Comprehensive Physiology Wiley Online Library

Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases

Full Article on Wiley Online Library



Abstract

Extracellular vesicles (EVs) are lipid bilayer‐enclosed extracellular particles carrying rich cargo such as proteins, lipids, and microRNAs with distinct characteristics of their parental cells. EVs are emerging as an important form of cellular communication with the ability to selectively deliver a kit of directional instructions to nearby or distant cells to modulate their functions and phenotypes. According to their biogenesis, EVs can be divided into two groups: those of endocytic origin are called exosomes and those derived from outward budding of the plasma membrane are called microvesicles (also known as ectosomes or microparticles). Under physiological conditions, EVs are actively involved in maintenance of pulmonary hemostasis. However, EVs can contribute to the pathogenesis of diseases such as chronic obstructive pulmonary disease, asthma, acute lung injury/acute respiratory distress syndrome, interstitial lung disease, and pulmonary arterial hypertension. EVs, especially those derived from mesenchymal/stromal stem cells, can also be beneficial and can curb the development of lung diseases. Novel technologies are continuously being developed to minimize the undesirable effects of EVs and also to engineer EVs so that they may have beneficial effects and can be used as therapeutic agents in lung diseases. © 2021 American Physiological Society. Compr Physiol 11:1351‐1369, 2021.

Figure 1. Figure 1. Possible mechanisms of the biogenesis of exosomes (EXOs) and microvesicles (MVs). The biogenesis of EXOs starts from the early endosomes (EE) derived from the internalized plasma membrane or from the biosynthetic pathway of [the trans‐Golgi network (TGN)]. The cargos on the membrane of the endosomes are sorted, followed by budding inwards and fission into small membrane vesicles known as intraluminal vesicles (ILVs) within the lumen of endosomes during their maturation into multivesicular bodies (MVBs). These processes are conducted in a manner dependent or independent of the endosomal sorting complex required for transport (ESCRT) complex. The MVB can either follow a degradation pathway fusing with lysosomes or proceed to release the ILVs as exosomes to the extracellular space. The cytosolic pH may affect MVB function as secretory versus degradatory compartments. For the extracellular release of exosomes, MVBs are first transported to the plasma membranes, a process dependent on the cytoskeleton and regulated by Rab GTPases including Rab27b and Rab35. MVBs are then docked on the plasma membrane that involves the rearrangement of sub‐membrane actin cytoskeleton in a manner depends on Rab27a and Rab11. This is followed by the fusion of MVBs with the plasma membrane that leads to the formation of pores in the membrane to release exosomes. This may be mediated by soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins and the Ca2+ sensor synaptotagmin (Syt). The microvesicles (MVs) are formed by clustering and sorting of various components in discrete membrane microdomains of the plasma membrane followed by outward budding of the plasma membrane and the release of the MVs. In the clustering and sorting process, ESCRT‐I and tetraspanin may act as key mediators. Concomitant to this process the membrane microdomains of the plasma membrane undergo lipid flipping, that is, exposition of phosphatidylserine and phosphatidylethanolamine from the inner leaflet to the cell surface. Subsequently, the membrane microdomains of the plasma membrane bud outwards and are released as MVs. This process is orchestrated by ESCRT‐III, the small GTPase RhoA and Rho‐associated protein kinase (ROCK) as well as ADP‐ribosylation factor 6 (ARF6), which are involved in actin polymerization and myosin activity in the processes in MV release 61,66,72,73,119,137,141,156,185,187.
Figure 2. Figure 2. Extracellular vesicle (EV) interactions with target cells. EVs can transmit information to target cells by directly binding to cell surface receptors to evoke intracellular signaling without delivery of their content, fusing with the plasma membrane or through endocytosis to deliver their content. The fusion of EVs with the plasma membrane leads to delivery of their content (including protein, peptide, mRNA, miRNA, etc.), which is followed by altered cellular activities including changes in gene transcription. EVs can also be taken up entirely by target cells through various forms of endocytosis. Exosomes and small ectosomes can be internalized via caveolae, clathrin‐coated pits, or lipid rafts; whereas larger ectosomes or aggregated EVs are internalized through phagocytosis or macropinocytosis (a form of endocytosis by which a large fluid‐filled vesicle is pinched off from the cell membrane into the cytoplasm of the cell). The endocytosed EVs are first located in early endosomes (EE). During the maturation of EEs into multivesicular bodies (MVBs), they are transformed into intraluminal vesicles (ILVs) and their intraluminal contents may be released into the cytosol, which is known as back fusion, a process of major importance for delivery of intraluminal cargoes such as miRNAs. EVs may also be degraded when MVBs are fused with the lysosome so that their contents are recycled to fuel the metabolism of the recipient cells 14,26,61,83,84,119,125,147,178,185.
Figure 3. Figure 3. Different signaling pathways mediated by extracellular vesicles (EVs) in the inflammatory response of the lung evoked by infection (lipopolysaccharide/Gram‐negative bacteria) versus oxidative stress (hyperoxia). Infection primarily stimulates alveolar macrophages to release EVs that carry increased levels of microRNA (miR)‐221 and miR‐222 while oxidative stress predominantly stimulates type‐I epithelial cells to release EVs that carry increased levels of miR‐17, miR‐221, miR‐320a. EVs generated in response to infection and oxidative stress both promote the recruitment of macrophages and the development of lung inflammation. However, EVs derived from alveolar macrophages increase the expression of TLR6, MyD88, IL‐1β, IL‐10, and CD80 in recruited alveolar macrophages. By contrast, EVs released from epithelial cells increase the expression of TLR2, MyD88, TNFα, and IL‐6 in recruited alveolar macrophages 10,37,39,100,114,209. CD80, cluster of differentiation 80. IL‐1β, IL‐6, and IL‐10, interleukin‐1β, ‐6, and ‐10, respectively. MyD88, myeloid differentiation factor 88. TLR2 and TLR6, Toll‐like receptor 2, and 6, respectively. TNFα, tumor necrosis factor α.
Figure 4. Figure 4. Possible mechanism for extracellular vesicles (EVs)‐mediated pulmonary vascular remodeling caused by hypoxia and transforming growth factor β (TGF‐β). When exposed to these stimuli pulmonary artery endothelial cells (PAECs) show an increased release of caveolin‐1 positive (Cav‐1+) EVs, which stimulate the production of TGF‐β from macrophages. TGF‐β causes endothelial cells (ECs) to migrate and elicit defective angiogenesis. It also stimulates pulmonary artery smooth muscle cells (PASMCs) to migrate and inhibits their apoptosis. These effects result from the binding to TGF‐β receptors (TGFβR), phosphorylation of Smad2/3, and altered gene expression. The effect of TGF‐β can be counteracted by bone morphogenetic protein (BMP), which inhibits vascular remodeling through binding to BMP receptor type 2 (BMPR2) followed by phosphorylation of Smad1/5/8 and altered gene expression. However, the shedding of Cav‐1+ EVs caused by hypoxia and TGF‐β may lead to dysfunction of endothelial nitric oxide synthase (eNOS) and increased production of peroxynitrite (OONO), which suppress the expression of BMPR2 and thus vascular remodeling. Under hypoxia and TGF‐β there is also an increased generation of microRNA 143‐3p (miR‐143‐3p) in PASMCs, which is sorted into multivesicular bodies (MVBs) and released into the extracellular space as EVs. These miR‐143‐3p containing EVs are taken up by PAECs, followed by enhanced cell migration and defective angiogenesis and thereby contribute to the development of pulmonary artery hypertension 5,21,140,176,181,205. Red arrowed line, activation; green line with T end, inhibition.


Figure 1. Possible mechanisms of the biogenesis of exosomes (EXOs) and microvesicles (MVs). The biogenesis of EXOs starts from the early endosomes (EE) derived from the internalized plasma membrane or from the biosynthetic pathway of [the trans‐Golgi network (TGN)]. The cargos on the membrane of the endosomes are sorted, followed by budding inwards and fission into small membrane vesicles known as intraluminal vesicles (ILVs) within the lumen of endosomes during their maturation into multivesicular bodies (MVBs). These processes are conducted in a manner dependent or independent of the endosomal sorting complex required for transport (ESCRT) complex. The MVB can either follow a degradation pathway fusing with lysosomes or proceed to release the ILVs as exosomes to the extracellular space. The cytosolic pH may affect MVB function as secretory versus degradatory compartments. For the extracellular release of exosomes, MVBs are first transported to the plasma membranes, a process dependent on the cytoskeleton and regulated by Rab GTPases including Rab27b and Rab35. MVBs are then docked on the plasma membrane that involves the rearrangement of sub‐membrane actin cytoskeleton in a manner depends on Rab27a and Rab11. This is followed by the fusion of MVBs with the plasma membrane that leads to the formation of pores in the membrane to release exosomes. This may be mediated by soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins and the Ca2+ sensor synaptotagmin (Syt). The microvesicles (MVs) are formed by clustering and sorting of various components in discrete membrane microdomains of the plasma membrane followed by outward budding of the plasma membrane and the release of the MVs. In the clustering and sorting process, ESCRT‐I and tetraspanin may act as key mediators. Concomitant to this process the membrane microdomains of the plasma membrane undergo lipid flipping, that is, exposition of phosphatidylserine and phosphatidylethanolamine from the inner leaflet to the cell surface. Subsequently, the membrane microdomains of the plasma membrane bud outwards and are released as MVs. This process is orchestrated by ESCRT‐III, the small GTPase RhoA and Rho‐associated protein kinase (ROCK) as well as ADP‐ribosylation factor 6 (ARF6), which are involved in actin polymerization and myosin activity in the processes in MV release 61,66,72,73,119,137,141,156,185,187.


Figure 2. Extracellular vesicle (EV) interactions with target cells. EVs can transmit information to target cells by directly binding to cell surface receptors to evoke intracellular signaling without delivery of their content, fusing with the plasma membrane or through endocytosis to deliver their content. The fusion of EVs with the plasma membrane leads to delivery of their content (including protein, peptide, mRNA, miRNA, etc.), which is followed by altered cellular activities including changes in gene transcription. EVs can also be taken up entirely by target cells through various forms of endocytosis. Exosomes and small ectosomes can be internalized via caveolae, clathrin‐coated pits, or lipid rafts; whereas larger ectosomes or aggregated EVs are internalized through phagocytosis or macropinocytosis (a form of endocytosis by which a large fluid‐filled vesicle is pinched off from the cell membrane into the cytoplasm of the cell). The endocytosed EVs are first located in early endosomes (EE). During the maturation of EEs into multivesicular bodies (MVBs), they are transformed into intraluminal vesicles (ILVs) and their intraluminal contents may be released into the cytosol, which is known as back fusion, a process of major importance for delivery of intraluminal cargoes such as miRNAs. EVs may also be degraded when MVBs are fused with the lysosome so that their contents are recycled to fuel the metabolism of the recipient cells 14,26,61,83,84,119,125,147,178,185.


Figure 3. Different signaling pathways mediated by extracellular vesicles (EVs) in the inflammatory response of the lung evoked by infection (lipopolysaccharide/Gram‐negative bacteria) versus oxidative stress (hyperoxia). Infection primarily stimulates alveolar macrophages to release EVs that carry increased levels of microRNA (miR)‐221 and miR‐222 while oxidative stress predominantly stimulates type‐I epithelial cells to release EVs that carry increased levels of miR‐17, miR‐221, miR‐320a. EVs generated in response to infection and oxidative stress both promote the recruitment of macrophages and the development of lung inflammation. However, EVs derived from alveolar macrophages increase the expression of TLR6, MyD88, IL‐1β, IL‐10, and CD80 in recruited alveolar macrophages. By contrast, EVs released from epithelial cells increase the expression of TLR2, MyD88, TNFα, and IL‐6 in recruited alveolar macrophages 10,37,39,100,114,209. CD80, cluster of differentiation 80. IL‐1β, IL‐6, and IL‐10, interleukin‐1β, ‐6, and ‐10, respectively. MyD88, myeloid differentiation factor 88. TLR2 and TLR6, Toll‐like receptor 2, and 6, respectively. TNFα, tumor necrosis factor α.


Figure 4. Possible mechanism for extracellular vesicles (EVs)‐mediated pulmonary vascular remodeling caused by hypoxia and transforming growth factor β (TGF‐β). When exposed to these stimuli pulmonary artery endothelial cells (PAECs) show an increased release of caveolin‐1 positive (Cav‐1+) EVs, which stimulate the production of TGF‐β from macrophages. TGF‐β causes endothelial cells (ECs) to migrate and elicit defective angiogenesis. It also stimulates pulmonary artery smooth muscle cells (PASMCs) to migrate and inhibits their apoptosis. These effects result from the binding to TGF‐β receptors (TGFβR), phosphorylation of Smad2/3, and altered gene expression. The effect of TGF‐β can be counteracted by bone morphogenetic protein (BMP), which inhibits vascular remodeling through binding to BMP receptor type 2 (BMPR2) followed by phosphorylation of Smad1/5/8 and altered gene expression. However, the shedding of Cav‐1+ EVs caused by hypoxia and TGF‐β may lead to dysfunction of endothelial nitric oxide synthase (eNOS) and increased production of peroxynitrite (OONO), which suppress the expression of BMPR2 and thus vascular remodeling. Under hypoxia and TGF‐β there is also an increased generation of microRNA 143‐3p (miR‐143‐3p) in PASMCs, which is sorted into multivesicular bodies (MVBs) and released into the extracellular space as EVs. These miR‐143‐3p containing EVs are taken up by PAECs, followed by enhanced cell migration and defective angiogenesis and thereby contribute to the development of pulmonary artery hypertension 5,21,140,176,181,205. Red arrowed line, activation; green line with T end, inhibition.
References
 1.Abman SH, Ivy DD, Archer SL, Wilson K. AHA/ATS joint guidelines for Pediatric Pulmonary Hypertension Committee. Executive summary of the American Heart Association and American Thoracic Society joint guidelines for Pediatric Pulmonary Hypertension. Am J Respir Crit Care Med 194: 898‐906, 2016.
 2.Abraham A, Krasnodembskaya A. Mesenchymal stem cell‐derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med 9: 28‐38, 2020.
 3.Adell MAY, Migliano SM, Upadhyayula S, Bykov YS, Sprenger S, Pakdel M, Vogel GF, Jih G, Skillern W, Behrouzi R, Babst M, Schmidt O, Hess MW, Briggs JA, Kirchhausen T, Teis D. Recruitment dynamics of ESCRT‐III and Vps4 to endosomes and implications for reverse membrane budding. elife 6. pii: e31652, 2017.
 4.Alexander M, Ramstead AG, Bauer KM, Lee SH, Runtsch MC, Wallace J, Huffaker TB, Larsen DK, Tolmachova T, Seabra MC, Round JL, Ward DM, O'Connell RM. Rab27‐dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. J Immunol 199: 3559‐3570, 2017.
 5.Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z, Hasslinger A, El‐Bizri R, Rounds SI, Quesenberry PJ, Klinger JR. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline‐treated mice. Cardiovasc Res 100: 354‐362, 2013.
 6.Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR. Exosomes induce and reverse monocrotaline‐induced pulmonary hypertension in mice. Cardiovasc Res 110: 319‐330, 2016.
 7.Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, De Marco T, Yeghiazarians Y. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177: 1268‐1275, 2008.
 8.Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41: 59‐72, 1969.
 9.Andreu Z, Yáñez‐Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 5: 442, 2014.
 10.Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 233: 116671, 2019.
 11.Barberà JA. Chronic obstructive pulmonary disease: A disease of the endothelium? Am J Respir Crit Care Med 188: 5‐7, 2013.
 12.Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24: 19‐25, 2014.
 13.Bourdonnay E, Zasłona Z, Penke LR, Speth JM, Schneider DJ, Przybranowski S, Swanson JA, Mancuso P, Freeman CM, Curtis JL, Peters‐Golden M. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J Exp Med 212: 729‐742, 2015.
 14.Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 218: 1436‐1451, 2019.
 15.Bueno‐Beti C, Sassi Y, Hajjar RJ, Hadri L. Pulmonary artery hypertension model in rats by monocrotaline administration. Methods Mol Biol 1816: 233‐241, 2018.
 16.Butt Y, Kurdowska A, Allen TC. Acute lung injury: A clinical and molecular review. Arch Pathol Lab Med 140: 345‐350, 2016.
 17.Caillat C, Maity S, Miguet N, Roos WH, Weissenhorn W. The role of VPS4 in ESCRT‐III polymer remodeling. Biochem Soc Trans 47: 441‐448, 2019.
 18.Carraro G, Shrestha A, Rostkovius J, Contreras A, Chao CM, El Agha E, Mackenzie B, Dilai S, Guidolin D, Taketo MM, Günther A, Kumar ME, Seeger W, De Langhe S, Barreto G, Bellusci S. miR‐142‐3p balances proliferation and differentiation of mesenchymal cells during lung development. Development 141: 1272‐1281, 2014.
 19.Chen J, Hu C, Pan P. Extracellular vesicle microrna transfer in lung diseases. Front Physiol 8: 1028, 2017.
 20.Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, Liu JH, Xiao MY, Chen YF. Therapeutic effects of mesenchymal stem cell‐derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 35: 1121‐1128, 2014.
 21.Chen T, Raj JU. Extracellular vesicles, microRNAs, and pulmonary hypertension. In: Nakanishi T, Baldwin H, Fineman J, Yamagishi H, editors. Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension. Singapore: Springer, 2020.
 22.Chen Y, Qiao L, Zhang Z, Hu G, Zhang J, Li H. Let‐7a inhibits proliferation and promotes apoptosis of human asthmatic airway smooth muscle cells. Exp Ther Med 17: 3327‐3334, 2019.
 23.Chi M, Shi X, Huo X, Wu X, Zhang P, Wang G. Dexmedetomidine promotes breast cancer cell migration through Rab11‐mediated secretion of exosomal TMPRSS2. Ann Transl Med 8: 531, 2020.
 24.Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR‐15 and miR‐16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102: 13944‐13949, 2005.
 25.Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L. TGFβ triggers mir‐143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res 116: 1753‐1764, 2015.
 26.Cocucci E, Meldolesi J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol 25: 364‐372, 2015.
 27.Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30: 255‐289, 2014.
 28.Combes V, Latham SL, Wen B, Allison AC, Grau GE. Diannexin down‐modulates tnf‐induced endothelial microparticle release by blocking membrane budding process. Int J Innov Med Health Sci 7: 1‐11, 2016.
 29.Cottin V. Interstitial lung disease. Eur Respir Rev 22: 26‐32, 2013.
 30.Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet‐free plasma. Br J Haematol 21: 53‐69, 1971.
 31.Crespin M, Vidal C, Picard F, Lacombe C, Fontenay M. Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul Fibrinolysis 20: 63‐70, 2009.
 32.Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J Clin Invest 128: 3704‐3715, 2018.
 33.D'Alessandro A, El Kasmi KC, Plecitá‐Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of pulmonary hypertension: Mesenchymal and inflammatory cell metabolic reprogramming. Antioxid Redox Signal 28: 230‐250, 2018.
 34.de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol, 2020. DOI: 10.1038/s41569‐020‐0389‐5.
 35.de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker AH. Extracellular vesicle cross‐talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF‐β signaling: Implications for PAH vascular remodeling. Cell Commun Signal 17: 143, 2019.
 36.Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 379: 1341‐1351, 2012. DOI: 10.1016/S0140‐6736(11)60968‐9.
 37.Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH. MicroRNA‐143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117: 870‐883, 2015.
 38.Dengler V, Downey GP, Tuder RM, Eltzschig HK, Schmidt EP. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. Am J Respir Cell Mol Biol 49: 1‐5, 2013.
 39.Di Padova F, Quesniaux VFJ, Ryffel B. MyD88 as a therapeutic target for inflammatory lung diseases. Expert Opin Ther Targets 22: 401‐408, 2018.
 40.Di Rocco G, Baldari S, Toietta G. Towards therapeutic delivery of extracellular vesicles: Strategies for in vivo tracking and biodistribution analysis. Stem Cells Int 2016: 5029619, 2016.
 41.Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69: 5601‐5609, 2009.
 42.D'Souza‐Schorey C, Chavrier P. ARF proteins: Roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7: 347‐358, 2006.
 43.D'Souza‐Schorey C, Schorey JS. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem 62: 125‐133, 2018.
 44.Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 363: 114‐120, 2018.
 45.Dushianthan A, Grocott MP, Postle AD, Cusack R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J 87: 612‐622, 2011.
 46.EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12: 347‐357, 2013.
 47.Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci 20. pii: E4597, 2019.
 48.Elíes J, Yáñez M, Pereira TMC, Gil‐Longo J, MacDougall DA, Campos‐Toimil M. An update to calcium binding proteins. Adv Exp Med Biol 1131: 183‐213, 2020.
 49.Elsherbini A, Bieberich E. Ceramide and exosomes: A novel target in cancer biology and therapy. Adv Cancer Res 140: 121‐154, 2018.
 50.Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard‐Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31: 642‐648, 2006.
 51.Fishman AP. Pulmonary circulation, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions. In: Comprehensive Physiology, 2011, p. 93‐165. DOI: 10.1002/cphy.cp030103.
 52.Frankel EB, Audhya A. ESCRT‐dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 74: 4‐10, 2018.
 53.Friand V, David G, Zimmermann P. Syntenin and syndecan in the biogenesis of exosomes. Biol Cell 107: 331‐341, 2015.
 54.Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Clinical application of mesenchymal stem cell‐derived extracellular vesicle‐based therapeutics for inflammatory lung diseases. J Clin Med 7. pii: E355, 2018.
 55.Fujita Y, Kosaka N, Araya J, Kuwano K, Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med 21: 533‐542, 2015.
 56.Fukumitsu M, Suzuki K. Mesenchymal stem/stromal cell therapy for pulmonary arterial hypertension: Comprehensive review of preclinical studies. J Cardiol 74: 304‐312, 2019.
 57.Gao Y, Chen T, Raj JU. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am J Respir Cell Mol Biol 54: 451‐460, 2016.
 58.Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: Structural development and regulation of vasomotor tone. Pulm Circ 6: 407‐425, 2016.
 59.Gao Y, Raj JU. Pathophysiology of Pulmonary Hypertension, Colloquium Series on Integrated Systems Physiology: From Molecule to Function. Morgan & Claypool Publishers, vol. 9, No. 6, 2018.
 60.Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew‐Goodall Y, Goodall GJ. The miR‐200 family and miR‐205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593‐601, 2008.
 61.Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 21: 76‐93, 2020.
 62.Guiot J, Struman I, Louis E, Louis R, Malaise M, Njock MS. Exosomal miRNAs in lung diseases: From biologic function to therapeutic targets. J Clin Med 8. pii: E1345, 2019.
 63.Gupta R, Radicioni G, Abdelwahab S, Dang H, Carpenter J, Chua M, Mieczkowski PA, Sheridan JT, Randell SH, Kesimer M. Intercellular communication between airway epithelial cells is mediated by exosome‐like vesicles. Am J Respir Cell Mol Biol 60: 209‐220, 2019.
 64.Hackett TL. Epithelial‐mesenchymal transition in the pathophysiology of airway remodeling in asthma. Curr Opin All Clin Immunol 12: 53‐59, 2012.
 65.Hafiane A, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 85: 213‐222, 2018.
 66.Han J, Pluhackova K, Böckmann RA. The multifaceted role of SNARE proteins in membrane fusion. Front Physiol 8: 5, 2017.
 67.Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW. Mesenchymal stem cell‐derived extracellular vesicles decrease lung injury in mice. J Immunol 203: 1961‐1972, 2019.
 68.Hauser P, Wang S, Didenko VV. Apoptotic bodies: Selective detection in extracellular vesicles. Methods Mol Biol 1554: 193‐200, 2017.
 69.Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, Ilagan RM. Mesenchymal stromal cell‐derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Phys Lung Cell Mol Phys 316: L723‐L737, 2019.
 70.Hoshino A, Costa‐Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont‐Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 527: 329‐335, 2015.
 71.Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim YI, Spell ML, Wang Y, Chanda D, Dager JR, Sharma NS, Curtiss M, Antony VB, Dransfield MT, Chaplin DD, Steele C, Barnes S, Duncan SR, Prasain JK, Thannickal VJ, Deshane JS. Unique lipid signatures of extracellular vesicles from the airways of asthmatics. Sci Rep 8: 10340, 2018.
 72.Hsu C, Morohashi Y, Yoshimura S, Manrique‐Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M. Regulation of exosome secretion by Rab35 and its GTPase‐activating proteins TBC1D10A‐C. J Cell Biol 189: 223‐232, 2010.
 73.Hu G, Christman JW. Editorial: Alveolar macrophages in lung inflammation and resolution. Front Immunol 10: 2275, 2019.
 74.Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur Respir J 53. pii:1801887, 2019.
 75.Hurley JH. ESCRTs are everywhere. EMBO J 34: 2398‐2407, 2015.
 76.Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol 14: 654‐655, 2012.
 77.Hussell T, Bell TJ. Alveolar macrophages: Plasticity in a tissue‐specific context. Nat Rev Immunol 14: 81‐93, 2014.
 78.Hyenne V, Labouesse M, Goetz JG. The small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases 9: 445‐451, 2018.
 79.Jahn R, Scheller RH. SNAREs‐engines for membrane fusion. Nat Rev Mol Cell Biol 7: 631‐643, 2006.
 80.Jain RK. Molecular regulation of vessel maturation. Nat Med 9: 685‐693, 2003.
 81.Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109: 175‐180, 2003.
 82.Johnson ER, Matthay MA. Acute lung injury: Epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23: 243‐252, 2010. DOI: 10.1089/jamp.2009.0775.
 83.Juliano RL. Intracellular trafficking and endosomal release of oligonucleotides: What we know and what we don't. Nucleic Acid Ther 28: 166‐177, 2018.
 84.Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic 10: 364‐371, 2009.
 85.Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 87: 59‐63, 2015.
 86.Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 8: 2017. DOI: 10.1002/wrna.1413.
 87.Kim YS, Lee WH, Choi EJ, Choi JP, Heo YJ, Gho YS, Jee YK, Oh YM, Kim YK. Extracellular vesicles derived from Gram‐negative bacteria, such as Escherichia coli, induce emphysema mainly via IL‐17A‐mediated neutrophilic inflammation. J Immunol 194: 3361‐3368, 2015.
 88.Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Corey E, Ventetuolo CE, Quesenberry PJ, Olin D, Liang OD. Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. Am J Respir Cell Mol Biol 62: 577‐587, 2020.
 89.Kosanovic D, Deo U, Gall H, Selvakumar B, Herold S, Weiss A, Petrovic A, Sydykov A, Ghofrani HA, Schermuly RT. Enhanced circulating levels of CD3 cells‐derived extracellular vesicles in different forms of pulmonary hypertension. Pulm Circ 9: 2045894019864357, 2019.
 90.Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to mesenchymal transition in cardiovascular disease: Jacc state‐of‐the‐art review. J Am Coll Cardiol 73: 190‐209, 2019.
 91.Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal‐Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113 (8): E968‐E977, 2016.
 92.Kubo H. Extracellular vesicles in lung disease. Chest 153: 210‐216, 2018.
 93.Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell‐derived exosomes in allergic airway inflammation. J Allergy Clin Immunol 131: 1194‐1203, 1203.e1‐14, 2013.
 94.Kunder CA, St John AL, Li G, Leong KW, Berwin B, Staats HF, Abraham SN. Mast cell‐derived particles deliver peripheral signals to remote lymph nodes. J Exp Med 206: 2455‐2467, 2009.
 95.Lanyu Z, Feilong H. Emerging role of extracellular vesicles in lung injury and inflammation. Biomed Pharmacother 113: 108748, 2019.
 96.Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci 132. pii: jcs222406, 2019.
 97.Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 378: 1811‐1823, 2018.
 98.Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez‐Gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia‐induced pulmonary hypertension. Circulation 126: 2601‐2611, 2012.
 99.Lee H, Groot M, Pinilla‐Vera M, Fredenburgh LE, Jin Y. Identification of miRNA‐rich vesicles in bronchoalveolar lavage fluid: Insights into the function and heterogeneity of extracellular vesicles. J Control Release 294: 43‐52, 2019.
 100.Lee H, Zhang D, Laskin DL, Jin Y. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J Immunol 201: 1500‐1509, 2018.
 101.Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung epithelial cell‐derived microvesicles regulate macrophage migration via microRNA‐17/221‐induced integrin β1 recycling. J Immunol 199: 1453‐1464, 2017.
 102.Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y. Epithelial cell‐derived microvesicles activate macrophages and promote inflammation via microvesicle‐containing microRNAs. Sci Rep 6: 35250, 2016.
 103.Lee JH, Park J, Lee JW. Therapeutic use of mesenchymal stem cell‐derived extracellular vesicles in acute lung injury. Transfusion 59 (S1): 876‐883, 2019.
 104.Lee JW. Macrophage‐derived microvesicles' pathogenic role in acute lung injury. Thorax 71: 975‐976, 2016.
 105.Letsiou E, Bauer N. Endothelial extracellular vesicles in pulmonary function and disease. Curr Top Membr 82: 197‐256, 2018.
 106.Levänen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock ÅM. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131: 894‐903, 2013.
 107.Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31 (45): 4740‐4749, 2012.
 108.Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol 1298: 1‐15, 2015.
 109.Li H, Meng X, Liang X, Gao Y, Cai S. Administration of microparticles from blood of the lipopolysaccharide‐treated rats serves to induce pathologic changes of acute respiratory distress syndrome. Exp Biol Med (Maywood) 240: 1735‐1741, 2015.
 110.Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 4: 47, 2019.
 111.Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, Sun W, Duan Y, Yang G, Yuan L. In vitro and in vivo RNA inhibition by CD9‐HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett 19: 19‐28, 2019.
 112.Li ZG, Scott MJ, Brzóska T, Sundd P, Li YH, Billiar TR, Wilson MA, Wang P, Fan J. Lung epithelial cell‐derived IL‐25 negatively regulates LPS‐induced exosome release from macrophages. Mil Med Res 5: 24, 2018.
 113.Lima LG, Leal AC, Vargas G, Porto‐Carreiro I, Monteiro RQ. Intercellular transfer of tissue factor via the uptake of tumor‐derived microvesicles. Thromb Res 132: 450‐456, 2013.
 114.Liu MF, Li JS, Weng TH, Lei HY. Differential expression and modulation of costimulatory molecules CD80 and CD86 on monocytes from patients with systemic lupus erythematosus. Scand J Immunol 49: 82‐87, 1999.
 115.Liu Z, Liu J, Xiao M, Wang J, Yao F, Zeng W, Yu L, Guan Y, Wei W, Peng Z, Zhu K, Wang J, Yang Z, Zhong J, Chen J. Mesenchymal stem cell‐derived microvesicles alleviate pulmonary arterial hypertension by regulating renin‐angiotensin system. J Am Soc Hypertens 12: 470‐478, 2018.
 116.Maddox L, Schwartz DA. The pathophysiology of asthma. Annu Rev Med 53: 477‐498, 2002.
 117.Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, Fujino N, Tojo Y, Ota C, Kubo H, Kobayashi S, Yanai M, Shimura S, Ochiya T, Ichinose M. Serum extracellular vesicular miR‐21‐5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res 17: 110, 2016.
 118.Mari PV, G Jones M, Richeldi L. Contemporary concise review 2018: Interstitial lung disease. Respirology 24: 809‐816, 2019.
 119.Mathieu M, Martin‐Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell‐to‐cell communication. Nat Cell Biol 21: 9‐17, 2019.
 120.Matsumoto A, Takahashi Y, Nishikawa M, Sano K, Morishita M, Charoenviriyakul C, Saji H, Takakura Y. Role of phosphatidylserine‐derived negative surface charges in the recognition and uptake of intravenously injected b16bl6‐derived exosomes by macrophages. J Pharm Sci 106: 168‐175, 2017.
 121.Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS. Acute respiratory distress syndrome. Nat Rev Dis Primers 5: 18, 2019.
 122.McCullough J, Frost A, Sundquist WI. Structures, functions, and dynamics of ESCRT‐III/Vps4 membrane remodeling and fission complexes. Annu Rev Cell Dev Biol 34: 85‐109, 2018.
 123.McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Phys Lung Cell Mol Phys 303: L364‐L381, 2012.
 124.Meehan B, Rak J, Di Vizio D. Oncosomes‐large and small: What are they, where they came from? J Extracell Vesicles 5: 33109, 2016.
 125.Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol 28: R435‐R444, 2018.
 126.Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic potential of engineered extracellular vesicles. AAPS J 20: 50, 2018.
 127.Mims JW. Asthma: Definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2‐S6, 2015.
 128.Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40: 41‐51, 2015.
 129.Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res 19: 218, 2018.
 130.Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104 (10): 3257‐3266, 2004.
 131.Morishita M, Takahashi Y, Nishikawa M, Takakura Y. Pharmacokinetics of exosomes‐an important factor for elucidating the biological roles of exosomes and for the development of exosome‐based therapeutics. J Pharm Sci 106: 2265‐2269, 2017.
 132.Muralidharan‐Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza‐Schorey C. ARF6‐regulated shedding of tumor cell‐derived plasma membrane microvesicles. Curr Biol 19: 1875‐1885, 2009.
 133.Muralidharan‐Chari V, Clancy JW, Sedgwick A, D'Souza‐Schorey C. Microvesicles: Mediators of extracellular communication during cancer progression. J Cell Sci 123: 1603‐1611, 2010.
 134.Murphy DE, de Jong OG, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, Vader P. Extracellular vesicle‐based therapeutics: Natural versus engineered targeting and trafficking. Exp Mol Med 51: 32, 2019.
 135.Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 7: 637‐662, 2016.
 136.Njock MS, Guiot J, Henket MA, Nivelles O, Thiry M, Dequiedt F, Corhay JL, Louis RE, Struman I. Sputum exosomes: Promising biomarkers for idiopathic pulmonary fibrosis. Thorax 74: 309‐312, 2019.
 137.Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol 65: 86‐95, 2020.
 138.Ober C, Yao TC. The genetics of asthma and allergic disease: A 21st century perspective. Immunol Rev 242: 10‐30, 2011.
 139.O'Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD). J Thorac Dis 11 (Suppl 17): S2141‐S2154, 2019.
 140.Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, Comhair S, Erzurum S, Silva CLM, Machado RF, Bonini MG, Minshall RD. Injury‐induced shedding of extracellular vesicles depletes endothelial cells of Cav‐1 (caveolin‐1) and enables TGF‐β (transforming growth factor‐β)‐dependent pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 39 (6): 1191‐1202, 2019.
 141.Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12: 19‐30, 2010, 1‐13.
 142.Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 108: 1284‐1297, 2011.
 143.Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben‐Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N. Inhibition and role of let‐7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182 (2): 220‐229, 2010.
 144.Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res 157 (4): 191‐199, 2011.
 145.Park Y, Ryu JK. Models of synaptotagmin‐1 to trigger Ca2+‐dependent vesicle fusion. FEBS Lett 592: 3480‐3492, 2018.
 146.Pickar‐Oliver A, Black JB, Lewis MM, Mutchnick KJ, Klann TS, Gilcrest KA, Sitton MJ, Nelson CE, Barrera A, Bartelt LC, Reddy TE, Beisel CL, Barrangou R, Gersbach CA. Targeted transcriptional modulation with type I CRISPR‐Cas systems in human cells. Nat Biotechnol 37: 1493‐1501, 2019.
 147.Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell‐derived exosomes mediates exosome‐cell interactions. J Biol Chem 291: 1652‐1663, 2016.
 148.Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Mesenchymal stem cell‐derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 9: 320, 2018.
 149.Quinney KB, Frankel EB, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late‐acting ESCRT machinery. Proc Natl Acad Sci U S A 116: 6858‐6867, 2019.
 150.Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44: 1574‐1584, 2012.
 151.Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen‐presenting vesicles. J Exp Med 183: 1161‐1172, 1996.
 152.Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol 55: 261‐268, 2011.
 153.Ridger VC, Boulanger CM, Angelillo‐Scherrer A, Badimon L, Blanc‐Brude O, Bochaton‐Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat‐George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 117: 1296‐1316, 2017.
 154.Sánchez‐Duffhues G, García de Vinuesa A, Ten Dijke P. Endothelial‐to‐mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Dev Dyn 247: 492‐508, 2018.
 155.Santos RAS, Sampaio WO, Alzamora AC, Motta‐Santos D, Alenina N, Bader M, Campagnole‐Santos MJ. The ACE2/angiotensin‐(1‐7)/MAS axis of the renin‐angiotensin system: Focus on angiotensin‐(1‐7). Physiol Rev 98: 505‐553, 2018.
 156.Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium‐dependent manner. Traffic 6: 131‐143, 2005.
 157.Savina A, Furlán M, Vidal M, Colombo MI. Exosome release is regulated by a calcium‐dependent mechanism in K562 cells. J Biol Chem 278: 20083‐20090, 2003.
 158.Scott CC, Gruenberg J. Ion flux and the function of endosomes and lysosomes: pH is just the start: The flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. BioEssays 33: 103‐110, 2011.
 159.Shah T, Qin S, Vashi M, Predescu DN, Jeganathan N, Bardita C, Ganesh B, diBartolo S, Fogg LF, Balk RA, Predescu SA. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome. Clin Transl Med 7: 19, 2018.
 160.Shah TG, Predescu D, Predescu S. Mesenchymal stem cells‐derived extracellular vesicles in acute respiratory distress syndrome: A review of current literature and potential future treatment options. Clin Transl Med 8: 25, 2019.
 161.Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 118: 1917‐1950, 2018.
 162.Shaver CM, Woods J, Clune JK, Grove BS, Wickersham NE, McNeil JB, Shemancik G, Ware LB, Bastarache JA. Circulating microparticle levels are reduced in patients with ARDS. Crit Care 21: 120, 2017.
 163.Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286: 14383‐14395, 2011.
 164.Shentu TP, Huang TS, Cernelc‐Kohan M, Chan J, Wong SS, Espinoza CR, Tan C, Gramaglia I, van der Heyde H, Chien S, Hagood JS. Thy‐1 dependent uptake of mesenchymal stem cell‐derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep 7: 18052, 2017.
 165.Shi X, Cheng Q, Zhang Y. Reprogramming extracellular vesicles with engineered proteins. Methods. pii: S1046‐2023(19)30217‐8, 2019.
 166.Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53. pii: 1801913, 2019.
 167.Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega‐Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214: 197‐213, 2016.
 168.Soni S, Wilson MR, O'Dea KP, Yoshida M, Katbeh U, Woods SJ, Takata M. Alveolar macrophage‐derived microvesicles mediate acute lung injury. Thorax 71: 1020‐1029, 2016.
 169.Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 114: 551‐564, 2018. DOI: 10.1093/cvr/cvy004.
 170.Suliman HB, Nozik‐Grayck E. Mitochondrial dysfunction: Metabolic drivers of pulmonary hypertension. Antioxid Redox Signal 31: 843‐857, 2019.
 171.Taka S, Tzani‐Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in asthma and respiratory infections: Identifying common pathways. Allergy, Asthma Immunol Res 12: 4‐23, 2020.
 172.Takahashi T, Kobayashi S, Fujino N, Suzuki T, Ota C, He M, Yamada M, Suzuki S, Yanai M, Kurosawa S, Yamaya M, Kubo H. Increased circulating endothelial microparticles in COPD patients: A potential biomarker for COPD exacerbation susceptibility. Thorax 67: 1067‐1074, 2012.
 173.Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 132: 261‐264, 2017.
 174.Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis‐Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl‐Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro‐da‐Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza‐Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie‐Caille C, Erdbrügger U, Falcón‐Pérez JM, Fatima F, Fish JE, Flores‐Bellver M, Försönits A, Frelet‐Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez‐Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic‐Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer‐Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro‐Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens‐Uzunova ES, Martin‐Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales‐Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte‐'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev‐Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas‐Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM,Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez‐Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba‐Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7: 1535750, 2018.
 175.Thomashow MA, Shimbo D, Parikh MA, Hoffman EA, Vogel‐Claussen J, Hueper K, Fu J, Liu CY, Bluemke DA, Ventetuolo CE, Doyle MF, Barr RG. Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The multi‐ethnic study of atherosclerosis chronic obstructive pulmonary disease study. Am J Respir Crit Care Med 188: 60‐68, 2013.
 176.Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 24: 703‐716, 2019.
 177.Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin‐Jaular L, Théry C. Qualitative differences in T‐cell activation by dendritic cell‐derived extracellular vesicle subtypes. EMBO J 36: 3012‐3028, 2017.
 178.Todeschini AR, Hakomori SI. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780: 421‐433, 2008.
 179.Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the ‘bed’ that counts and not ‘the sleepers’. Expert Rev Respir Med 11: 299‐309, 2017.
 180.Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, Rådmark O, Grönneberg R, Grunewald J, Eklund A, Scheynius A, Gabrielsson S. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 67: 911‐919, 2012.
 181.Tual‐Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, Martinez MC. Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 182 (2): 261‐268, 2010.
 182.Tzouvelekis A, Toonkel R, Karampitsakos T, Medapalli K, Ninou I, Aidinis V, Bouros D, Glassberg MK. Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne) 5: 142, 2018.
 183.Uygur B, Melikov K, Arakelyan A, Margolis LB, Chernomordik LV. Syncytin 1 dependent horizontal transfer of marker genes from retrovirally transduced cells. Sci Rep 9: 17637, 2019.
 184.Valenzuela C, Torrisi SE, Kahn N, Quaresma M, Stowasser S, Kreuter M. Ongoing challenges in pulmonary fibrosis and insights from the nintedanib clinical programme. Respir Res 21: 7, 2020.
 185.van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19: 213‐228, 2018.
 186.Vargas A, Zhou S, Éthier‐Chiasson M, Flipo D, Lafond J, Gilbert C, Barbeau B. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J 28: 3703‐3719, 2014.
 187.Vietri M, Radulovic M, Stenmark H, Vietri M. The many functions of ESCRTs. Nat Rev Mol Cell Biol 21 (1): 25‐42, 2020.
 188.Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21: 1019‐1024, 2019.
 189.Wang T, Jiang L, Wei X, Dong Z, Liu B, Zhao J, Wang L, Xie P, Wang Y, Zhou S. Inhibition of miR‐221 alleviates LPS‐induced acute lung injury via inactivation of SOCS1/NF‐κB signaling pathway. Cell Cycle 18: 1893‐1907, 2019.
 190.Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 129: 2619‐2628, 2019.
 191.Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, Zhang H. Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia‐induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS One 11: e0147360, 2016.
 192.Welch‐Reardon KM, Wu N, Hughes CC. A role for partial endothelial‐mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol 35 (2): 303‐308, 2015.
 193.Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez‐Erviti L, Smith CI, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJ, Andaloussi SE. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4: 26316, 2015.
 194.Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KE, Sadik M, Alaarg A, Smith CI, Lehtiö J, El Andaloussi S, Wood MJ, Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6: 22519, 2016.
 195.Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 13: 269‐288, 1967.
 196.Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. Tumor‐derived exosomes are a source of shared tumor rejection antigens for CTL cross‐priming. Nat Med 7: 297‐303, 2001.
 197.Yáñez‐Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro‐da Silva A, Fais S, Falcon‐Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj‐Iglic V, Krämer‐Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček‐Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte‐'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez‐Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4: 27066, 2015.
 198.Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, Fan Q, Wei S, Li H, Liu J. Long non‐coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer 18: 78, 2019.
 199.Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H, Kim J, Shaker MR, Sun W, Park JH, Kim D, Heo WD, Choi C. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein‐protein interaction module. Nat Commun 7: 12277, 2016.
 200.Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, Mani V, Zeng Y, Ozen MO, Wang L, Demirci U, Tian W, Nicolls MR, de Jesus Perez VA. Loss of endothelium‐derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation 139: 1710‐1724, 2019.
 201.Yue Y, Zhang Z, Zhang L, Chen S, Guo Y, Hong Y. miR‐143 and miR‐145 promote hypoxia‐induced proliferation and migration of pulmonary arterial smooth muscle cells through regulating ABCA1 expression. Cardiovasc Pathol 37: 15‐25, 2018.
 202.Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126: 1198‐1207, 2016.
 203.Zhang D, Lee H, Wang X, Rai A, Groot M, Jin Y. Exosome‐mediated small RNA delivery: A novel therapeutic approach for inflammatory lung responses. Mol Ther 26: 2119‐2130, 2018.
 204.Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Phys Lung Cell Mol Phys 312: L110‐L121, 2017.
 205.Zhao L, Luo H, Li X, Li T, He J, Qi Q, Liu Y, Yu Z. Exosomes derived from human pulmonary artery endothelial cells shift the balance between proliferation and apoptosis of smooth muscle cells. Cardiology 137: 43‐53, 2017.
 206.Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, Wang G, Cockerill G, Hu Y, Xu Q, Li T, Zeng L. XBP1 splicing triggers miR‐150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep 6: 28627, 2016.
 207.Zhou G, Chen T, Raj JU. MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 52 (2): 139‐151, 2015.
 208.Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin‐induced acute lung injury in mice. Stem Cells 32: 116‐125, 2014.
 209.Zhu Z, Zhang D, Lee H, Menon AA, Wu J, Hu K, Jin Y. Macrophage‐derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA‐221/222. J Leukoc Biol 101: 1349‐1359, 2017.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Yuansheng Gao, J. Usha Raj. Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases. Compr Physiol 2020, 11: 1351-1369. doi: 10.1002/cphy.c200006