LA. Beyond the calories‐Is the problem in the processing? Curr Treat Options Gastroenterol 17: 577‐586, 2019.
 107.Lee MP, Hu RJ, Johnson LA, Feinberg AP. Human KVLQT1 gene shows tissue‐specific imprinting and encompasses Beckwith‐Wiedemann syndrome chromosomal rearrangements. Nat Genet 15: 181‐185, 1997.
 108.Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep 4: 944‐947, 2003.
 109.Lemas DJ, Brinton JT, Shapiro AL, Glueck DH, Friedman JE, Dabelea D. Associations of maternal weight status prior and during pregnancy with neonatal cardiometabolic markers at birth: The Healthy Start study. Int J Obes (Lond) 39: 1437‐1442, 2015.
 110.Li W, Nakanishi M, Zumsteg A, Shear M, Wright C, Melton DA, Zhou Q. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife 3: e01846, 2014.
 111.Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu RM. Structure of a Bmi‐1‐Ring1B polycomb group ubiquitin ligase complex. J Biol Chem 281: 20643‐20649, 2006.
 112.Lin RC, Ng SF, Morris MJ. Gene expression in rat models for inter‐generational transmission of islet dysfunction and obesity. Genom Data 2: 351‐353, 2014.
 113.Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51: 615‐622, 2008.
 114.Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5‐mediated acetylation at lysine 14. Mol Cell 5: 917‐926, 2000.
 115.Lu TT, Heyne S, Dror E, Casas E, Leonhardt L, Boenke T, Yang CH, Sagar AL, Dalgaard K, Teperino R, Enders L, Selvaraj M, Ruf M, Raja SJ, Xie H, Boenisch U, Orkin SH, Lynn FC, Hoffman BG, Grun D, Vavouri T, Lempradl AM, Pospisilik JA. The polycomb‐dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab 27: 1294‐1308 e1297, 2018.
 116.Lumey LH, Stein AD, Ravelli AC. Timing of prenatal starvation in women and birth weight in their first and second born offspring: The Dutch Famine Birth Cohort study. Eur J Obstet Gynecol Reprod Biol 61: 23‐30, 1995.
 117.Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos‐Simarro F, Gilbert‐Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene‐enhancer interactions. Cell 161: 1012‐1025, 2015.
 118.Lyon MF. Gene action in the X‐chromosome of the mouse (Mus musculus L.). Nature 190: 372‐373, 1961.
 119.Ma D, Shield JP, Dean W, Leclerc I, Knauf C, Burcelin RR, Rutter GA, Kelsey G. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114: 339‐348, 2004.
 120.Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Ozcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. Transcriptional activity of the islet beta cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem 290: 9812‐9822, 2015.
 121.Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762‐767, 2009.
 122.Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32: 503‐518, 2008.
 123.Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 469: 343‐349, 2011.
 124.Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK. RNF168 ubiquitinates K13‐15 on H2A/H2AX to drive DNA damage signaling. Cell 150: 1182‐1195, 2012.
 125.Mazor‐Aronovitch K, Gillis D, Lobel D, Hirsch HJ, Pinhas‐Hamiel O, Modan‐Moses D, Glaser B, Landau H. Long‐term neurodevelopmental outcome in conservatively treated congenital hyperinsulinism. Eur J Endocrinol 157: 491‐497, 2007.
 126.McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, Yarwood A, Pratt AG, Anderson AE, Isaacs JD, Diboll J, Thalayasingam N, Ospelt C, Barton A, Worthington J, Fraser P, Eyre S, Orozco G. Capture Hi‐C identifies a novel causal gene, IL20RA, in the pan‐autoimmune genetic susceptibility region 6q23. Genome Biol 17: 212, 2016.
 127.Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112: 725‐736, 2003.
 128.Michieletto D, Chiang M, Coli D, Papantonis A, Orlandini E, Cook PR, Marenduzzo D. Shaping epigenetic memory via genomic bookmarking. Nucleic Acids Res 46: 83‐93, 2018.
 129.Miguel‐Escalada I, Bonas‐Guarch S, Cebola I, Ponsa‐Cobas J, Mendieta‐Esteban J, Atla G, Javierre BM, Rolando DMY, Farabella I, Morgan CC, Garcia‐Hurtado J, Beucher A, Moran I, Pasquali L, Ramos‐Rodriguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de Koning EJP, Kerr‐Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti‐Renom MA, Fraser P, Ferrer J. Human pancreatic islet three‐dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51: 1137‐1148, 2019.
 130.Moin ASM, Butler AE. Alterations in beta cell identity in type 1 and type 2 diabetes. Curr Diab Rep 19: 83, 2019.
 131.Moritz LE, Trievel RC. Structure, mechanism, and regulation of polycomb‐repressive complex 2. J Biol Chem 293: 13805‐13814, 2018.
 132.Neiman D, Moss J, Hecht M, Magenheim J, Piyanzin S, Shapiro AMJ, de Koning EJP, Razin A, Cedar H, Shemer R, Dor Y. Islet cells share promoter hypomethylation independently of expression, but exhibit cell‐type‐specific methylation in enhancers. Proc Natl Acad Sci U S A 114: 13525‐13530, 2017.
 133.Neo WH, Booth CAG, Azzoni E, Chi L, Delgado‐Olguin P, de Bruijn M, Jacobsen SEW, Mead AJ. Cell‐extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood 131: 2223‐2234, 2018.
 134.Ng HH, Xu RM, Zhang Y, Struhl K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1‐mediated methylation of histone H3 lysine 79. J Biol Chem 277: 34655‐34657, 2002.
 135.O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb‐group gene Ezh2 is required for early mouse development. Mol Cell Biol 21: 4330‐4336, 2001.
 136.Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin Proc 85: 1138‐1141, 2010.
 137.Pan MR, Peng G, Hung WC, Lin SY. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 286: 28599‐28607, 2011.
 138.Pasquali L, Gaulton KJ, Rodriguez‐Segui SA, Mularoni L, Miguel‐Escalada I, Akerman I, Tena JJ, Moran I, Gomez‐Marin C, van de Bunt M, Ponsa‐Cobas J, Castro N, Nammo T, Cebola I, Garcia‐Hurtado J, Maestro MA, Pattou F, Piemonti L, Berney T, Gloyn AL, Ravassard P, Skarmeta JLG, Muller F, McCarthy MI, Ferrer J. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk‐associated variants. Nat Genet 46: 136‐143, 2014.
 139.Pasque V, Radzisheuskaya A, Gillich A, Halley‐Stott RP, Panamarova M, Zernicka‐Goetz M, Surani MA, Silva JC. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 125: 6094‐6104, 2012.
 140.Pehrson JR, Changolkar LN, Costanzi C, Leu NA. Mice without macroH2A histone variants. Mol Cell Biol 34: 4523‐4533, 2014.
 141.Perng W, Gillman MW, Mantzoros CS, Oken E. A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24: 793‐800 e791, 2014.
 142.Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ, Hill DJ. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin‐like growth factor‐II. Endocrinology 140: 4861‐4873, 1999.
 143.Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development 141: 1805‐1813, 2014.
 144.Prasad M, Bronson SC, Warrier T, Badarinath A, Rai S, Baid K, Sitaraman S, George A, Moses A, Saraswathy R, Vasuki R, Shanmugam A. Evaluation of DNA damage in Type 2 diabetes mellitus patients with and without peripheral neuropathy: A study in South Indian population. J Nat Sci Biol Med 6: 80‐84, 2015.
 145.Puri S, Roy N, Russ HA, Leonhardt L, French EK, Roy R, Bengtsson H, Scott DK, Stewart AF, Hebrok M. Replication confers beta cell immaturity. Nat Commun 9: 485, 2018.
 146.Rahman SA, Nessa A, Hussain K. Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol 54: R119‐R129, 2015.
 147.Rankin MM, Kushner JA. Adaptive beta‐cell proliferation is severely restricted with advanced age. Diabetes 58: 1365‐1372, 2009.
 148.Regnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W. CENP‐A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25: 3967‐3981, 2005.
 149.Rispal J, Baron L, Beaulieu JF, Chevillard‐Briet M, Trouche D, Escaffit F. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat Commun 10: 1827, 2019.
 150.Roseboom T, de Rooij S, Painter R. The Dutch famine and its long‐term consequences for adult health. Early Hum Dev 82: 485‐491, 2006.
 151.Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR. Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas 70: 141‐145, 2011.
 152.Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics 7: 1098‐1108, 2012.
 153.Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, Committee IDFDA. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157: 107843, 2019.
 154.Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27: 6457‐6468, 2007.
 155.Sati S, Cavalli G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126: 33‐44, 2017.
 156.Sawicka A, Seiser C. Histone H3 phosphorylation ‐ a versatile chromatin modification for different occasions. Biochimie 94: 2193‐2201, 2012.
 157.Schwarz D, Varum S, Zemke M, Scholer A, Baggiolini A, Draganova K, Koseki H, Schubeler D, Sommer L. Ezh2 is required for neural crest‐derived cartilage and bone formation. Development 141: 867‐877, 2014.
 158.Shirakawa J, Fernandez M, Takatani T, El Ouaamari A, Jungtrakoon P, Okawa ER, Zhang W, Yi P, Doria A, Kulkarni RN. Insulin signaling regulates the FoxM1/PLK1/CENP‐A pathway to promote adaptive pancreatic beta cell proliferation. Cell Metab 25: 868‐882 e865, 2017.
 159.Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument‐Bromage H, Tempst P, Manley JL, Reinberg D. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre‐mRNA splicing. Mol Cell 28: 665‐676, 2007.
 160.Smeenk G, Mailand N. Writers, readers, and erasers of histone ubiquitylation in DNA double‐strand break repair. Front Genet 7: 122, 2016.
 161.Spaeth JM, Liu JH, Peters D, Guo M, Osipovich AB, Mohammadi F, Roy N, Bhushan A, Magnuson MA, Hebrok M, Wright CVE, Stein R. The Pdx1‐bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet beta‐cell function. Diabetes 68: 1806‐1818, 2019.
 162.Spijker HS, Ravelli RB, Mommaas‐Kienhuis AM, van Apeldoorn AA, Engelse MA, Zaldumbide A, Bonner‐Weir S, Rabelink TJ, Hoeben RC, Clevers H, Mummery CL, Carlotti F, de Koning EJ. Conversion of mature human beta‐cells into glucagon‐producing alpha‐cells. Diabetes 62: 2471‐2480, 2013.
 163.Stampone E, Caldarelli I, Zullo A, Bencivenga D, Mancini FP, Della Ragione F, Borriello A. Genetic and epigenetic control of CDKN1C expression: Importance in cell commitment and differentiation, tissue homeostasis and human diseases. Int J Mol Sci 19: 1055, 2018.
 164.Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 4: 124‐131, 2003.
 165.Sudarsanam P, Winston F. The Swi/Snf family nucleosome‐remodeling complexes and transcriptional control. Trends Genet 16: 345‐351, 2000.
 166.Sullivan KF, Hechenberger M, Masri K. Human CENP‐A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127: 581‐592, 1994.
 167.Sun B, Chang E, Gerhartl A, Szele FG. Polycomb protein Eed is required for neurogenesis and cortical injury activation in the subventricular zone. Cereb Cortex 28: 1369‐1382, 2018.
 168.Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104‐108, 2002.
 169.Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 9: 465‐476, 2008.
 170.Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. Sci Adv 5: eaaw1668, 2019.
 171.Szerlong HJ, Hansen JC. Nucleosome distribution and linker DNA: Connecting nuclear function to dynamic chromatin structure. Biochem Cell Biol 89: 24‐34, 2011.
 172.Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5‐methylcytosine to 5‐hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 930‐935, 2009.
 173.Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150: 1223‐1234, 2012.
 174.Tay VSY, Devaraj S, Koh T, Ke G, Crasta KC, Ali Y. Increased double strand breaks in diabetic beta‐cells with a p21 response that limits apoptosis. Sci Rep 9: 19341, 2019.
 175.Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39: 872‐875, 2002.
 176.Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha‐cells to beta‐cells after extreme beta‐cell loss. Nature 464: 1149‐1154, 2010.
 177.Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Biobank‐based Integrative Omics Studies C, Slagboom PE, van Zwet EW, Lumey LH, Heijmans BT. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv 4: eaao4364, 2018.
 178.Tolstorukov MY, Goldman JA, Gilbert C, Ogryzko V, Kingston RE, Park PJ. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell 47: 596‐607, 2012.
 179.Tornovsky‐Babeay S, Dadon D, Ziv O, Tzipilevich E, Kadosh T, Schyr‐Ben Haroush R, Hija A, Stolovich‐Rain M, Furth‐Lavi J, Granot Z, Porat S, Philipson LH, Herold KC, Bhatti TR, Stanley C, Ashcroft FM, In't Veld P, Saada A, Magnuson MA, Glaser B, Dor Y. Type 2 diabetes and congenital hyperinsulinism cause DNA double‐strand breaks and p53 activity in beta cells. Cell Metab 19: 109‐121, 2014.
 180.Uckelmann M, Sixma TK. Histone ubiquitination in the DNA damage response. DNA Repair (Amst) 56: 92‐101, 2017.
 181.Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch‐Johnsen K, Jorgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098‐1102, 2008.
 182.Utley RT, Lacoste N, Jobin‐Robitaille O, Allard S, Cote J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25: 8179‐8190, 2005.
 183.van Abeelen AF, Elias SG, Bossuyt PM, Grobbee DE, van der Schouw YT, Roseboom TJ, Uiterwaal CS. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 61: 2255‐2260, 2012.
 184.Vavouri T, Lehner B. Human genes with CpG island promoters have a distinct transcription‐associated chromatin organization. Genome Biol 13: R110, 2012.
 185.Verkarre V, Fournet JC, de Lonlay P, Gross‐Morand MS, Devillers M, Rahier J, Brunelle F, Robert JJ, Nihoul‐Fekete C, Saudubray JM, Junien C. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 102: 1286‐1291, 1998.
 186.Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo‐Esteve M, Naamane N, Del Guerra S, Masini M, Bugliani M, Marchetti P, Cnop M, Eizirik DL, Fuks F. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31: 1405‐1426, 2012.
 187.Volkov P, Bacos K, Ofori JK, Esguerra JL, Eliasson L, Ronn T, Ling C. Whole‐genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes 66: 1074‐1085, 2017.
 188.Wade AK, Liu Y, Bethea MM, Toren E, Tse HM, Hunter CS. LIM‐domain transcription complexes interact with ring‐finger ubiquitin ligases and thereby impact islet beta‐cell function. J Biol Chem 294: 11728‐11740, 2019.
 189.Wallace C, Smyth DJ, Maisuria‐Armer M, Walker NM, Todd JA, Clayton DG. The imprinted DLK1‐MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 42: 68‐71, 2010.
 190.Wang H, Wang L, Erdjument‐Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873‐878, 2004.
 191.Wang YJ, Schug J, Won KJ, Liu C, Naji A, Avrahami D, Golson ML, Kaestner KH. Single‐cell transcriptomics of the human endocrine pancreas. Diabetes 65: 3028‐3038, 2016.
 192.Weake VM. Histone ubiquitylation control of gene expression. In: Workman J, Abmayr S, editors. Fundamentals of Chromatin. New York: Springer, 2014.
 193.Wei J, Zhai L, Xu J, Wang H. Role of Bmi1 in H2A ubiquitylation and Hox gene silencing. J Biol Chem 281: 22537‐22544, 2006.
 194.Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99‐109, 1999.
 195.Welters A, Meissner T, Grulich‐Henn J, Frohlich‐Reiterer E, Warncke K, Mohnike K, Blankenstein O, Menzel U, Datz N, Bollow E, Holl RW. Characterization of diabetes following pancreatic surgery in patients with congenital hyperinsulinism. Orphanet J Rare Dis 13: 230, 2018.
 196.Westacott MJ, Farnsworth NL, St Clair JR, Poffenberger G, Heintz A, Ludin NW, Hart NJ, Powers AC, Benninger RKP. Age‐dependent decline in the coordinated [Ca(2+)] and insulin secretory dynamics in human pancreatic islets. Diabetes 66: 2436‐2445, 2017.
 197.Whalen S, Pollard KS. Most chromatin interactions are not in linkage disequilibrium. Genome Res 29: 334‐343, 2019.
 198.White MG, Shaw JA, Taylor R. Type 2 diabetes: The pathologic basis of reversible beta‐cell dysfunction. Diabetes Care 39: 2080‐2088, 2016.
 199.Willard HF. Chromosome‐specific organization of human alpha satellite DNA. Am J Hum Genet 37: 524‐532, 1985.
 200.Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I, Mechtler K, Ammerer G, Seiser C. 14‐3‐3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27: 88‐99, 2008.
 201.Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11: 267‐274, 2003.
 202.Wood K, Tellier M, Murphy S. DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules 8: 11, 2018.
 203.Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC‐1alpha, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 229: R99‐R115, 2016.
 204.Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54: 360‐367, 2011.
 205.Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renstrom E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX‐1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26: 1203‐1212, 2012.
 206.Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150: 685‐696, 2012.
 207.Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang HY, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MC, Ma RC, So WY, Chan JC, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40: 1092‐1097, 2008.
 208.Ye L, Robertson MA, Hesselson D, Stainier DY, Anderson RM. Glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis. Development 142: 1407‐1417, 2015.
 209.Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund‐Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schubeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356: eaaj2239, 2017.
 210.Yu W, Zhang F, Wang S, Fu Y, Chen J, Liang X, Le H, Pu WT, Zhang B. Depletion of polycomb repressive complex 2 core component EED impairs fetal hematopoiesis. Cell Death Dis 8: e2744, 2017.
 211.Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre‐pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: A systematic review and meta‐analysis. PLoS One 8: e61627, 2013.
 212.Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta‐cells. Nature 455: 627‐632, 2008.
 213.Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29: 69‐80, 2008.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Maria L. Golson. Islet Epigenetic Impacts on β‐Cell Identity and Function. Compr Physiol 2021, 11: 1961-1978. doi: 10.1002/cphy.c200004