Comprehensive Physiology Wiley Online Library

Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake

Full Article on Wiley Online Library



Abstract

The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin‐1 secreted from gastric X/A‐like cells, cholecystokinin (CCK) secreted from duodenal I‐cells, glucagon‐like peptide 1 (GLP‐1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L‐cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679‐1730, 2021.

Figure 1. Figure 1. This figure illustrates the mechanisms underlying feeding regulation in hypothalamic nuclei.
Figure 2. Figure 2. This figure illustrates mechanisms underlying feeding regulation induced by ghrelin.
Figure 3. Figure 3. This figure illustrates mechanisms underlying feeding regulation induced by CCK.
Figure 4. Figure 4. This figure illustrates mechanisms underlying feeding regulation induced by GLP‐1.
Figure 5. Figure 5. This figure illustrates mechanisms underlying feeding regulation induced by PYY.
Figure 6. Figure 6. This figure illustrates mechanisms underlying feeding regulation induced by nesfatin‐1.
Figure 7. Figure 7. This figure illustrates mechanisms underlying feeding regulation induced by OXM.
Figure 8. Figure 8. This figure illustrates mechanisms underlying feeding regulation induced by UGN.


Figure 1. This figure illustrates the mechanisms underlying feeding regulation in hypothalamic nuclei.


Figure 2. This figure illustrates mechanisms underlying feeding regulation induced by ghrelin.


Figure 3. This figure illustrates mechanisms underlying feeding regulation induced by CCK.


Figure 4. This figure illustrates mechanisms underlying feeding regulation induced by GLP‐1.


Figure 5. This figure illustrates mechanisms underlying feeding regulation induced by PYY.


Figure 6. This figure illustrates mechanisms underlying feeding regulation induced by nesfatin‐1.


Figure 7. This figure illustrates mechanisms underlying feeding regulation induced by OXM.


Figure 8. This figure illustrates mechanisms underlying feeding regulation induced by UGN.
References
 1.Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, Bloom SR. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3‐36) on food intake. Brain Res 1043: 139‐144, 2005.
 2.Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschöp MH, Gao XB, Horvath TL. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116: 3229‐3239, 2006.
 3.Abraham MA, Lam TKT. Glucagon action in the brain. Diabetologia 59: 1367‐1371, 2016.
 4.Acar S, Çatli G, Küme T, Tuhan H, Gürsoy Çalan Ö, Demir K, Böber E, Abaci A. Increased concentrations of serum nesfatin‐1 levels in childhood with idiopathic chronic malnutrition. Turk J Med Sci 48: 378‐385, 2018.
 5.Adachi S, Takiguchi S, Okada K, Yamamoto K, Yamasaki M, Miyata H, Nakajima K, Fujiwara Y, Hosoda H, Kangawa K, Mori M, Doki Y. Effects of ghrelin administration after total gastrectomy: A prospective, randomized, placebo‐controlled phase II study. Gastroenterology 138: 1312‐1320, 2010.
 6.Adams JM, Pei H, Sandoval DA, Seeley RJ, Chang RB, Liberles SD, Olson DP. Liraglutide modulates appetite and body weight through glucagon‐like peptide 1 receptor‐expressing glutamatergic neurons. Diabetes 67: 1538‐1548, 2018.
 7.Adrian TE, Ballantyne GH, Longo WE, Bilchik AJ, Graham S, Basson MD, Tierney RP, Modlin IM. Deoxycholate is an important releaser of peptide YY and enteroglucagon from the human colon. Gut 34: 1219‐1224, 1993.
 8.Adrian TE, Ferri GL, Bacarese‐Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89: 1070‐1077, 1985.
 9.Adrian TE, Long RG, Fuessl HS, Bloom SR. Plasma peptide YY (PYY) in dumping syndrome. Dig Dis Sci 30: 1145‐1148, 1985.
 10.Adrian TE, Savage AP, Fuessl HS, Wolfe K, Besterman HS, Bloom SR. Release of peptide YY (PYY) after resection of small bowel, colon, or pancreas in man. Surgery 101: 715‐719, 1987.
 11.Akieda‐Asai S, Poleni PE, Date Y. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus. Am J Phys Endocrinol Metab 306: E1284‐E1291, 2014.
 12.Alamuddin N, Vetter ML, Ahima RS, Hesson L, Ritter S, Minnick A, Faulconbridge LF, Allison KC, Sarwer DB, Chittams J, Williams NN, Hayes MR, Loughead JW, Gur R, Wadden TA. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux‐en‐Y‐gastric bypass: An 18‐month prospective study. Obes Surg 27: 1563‐1572, 2017.
 13.Alhadeff AL, Baird JP, Swick JC, Hayes MR, Grill HJ. Glucagon‐like peptide‐1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 39: 2233‐2243, 2014.
 14.Alhadeff AL, Golub D, Hayes MR, Grill HJ. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor. Am J Phys Endocrinol Metab 309: E759‐E766, 2015.
 15.Alhadeff AL, Grill HJ. Hindbrain nucleus tractus solitarius glucagon‐like peptide‐1 receptor signaling reduces appetitive and motivational aspects of feeding. Am J Physiol Regul Integr Comp Physiol 307: R465‐R470, 2014.
 16.Alhadeff AL, Mergler BD, Zimmer DJ, Turner CA, Reiner DJ, Schmidt HD, Grill HJ, Hayes MR. Endogenous glucagon‐like peptide‐1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology 42: 1471‐1479, 2017.
 17.Alhadeff AL, Rupprecht LE, Hayes MR. GLP‐1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153: 647‐658, 2012.
 18.Allen JM, Fitzpatrick ML, Yeats JC, Darcy K, Adrian TE, Bloom SR. Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion 30: 255‐262, 1984.
 19.Alvarez‐Crespo M, Skibicka KP, Farkas I, Molnár CS, Egecioglu E, Hrabovszky E, Liposits Z, Dickson SL. The amygdala as a neurobiological target for ghrelin in rats: Neuroanatomical, electrophysiological and behavioral evidence. PLoS One 7: e46321, 2012.
 20.Anagnostides A, Chadwick V, Selden A, Barr J, Maton P. Human pancreatic and biliary responses to physiological concentrations of cholecystokinin octapeptide. Clin Sci (Lond, England: 1979) 69: 259‐263, 1985.
 21.Anik A, Catli G, Abaci A, Kume T, Bober E. Fasting and postprandial levels of a novel anorexigenic peptide nesfatin in childhood obesity. J Pediatr Endocrinol Metab 27: 623‐628, 2014.
 22.Anini Y, Brubaker PL. Muscarinic receptors control glucagon‐like peptide 1 secretion by human endocrine L cells. Endocrinology 144: 3244‐3250, 2003.
 23.Anini Y, Brubaker PL. Role of leptin in the regulation of glucagon‐like peptide‐1 secretion. Diabetes 52: 252‐259, 2003.
 24.Anini Y, Fu‐Cheng X, Cuber JC, Kervran A, Chariot J, Roz C. Comparison of the postprandial release of peptide YY and proglucagon‐derived peptides in the rat. Pflugers Arch – Eur J Physiol 438: 299‐306, 1999.
 25.Anini Y, Jarrousse C, Chariot J, Nagain C, Yanaihara N, Sasaki K, Bernad N, Le Nguyen D, Bataille D, Roze C. Oxyntomodulin inhibits pancreatic secretion through the nervous system in rats. Pancreas 20: 348‐360, 2000.
 26.Anwar GM, Yamamah G, Ibrahim A, El‐Lebedy D, Farid TM, Mahmoud R. Nesfatin‐1 in childhood and adolescent obesity and its association with food intake, body composition and insulin resistance. Regul Pept 188: 21‐24, 2014.
 27.Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, Dwyer NK, Lairon D, Hamosh P. Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40: 429‐437, 1996.
 28.Arnold M, Mura A, Langhans W, Geary N. Gut vagal afferents are not necessary for the eating‐stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 26: 11052‐11060, 2006.
 29.Arosio M, Ronchi CL, Beck‐Peccoz P, Gebbia C, Giavoli C, Cappiello V, Conte D, Peracchi M. Effects of modified sham feeding on ghrelin levels in healthy human subjects. J Clin Endocrinol Metab 89: 5101‐5104, 2004.
 30.Arvat E, Di Vito L, Broglio F, Papotti M, Muccioli G, Dieguez C, Casanueva FF, Deghenghi R, Camanni F, Ghigo E. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)‐receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Investig 23: 493‐495, 2000.
 31.Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M. Ghrelin is an appetite‐stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120: 337‐345, 2001.
 32.Asin KE, Gore PA Jr, Bednarz L, Holladay M, Nadzan AM. Effects of selective CCK receptor agonists on food intake after central or peripheral administration in rats. Brain Res 571: 169‐174, 1992.
 33.Atsuchi K, Asakawa A, Ushikai M, Ataka K, Tsai M, Koyama K, Sato Y, Kato I, Fujimiya M, Inui A. Centrally administered nesfatin‐1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport 21: 1008‐1011, 2010.
 34.Ayush EA, Iwasaki Y, Iwamoto S, Nakabayashi H, Kakei M, Yada T. Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca(2+) signaling via glucagon receptors. Biochem Biophys Res Commun 456: 727‐732, 2015.
 35.Bagger JI, Holst JJ, Hartmann B, Andersen B, Knop FK, Vilsboll T. Effect of oxyntomodulin, glucagon, GLP‐1, and combined glucagon +GLP‐1 infusion on food intake, appetite, and resting energy expenditure. J Clin Endocrinol Metab 100: 4541‐4552, 2015.
 36.Baggio LL, Drucker DJ. Biology of incretins: GLP‐1 and GIP. Gastroenterology 132: 2131‐2157, 2007.
 37.Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon‐like peptide‐1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127: 546‐558, 2004.
 38.Bailey AR, von Engelhardt N, Leng G, Smith RG, Dickson SL. Growth hormone secretagogue activation of the arcuate nucleus and brainstem occurs via a non‐noradrenergic pathway. J Neuroendocrinol 12: 191‐197, 2000.
 39.Balasko M, Soos S, Parniczky A, Koncsecsko‐Gaspar M, Szekely M, Petervari E. Anorexic effect of peripheral cholecystokinin (CCK) varies with age and body composition (short communication). Acta Physiol Hung 99: 166‐172, 2012.
 40.Baldissera FG, Holst JJ. Glucagon‐related peptides in the human gastrointestinal mucosa. Diabetologia 26: 223‐228, 1984.
 41.Baldissera FG, Holst JJ, Knuhtsen S, Hilsted L, Nielsen OV. Oxyntomodulin (glicentin‐(33‐69)): Pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul Pept 21: 151‐166, 1988.
 42.Ballantyne GH. Peptide YY(1‐36) and peptide YY(3‐36): Part I. Distribution, release and actions. Obes Surg 16: 651‐658, 2006.
 43.Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D. Effects of albumin‐conjugated PYY on food intake: The respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 32: 826‐839, 2010.
 44.Baranowska B, Radzikowska M, Wasilewska‐Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes Obes Metab 2: 99‐103, 2000.
 45.Barrachina MD, Martinez V, Wang L, Wei JY, Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short‐term food intake in lean mice. Proc Natl Acad Sci USA 94: 10455‐10460, 1997.
 46.Barrera JG, Jones KR, Herman JP, D'Alessio DA, Woods SC, Seeley RJ. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon‐like peptide‐1 loss of function. J Neurosci 31: 3904‐3913, 2011.
 47.Bataille D, Gespach C, Coudray AM, Rosselin G. “Enterolglucagon”: A specific effect on gastric glands isolated from the rat fundus. Evidence for an “oxyntomodulin” action. Biosci Rep 1: 151‐155, 1981.
 48.Bataille D, Gespach C, Tatemoto K, Marie JC, Coudray AM, Rosselin G, Mutt V. Bioactive enteroglucagon (oxyntomodulin): Present knowledge on its chemical structure and its biological activities. Peptides 2 (Suppl 2): 41‐44, 1981.
 49.Bataille D, Tatemoto K, Coudray AM, Rosselin G, Mutt V. Bioactive “enteroglucagon” (oxyntomodulin): Evidence for a C‐terminal extension of the glucagon molecule. C R Seances Acad Sci III 293: 323‐328, 1981.
 50.Bataille D, Tatemoto K, Gespach C, Jornvall H, Rosselin G, Mutt V. Isolation of glucagon‐37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno‐ileum. FEBS Lett 146: 79‐86, 1982.
 51.Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 994: 162‐168, 2003.
 52.Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR. Inhibition of food intake in obese subjects by peptide YY3‐36. N Engl J Med 349: 941‐948, 2003.
 53.Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3‐36) physiologically inhibits food intake. Nature 418: 650‐654, 2002.
 54.Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ. Critical role for peptide YY in protein‐mediated satiation and body‐weight regulation. Cell Metab 4: 223‐233, 2006.
 55.Baumgartner I, Pacheco‐Lopez G, Ruttimann EB, Arnold M, Asarian L, Langhans W, Geary N, Hillebrand JJ. Hepatic‐portal vein infusions of glucagon‐like peptide‐1 reduce meal size and increase c‐Fos expression in the nucleus tractus solitarii, area postrema and central nucleus of the amygdala in rats. J Neuroendocrinol 22: 557‐563, 2010.
 56.Begg DP, Steinbrecher KA, Mul JD, Chambers AP, Kohli R, Haller A, Cohen MB, Woods SC, Seeley RJ. Effect of guanylate cyclase‐C activity on energy and glucose homeostasis. Diabetes 63: 3798‐3804, 2014.
 57.Beglinger C, Degen L, Matzinger D, D'Amato M, Drewe J. Loxiglumide, a CCK‐A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 280: R1149‐R1154, 2001.
 58.Beinfeld MC, Korchak DM. The regional distribution and the chemical, chromatographic, and immunologic characterization of motilin brain peptides: The evidence for a difference between brain and intestinal motilin‐immunoreactive peptides. J Neurosci 5: 2502‐2509, 1985.
 59.Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Ferno J, Salvador J, Escalada J, Dieguez C, Lopez M, Fruhbeck G, Nogueiras R. GLP‐1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63: 3346‐3358, 2014.
 60.Bell GI, Sanchez‐Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature 304: 368, 1983.
 61.Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Glucose, amino acids and fatty acids directly regulate ghrelin and NUCB2/nesfatin‐1 in the intestine and hepatopancreas of goldfish (Carassius auratus) in vitro. Comp Biochem Physiol A Mol Integr Physiol 206: 24‐35, 2017.
 62.Besterman HS, Adrian TE, Mallinson CN, Christofides ND, Sarson DL, Pera A, Lombardo L, Modigliani R, Bloom SR. Gut hormone release after intestinal resection. Gut 23: 854‐861, 1982.
 63.Besterman HS, Cook GC, Sarson DL, Christofides ND, Bryant MG, Gregor M, Bloom SR. Gut hormones in tropical malabsorption. Br Med J 2: 1252‐1255, 1979.
 64.Betley JN, Cao ZFH, Ritola KD, Sternson SM. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155: 1337‐1350, 2013.
 65.Beutler LR, Chen Y, Ahn JS, Lin YC, Essner RA, Knight ZA. Dynamics of gut‐brain communication underlying hunger. Neuron 96: 461‐475.e465, 2017.
 66.Bi S, Scott KA, Kopin AS, Moran TH. Differential roles for cholecystokinin A receptors in energy balance in rats and mice. Endocrinology 145: 3873‐3880, 2004.
 67.Bianchi E, Carrington PE, Ingallinella P, Finotto M, Santoprete A, Petrov A, Eiermann G, Kosinski J, Marsh DJ, Pocai A, SinhaRoy R, Pessi A. A PEGylated analog of the gut hormone oxyntomodulin with long‐lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg Med Chem 21: 7064‐7073, 2013.
 68.Biedzinski TM, Bataille D, Devaux MA, Sarles H. The effect of oxyntomodulin (glucagon‐37) and glucagon on exocrine pancreatic secretion in the conscious rat. Peptides 8: 967‐972, 1987.
 69.Billing LJ, Smith CA, Larraufie P, Goldspink DA, Galvin S, Kay RG, Howe JD, Walker R, Pruna M, Glass L, Pais R, Gribble FM, Reimann F. Co‐storage and release of insulin‐like peptide‐5, glucagon‐like peptide‐1 and peptideYY from murine and human colonic enteroendocrine cells. Mol Metab 16: 65‐75, 2018.
 70.Blackshaw LA, Grundy D. Effects of cholecystokinin (CCK‐8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst 31: 191‐201, 1990.
 71.Blanchard RK, Cousins RJ. Upregulation of rat intestinal uroguanylin mRNA by dietary zinc restriction. Am J Physiol 272: G972‐G978, 1997.
 72.Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin‐1 regulates feeding, glucosensing and lipid metabolism in rainbow trout. Front Endocrinol 9: 484‐484, 2018.
 73.Blüher M. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol 15: 288‐298, 2019.
 74.Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, Couzens M, Slack K, Dallmann R, Sainsbury A, Herzog H. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 49: 1360‐1370, 2006.
 75.Bohórquez DV, Chandra R, Samsa LA, Vigna SR, Liddle RA. Characterization of basal pseudopod‐like processes in ileal and colonic PYY cells. J Mol Histol 42: 3‐13, 2011.
 76.Bohórquez DV, Samsa LA, Roholt A, Medicetty S, Chandra R, Liddle RA. An enteroendocrine cell‐enteric glia connection revealed by 3D electron microscopy. PLoS One 9: e89881, 2014.
 77.Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, Wang F, Liddle RA. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125: 782‐786, 2015.
 78.Bonaz B, Taylor I, Taché Y. Peripheral peptide YY induces c‐fos‐like immunoreactivity in the rat brain. Neurosci Lett 163: 77‐80, 1993.
 79.Bonnet M, Djelloul M, Tillement V, Tardivel C, Mounien L, Trouslard J, Troadec JD, Dallaporta M. Central NUCB 2/nesfatin‐1‐expressing neurones belong to the hypothalamic‐brainstem circuitry activated by hypoglycaemia. J Neuroendocrinol 25: 1‐13, 2013.
 80.Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux‐en‐Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 93: 210‐215, 2006.
 81.Bose M, Machineni S, Olivan B, Teixeira J, McGinty JJ, Bawa B, Koshy N, Colarusso A, Laferrere B. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity (Silver Spring, Md) 18: 1085‐1091, 2010.
 82.Bottcher G, Alumets J, Hakanson R, Sundler F. Co‐existence of glicentin and peptide YY in colorectal L‐cells in cat and man. An electron microscopic study. Regul Pept 13: 283‐291, 1986.
 83.Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ. Nesfatin‐1: Distribution and interaction with a G protein‐coupled receptor in the rat brain. Endocrinology 148: 5088‐5094, 2007.
 84.Brenna Ø, Furnes MW, Munkvold B, Kidd M, Sandvik AK, Gustafsson BI. Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa. Cell Tissue Res 365: 331‐341, 2016.
 85.Brennan IM, Luscombe‐Marsh ND, Seimon RV, Otto B, Horowitz M, Wishart JM, Feinle‐Bisset C. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am J Physiol Gastrointest Liver Physiol 303: G129‐G140, 2012.
 86.Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB. Diet‐induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology 151: 4745‐4755, 2010.
 87.Briggs DI, Lockie SH, Wu Q, Lemus MB, Stark R, Andrews ZB. Calorie‐restricted weight loss reverses high‐fat diet‐induced ghrelin resistance, which contributes to rebound weight gain in a ghrelin‐dependent manner. Endocrinology 154: 709‐717, 2013.
 88.Broberger C, Holmberg K, Shi TJ, Dockray G, Hokfelt T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 903: 128‐140, 2001.
 89.Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86: 5083‐5086, 2001.
 90.Broglio F, Gottero C, Benso A, Prodam F, Destefanis S, Gauna C, Maccario M, Deghenghi R, van der Lely AJ, Ghigo E. Effects of ghrelin on the insulin and glycemic responses to glucose, arginine, or free fatty acids load in humans. J Clin Endocrinol Metab 88: 4268‐4272, 2003.
 91.Broglio F, Gottero C, Van Koetsveld P, Prodam F, Destefanis S, Benso A, Gauna C, Hofland L, Arvat E, van der Lely AJ, Ghigo E. Acetylcholine regulates ghrelin secretion in humans. J Clin Endocrinol Metab 89: 2429‐2433, 2004.
 92.Brooks L, Viardot A, Tsakmaki A, Stolarczyk E, Howard JK, Cani PD, Everard A, Sleeth ML, Psichas A, Anastasovskaj J, Bell JD, Bell‐Anderson K, Mackay CR, Ghatei MA, Bloom SR, Frost G, Bewick GA. Fermentable carbohydrate stimulates FFAR2‐dependent colonic PYY cell expansion to increase satiety. Molecular metabolism 6: 48‐60, 2017.
 93.Brown TA, Washington MC, Metcalf SA, Sayegh AI. The feeding responses evoked by cholecystokinin are mediated by vagus and splanchnic nerves. Peptides 32: 1581‐1586, 2011.
 94.Brubaker PL. A beautiful cell (or two or three?). Endocrinology 153: 2945‐2948, 2012.
 95.Buffa R, Solcia E, Go VLW. Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 70: 528‐532, 1976.
 96.Burdyga G, de Lartigue G, Raybould HE, Morris R, Dimaline R, Varro A, Thompson DG, Dockray GJ. Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J Neurosci 28: 11583‐11592, 2008.
 97.Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24: 2708‐2715, 2004.
 98.Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Feeding‐dependent depression of melanin‐concentrating hormone and melanin‐concentrating hormone receptor‐1 expression in vagal afferent neurones. Neuroscience 137: 1405‐1415, 2006.
 99.Burmeister MA, Ferre T, Ayala JE, King EM, Holt RM, Ayala JE. Acute activation of central GLP‐1 receptors enhances hepatic insulin action and insulin secretion in high‐fat‐fed, insulin resistant mice. Am J Phys Endocrinol Metab 302: E334‐E343, 2012.
 100.Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, Knop FK. Secretion of glucagon‐like peptide‐1 in patients with type 2 diabetes mellitus: Systematic review and meta‐analyses of clinical studies. Diabetologia 56: 965‐972, 2013.
 101.Callahan HS, Cummings DE, Pepe MS, Breen PA, Matthys CC, Weigle DS. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J Clin Endocrinol Metab 89: 1319‐1324, 2004.
 102.Camina JP. Cell biology of the ghrelin receptor. J Neuroendocrinol 18: 65‐76, 2006.
 103.Campos RV, Lee YC, Drucker DJ. Divergent tissue‐specific and developmental expression of receptors for glucagon and glucagon‐like peptide‐1 in the mouse. Endocrinology 134: 2156‐2164, 1994.
 104.Cani PD, Holst JJ, Drucker DJ, Delzenne NM, Thorens B, Burcelin R, Knauf C. GLUT2 and the incretin receptors are involved in glucose‐induced incretin secretion. Mol Cell Endocrinol 276: 18‐23, 2007.
 105.Casajoana A, Pujol J, Garcia A, Elvira J, Virgili N, de Oca FJ, Duran X, Fernandez‐Veledo S, Vendrell J, Vilarrasa N. Predictive value of gut peptides in T2D remission: Randomized controlled trial comparing metabolic gastric bypass, sleeve gastrectomy and greater curvature plication. Obes Surg 27: 2235‐2245, 2017.
 106.Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, Dixon J, Zahn D, Rochford JJ, White A, Oliver RL, Millington G, Aparicio SA, Colledge WH, Russ AP, Carlton MB, O'Rahilly S. Mice lacking pro‐opiomelanocortin are sensitive to high‐fat feeding but respond normally to the acute anorectic effects of peptide‐YY(3‐36). Proc Natl Acad Sci USA 101: 4695‐4700, 2004.
 107.Challis BG, Pinnock SB, Coll AP, Carter RN, Dickson SL, O'Rahilly S. Acute effects of PYY3‐36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun 311: 915‐919, 2003.
 108.Chambers AP, Kirchner H, Wilson‐Perez HE, Willency JA, Hale JE, Gaylinn BD, Thorner MO, Pfluger PT, Gutierrez JA, Tschöp MH, Sandoval DA, Seeley RJ. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology 144: 50‐52.e55, 2013.
 109.Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, Viollet B, Andreelli F, Withers DJ, Batterham RL. Diet and gastrointestinal bypass‐induced weight loss: The roles of ghrelin and peptide YY. Diabetes 60: 810‐818, 2011.
 110.Chaudhri OB, Parkinson JR, Kuo YT, Druce MR, Herlihy AH, Bell JD, Dhillo WS, Stanley SA, Ghatei MA, Bloom SR. Differential hypothalamic neuronal activation following peripheral injection of GLP‐1 and oxyntomodulin in mice detected by manganese‐enhanced magnetic resonance imaging. Biochem Biophys Res Commun 350: 298‐306, 2006.
 111.Chelikani PK, Haver AC, Reidelberger RD. Dose‐dependent effects of peptide YY(3‐36) on conditioned taste aversion in rats. Peptides 27: 3193‐3201, 2006.
 112.Chen D, Zhao C‐M, Håkanson R, Samuelson LC, Rehfeld JF, Friis‐Hansen L. Altered control of gastric acid secretion in gastrin‐cholecystokinin double mutant mice. Gastroenterology 126: 476‐487, 2004.
 113.Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van der Ploeg LH, Howard AD, MacNeil DJ, Qian S. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti‐related protein. Endocrinology 145: 2607‐2612, 2004.
 114.Chen Y, Lin YC, Kuo TW, Knight ZA. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160: 829‐841, 2015.
 115.Cho HJ, Kosari S, Hunne B, Callaghan B, Rivera LR, Bravo DM, Furness JB. Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 359: 693‐698, 2015.
 116.Chow KB, Sun J, Chu KM, Tai Cheung W, Cheng CH, Wise H. The truncated ghrelin receptor polypeptide (GHS‐R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS‐R1a) to attenuate their cell surface expression. Mol Cell Endocrinol 348: 247‐254, 2012.
 117.Chuang JC, Sakata I, Kohno D, Perello M, Osborne‐Lawrence S, Repa JJ, Zigman JM. Ghrelin directly stimulates glucagon secretion from pancreatic alpha‐cells. Mol Endocrinol (Baltimore, Md) 25: 1600‐1611, 2011.
 118.Clara R, Langhans W, Mansouri A. Oleic acid stimulates glucagon‐like peptide‐1 release from enteroendocrine cells by modulating cell respiration and glycolysis. Metab Clin Exp 65: 8‐17, 2016.
 119.Clemmensen C, Finan B, Fischer K, Tom RZ, Legutko B, Sehrer L, Heine D, Grassl N, Meyer CW, Henderson B, Hofmann SM, Tschöp MH, Van der Ploeg LH, Muller TD. Dual melanocortin‐4 receptor and GLP‐1 receptor agonism amplifies metabolic benefits in diet‐induced obese mice. EMBO Mol Med 7: 288‐298, 2015.
 120.Clerc P, Coll Constans MG, Lulka H, Broussaud S, Guigne C, Leung‐Theung‐Long S, Perrin C, Knauf C, Carpene C, Penicaud L, Seva C, Burcelin R, Valet P, Fourmy D, Dufresne M. Involvement of cholecystokinin 2 receptor in food intake regulation: Hyperphagia and increased fat deposition in cholecystokinin 2 receptor‐deficient mice. Endocrinology 148: 1039‐1049, 2007.
 121.Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88: 4696‐4701, 2003.
 122.Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411: 480‐484, 2001.
 123.Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia‐Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37: 649‐661, 2003.
 124.Cox JE, Randich A. Enhancement of feeding suppression by PYY(3‐36) in rats with area postrema ablations. Peptides 25: 985‐989, 2004.
 125.Crum AJ, Corbin WR, Brownell KD, Salovey P. Mind over milkshakes: Mindsets, not just nutrients, determine ghrelin response. Health Psychol 30: 424‐429; discussion 430–421, 2011.
 126.Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, Schwartz MW, Basdevant A, Weigle DS. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 8: 643‐644, 2002.
 127.Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714‐1719, 2001.
 128.Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet‐induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623‐1630, 2002.
 129.Cuntz U, Enck P, Fruhauf E, Lehnert P, Riepl RL, Fichter MM, Otto B. Cholecystokinin revisited: CCK and the hunger trap in anorexia nervosa. PLoS One 8: e54457, 2013.
 130.Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE. Guanylin: An endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89: 947‐951, 1992.
 131.Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. Non‐sulfated cholecystokinin‐8 increases enteric and hindbrain Fos‐like immunoreactivity in male Sprague Dawley rats. Brain Res 1708: 200‐206, 2019.
 132.Dafalla AI, Mhalhal TR, Washington MC, Spann S, Reguero AM, Morgan AL, Cruz Matos GA, Carson G, Barton KJ, Burke NA, Heath J, Sayegh AI. Non‐sulfated cholecystokinin‐8 reduces meal size and prolongs the intermeal interval in male Sprague Dawley rats. Neuropeptides 73: 57‐65, 2019.
 133.D'Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, Garcia AP, Land BB, Lowell BB, Dileone RJ, Heisler LK. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife 5: e12225, 2016.
 134.Dakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142: 4244‐4250, 2001.
 135.Dakin CL, Small CJ, Batterham RL, Neary NM, Cohen MA, Patterson M, Ghatei MA, Bloom SR. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145: 2687‐2695, 2004.
 136.Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone‐releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141: 4255‐4261, 2000.
 137.Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M. The role of the gastric afferent vagal nerve in ghrelin‐induced feeding and growth hormone secretion in rats. Gastroenterology 123: 1120‐1128, 2002.
 138.Date Y, Nakazato M, Yamaguchi H, Kangawa K, Kinoshita Y, Chiba T, Ueta Y, Yamashita H, Matsukura S. Enterochromaffin‐like cells, a cellular source of uroguanylin in rat stomach*. Endocrinology 140: 2398‐2404, 1999.
 139.Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez‐Tilve D, DiMarchi R, Tschöp MH. A new glucagon and GLP‐1 co‐agonist eliminates obesity in rodents. Nat Chem Biol 5: 749‐757, 2009.
 140.de Dios O, Herrero L, Gavela‐Perez T, Soriano‐Guillen L, Garces C. Sex‐specific association of plasma nesfatin‐1 concentrations with obesity in children. Pediatric obesity 14: e12567, 2019.
 141.de la Cour CD, Norlen P, Hakanson R. Secretion of ghrelin from rat stomach ghrelin cells in response to local microinfusion of candidate messenger compounds: A microdialysis study. Regul Pept 143: 118‐126, 2007.
 142.de La Serre CB, Kim YJ, Moran TH, Bi S. Dorsomedial hypothalamic NPY affects cholecystokinin‐induced satiety via modulation of brain stem catecholamine neuronal signaling. Am J Physiol Regul Integr Comp Physiol 311: R930‐r939, 2016.
 143.de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One 7: e32967, 2012.
 144.Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon‐like peptide‐1 by human plasma in vitro yields an N‐terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metabol 80: 952‐957, 1995.
 145.Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J, Beglinger C. Effect of peptide YY3‐36 on food intake in humans. Gastroenterology 129: 1430‐1436, 2005.
 146.Delporte C. Structure and physiological actions of ghrelin. Scientifica 2013: 518909, 2013.
 147.Deschenes RJ, Haun RS, Funckes CL, Dixon JE. A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity. J Biol Chem 260: 1280‐1286, 1985.
 148.Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci USA 81: 726‐730, 1984.
 149.Deshpande MC, Venkateswarlu V, Mantri AH, Gadewar ST. Targeting enteral endocrinal L‐cells with dietary carbohydrates, by increasing the availability of miglitol in the intestinal lumen, leads to multi‐fold enhancement of plasma glucagon‐like peptide‐1 levels in non‐diabetic canines. Drug Dev Ind Pharm 37: 506‐517, 2011.
 150.Dezaki K, Kakei M, Yada T. Ghrelin uses Galphai2 and activates voltage‐dependent K+ channels to attenuate glucose‐induced Ca2+ signaling and insulin release in islet beta‐cells: Novel signal transduction of ghrelin. Diabetes 56: 2319‐2327, 2007.
 151.Di Guglielmo MD, Perdue L, Adeyemi A, van Golen KL, Corao DU. Immunohistochemical staining for uroguanylin, a satiety hormone, is decreased in intestinal tissue specimens from female adolescents with obesity. Pediatr Dev Pathol 21: 285‐295, 2018.
 152.Di Guglielmo MD, Tonb D, He Z, Adeyemi A, van Golen KL. Pilot study measuring the novel satiety hormone, pro‐uroguanylin, in adolescents with and without obesity. J Pediatr Gastroenterol Nutr 66: 489‐495, 2018.
 153.Diakogiannaki E, Pais R, Tolhurst G, Parker HE, Horscroft J, Rauscher B, Zietek T, Daniel H, Gribble FM, Reimann F. Oligopeptides stimulate glucagon‐like peptide‐1 secretion in mice through proton‐coupled uptake and the calcium‐sensing receptor. Diabetologia 56: 2688‐2696, 2013.
 154.Dickson SL, Leng G, Robinson IC. Systemic administration of growth hormone‐releasing peptide activates hypothalamic arcuate neurons. Neuroscience 53: 303‐306, 1993.
 155.Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon‐like peptide 1 (GLP‐1) analogue, exendin‐4, decreases the rewarding value of food: A new role for mesolimbic GLP‐1 receptors. J Neurosci 32: 4812‐4820, 2012.
 156.Dirksen C, Jørgensen N, Bojsen‐Møller K, Kielgast U, Jacobsen S, Clausen T, Worm D, Hartmann B, Rehfeld JF, Damgaard M. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux‐en‐Y gastric bypass. Int J Obes 37: 1452‐1459, 2013.
 157.Dockray GJ. The G.L. Brown lecture. Regulatory peptides and the neuroendocrinology of gut‐brain relations. Q J Exp Physiol (Cambridge, England) 73: 703‐727, 1988.
 158.Dogan U, Bulbuller N, Cakir T, Habibi M, Mayir B, Koc U, Aslaner A, Ellidag HY, Gomceli I. Nesfatin‐1 hormone levels in morbidly obese patients after laparoscopic sleeve gastrectomy. Eur Rev Med Pharmacol Sci 20: 1023‐1031, 2016.
 159.Donahey JC, van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP‐1 reduces short‐ but not long‐term food intake or body weight in lean and obese rats. Brain Res 779: 75‐83, 1998.
 160.Dong J, Xu H, Wang P‐F, Cai G‐J, Song H‐F, Wang C‐C, Dong Z‐T, Ju Y‐J, Jiang Z‐Y. Nesfatin‐1 stimulates fatty‐acid oxidation by activating AMP‐activated protein kinase in STZ‐induced type 2 diabetic mice. PLoS One 8: e83397, 2013.
 161.Dore R, Krotenko R, Reising JP, Murru L, Sundaram SM, Di Spiezio A, Müller‐Fielitz H, Schwaninger M, Jöhren O, Mittag J. Nesfatin‐1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 1‐11, 2020.
 162.Dornonville de la Cour C, Lindqvist A, Egecioglu E, Tung YC, Surve V, Ohlsson C, Jansson JO, Erlanson‐Albertsson C, Dickson SL, Hakanson R. Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice. Gut 54: 907‐913, 2005.
 163.Dossat AM, Lilly N, Kay K, Williams DL. Glucagon‐like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31: 14453‐14457, 2011.
 164.Druce MR, Bloom SR. Oxyntomodulin : A novel potential treatment for obesity. Treat Endocrinol 5: 265‐272, 2006.
 165.Druce MR, Neary NM, Small CJ, Milton J, Monteiro M, Patterson M, Ghatei MA, Bloom SR. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes 30: 293‐296, 2006.
 166.Drucker D, Asa S. Glucagon gene expression in vertebrate brain. J Biol Chem 263: 13475‐13478, 1988.
 167.Drucker DJ. Glucagon‐like peptides. Diabetes 47: 159‐169, 1998.
 168.Drucker DJ. The biology of incretin hormones. Cell Metab 3: 153‐165, 2006.
 169.Drucker DJ, Brubaker PL. Proglucagon gene expression is regulated by a cyclic AMP‐dependent pathway in rat intestine. Proc Natl Acad Sci USA 86: 3953‐3957, 1989.
 170.Dubrasquet M, Bataille D, Gespach C. Oxyntomodulin (glucagon‐37 or bioactive enteroglucagon): A potent inhibitor of pentagastrin‐stimulated acid secretion in rats. Biosci Rep 2: 391‐395, 1982.
 171.Duca FA, Zhong L, Covasa M. Reduced CCK signaling in obese‐prone rats fed a high fat diet. Horm Behav 64: 812‐817, 2013.
 172.Dumont Y, Fournier A, St‐Pierre S, Quirion R. Autoradiographic distribution of [125I][Leu 31,Pro34]PYY and [125I]PYY3‐36 binding sites in the rat brain evaluated with two newly developed Y1 and Y2 receptor radioligands. Synapse (New York, NY) 22: 139‐158, 1996.
 173.Dumoulin V, Moro F, Barcelo A, Dakka T, Cuber JC. Peptide YY, glucagon‐like peptide‐1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 139: 3780‐3786, 1998.
 174.Eberlein GA, Eysselein VE, Schaeffer M, Layer P, Grandt D, Goebell H, Niebel W, Davis M, Lee TD, Shively JE, et al. A new molecular form of PYY: Structural characterization of human PYY(3‐36) and PYY(1‐36). Peptides 10: 797‐803, 1989.
 175.Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold Re, Göke B. Glucagon‐like peptide‐1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Investig 22: 283‐291, 1992.
 176.Eissele R, Koop I, Schaar M, Koop H, Arnold R. Role of cholecystokinin in the control of gastric somatostatin in the rat: In vivo and in vitro studies. Regul Pept 32: 333‐340, 1991.
 177.Ekberg JH, Hauge M, Kristensen LV, Madsen AN, Engelstoft MS, Husted AS, Sichlau R, Egerod KL, Timshel P, Kowalski TJ, Gribble FM, Reiman F, Hansen HS, Howard AD, Holst B, Schwartz TW. GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157: 4561‐4569, 2016.
 178.Elliott JA, Reynolds JV, le Roux CW, Docherty NG. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. Expert Rev Endocrinol Metab 11: 475‐499, 2016.
 179.Els S, Schild E, Petersen PS, Kilian TM, Mokrosinski J, Frimurer TM, Chollet C, Schwartz TW, Holst B, Beck‐Sickinger AG. An aromatic region to induce a switch between agonism and inverse agonism at the ghrelin receptor. J Med Chem 55: 7437‐7449, 2012.
 180.El‐Salhy M, Grimelius L, Wilander E, Ryberg B, Terenius L, Lundberg JM, Tatemoto K. Immunocytochemical identification of polypeptide YY (PYY) cells in the human gastrointestinal tract. Histochemistry 77: 15‐23, 1983.
 181.El‐Salhy M, Mazzawi T, Hausken T, Hatlebakk JG. Interaction between diet and gastrointestinal endocrine cells. Biomed Rep 4: 651‐656, 2016.
 182.El‐Salhy M, Wilander E, Juntti‐Berggren L, Grimelius L. The distribution and ontogeny of polypeptide YY (PYY)‐ and pancreatic polypeptide (PP)‐immunoreactive cells in the gastrointestinal tract of rat. Histochemistry 78: 53‐60, 1983.
 183.Elvert R, Bossart M, Herling AW, Weiss T, Zhang B, Kannt A, Wagner M, Haack T, Evers A, Dudda A, Keil S, Lorenz M, Lorenz K, Riz M, Hennerici W, Larsen PJ. Team players or opponents: Coadministration of selective glucagon and GLP‐1 receptor agonists in obese diabetic monkeys. Endocrinology 159: 3105‐3119, 2018.
 184.Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne‐Lawrence S, Piper PK, Walker AK, Pedersen MH, Nohr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW. Seven transmembrane G protein‐coupled receptor repertoire of gastric ghrelin cells. Mol Meta 2: 376‐392, 2013.
 185.Engster KM, Frommelt L, Hofmann T, Nolte S, Fischer F, Rose M, Stengel A, Kobelt P. Peripheral injected cholecystokinin‐8S modulates the concentration of serotonin in nerve fibers of the rat brainstem. Peptides 59: 25‐33, 2014.
 186.Evron T, Peterson SM, Urs NM, Bai Y, Rochelle LK, Caron MG, Barak LS. G protein and beta‐arrestin signaling bias at the ghrelin receptor. J Biol Chem 289: 33442‐33455, 2014.
 187.Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, Pedersen O, Hansen T, Lauritzen T, Sandbaek A, Holst JJ, Jorgensen ME. GLP‐1 response to oral glucose Is reduced in prediabetes, screen‐detected type 2 diabetes, and obesity and influenced by sex: The ADDITION‐PRO study. Diabetes 64: 2513‐2525, 2015.
 188.Falken Y, Hellstrom PM, Holst JJ, Naslund E. Changes in glucose homeostasis after Roux‐en‐Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: Role of gut peptides. J Clin Endocrinol Metab 96: 2227‐2235, 2011.
 189.Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin‐mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7: 335‐336, 2004.
 190.Fan XT, Tian Z, Li SZ, Zhai T, Liu JL, Wang R, Zhang CS, Wang LX, Yuan JH, Zhou Y, Dong J. Ghrelin receptor is required for the effect of nesfatin‐1 on glucose metabolism. Front Endocrinol 9: 633, 2018.
 191.Feijóo‐Bandin S, Rodríguez‐Penas D, García‐Rua V, Mosquera‐Leal A, Otero MF, Pereira E, Rubio J, Martinez I, Seoane LM, Gualillo O, Calaza M, Garcia‐Caballero T, Portolés M, Roselló‐Lleti E, Diéguez C, Rivera M, González‐Juanatey JR, Lago F. Nesfatin‐1 in human and murine cardiomyocytes: Synthesis, secretion, and mobilization of GLUT‐4. Endocrinology 154: 4757‐4767, 2013.
 192.Feltrin KL, Patterson M, Ghatei MA, Bloom SR, Meyer JH, Horowitz M, Feinle‐Bisset C. Effect of fatty acid chain length on suppression of ghrelin and stimulation of PYY, GLP‐2 and PP secretion in healthy men. Peptides 27: 1638‐1643, 2006.
 193.Fernandez G, Cabral A, Andreoli MF, Labarthe A, M'Kadmi C, Ramos JG, Marie J, Fehrentz JA, Epelbaum J, Tolle V, Perello M. Evidence supporting a role for constitutive ghrelin receptor signaling in fasting‐induced hyperphagia in male mice. Endocrinology 159: 1021‐1034, 2018.
 194.Finan B, Ma T, Ottaway N, Muller TD, Habegger KM, Heppner KM, Kirchner H, Holland J, Hembree J, Raver C, Lockie SH, Smiley DL, Gelfanov V, Yang B, Hofmann S, Bruemmer D, Drucker DJ, Pfluger PT, Perez‐Tilve D, Gidda J, Vignati L, Zhang L, Hauptman JB, Lau M, Brecheisen M, Uhles S, Riboulet W, Hainaut E, Sebokova E, Conde‐Knape K, Konkar A, DiMarchi RD, Tschöp MH. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Translat Med 5: 209ra151, 2013.
 195.Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, Campbell JE, Sandoval D, Seeley RJ, Bleicher K, Uhles S, Riboulet W, Funk J, Hertel C, Belli S, Sebokova E, Conde‐Knape K, Konkar A, Drucker DJ, Gelfanov V, Pfluger PT, Muller TD, Perez‐Tilve D, DiMarchi RD, Tschöp MH. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21: 27‐36, 2015.
 196.Finan B, Yang B, Ottaway N, Stemmer K, Müller TD, Yi C‐X, Habegger K, Schriever SC, García‐Cáceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, de Angelis MH, Tiano JP, Mauvais‐Jarvis F, Perez‐Tilve D, Pfluger P, Zhang L, Gelfanov V, DiMarchi RD, Tschöp MH. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 18: 1847‐1856, 2012.
 197.Flanagan DE, Evans ML, Monsod TP, Rife F, Heptulla RA, Tamborlane WV, Sherwin RS. The influence of insulin on circulating ghrelin. Am J Phys Endocrinol Metab 284: E313‐E316, 2003.
 198.Flint A, Raben A, Astrup A, Holst JJ. Glucagon‐like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101: 515‐520, 1998.
 199.Folgueira C, Barja‐Fernández S, Gonzalez‐Saenz P, Castelao C, Vázquez‐Cobela R, Pena‐Leon V, Ruiz‐Piñon M, Casanueva FF, Dieguez C, Leis R, Nogueiras R, Seoane LM. Circulating pro‐uroguanylin levels in children and their relation to obesity, sex and puberty. Sci Rep 8: 14541‐14541, 2018.
 200.Folgueira C, Beiroa D, Callon A, Al‐Massadi O, Barja‐Fernandez S, Senra A, Ferno J, Lopez M, Dieguez C, Casanueva FF, Rohner‐Jeanrenaud F, Seoane LM, Nogueiras R. Uroguanylin action in the brain reduces weight gain in obese mice via different efferent autonomic pathways. Diabetes 65: 421‐432, 2016.
 201.Folgueira C, Beiroa D, González‐Rellán MJ, Porteiro B, Milbank E, Castelao C, García‐Palacios M, Casanueva FF, López M, Diéguez C, Seoane LM, Nogueiras R. Uroguanylin improves leptin responsiveness in diet‐induced obese mice. Nutrients 11: 752, 2019.
 202.Folgueira C, Sanchez‐Rebordelo E, Barja‐Fernandez S, Leis R, Tovar S, Casanueva FF, Dieguez C, Nogueiras R, Seoane LM. Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin‐dependent manner. Eur J Nutr 55: 529‐536, 2016.
 203.Foster‐Schubert KE, Overduin J, Prudom CE, Liu J, Callahan HS, Gaylinn BD, Thorner MO, Cummings DE. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J Clin Endocrinol Metab 93: 1971‐1979, 2008.
 204.Fothergill LJ, Furness JB. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: The need for a new classification scheme. Histochem Cell Biol 150: 693‐702, 2018.
 205.French SJ, Murray B, Rumsey RD, Sepple CP, Read NW. Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord 17: 295‐300, 1993.
 206.Frommelt L, Lembke V, Hofmann T, Goebel‐Stengel M, Monnikes H, Wiedenmann B, Klapp BF, Stengel A, Kobelt P. The CCKB antagonist CI988 reduces food intake in fasted rats via a dopamine mediated pathway. Peptides 39: 111‐118, 2013.
 207.Frühbeck G. Uroguanylin—a new gut‐derived weapon against obesity? Nat Rev Endocrinol 8: 5‐6, 2012.
 208.Fuessl HS, Adrian TE, Uttenthal LO, Bloom SR. Peptide YY in diabetics treated chronically with an intestinal glucosidase inhibitor. Klin Wochenschr 66: 985‐989, 1988.
 209.Fujii Y, Osaki N, Hase T, Shimotoyodome A. Ingestion of coffee polyphenols increases postprandial release of the active glucagon‐like peptide‐1 (GLP‐1(7‐36)) amide in C57BL/6J mice. J Nutr Sci 4: e9, 2015.
 210.Fujita Y, Chui JW, King DS, Zhang T, Seufert J, Pownall S, Cheung AT, Kieffer TJ. Pax6 and Pdx1 are required for production of glucose‐dependent insulinotropic polypeptide in proglucagon‐expressing L cells. Am J Physiol‐ Endocrinol Metabol 295: E648‐E657, 2008.
 211.Furness JB, Kunze WA, Clerc N. The intestine as a sensory organ: Neural, endocrine, and immune responses. Am J Physiol Gastrointest Liver Physiol 277: G922‐G928, 1999.
 212.Furuse M, Matsumoto M, Okumura J, Sugahara K, Hasegawa S. Intracerebroventricular injection of mammalian and chicken glucagon‐like peptide‐1 inhibits food intake of the neonatal chick. Brain Res 755: 167‐169, 1997.
 213.Gahete MD, Córdoba‐Chacón J, Salvatori R, Castaño JP, Kineman RD, Luque RM. Metabolic regulation of ghrelin O‐acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Mol Cell Endocrinol 317: 154‐160, 2010.
 214.Gameiro A, Reimann F, Habib AM, O'Malley D, Williams L, Simpson AK, Gribble FM. The neurotransmitters glycine and GABA stimulate glucagon‐like peptide‐1 release from the GLUTag cell line. J Physiol 569: 761‐772, 2005.
 215.Gantulga D, Maejima Y, Nakata M, Yada T. Glucose and insulin induce Ca2+ signaling in nesfatin‐1 neurons in the hypothalamic paraventricular nucleus. Biochem Biophys Res Commun 420: 811‐815, 2012.
 216.Garcia‐Galiano D, Pineda R, Ilhan T, Castellano JM, Ruiz‐Pino F, Sanchez‐Garrido MA, Vazquez MJ, Sangiao‐Alvarellos S, Romero‐Ruiz A, Pinilla L, Dieguez C, Gaytan F, Tena‐Sempere M. Cellular distribution, regulated expression, and functional role of the anorexigenic peptide, NUCB2/nesfatin‐1, in the testis. Endocrinology 153: 1959‐1971, 2012.
 217.Geliebter A, Gluck ME, Hashim SA. Plasma ghrelin concentrations are lower in binge‐eating disorder. J Nutr 135: 1326‐1330, 2005.
 218.Germain N, Galusca B, Grouselle D, Frere D, Tolle V, Zizzari P, Lang F, Epelbaum J, Estour B. Ghrelin/obestatin ratio in two populations with low bodyweight: Constitutional thinness and anorexia nervosa. Psychoneuroendocrinology 34: 413‐419, 2009.
 219.Germain N, Galusca B, Le Roux CW, Bossu C, Ghatei MA, Lang F, Bloom SR, Estour B. Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon‐like peptide 1, ghrelin, and leptin. Am J Clin Nutr 85: 967‐971, 2007.
 220.Gerspach AC, Steinert RE, Schonenberger L, Graber‐Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP‐1, PYY, and CCK release in humans. Am J Phys Endocrinol Metab 301: E317‐E325, 2011.
 221.Ghatei MA, Uttenthal LO, Christofides ND, Bryant MG, Bloom SR. Molecular forms of human enteroglucagon in tissue and plasma: Plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal ract*. J Clin Endocrinol Metab 57: 488‐495, 1983.
 222.Gibbons C, Caudwell P, Finlayson G, Webb DL, Hellstrom PM, Naslund E, Blundell JE. Comparison of postprandial profiles of ghrelin, active GLP‐1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. J Clin Endocrinol Metab 98: E847‐E855, 2013.
 223.Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245: 323‐325, 1973.
 224.Giglio BM, Schincaglia RM, da Silva AS, Fazani ICS, Monteiro PA, Mota JF, Cunha JP, Pichard C, Pimentel GD. Whey protein supplementation compared to collagen increases blood nesfatin concentrations and decreases android fat in overweight women: A randomized double‐blind study. Nutrients 11: 2051, 2019.
 225.Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS‐R, in humans. J Clin Endocrinol Metab 87: 2988, 2002.
 226.Goebel M, Stengel A, Wang L, Taché Y. Central nesfatin‐1 reduces the nocturnal food intake in mice by reducing meal size and increasing inter‐meal intervals. Peptides 32: 36‐43, 2011.
 227.Goebel‐Stengel M, Stengel A, Wang L, Ohning G, Taché Y, Reeve JR Jr. CCK‐8 and CCK‐58 differ in their effects on nocturnal solid meal pattern in undisturbed rats. Am J Physiol Regul Integr Comp Physiol 303: R850‐R860, 2012.
 228.Goebel‐Stengel M, Wang L. Central and peripheral expression and distribution of NUCB2/nesfatin‐1. Curr Pharm Des 19: 6935‐6940, 2013.
 229.Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin‐1 in goldfish. PLoS One 5: e15201, 2010.
 230.Gonzalez R, Reingold BK, Gao X, Gaidhu MP, Tsushima RG, Unniappan S. Nesfatin‐1 exerts a direct, glucose‐dependent insulinotropic action on mouse islet beta‐ and MIN6 cells. J Endocrinol 208: R9‐r16, 2011.
 231.Gonzalez R, Shepperd E, Thiruppugazh V, Lohan S, Grey CL, Chang JP, Unniappan S. Nesfatin‐1 regulates the hypothalamo‐pituitary‐ovarian axis of fish. Biol Reprod 87: 84, 2012.
 232.Gonzalez R, Tiwari A, Unniappan S. Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 381: 643‐648, 2009.
 233.Grandt D, Schimiczek M, Beglinger C, Layer P, Goebell H, Eysselein VE, Reeve JR Jr. Two molecular forms of peptide YY (PYY) are abundant in human blood: Characterization of a radioimmunoassay recognizing PYY 1‐36 and PYY 3‐36. Regul Pept 51: 151‐159, 1994.
 234.Gribble FM, Williams L, Simpson AK, Reimann F. A novel glucose‐sensing mechanism contributing to glucagon‐like peptide‐1 secretion from the GLUTag cell line. Diabetes 52: 1147‐1154, 2003.
 235.Gros L, Thorens B, Bataille D, Kervran A. Glucagon‐like peptide‐1‐(7‐36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin‐secreting cell line. Endocrinology 133: 631‐638, 1993.
 236.Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, Pedersen J, Nohr MK, Egerod KL, Nawrocki AR, Kowalski T, Howard AD, Poulsen SS, Offermanns S, Backhed F, Holst JJ, Holst B, Schwartz TW. Neurotensin is coexpressed, coreleased, and acts together with GLP‐1 and PYY in enteroendocrine control of metabolism. Endocrinology 157: 176‐194, 2016.
 237.Gualillo O, Caminos JE, Nogueiras R, Seoane LM, Arvat E, Ghigo E, Casanueva FF, Dieguez C. Effect of food restriction on ghrelin in normal‐cycling female rats and in pregnancy. Obes Res 10: 682‐687, 2002.
 238.Gubler U, Chua AO, Hoffman BJ, Collier KJ, Eng J. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 81: 4307‐4310, 1984.
 239.Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 105: 6320‐6325, 2008.
 240.Gutiérrez JG, Chey WY, Dinoso VP. Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67: 35‐41, 1974.
 241.Gutzwiller JP, Degen L, Matzinger D, Prestin S, Beglinger C. Interaction between GLP‐1 and CCK‐33 in inhibiting food intake and appetite in men. Am J Physiol Regul Integr Comp Physiol 287: R562‐R567, 2004.
 242.Haas V, Onur S, Paul T, Nutzinger DO, Bosy‐Westphal A, Hauer M, Brabant G, Klein H, Müller MJ. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr 81: 889‐896, 2005.
 243.Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CA, Parker HE, Morley TC, Yeo GS, Reimann F, Gribble FM. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153: 3054‐3065, 2012.
 244.Hajnal A, Covasa M, Bello NT. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK‐1 receptors. Am J Physiol Regul Integr Comp Physiol 289: R1675‐R1686, 2005.
 245.Halatchev IG, Cone RD. Peripheral administration of PYY(3‐36) produces conditioned taste aversion in mice. Cell Metab 1: 159‐168, 2005.
 246.Halatchev IG, Ellacott KL, Fan W, Cone RD. Peptide YY3‐36 inhibits food intake in mice through a melanocortin‐4 receptor‐independent mechanism. Endocrinology 145: 2585‐2590, 2004.
 247.Han V, Hynes M, Jin C, Towle A, Lauder J, Lund P. Cellular localization of proglucagon/glucagon‐like peptide I messenger RNAs in rat brain. J Neurosci Res 16: 97‐107, 1986.
 248.Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon‐like peptide‐1‐(7‐36)amide is transformed to glucagon‐like peptide‐1‐(9‐36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140: 5356‐5363, 1999.
 249.Hansen L, Holst JJ. The effects of duodenal peptides on glucagon‐like peptide‐1 secretion from the ileum. A duodeno–ileal loop? Regul Pept 110: 39‐45, 2002.
 250.Hansen L, Lampert S, Mineo H, Holst JJ. Neural regulation of glucagon‐like peptide‐1 secretion in pigs. Am J Phys Endocrinol Metab 287: E939‐E947, 2004.
 251.Harada T, Nakahara T, Yasuhara D, Kojima S, Sagiyama K‐i, Amitani H, Laviano A, Naruo T, Inui A. Obestatin, acyl ghrelin, and des‐acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa. Biol Psychiatry 63: 245‐247, 2008.
 252.Hass N, Schwarzenbacher K, Breer H. T1R3 is expressed in brush cells and ghrelin‐producing cells of murine stomach. Cell Tissue Res 339: 493‐504, 2010.
 253.Hayes MR, Bradley L, Grill HJ. Endogenous hindbrain glucagon‐like peptide‐1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150: 2654‐2659, 2009.
 254.Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A, Zimmer D, De Jonghe BC, Kanoski SE, Grill HJ, Bence KK. Intracellular signals mediating the food intake‐suppressive effects of hindbrain glucagon‐like peptide‐1 receptor activation. Cell Metab 13: 320‐330, 2011.
 255.He R, Yin Y, Li Y, Li Z, Zhao J, Zhang W. Esophagus‐duodenum gastric bypass surgery improves glucose and lipid metabolism in mice. EBioMedicine 28: 241‐250, 2018.
 256.Heidarzadeh H, Zendehdel M, Babapour V, Gilanpour H. The effect of Nesfatin‐1 on food intake in neonatal chicks: Role of CRF1 /CRF2 and H1/ H3 receptors. Vet Res Commun 42: 39‐47, 2018.
 257.Heldsinger A, Lu Y, Zhou SY, Wu X, Grabauskas G, Song I, Owyang C. Cocaine‐ and amphetamine‐regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short‐term satiety in rats. Am J Physiol Gastrointest Liver Physiol 303: G1042‐G1051, 2012.
 258.Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson‐Lofmark R, Naylor J, Rossi A, Bednarek MA, Bhagroo N, Salari H, Will S, Oldham S, Hansen G, Feigh M, Klein T, Grimsby J, Maguire S, Jermutus L, Rondinone CM, Coghlan MP. Robust anti‐obesity and metabolic effects of a dual GLP‐1/glucagon receptor peptide agonist in rodents and non‐human primates. Diabetes Obes Metab 18: 1176‐1190, 2016.
 259.Heppner KM, Chaudhary N, Muller TD, Kirchner H, Habegger KM, Ottaway N, Smiley DL, Dimarchi R, Hofmann SM, Woods SC, Sivertsen B, Holst B, Pfluger PT, Perez‐Tilve D, Tschöp MH. Acylation type determines ghrelin's effects on energy homeostasis in rodents. Endocrinology 153: 4687‐4695, 2012.
 260.Hermansen K. Effects of cholecystokinin (CCK)‐4, nonsulfated CCK‐8, and sulfated CCK‐8 on pancreatic somatostatin, insulin, and glucagon secretion in the dog: Studies in vitro. Endocrinology 114: 1770‐1775, 1984.
 261.Herness S, Zhao FL, Lu SG, Kaya N, Shen T. Expression and physiological actions of cholecystokinin in rat taste receptor cells. J Neurosci 22: 10018‐10029, 2002.
 262.Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon‐like peptide‐1 and glucose‐dependent insulin‐releasing polypeptide plasma levels in response to nutrients. Digestion 56: 117‐126, 1995.
 263.Herrmann‐Rinke C, Voge A, Hess M, Goke B. Regulation of glucagon‐like peptide‐1 secretion from rat ileum by neurotransmitters and peptides. J Endocrinol 147: 25‐31, 1995.
 264.Hewson AK, Tung LY, Connell DW, Tookman L, Dickson SL. The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic. Diabetes 51: 3412‐3419, 2002.
 265.Higuchi N, Hira T, Yamada N, Hara H. Oral administration of corn zein hydrolysate stimulates GLP‐1 and GIP secretion and improves glucose tolerance in male normal rats and goto‐kakizaki rats. Endocrinology 154: 3089‐3098, 2013.
 266.Hill BR, De Souza MJ, Wagstaff DA, Sato R, Williams NI. 24‐hour profiles of circulating ghrelin and peptide YY are inversely associated in normal weight premenopausal women. Peptides 38: 159‐162, 2012.
 267.Hill D, Campbell N, Shaw T, Woodruff G. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci 7: 2967‐2976, 1987.
 268.Hinnen D. Glucagon‐like peptide 1 receptor agonists for type 2 diabetes. Diabetes spectrum 30: 202‐210, 2017.
 269.Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon‐like peptide‐1 secretion through GPR120. Nat Med 11: 90‐94, 2005.
 270.Hisadome K, Reimann F, Gribble FM, Trapp S. CCK stimulation of GLP‐1 neurons involves alpha1‐adrenoceptor‐mediated increase in glutamatergic synaptic inputs. Diabetes 60: 2701‐2709, 2011.
 271.Hjøllund KR, Deacon CF, Holst JJ. Dipeptidyl peptidase‐4 inhibition increases portal concentrations of intact glucagon‐like peptide‐1 (GLP‐1) to a greater extent than peripheral concentrations in anaesthetised pigs. Diabetologia 54: 2206‐2208, 2011.
 272.Holdstock C, Zethelius B, Sundbom M, Karlsson FA, Eden EB. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes 32: 1640‐1646, 2008.
 273.Holsen LM, Lawson EA, Christensen K, Klibanski A, Goldstein JM. Abnormal relationships between the neural response to high‐ and low‐calorie foods and endogenous acylated ghrelin in women with active and weight‐recovered anorexia nervosa. Psychiatry Res 223: 94‐103, 2014.
 274.Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist. Mol Endocrinol (Baltimore, Md) 17: 2201‐2210, 2003.
 275.Holst JJ, Schwartz TW, Lovgreen NA, Pedersen O, Beck‐Nielsen H. Diurnal profile of pancreatic polypeptide, pancreatic glucagon, gut glucagon and insulin in human morbid obesity. Int J Obes 7: 529‐538, 1983.
 276.Holst JJ, Sorensen TI, Andersen AN, Stadil F, Andersen B, Lauritsen KB, Klein HC. Plasma enteroglucagon after jejunoileal bypass with 3:1 or 1:3 jejunoileal ratio. Scand J Gastroenterol 14: 205‐207, 1979.
 277.Holt MK, Richards JE, Cook DR, Brierley DI, Williams DL, Reimann F, Gribble FM, Trapp S. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP‐1, mediate stress‐induced hypophagia, and limit unusually large intakes of food. Diabetes 68: 21‐33, 2019.
 278.Honda T, Wada E, Battey JF, Wank SA. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci 4: 143‐154, 1993.
 279.Hornnes PJ, Kühl C, Holst JJ, Lauritsen KB, Rehfeld JF, Schwartz TW. Simultaneous recording of the gastro‐entero‐pancreatic hormonal peptide response to food in man. Metab Clin Exp 29: 777‐779, 1980.
 280.Hosoda H, Kangawa K. The autonomic nervous system regulates gastric ghrelin secretion in rats. Regul Pept 146: 12‐18, 2008.
 281.Hsu TM, Hahn JD, Konanur VR, Lam A, Kanoski SE. Hippocampal GLP‐1 receptors influence food intake, meal size, and effort‐based responding for food through volume transmission. Neuropsychopharmacology 40: 327‐337, 2015.
 282.Hui H, Farilla L, Merkel P, Perfetti R. The short half‐life of glucagon‐like peptide‐1 in plasma does not reflect its long‐lasting beneficial effects. Eur J Endocrinol 146: 863‐869, 2002.
 283.Hupe‐Sodmann K, Goke R, Goke B, Thole HH, Zimmermann B, Voigt K, McGregor GP. Endoproteolysis of glucagon‐like peptide (GLP)‐1 (7‐36) amide by ectopeptidases in RINm5F cells. Peptides 18: 625‐632, 1997.
 284.Hupe‐Sodmann K, McGregor GP, Bridenbaugh R, Goke R, Goke B, Thole H, Zimmermann B, Voigt K. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP‐1(7‐36) amide and comparison of the substrate specificity of the enzyme for other glucagon‐like peptides. Regul Pept 58: 149‐156, 1995.
 285.Imamura M. Effects of surgical manipulation of the intestine on peptide YY and its physiology. Peptides 23: 403‐407, 2002.
 286.Inhoff T, Stengel A, Peter L, Goebel M, Taché Y, Bannert N, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P. Novel insight in distribution of nesfatin‐1 and phospho‐mTOR in the arcuate nucleus of the hypothalamus of rats. Peptides 31: 257‐262, 2010.
 287.Ishida E, Hashimoto K, Shimizu H, Okada S, Satoh T, Kato I, Yamada M, Mori M. Nesfatin‐1 induces the phosphorylation levels of cAMP response element‐binding protein for intracellular signaling in a neural cell line. PLoS One 7: e50918, 2012.
 288.Ito S, Kobayashi S. Immunohistochemical demonstration of glucagon‐ and GLI‐containing cells in the canine gut and pancreas. Arch Histol Jap 39: 193‐202, 1976.
 289.Jacobsen SH, Olesen S, Dirksen C, Jørgensen N, Bojsen‐Møller K, Kielgast U, Worm D, Almdal T, Naver L, Hvolris L. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta‐cell function within 2 weeks after gastric bypass in non‐diabetic subjects. Obes Surg 22: 1084‐1096, 2012.
 290.Jagerschmidt A, Popovici T, O'Donohue M, Roques BP. Identification and characterization of various cholecystokinin B receptor mRNA forms in rat brain tissue and partial determination of the cholecystokinin B receptor gene structure. J Neurochem 63: 1199‐1206, 1994.
 291.Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM. Gut‐expressed gustducin and taste receptors regulate secretion of glucagon‐like peptide‐1. Proc Natl Acad Sci USA 104: 15069‐15074, 2007.
 292.Janssen S, Laermans J, Iwakura H, Tack J, Depoortere I. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G‐protein. PLoS One 7: e40168, 2012.
 293.Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I. Bitter taste receptors and alpha‐gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108: 2094‐2099, 2011.
 294.Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 12: 6‐16, 2007.
 295.Jin H, Cai L, Lee K, Chang TM, Li P, Wagner D, Chey WY. A physiological role of peptide YY on exocrine pancreatic secretion in rats. Gastroenterology 105: 208‐215, 1993.
 296.Jin SL, Han V, Simmons J, Towle A, Lauder J, Lund P. Distribution of glucagonlike peptide I (GLP‐I), glucagon, and glicentin in the rat brain: An immunocytochemical study. J Comp Neurol 271: 519‐532, 1988.
 297.Jin T, Drucker DJ. Activation of proglucagon gene transcription through a novel promoter element by the caudal‐related homeodomain protein cdx‐2/3. Mol Cell Biol 16: 19‐28, 1996.
 298.Johnston JR, Freeman KG, Edwards GL. Activity in nodose ganglia neurons after treatment with CP 55,940 and cholecystokinin. Phys Rep 6: e13927, 2018.
 299.Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE. Oxyntomodulin differentially affects glucagon‐like peptide‐1 receptor beta‐arrestin recruitment and signaling through Galpha(s). J Pharmacol Exp Ther 322: 148‐154, 2007.
 300.Kaiya H, Saito E‐S, Tachibana T, Furuse M, Kangawa K. Changes in ghrelin levels of plasma and proventriculus and ghrelin mRNA of proventriculus in fasted and refed layer chicks. Domest Anim Endocrinol 32: 247‐259, 2007.
 301.Kang KS, Yahashi S, Matsuda K. Effect of the N‐methyl‐d‐aspartate receptor antagonist on locomotor activity and cholecystokinin‐induced anorexigenic action in a goldfish model. Neurosci Lett 488: 238‐241, 2011.
 302.Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR. Peripheral and central GLP‐1 receptor populations mediate the anorectic effects of peripherally administered GLP‐1 receptor agonists, liraglutide and exendin‐4. Endocrinology 152: 3103‐3112, 2011.
 303.Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon‐like peptide‐1 (GLP‐1) with the blood‐brain barrier. J Mol Neurosci 18: 7‐14, 2002.
 304.Kato M, Nakanishi T, Tani T, Tsuda T. Low‐molecular fraction of wheat protein hydrolysate stimulates glucagon‐like peptide‐1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats. Nutr Res (New York, NY) 37: 37‐45, 2017.
 305.Kawahara Y, Kaneko F, Yamada M, Kishikawa Y, Kawahara H, Nishi A. Food reward‐sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 67: 395‐402, 2013.
 306.Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond Ser B Biol Sci 140: 578‐596, 1953.
 307.Kentish SJ, Li H, Frisby CL, Page AJ. Nesfatin‐1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner. Peptides 89: 35‐41, 2017.
 308.Kerbel B, Unniappan S. Nesfatin‐1 suppresses energy intake, co‐localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol 24: 366‐377, 2012.
 309.Kerr BD, Flatt PR, Gault VA. (D‐Ser2)Oxm[mPEG‐PAL]: A novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 80: 1727‐1735, 2010.
 310.Kerstens P, Lamers C, Jansen J, De Jong A, Hessels M, Hafkenscheid J. Physiological plasma concentrations of cholecystokinin stimulate pancreatic enzyme secretion and gallbladder contraction in man. Life Sci 36: 565‐569, 1985.
 311.Kervran A, Dubrasquet M, Blache P, Martinez J, Bataille D. Metabolic clearance rates of oxyntomodulin and glucagon in the rat: Contribution of the kidney. Regul Pept 31: 41‐52, 1990.
 312.Kieffer TJ, McIntosh C, Pederson RA. Degradation of glucose‐dependent insulinotropic polypeptide and truncated glucagon‐like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585‐3596, 1995.
 313.Kim BJ, Carlson OD, Jang HJ, Elahi D, Berry C, Egan JM. Peptide YY is secreted after oral glucose administration in a gender‐specific manner. J Clin Endocrinol Metab 90: 6665‐6671, 2005.
 314.Kim D‐H, D'Alessio DA, Woods SC, Seeley RJ. The effects of GLP‐1 infusion in the hepatic portal region on food intake. Regul Pept 155: 110‐114, 2009.
 315.Kim G, Lin J, Snook A, Aing A, Merlino D, Li P, Waldman S. Calorie‐induced ER stress suppresses uroguanylin satiety signaling in diet‐induced obesity. Nutrition & Diabetes 6: e211, 2016.
 316.Kim J, Chung Y, Kim H, Im E, Lee H, Yang H. The tissue distribution of nesfatin‐1/NUCB2 in mouse. Dev Reprod 18: 301‐309, 2014.
 317.Kim SH, Ahn MB, Cho WK, Cho KS, Jung MH, Suh BK. The relation of serum nesfatin‐1 level with anthropometric and metabolic parameters in children and adolescents: A prospective observational study. Medicine 98: e15460, 2019.
 318.Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schurmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschöp MH. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med 15: 741‐745, 2009.
 319.Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M. The role of the vagal nerve in peripheral PYY3‐36‐induced feeding reduction in rats. Endocrinology 146: 2369‐2375, 2005.
 320.Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T. Nesfatin‐1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149: 1295‐1301, 2008.
 321.Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth‐hormone‐releasing acylated peptide from stomach. Nature 402: 656‐660, 1999.
 322.Konczol K, Pinter O, Ferenczi S, Varga J, Kovacs K, Palkovits M, Zelena D, Toth ZE. Nesfatin‐1 exerts long‐term effect on food intake and body temperature. Int J Obes 36: 1514‐1521, 2012.
 323.Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon‐like peptide‐1 and blunted glucose‐dependent insulinotropic peptide secretion are associated with Roux‐en‐Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3: 597‐601, 2007.
 324.Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, Cao J, Bianchi E, Pessi A, Sinharoy R, Marsh DJ, Pocai A. The glucagon receptor is involved in mediating the body weight‐lowering effects of oxyntomodulin. Obesity (Silver Spring, Md) 20: 1566‐1571, 2012.
 325.Kraly FS, Carty WJ, Resnick S, Smith GP. Effect of cholecystokinin on meal size and intermeal interval in the sham‐feeding rat. J Comp Physiol Psychol 92: 697‐707, 1978.
 326.Krause WJ, Freeman RH, Eber SL, Hamra FK, Fok KF, Currie MG, Forte LR. Distribution of Escherichia coli heat‐stable enterotoxin/guanylin/uroguanylin receptors in the avian intestinal tract. Acta Anat 153: 210‐219, 1995.
 327.Krieger JP, Arnold M, Pettersen KG, Lossel P, Langhans W, Lee SJ. Knockdown of GLP‐1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes 65: 34‐43, 2016.
 328.Kroemer NB, Krebs L, Kobiella A, Grimm O, Pilhatsch M, Bidlingmaier M, Zimmermann US, Smolka MN. Fasting levels of ghrelin covary with the brain response to food pictures. Addict Biol 18: 855‐862, 2013.
 329.Kuhre RE, Gribble FM, Hartmann B, Reimann F, Windelov JA, Rehfeld JF, Holst JJ. Fructose stimulates GLP‐1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol 306: G622‐G630, 2014.
 330.Kuhre RE, Wewer Albrechtsen NJ, Hartmann B, Deacon CF, Holst JJ. Measurement of the incretin hormones: Glucagon‐like peptide‐1 and glucose‐dependent insulinotropic peptide. J Diabetes Complicat 29: 445‐450, 2015.
 331.Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco‐Lopez G. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin‐4. J Neuroendocrinol 24: 1505‐1516, 2012.
 332.Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Oliván B, Teixeira J, McGinty J, Rother KI. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab 95: 4072‐4076, 2010.
 333.Laferrère B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 93: 2479‐2485, 2008.
 334.Laney DW Jr, Mann EA, Dellon SC, Perkins DR, Giannella RA, Cohen MB. Novel sites for expression of an Escherichia coli heat‐stable enterotoxin receptor in the developing rat. Am J Physiol 263: G816‐G821, 1992.
 335.Larraufie P, Martin‐Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, Blottiere HM. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 8: 74, 2018.
 336.Larsen PJ, Tang‐Christensen M, Holst JJ, Orskov C. Distribution of glucagon‐like peptide‐1 and other preproglucagon‐derived peptides in the rat hypothalamus and brainstem. Neuroscience 77: 257‐270, 1997.
 337.Larsen PJ, Tang‐Christensen M, Jessop DS. Central administration of glucagon‐like peptide‐1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138: 4445‐4455, 1997.
 338.Larsson LI, Holst J, Hakanson R, Sundler F. Distribution and properties of glucagon immunoreactivity in the digestive tract of various mammals: An immunohistochemical and immunochemical study. Histochemistry 44: 281‐290, 1975.
 339.Larsson L‐I, Rehfeld J. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165: 201‐218, 1979.
 340.Lateef DM, Washington MC, Sayegh AI. The short term satiety peptide cholecystokinin reduces meal size and prolongs intermeal interval. Peptides 32: 1289‐1295, 2011.
 341.Le Quellec A, Kervran A, Blache P, Ciurana AJ, Bataille D. Oxyntomodulin‐like immunoreactivity: Diurnal profile of a new potential enterogastrone. J Clin Endocrinol Metab 74: 1405‐1409, 1992.
 342.Le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, Kent A, Vincent RP, Gardiner J, Ghatei MA, Bloom SR. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3‐8, 2006.
 343.Lee WJ, Chen CY, Ser KH, Chong K, Chen SC, Lee PC, Liao YD, Lee SD. Differential influences of gastric bypass and sleeve gastrectomy on plasma nesfatin‐1 and obestatin levels in patients with type 2 diabetes mellitus. Curr Pharm Des 19: 5830‐5835, 2013.
 344.Lembke V, Goebel‐Stengel M, Frommelt L, Inhoff T, Lommel R, Stengel A, Taché Y, Grötzinger C, Bannert N, Wiedenmann B, Klapp B, Kobelt P. Sulfated cholecystokinin‐8 activates phospho‐mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides 32: 65‐70, 2010.
 345.Lents CA, Barb CR, Hausman GJ, Nonneman D, Heidorn NL, Cisse RS, Azain MJ. Effects of nesfatin‐1 on food intake and LH secretion in prepubertal gilts and genomic association of the porcine NUCB2 gene with growth traits. Domest Anim Endocrinol 45: 89‐97, 2013.
 346.Leslie RA, McDonald TJ, Robertson HA. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata. Peptides 9: 1071‐1076, 1988.
 347.Leung PK, Chow KB, Lau PN, Chu KM, Chan CB, Cheng CH, Wise H. The truncated ghrelin receptor polypeptide (GHS‐R1b) acts as a dominant‐negative mutant of the ghrelin receptor. Cell Signal 19: 1011‐1022, 2007.
 348.Li AJ, Wang Q, Ritter S. Activation of catecholamine neurons in the ventral medulla reduces CCK‐induced hypophagia and c‐Fos activation in dorsal medullary catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 315: R442‐r452, 2018.
 349.Li Y, Wu X, Zhou S, Owyang C. Low‐affinity CCK‐A receptors are coexpressed with leptin receptors in rat nodose ganglia: Implications for leptin as a regulator of short‐term satiety. Am J Physiol Gastrointest Liver Physiol 300: G217‐G227, 2011.
 350.Li Z, Gao L, Tang H, Yin Y, Xiang X, Li Y, Zhao J, Mulholland M, Zhang W. Peripheral effects of nesfatin‐1 on glucose homeostasis. PLoS One 8: e71513, 2013.
 351.Li Z, Perkins AG, Peters MF, Campa MJ, Goy MF. Purification, cDNA sequence, and tissue distribution of rat uroguanylin. Regul Pept 68: 45‐56, 1997.
 352.Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75: 1144‐1152, 1985.
 353.Lim CT, Kola B, Grossman A, Korbonits M. The expression of ghrelin O‐acyltransferase (GOAT) in human tissues. Endocr J 58: 707‐710, 2011.
 354.Lim G, Brubaker P. Glucagon‐like peptide 1 secretion by the l‐cell: The view from within. Diabetes 55: S70‐S77, 2006.
 355.Liu YL, Ford HE, Druce MR, Minnion JS, Field BC, Shillito JC, Baxter J, Murphy KG, Ghatei MA, Bloom SR. Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents. Int J Obes 34: 1715‐1725, 2010.
 356.Lo CM, King A, Samuelson LC, Kindel TL, Rider T, Jandacek RJ, Raybould HE, Woods SC, Tso P. Cholecystokinin knockout mice are resistant to high‐fat diet‐induced obesity. Gastroenterology 138: 1997‐2005, 2010.
 357.Lomenick JP, Clasey JL, Anderson JW. Meal‐related changes in ghrelin, peptide YY, and appetite in normal weight and overweight children. Obesity (Silver Spring, Md) 16: 547‐552, 2008.
 358.Longo KA, Charoenthongtrakul S, Giuliana DJ, Govek EK, McDonagh T, Qi Y, DiStefano PS, Geddes BJ. Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice. Regul Pept 150: 55‐61, 2008.
 359.Lopez Soto EJ, Agosti F, Cabral A, Mustafa ER, Damonte VM, Gandini MA, Rodriguez S, Castrogiovanni D, Felix R, Perello M, Raingo J. Constitutive and ghrelin‐dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J Gen Physiol 146: 205‐219, 2015.
 360.Lu S, Guan JL, Wang QP, Uehara K, Yamada S, Goto N, Date Y, Nakazato M, Kojima M, Kangawa K, Shioda S. Immunocytochemical observation of ghrelin‐containing neurons in the rat arcuate nucleus. Neurosci Lett 321: 157‐160, 2002.
 361.Mace OJ, Schindler M, Patel S. The regulation of K‐ and L‐cell activity by GLUT2 and the calcium‐sensing receptor CasR in rat small intestine. J Physiol 590: 2917‐2936, 2012.
 362.Maejima Y, Sedbazar U, Suyama S, Kohno D, Onaka T, Takano E, Yoshida N, Koike M, Uchiyama Y, Fujiwara K, Yashiro T, Horvath TL, Dietrich MO, Tanaka S, Dezaki K, Oh IS, Hashimoto K, Shimizu H, Nakata M, Mori M, Yada T. Nesfatin‐1‐regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin‐independent melanocortin pathway. Cell Metab 10: 355‐365, 2009.
 363.Maida A, Lovshin JA, Baggio LL, Drucker DJ. The glucagon‐like peptide‐1 receptor agonist oxyntomodulin enhances beta‐cell function but does not inhibit gastric emptying in mice. Endocrinology 149: 5670‐5678, 2008.
 364.Majorczyk M, Staszkiewicz M, Szklarczyk J, Major P, Pisarska M, Wysocki M, Stefura T, Kacprzyk A, Dros J, Holda MK, Pedziwiatr M, Budzynski A, Jaworek J. The influence of bariatric surgery on serum levels of irisin and nesfatin‐1. Acta Chir Belg 119: 363‐369, 2019.
 365.Maljaars PW, Peters HP, Mela DJ, Masclee AA. Ileal brake: A sensible food target for appetite control. A review. Physiol Behav 95: 271‐281, 2008.
 366.Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perello M, Andrews ZB, Zigman JM. Neuroanatomical characterization of a growth hormone secretagogue receptor‐green fluorescent protein reporter mouse. J Comp Neurol 522: 3644‐3666, 2014.
 367.Martinez Damonte V, Rodriguez SS, Raingo J. Growth hormone secretagogue receptor constitutive activity impairs voltage‐gated calcium channel‐dependent inhibitory neurotransmission in hippocampal neurons. J Physiol 596: 5415‐5428, 2018.
 368.Martins L, Fernandez‐Mallo D, Novelle MG, Vazquez MJ, Tena‐Sempere M, Nogueiras R, Lopez M, Dieguez C. Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS One 7: e46923, 2012.
 369.Martins P, Fakhry J, de Oliveira EC, Hunne B, Fothergill LJ, Ringuet M, Reis DD, Rehfeld JF, Callaghan B, Furness JB. Analysis of enteroendocrine cell populations in the human colon. Cell Tissue Res 367: 161‐168, 2017.
 370.Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, Hosoda H, Kojima M, Kangawa K. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun 276: 905‐908, 2000.
 371.Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med 249: 13‐16, 1953.
 372.McCoull W, Barton P, Brown AJ, Bowker SS, Cameron J, Clarke DS, Davies RD, Dossetter AG, Ertan A, Fenwick M, Green C, Holmes JL, Martin N, Masters D, Moore JE, Newcombe NJ, Newton C, Pointon H, Robb GR, Sheldon C, Stokes S, Morgan D. Identification, optimization, and pharmacology of acylurea GHS‐R1a inverse agonists. J Med Chem 57: 6128‐6140, 2014.
 373.McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high‐fat diet. Cell Metab 20: 54‐60, 2014.
 374.McKee KK, Palyha OC, Feighner SD, Hreniuk DL, Tan CP, Phillips MS, Smith RG, Van der Ploeg LH, Howard AD. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol (Baltimore, Md) 11: 415‐423, 1997.
 375.Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D, Schmidt WE, Gallwitz B. Secretion, degradation, and elimination of glucagon‐like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53: 654‐662, 2004.
 376.Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214: 829‐835, 1993.
 377.Menyhert J, Wittmann G, Hrabovszky E, Szlavik N, Keller E, Tschöp M, Liposits Z, Fekete C. Distribution of ghrelin‐immunoreactive neuronal networks in the human hypothalamus. Brain Res 1125: 31‐36, 2006.
 378.Meyer‐Gerspach AC, Wolnerhanssen B, Beglinger B, Nessenius F, Napitupulu M, Schulte FH, Steinert RE, Beglinger C. Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav 129: 265‐271, 2014.
 379.Michel MC, Beck‐Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T. XVI. International union of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50: 143‐150, 1998.
 380.Mietlicki‐Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC, Hayes MR. The food intake‐suppressive effects of glucagon‐like peptide‐1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Phys Endocrinol Metab 305: E1367‐E1374, 2013.
 381.Mirakhor Samani S, Ghasemi H, Rezaei Bookani K, Shokouhi B. Serum nesfatin‐1 level in healthy subjects with weight‐related abnormalities and newly diagnosed patients with type 2 diabtetes mellitus; a case‐control study. Acta Endocrinol (Buchar) 5: 69‐73, 2019.
 382.Miyazato M, Nakazato M, Matsukura S, Kangawa K, Matsuo H. Uroguanylin gene expression in the alimentary tract and extra‐gastrointestinal tissues. FEBS Lett 398: 170‐174, 1996.
 383.Mohan H, Ramesh N, Mortazavi S, Le A, Iwakura H, Unniappan S. Nutrients differentially regulate nucleobindin‐2/nesfatin‐1 in vitro in cultured stomach ghrelinoma (MGN3‐1) cells and in vivo in male mice. PLoS One 9: e115102, 2014.
 384.Mohan H, Unniappan S. Ontogenic pattern of nucleobindin‐2/nesfatin‐1 expression in the gastroenteropancreatic tissues and serum of Sprague Dawley rats. Regul Pept 175: 61‐69, 2012.
 385.Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post‐translational processing. J Biol Chem 261: 11880‐11889, 1986.
 386.Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating ghrelin to high‐fat or high‐carbohydrate meal in healthy women. J Clin Endocrinol Metab 88: 5510‐5514, 2003.
 387.Monteleone P, Serritella C, Martiadis V, Maj M. Deranged secretion of ghrelin and obestatin in the cephalic phase of vagal stimulation in women with anorexia nervosa. Biol Psychiatry 64: 1005‐1008, 2008.
 388.Moran TH. Gut peptides in the control of food intake: 30 years of ideas. Physiol Behav 82: 175‐180, 2004.
 389.Mortazavi S, Gonzalez R, Ceddia R, Unniappan S. Long‐term infusion of nesfatin‐1 causes a sustained regulation of whole‐body energy homeostasis of male Fischer 344 rats. Front Cell Dev Biol 3: 22‐22, 2015.
 390.Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 443: 289‐295, 2006.
 391.Motojima Y, Kawasaki M, Matsuura T, Saito R, Yoshimura M, Hashimoto H, Ueno H, Maruyama T, Suzuki H, Ohnishi H, Sakai A, Ueta Y. Effects of peripherally administered cholecystokinin‐8 and secretin on feeding/drinking and oxytocin‐mRFP1 fluorescence in transgenic rats. Neurosci Res 109: 63‐69, 2016.
 392.Mueller T, Dieplinger B. The guanylin peptide family and the proposed gastrointestinal‐renal natriuretic signaling axis. Kidney Int 82: 1253‐1255, 2012.
 393.Muller TD, Muller A, Yi CX, Habegger KM, Meyer CW, Gaylinn BD, Finan B, Heppner K, Trivedi C, Bielohuby M, Abplanalp W, Meyer F, Piechowski CL, Pratzka J, Stemmer K, Holland J, Hembree J, Bhardwaj N, Raver C, Ottaway N, Krishna R, Sah R, Sallee FR, Woods SC, Perez‐Tilve D, Bidlingmaier M, Thorner MO, Krude H, Smiley D, DiMarchi R, Hofmann S, Pfluger PT, Kleinau G, Biebermann H, Tschöp MH. The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin‐dependent and ghrelin‐independent mechanisms. Nat Commun 4: 1968, 2013.
 394.Muller TD, Perez‐Tilve D, Tong J, Pfluger PT, Tschöp MH. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 1: 159‐167, 2010.
 395.Murtuza MI, Isokawa M. Endogenous ghrelin‐O‐acyltransferase (GOAT) acylates local ghrelin in the hippocampus. J Neurochem 144: 58‐67, 2018.
 396.Mustafa ER, Lopez Soto EJ, Martinez Damonte V, Rodriguez SS, Lipscombe D, Raingo J. Constitutive activity of the Ghrelin receptor reduces surface expression of voltage‐gated Ca(2+) channels in a CaVbeta‐dependent manner. J Cell Sci 130: 3907‐3917, 2017.
 397.Nakahara T, Harada T, Yasuhara D, Shimada N, Amitani H, Sakoguchi T, Kamiji MM, Asakawa A, Inui A. Plasma obestatin concentrations are negatively correlated with body mass index, insulin resistance index, and plasma leptin concentrations in obesity and anorexia nervosa. Biol Psychiatry 64: 252‐255, 2008.
 398.Nakata M, Gantulga D, Santoso P, Zhang B, Masuda C, Mori M, Okada T, Yada T. Paraventricular NUCB2/nesfatin‐1 supports oxytocin and vasopressin neurons to control feeding behavior and fluid balance in male mice. Endocrinology 157: 2322‐2332, 2016.
 399.Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature 409: 194‐198, 2001.
 400.Nakazato M, Yamaguchi H, Date Y, Miyazato M, Kangawa K, Goy MF, Chino N, Matsukura S. Tissue distribution, cellular source, and structural analysis of rat immunoreactive uroguanylin. Endocrinology 139: 5247‐5254, 1998.
 401.Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26: 2274‐2279, 2005.
 402.Naslund E, Gryback P, Backman L, Jacobsson H, Holst JJ, Theodorsson E, Hellstrom PM. Distal small bowel hormones: Correlation with fasting antroduodenal motility and gastric emptying. Dig Dis Sci 43: 945‐952, 1998.
 403.Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and β‐catenin in intestinal endocrine L cells. J Biol Chem 278: 1380‐1387, 2003.
 404.Nielsen FC, Pedersen K, Hansen TV, Rourke IJ, Rehfeld JF. Transcriptional regulation of the human cholecystokinin gene: Composite action of upstream stimulatory factor, Sp1, and members of the CREB/ATF‐AP‐1 family of transcription factors. DNA Cell Biol 15: 53‐63, 1996.
 405.Nilsson O, Bilchik AJ, Goldenring JR, Ballantyne GH, Adrian TE, Modlin IM. Distribution and immunocytochemical colocalization of peptide YY and enteroglucagon in endocrine cells of the rabbit colon. Endocrinology 129: 139‐148, 1991.
 406.Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, Yanase T, Nawata H, Kangawa K, Kojima M. Ingested medium‐chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 146: 2255‐2264, 2005.
 407.Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short‐chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154: 3552‐3564, 2013.
 408.Nosso G, Griffo E, Cotugno M, Saldalamacchia G, Lupoli R, Pacini G, Riccardi G, Angrisani L, Capaldo B. Comparative effects of Roux‐en‐Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: A one‐year prospective study. Hormone Metab Res 48: 312‐317, 2016.
 409.Ogiso K, Asakawa A, Amitani H, Nakahara T, Ushikai M, Haruta I, Koyama K, Amitani M, Harada T, Yasuhara D, Inui A. Plasma nesfatin‐1 concentrations in restricting‐type anorexia nervosa. Peptides 32: 150‐153, 2011.
 410.Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin‐1 as a satiety molecule in the hypothalamus. Nature 443: 709‐712, 2006.
 411.Ohgusu H, Shirouzu K, Nakamura Y, Nakashima Y, Ida T, Sato T, Kojima M. Ghrelin O‐acyltransferase (GOAT) has a preference for n‐hexanoyl‐CoA over n‐octanoyl‐CoA as an acyl donor. Biochem Biophys Res Commun 386: 153‐158, 2009.
 412.Olszewski PK, Grace MK, Billington CJ, Levine AS. Hypothalamic paraventricular injections of ghrelin: Effect on feeding and c‐Fos immunoreactivity. Peptides 24: 919‐923, 2003.
 413.Ong ZY, Liu JJ, Pang ZP, Grill HJ. Paraventricular thalamic control of food intake and reward: Role of glucagon‐like peptide‐1 receptor signaling. Neuropsychopharmacology 42: 2387‐2397, 2017.
 414.Orio L, Crespo I, Lopez‐Moreno JA, Reyes‐Cabello C, Rodriguez de Fonseca F, Gomez de Heras R. Additive effects of cannabinoid CB1 receptors blockade and cholecystokinin on feeding inhibition. Pharmacol Biochem Behav 98: 220‐226, 2011.
 415.Ørskov C, Bersani M, Johnsen A, Højrup P, Holst J. Complete sequences of glucagon‐like peptide‐1 from human and pig small intestine. J Biol Chem 264: 12826‐12829, 1989.
 416.Ørskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV. Glucagon‐like peptides GLP‐1 and GLP‐2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119: 1467‐1475, 1986.
 417.Ørskov C, Poulsen SS, Moller M, Holst JJ. Glucagon‐like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon‐like peptide I. Diabetes 45: 832‐835, 1996.
 418.Ørskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine‐extended glucagon‐like peptide I in humans. Diabetes 43: 535‐539, 1994.
 419.Ørskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon‐like peptide‐1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 31: 665‐670, 1996.
 420.Otto B, Cuntz U, Fruehauf Ea, Wawarta R, Folwaczny C, Riepl R, Heiman M, Lehnert P, Fichter M, Tschop M. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145: R5‐R9, 2001.
 421.Otto B, Tschöp M, Frühauf E, Heldwein W, Fichter M, Otto C, Cuntz U. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology 30: 577‐581, 2005.
 422.Ozaki T, Mohammad S, Morioka E, Takiguchi S, Ikeda M. Infant satiety depends on transient expression of cholecystokinin‐1 receptors on ependymal cells lining the third ventricle in mice. J Physiol 591: 1295‐1312, 2013.
 423.Pałasz A, Krzystanek M, Worthington J, Czajkowska B, Kostro K, Wiaderkiewicz R, Bajor G. Nesfatin‐1, a unique regulatory neuropeptide of the brain. Neuropeptides 46: 105‐112, 2012.
 424.Pan W, Hsuchou H, Kastin AJ. Nesfatin‐1 crosses the blood‐brain barrier without saturation. Peptides 28: 2223‐2228, 2007.
 425.Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S, Nivot S, Vie‐Luton MP, Grouselle D, de Kerdanet M, Kadiri A, Epelbaum J, Le Bouc Y, Amselem S. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest 116: 760‐768, 2006.
 426.Papotti M, Ghe C, Cassoni P, Catapano F, Deghenghi R, Ghigo E, Muccioli G. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab 85: 3803‐3807, 2000.
 427.Parkinson JR, Chaudhri OB, Kuo YT, Field BC, Herlihy AH, Dhillo WS, Ghatei MA, Bloom SR, Bell JD. Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP‐1, oxyntomodulin and lithium chloride in mice detected by manganese‐enhanced magnetic resonance imaging (MEMRI). NeuroImage 44: 1022‐1031, 2009.
 428.Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J, Hanto DW, Callery M, Arky R, Nose V, Bonner‐Weir S, Goldfine AB. Severe hypoglycaemia post‐gastric bypass requiring partial pancreatectomy: Evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48: 2236‐2240, 2005.
 429.Pedersen‐Bjergaard U, Høt U, Kelbæk H, Schifter S, Rehfeld JF, Faber J, Christensen NJ. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand J Clin Lab Invest 56: 497‐503, 1996.
 430.Peino R, Baldelli R, Rodriguez‐Garcia J, Rodriguez‐Segade S, Kojima M, Kangawa K, Arvat E, Ghigo E, Dieguez C, Casanueva FF. Ghrelin‐induced growth hormone secretion in humans. Eur J Endocrinol 143: R11‐R14, 2000.
 431.Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Pilitsi E, Upadhyay J, Alexandrou A, Mantzoros CS. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: Evidence from two independent trials. Metab Clin Exp 101: 153997, 2019.
 432.Perez‐Tilve D, Hofmann SM, Basford J, Nogueiras R, Pfluger PT, Patterson JT, Grant E, Wilson‐Perez HE, Granholm NA, Arnold M, Trevaskis JL, Butler AA, Davidson WS, Woods SC, Benoit SC, Sleeman MW, DiMarchi RD, Hui DY, Tschöp MH. Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci 13: 877‐882, 2010.
 433.Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel‐Courtin C, Gass M, Kern B, von Fluee M, Beglinger C. Metabolic and hormonal changes after laparoscopic Roux‐en‐Y gastric bypass and sleeve gastrectomy: A randomized, prospective trial. Obes Surg 22: 740‐748, 2012.
 434.Petersen PS, Woldbye DP, Madsen AN, Egerod KL, Jin C, Lang M, Rasmussen M, Beck‐Sickinger AG, Holst B. In vivo characterization of high Basal signaling from the ghrelin receptor. Endocrinology 150: 4920‐4930, 2009.
 435.Pfluger PT, Kampe J, Castaneda TR, Vahl T, D'Alessio DA, Kruthaupt T, Benoit SC, Cuntz U, Rochlitz HJ, Moehlig M, Pfeiffer AF, Koebnick C, Weickert MO, Otto B, Spranger J, Tschöp MH. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3‐36. J Clin Endocrinol Metab 92: 583‐588, 2007.
 436.Pfluger PT, Kirchner H, Gunnel S, Schrott B, Perez‐Tilve D, Fu S, Benoit SC, Horvath T, Joost HG, Wortley KE, Sleeman MW, Tschöp MH. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol 294: G610‐G618, 2008.
 437.Philippe J. Glucagon gene transcription is negatively regulated by insulin in a hamster islet cell line. J Clin Invest 84: 672‐677, 1989.
 438.Pironi L, Stanghellini V, Miglioli M, Corinaldesi R, De Giorgio R, Ruggeri E, Tosetti C, Poggioli G, Morselli Labate AM, Monetti N, et al. Fat‐induced ileal brake in humans: A dose‐dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology 105: 733‐739, 1993.
 439.Pittner RA, Moore CX, Bhavsar SP, Gedulin BR, Smith PA, Jodka CM, Parkes DG, Paterniti JR, Srivastava VP, Young AA. Effects of PYY[3‐36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord 28: 963‐971, 2004.
 440.Plamboeck A, Veedfald S, Deacon CF, Hartmann B, Wettergren A, Svendsen LB, Meisner S, Hovendal C, Vilsboll T, Knop FK, Holst JJ. The effect of exogenous GLP‐1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol 304: G1117‐G1127, 2013.
 441.Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capito E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon‐like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58: 2258‐2266, 2009.
 442.Polley KR, Kamal F, Paton CM, Cooper JA. Appetite responses to high‐fat diets rich in mono‐unsaturated versus poly‐unsaturated fats. Appetite 134: 172‐181, 2019.
 443.Price CJ, Samson WK, Ferguson AV. Nesfatin‐1 inhibits NPY neurons in the arcuate nucleus. Brain Res 1230: 99‐106, 2008.
 444.Price SL, Bloom SR. Protein PYY and its role in metabolism. Front Horm Res 42: 147‐154, 2014.
 445.Price TO, Samson WK, Niehoff ML, Banks WA. Permeability of the blood‐brain barrier to a novel satiety molecule nesfatin‐1. Peptides 28: 2372‐2381, 2007.
 446.Prince AC, Brooks SJ, Stahl D, Treasure J. Systematic review and meta‐analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders. Am J Clin Nutr 89: 755‐765, 2009.
 447.Prinz P, Goebel‐Stengel M, Teuffel P, Rose M, Klapp BF, Stengel A. Peripheral and central localization of the nesfatin‐1 receptor using autoradiography in rats. Biochem Biophys Res Commun 470: 521‐527, 2016.
 448.Prinz P, Teuffel P, Lembke V, Kobelt P, Goebel‐Stengel M, Hofmann T, Rose M, Klapp BF, Stengel A. Nesfatin‐130‐59 injected intracerebroventricularly differentially affects food intake microstructure in rats under normal weight and diet‐induced obese conditions. Front Neurosci 9: 422, 2015.
 449.Psilopanagioti A, Nikou S, Papadaki H. Nucleobindin‐2/nesfatin‐1 in the human hypothalamus is reduced in obese subjects and colocalizes with oxytocin, vasopressin, melanin‐concentrating hormone, and cocaine‐ and amphetamine‐regulated transcript. Neuroendocrinology 108: 190‐200, 2019.
 450.Punjabi M, Arnold M, Ruttimann E, Graber M, Geary N, Pacheco‐Lopez G, Langhans W. Circulating glucagon‐like peptide‐1 (GLP‐1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology 155: 1690‐1699, 2014.
 451.Quarta D, Di Francesco C, Melotto S, Mangiarini L, Heidbreder C, Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int 54: 89‐94, 2009.
 452.Quinones M, Al‐Massadi O, Folgueira C, Bremser S, Gallego R, Torres‐Leal L, Haddad‐Tovolli R, Garcia‐Caceres C, Hernandez‐Bautista R, Lam BYH, Beiroa D, Sanchez‐Rebordelo E, Senra A, Malagon JA, Valerio P, Fondevila MF, Ferno J, Malagon MM, Contreras R, Pfluger P, Bruning JC, Yeo G, Tschöp M, Dieguez C, Lopez M, Claret M, Kloppenburg P, Sabio G, Nogueiras R. p53 in AgRP neurons is required for protection against diet‐induced obesity via JNK1. Nat Commun 9: 3432, 2018.
 453.Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK, Randeva HS. Identification of nesfatin‐1 in human and murine adipose tissue: A novel depot‐specific adipokine with increased levels in obesity. Endocrinology 151: 3169‐3180, 2010.
 454.Ramesh N, Mortazavi S, Unniappan S. Nesfatin‐1 stimulates glucagon‐like peptide‐1 and glucose‐dependent insulinotropic polypeptide secretion from STC‐1 cells in vitro. Biochem Biophys Res Commun 462: 124‐130, 2015.
 455.Ramesh N, Mortazavi S, Unniappan S. Nesfatin‐1 stimulates cholecystokinin and suppresses peptide YY expression and secretion in mice. Biochem Biophys Res Commun 472: 201‐208, 2016.
 456.Raun K, von Voss P, Knudsen LB. Liraglutide, a once‐daily human glucagon‐like peptide‐1 analog, minimizes food intake in severely obese minipigs. Obesity (Silver Spring, Md) 15: 1710‐1716, 2007.
 457.Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of nucleobindin‐2 causes insulin resistance in obesity without impacting satiety or adiposity. Cell Rep 24: 1085‐1092.e1086, 2018.
 458.Reeve JR Jr, Green GM, Chew P, Eysselein VE, Keire DA. CCK‐58 is the only detectable endocrine form of cholecystokinin in rat. Am J Physiol Gastrointest Liver Physiol 285: G255‐G265, 2003.
 459.Rehfeld J, Hansen HF. Characterization of preprocholecystokinin products in the porcine cerebral cortex. Evidence of different processing pathways. J Biol Chem 261: 5832‐5840, 1986.
 460.Rehfeld JF. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem 253: 4022‐4030, 1978.
 461.Rehfeld JF, Lundberg JM. Cholecystokinin in feline vagal and sciatic nerves: Concentration, molecular form and transport velocity. Brain Res 275: 341‐347, 1983.
 462.Reidelberger R, Haver A, Anders K, Apenteng B. Role of capsaicin‐sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY‐(3‐36), and glucagon‐like peptide‐1 in rats. Am J Phys Endocrinol Metab 307: E619‐E629, 2014.
 463.Reidelberger R, Haver A, Chelikani PK. Role of peptide YY(3‐36) in the satiety produced by gastric delivery of macronutrients in rats. Am J Phys Endocrinol Metab 304: E944‐E950, 2013.
 464.Reidelberger RD, Arnelo U, Granqvist L, Permert J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280: R605‐R611, 2001.
 465.Renner S, Blutke A, Dobenecker B, Dhom G, Muller TD, Finan B, Clemmensen C, Bernau M, Novak I, Rathkolb B, Senf S, Zols S, Roth M, Gotz A, Hofmann SM, Hrabe de Angelis M, Wanke R, Kienzle E, Scholz AM, DiMarchi R, Ritzmann M, Tschöp MH, Wolf E. Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Gottingen minipigs. Molecular metabolism 16: 180‐190, 2018.
 466.Rettenbacher M, Reubi JC. Localization and characterization of neuropeptide receptors in human colon. Naunyn Schmiedeberg's Arch Pharmacol 364: 291‐304, 2001.
 467.Reubi JC, Waser B, Laderach U, Stettler C, Friess H, Halter F, Schmassmann A. Localization of cholecystokinin A and cholecystokinin B‐gastrin receptors in the human stomach. Gastroenterology 112: 1197‐1205, 1997.
 468.Richards MP, Poch SM, McMurtry JP. Characterization of turkey and chicken ghrelin genes, and regulation of ghrelin and ghrelin receptor mRNA levels in broiler chickens. Gen Comp Endocrinol 145: 298‐310, 2006.
 469.Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, Gribble FM, Reimann F. Identification and characterization of GLP‐1 receptor‐expressing cells using a new transgenic mouse model. Diabetes 63: 1224‐1233, 2014.
 470.Riediger T, Bothe C, Becskei C, Lutz TA. Peptide YY directly inhibits ghrelin‐activated neurons of the arcuate nucleus and reverses fasting‐induced c‐Fos expression. Neuroendocrinology 79: 317‐326, 2004.
 471.Riediger T, Eisele N, Scheel C, Lutz TA. Effects of glucagon‐like peptide 1 and oxyntomodulin on neuronal activity of ghrelin‐sensitive neurons in the hypothalamic arcuate nucleus. Am J Physiol Regul Integr Comp Physiol 298: R1061‐R1067, 2010.
 472.Riva M, Nitert MD, Voss U, Sathanoori R, Lindqvist A, Ling C, Wierup N. Nesfatin‐1 stimulates glucagon and insulin secretion and beta cell NUCB2 is reduced in human type 2 diabetic subjects. Cell Tissue Res 346: 393‐405, 2011.
 473.Roberge JN, Gronau KA, Brubaker PL. Gastrin‐releasing peptide is a novel mediator of proximal nutrient‐induced proglucagon‐derived peptide secretion from the distal gut. Endocrinology 137: 2383‐2388, 1996.
 474.Rodriguez A, Gomez‐Ambrosi J, Catalan V, Ezquerro S, Mendez‐Gimenez L, Becerril S, Ibanez P, Vila N, Margall MA, Moncada R, Valenti V, Silva C, Salvador J, Fruhbeck G. Guanylin and uroguanylin stimulate lipolysis in human visceral adipocytes. Int J Obes 40: 1405‐1415, 2016.
 475.Roman CW, Sloat SR, Palmiter RD. A tale of two circuits: CCK(NTS) neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience 358: 316‐324, 2017.
 476.Romero‐Pico A, Vazquez MJ, Gonzalez‐Touceda D, Folgueira C, Skibicka KP, Alvarez‐Crespo M, Van Gestel MA, Velasquez DA, Schwarzer C, Herzog H, Lopez M, Adan RA, Dickson SL, Dieguez C, Nogueiras R. Hypothalamic kappa‐opioid receptor modulates the orexigenic effect of ghrelin. Neuropsychopharmacology 38: 1296‐1307, 2013.
 477.Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J Clin Endocrinol Metab 90: 6386‐6391, 2005.
 478.Rudenko O, Shang J, Munk A, Ekberg JP, Petersen N, Engelstoft MS, Egerod KL, Hjorth SA, Wu M, Feng Y, Zhou YP, Mokrosinski J, Thams P, Reimann F, Gribble F, Rehfeld JF, Holst JJ, Treebak JT, Howard AD, Schwartz TW. The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Mol Metab 19: 49‐64, 2019.
 479.Saito R, Sonoda S, Ueno H, Motojima Y, Yoshimura M, Maruyama T, Hashimoto H, Tanaka K, Yamamoto Y, Kusuhara K, Ueta Y. Involvement of central nesfatin‐1 neurons on oxytocin‐induced feeding suppression in rats. Neurosci Lett 655: 54‐60, 2017.
 480.Saito R, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Ueno H, Motojima Y, Yoshimura M, Maruyama T, Yamamoto Y, Kusuhara K, Ueta Y. Centrally administered kisspeptin suppresses feeding via nesfatin‐1 and oxytocin in male rats. Peptides 112: 114‐124, 2019.
 481.Sakata I, Nakano Y, Osborne‐Lawrence S, Rovinsky SA, Lee CE, Perello M, Anderson JG, Coppari R, Xiao G, Lowell BB, Elmquist JK, Zigman JM. Characterization of a novel ghrelin cell reporter mouse. Regul Pept 155: 91‐98, 2009.
 482.Sakata I, Yang J, Lee CE, Osborne‐Lawrence S, Rovinsky SA, Elmquist JK, Zigman JM. Colocalization of ghrelin O‐acyltransferase and ghrelin in gastric mucosal cells. Am J Phys Endocrinol Metab 297: E134‐E141, 2009.
 483.Sakurai C, Ohta M, Kanai S, Uematsu H, Funakoshi A, Miyasaka K. Lack of ghrelin secretion in response to fasting in cholecystokinin‐A (‐1), ‐B (‐2) receptor‐deficient mice. J Physiol Sci 56: 441‐447, 2006.
 484.Santoprete A, Capito E, Carrington PE, Pocai A, Finotto M, Langella A, Ingallinella P, Zytko K, Bufali S, Cianetti S, Veneziano M, Bonelli F, Zhu L, Monteagudo E, Marsh DJ, Sinharoy R, Bianchi E, Pessi A. DPP‐IV‐resistant, long‐acting oxyntomodulin derivatives. J Pept Sci 17: 270‐280, 2011.
 485.Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon‐Uul Z, Hashimoto K, Satoh T, Mori M, Kuro OM, Yada T. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin‐1 neurons to produce satiety under fed states. Sci Rep 7: 45819, 2017.
 486.Savage AP, Adrian TE, Carolan G, Chatterjee VK, Bloom SR. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut 28: 166‐170, 1987.
 487.Sayegh AI, Washington MC, Johnson RE, Johnson‐Rouse T, Freeman C, Harrison A, Lucas J, Shelby M, Fisher B, Willis W, Reeve JJ Jr. Celiac and the cranial mesenteric arteries supply gastrointestinal sites that regulate meal size and intermeal interval length via cholecystokinin‐58 in male rats. Horm Behav 67: 48‐53, 2015.
 488.Sayegh AI, Washington MC, Raboin SJ, Aglan AH, Reeve JR Jr. CCK‐58 prolongs the intermeal interval, whereas CCK‐8 reduces this interval: Not all forms of cholecystokinin have equal bioactivity. Peptides 55: 120‐125, 2014.
 489.Schaeffer M, Langlet F, Lafont C, Molino F, Hodson DJ, Roux T, Lamarque L, Verdie P, Bourrier E, Dehouck B, Baneres JL, Martinez J, Mery PF, Marie J, Trinquet E, Fehrentz JA, Prevot V, Mollard P. Rapid sensing of circulating ghrelin by hypothalamic appetite‐modifying neurons. Proc Natl Acad Sci USA 110: 1512‐1517, 2013.
 490.Scharner S, Prinz P, Goebel‐Stengel M, Lommel R, Kobelt P, Hofmann T, Rose M, Stengel A. Activity‐based anorexia activates nesfatin‐1 immunoreactive neurons in distinct brain nuclei of female rats. Brain Res 1677: 33‐46, 2017.
 491.Schepp W, Dehne K, Riedel T, Schmidtler J, Schaffer K, Classen M. Oxyntomodulin: A cAMP‐dependent stimulus of rat parietal cell function via the receptor for glucagon‐like peptide‐1 (7‐36)NH2. Digestion 57: 398‐405, 1996.
 492.Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V. Peptides that regulate food intake: Glucagon‐like peptide 1‐(7‐36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 284: R1427‐R1435, 2003.
 493.Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig Dis Sci 34: 1411‐1419, 1989.
 494.Schjoldager BT, Baldissera FG, Mortensen PE, Holst JJ, Christiansen J. Oxyntomodulin: A potential hormone from the distal gut. Pharmacokinetics and effects on gastric acid and insulin secretion in man. Eur J Clin Investig 18: 499‐503, 1988.
 495.Schulz S, Green CK, Yuen PS, Garbers DL. Guanylyl cyclase is a heat‐stable enterotoxin receptor. Cell 63: 941‐948, 1990.
 496.Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake: Current prospects. Nutrition (Burbank, Los Angeles County, Calif) 16: 866‐873, 2000.
 497.Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 404: 661‐671, 2000.
 498.Scott KA, Moran TH. The GLP‐1 agonist exendin‐4 reduces food intake in nonhuman primates through changes in meal size. Am J Physiol Regul Integr Comp Physiol 293: R983‐R987, 2007.
 499.Scott MM, Perello M, Chuang JC, Sakata I, Gautron L, Lee CE, Lauzon D, Elmquist JK, Zigman JM. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose. PLoS One 7: e44089, 2012.
 500.Secher A, Jelsing J, Baquero AF, Hecksher‐Sorensen J, Cowley MA, Dalboge LS, Hansen G, Grove KL, Pyke C, Raun K, Schaffer L, Tang‐Christensen M, Verma S, Witgen BM, Vrang N, Bjerre KL. The arcuate nucleus mediates GLP‐1 receptor agonist liraglutide‐dependent weight loss. J Clin Invest 124: 4473‐4488, 2014.
 501.Seim I, Collet C, Herington AC, Chopin LK. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics 8: 298, 2007.
 502.Sekar R, Wang L, Chow BK. Central control of feeding behavior by the secretin, PACAP, and glucagon family of peptides. Front Endocrinol 8: 18, 2017.
 503.Seo S, Ju S, Chung H, Lee D, Park S. Acute effects of glucagon‐like peptide‐1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J 55: 867‐874, 2008.
 504.Seoane LM, Al‐Massadi O, Barreiro F, Dieguez C, Casanueva FF. Growth hormone and somatostatin directly inhibit gastric ghrelin secretion. An in vitro organ culture system. J Endocrinol Investigat 30: Rc22‐Rc25, 2007.
 505.Shankar SS, Shankar RR, Mixson LA, Miller DL, Pramanik B, O'Dowd AK, Williams DM, Frederick CB, Beals CR, Stoch SA, Steinberg HO, Kelley DE. Native oxyntomodulin has significant glucoregulatory effects independent of weight loss in obese humans with and without type 2 diabetes. Diabetes 67: 1105‐1112, 2018.
 506.Shaw R, Jones R. The choleretic action of cholecystokinin and cholecystokinin octapeptide in dogs. Surgery 84: 622‐625, 1978.
 507.Sheikh SP, Holst JJ, Orskov C, Ekman R, Schwartz TW. Release of PYY from pig intestinal mucosa; luminal and neural regulation. Regul Pept 26: 253‐266, 1989.
 508.Shen T, Kaya N, Zhao FL, Lu SG, Cao Y, Herness S. Co‐expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha‐gustducin and T1R2 in rat taste receptor cells. Neuroscience 130: 229‐238, 2005.
 509.Shi YC, Hammerle CM, Lee IC, Turner N, Nguyen AD, Riepler SJ, Lin S, Sainsbury A, Herzog H, Zhang L. Adult‐onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides 46: 173‐182, 2012.
 510.Shi YC, Loh K, Bensellam M, Lee K, Zhai L, Lau J, Cantley J, Luzuriaga J, Laybutt DR, Herzog H. Pancreatic PYY is critical in the control of insulin secretion and glucose homeostasis in female mice. Endocrinology 156: 3122‐3136, 2015.
 511.Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 87: 240‐244, 2002.
 512.Shimizu H, Oh IS, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M. Peripheral administration of nesfatin‐1 reduces food intake in mice: The leptin‐independent mechanism. Endocrinology 150: 662‐671, 2009.
 513.Shintani M, Ogawa Y, Ebihara K, Aizawa‐Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K, Nakao K. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50: 227‐232, 2001.
 514.Shousha S, Nakahara K, Nasu T, Sakamoto T, Murakami N. Effect of glucagon‐like peptide‐1 and ‐2 on regulation of food intake, body temperature and locomotor activity in the Japanese quail. Neurosci Lett 415: 102‐107, 2007.
 515.Shrestha YB, Wickwire K, Giraudo S. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance. Peptides 30: 1336‐1341, 2009.
 516.Shuto Y, Shibasaki T, Otagiri A, Kuriyama H, Ohata H, Tamura H, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 109: 1429‐1436, 2002.
 517.Sidhu SS, Thompson DG, Warhurst G, Case RM, Benson RS. Fatty acid‐induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC‐1 and GLUTag. J Physiol 528 (Pt 1): 165‐176, 2000.
 518.Simonian HP, Kresge KM, Boden GH, Parkman HP. Differential effects of sham feeding and meal ingestion on ghrelin and pancreatic polypeptide levels: Evidence for vagal efferent stimulation mediating ghrelin release. Neurogastroenterol Motil 17: 348‐354, 2005.
 519.Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon‐like peptide‐1 receptor signaling differentially regulate addictive behaviors. Physiol Behav 161: 140‐144, 2016.
 520.Sisley S, Gutierrez‐Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide's anorectic but not glucose‐lowering effect. J Clin Invest 124: 2456‐2463, 2014.
 521.Skibicka KP, Hansson C, Alvarez‐Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180: 129‐137, 2011.
 522.Skibicka KP, Shirazi RH, Hansson C, Dickson SL. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward. Endocrinology 153: 1194‐1205, 2012.
 523.Skibicka KP, Shirazi RH, Rabasa‐Papio C, Alvarez‐Crespo M, Neuber C, Vogel H, Dickson SL. Divergent circuitry underlying food reward and intake effects of ghrelin: Dopaminergic VTA‐accumbens projection mediates ghrelin's effect on food reward but not food intake. Neuropharmacology 73: 274‐283, 2013.
 524.Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A. Effects of PYY1‐36 and PYY3‐36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Phys Endocrinol Metab 292: E1062‐E1068, 2007.
 525.Smith G, Gibbs J. The development and proof of the CCK hypothesis of satiety. In: Dourish CT, Cooper SJ, Iversen SD, Iversen LL, editors. Multiple Cholecystokinin Receptors in the CNS. New York, NY: Oxford University Press, 1992.
 526.Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science (New York, NY) 213: 1036‐1037, 1981.
 527.Soares J‐B, Roncon‐Albuquerque R, Leite MA. Ghrelin and ghrelin receptor inhibitors: Agents in the treatment of obesity. Expert Opin Ther Targets 12: 1177‐1189, 2008.
 528.Sowden GL, Drucker DJ, Weinshenker D, Swoap SJ. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon‐like peptide‐1 receptor. Am J Physiol Regul Integr Comp Physiol 292: R962‐R970, 2007.
 529.Spiller RC, Trotman IF, Adrian TE, Bloom SR, Misiewicz JJ, Silk DB. Further characterisation of the 'ileal brake' reflex in man – effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY. Gut 29: 1042‐1051, 1988.
 530.Spiller RC, Trotman IF, Higgins BE, Ghatei MA, Grimble GK, Lee YC, Bloom SR, Misiewicz JJ, Silk DB. The ileal brake – inhibition of jejunal motility after ileal fat perfusion in man. Gut 25: 365‐374, 1984.
 531.Stadlbauer U, Arnold M, Weber E, Langhans W. Possible mechanisms of circulating PYY‐induced satiation in male rats. Endocrinology 154: 193‐204, 2013.
 532.Steinert RE, Frey F, Topfer A, Drewe J, Beglinger C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr 105: 1320‐1328, 2011.
 533.Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C. The functional involvement of gut‐expressed sweet taste receptors in glucose‐stimulated secretion of glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY). Clin Nutr (Edinburgh, Scotland) 30: 524‐532, 2011.
 534.Steinert RE, Luscombe‐Marsh ND, Little TJ, Standfield S, Otto B, Horowitz M, Feinle‐Bisset C. Effects of intraduodenal infusion of L‐tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J Clin Endocrinol Metab 99: 3275‐3284, 2014.
 535.Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, Lambrecht NW, Taché Y. Central nesfatin‐1 reduces dark‐phase food intake and gastric emptying in rats: Differential role of corticotropin‐releasing factor2 receptor. Endocrinology 150: 4911‐4919, 2009.
 536.Stengel A, Goebel M, Wang L, Taché Y, Sachs G, Lambrecht NW. Differential distribution of ghrelin‐O‐acyltransferase (GOAT) immunoreactive cells in the mouse and rat gastric oxyntic mucosa. Biochem Biophys Res Commun 392: 67‐71, 2010.
 537.Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Taché Y, Sachs G, Lambrecht NW. Identification and characterization of nesfatin‐1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150: 232‐238, 2009.
 538.Stengel A, Goebel‐Stengel M, Wang L, Kato I, Mori M, Taché Y. Nesfatin‐1(30‐59) but not the N‐ and C‐terminal fragments, nesfatin‐1(1‐29) and nesfatin‐1(60‐82) injected intracerebroventricularly decreases dark phase food intake by increasing inter‐meal intervals in mice. Peptides 35: 143‐148, 2012.
 539.Stengel A, Hofmann T, Goebel‐Stengel M, Lembke V, Ahnis A, Elbelt U, Lambrecht NW, Ordemann J, Klapp BF, Kobelt P. Ghrelin and NUCB2/nesfatin‐1 are expressed in the same gastric cell and differentially correlated with body mass index in obese subjects. Histochem Cell Biol 139: 909‐918, 2013.
 540.Stengel A, Mori M, Taché Y. The role of nesfatin‐1 in the regulation of food intake and body weight: Recent developments and future endeavors. Obes Rev 14: 859‐870, 2013.
 541.Stewart JE, Seimon RV, Otto B, Keast RSJ, Clifton PM, Feinle‐Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr 93: 703‐711, 2011.
 542.Stock S, Leichner P, Wong AC, Ghatei MA, Kieffer TJ, Bloom SR, Chanoine JP. Ghrelin, peptide YY, glucose‐dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab 90: 2161‐2168, 2005.
 543.Su Y, Zhang J, Tang Y, Bi F, Liu J‐N. The novel function of nesfatin‐1: Anti‐hyperglycemia. Biochem Biophys Res Commun 391: 1039‐1042, 2010.
 544.Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 23: 7973‐7981, 2003.
 545.Svane MS, Bojsen‐Moller KN, Martinussen C, Dirksen C, Madsen JL, Reitelseder S, Holm L, Rehfeld JF, Kristiansen VB, van Hall G, Holst JJ, Madsbad S. Postprandial nutrient handling and gastrointestinal hormone secretion after Roux‐en‐Y gastric bypass vs sleeve gastrectomy. Gastroenterology 156: 1627‐1641.e1621, 2019.
 546.Svoboda M, Tastenoy M, Vertongen P, Robberecht P. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol Cell Endocrinol 105: 131‐137, 1994.
 547.Swartz TD, Hajnal A, Covasa M. Altered orosensory sensitivity to oils in CCK‐1 receptor deficient rats. Physiol Behav 99: 109‐117, 2010.
 548.Tachibana T, Matsuda K, Kawamura M, Ueda H, Khan MS, Cline MA. Feeding‐suppressive mechanism of sulfated cholecystokinin (26‐33) in chicks. Comp Biochem Physiol Part A Mol Integr Physiol 161: 372‐378, 2012.
 549.Tamai H, Takemura J, Kobayashi N, Matsubayashi S, Matsukura S, Nakagawa T. Changes in plasma cholecystokinin concentrations after oral glucose tolerance test in anorexia nervosa before and after therapy. Metab Clin Exp 42: 581‐584, 1993.
 550.Tan BK, Hallschmid M, Kern W, Lehnert H, Randeva HS. Decreased cerebrospinal fluid/plasma ratio of the novel satiety molecule, nesfatin‐1/NUCB‐2, in obese humans: Evidence of nesfatin‐1/NUCB‐2 resistance and implications for obesity treatment. J Clin Endocrinol Metab 96: E669‐E673, 2011.
 551.Tan T, Behary P, Tharakan G, Minnion J, Al‐Najim W, Albrechtsen NJW, Holst JJ, Bloom SR. The effect of a subcutaneous infusion of GLP‐1, OXM, and PYY on energy intake and expenditure in obese volunteers. J Clin Endocrinol Metab 102: 2364‐2372, 2017.
 552.Tang‐Christensen M, Larsen PJ, Goke R, Fink‐Jensen A, Jessop DS, Moller M, Sheikh SP. Central administration of GLP‐1‐(7‐36) amide inhibits food and water intake in rats. Am J Physiol 271: R848‐R856, 1996.
 553.Tatemoto K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 79: 2514‐2518, 1982.
 554.Taylor IL. Distribution and release of peptide YY in dog measured by specific radioimmunoassay. Gastroenterology 88: 731‐737, 1985.
 555.Terrill SJ, Holt MK, Maske CB, Abrams N, Reimann F, Trapp S, Williams DL. Endogenous GLP‐1 in lateral septum promotes satiety and suppresses motivation for food in mice. Physiol Behav 206: 191‐199, 2019.
 556.Terrill SJ, Jackson CM, Greene HE, Lilly N, Maske CB, Vallejo S, Williams DL. Role of lateral septum glucagon‐like peptide 1 receptors in food intake. Am J Physiol Regul Integr Comp Physiol 311: R124‐R132, 2016.
 557.Theander‐Carrillo C, Wiedmer P, Cettour‐Rose P, Nogueiras R, Perez‐Tilve D, Pfluger P, Castaneda TR, Muzzin P, Schurmann A, Szanto I, Tschöp MH, Rohner‐Jeanrenaud F. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116: 1983‐1993, 2006.
 558.Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM. Human duodenal enteroendocrine cells: Source of both incretin peptides, GLP‐1 and GIP. Am J Phys Endocrinol Metab 290: E550‐E559, 2006.
 559.Thiele TE, Seeley RJ, D'Alessio D, Eng J, Bernstein IL, Woods SC, van Dijk G. Central infusion of glucagon‐like peptide‐1‐(7‐36) amide (GLP‐1) receptor antagonist attenuates lithium chloride‐induced c‐Fos induction in rat brainstem. Brain Res 801: 164‐170, 1998.
 560.Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J, Hermansen K. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69: 1135‐1143, 1999.
 561.Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon‐like peptide‐1 secretion. J Physiol 587: 27‐32, 2009.
 562.Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM. Glutamine triggers and potentiates glucagon‐like peptide‐1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 152: 405‐413, 2011.
 563.Torang S, Bojsen‐Moller KN, Svane MS, Hartmann B, Rosenkilde MM, Madsbad S, Holst JJ. In vivo and in vitro degradation of peptide YY3‐36 to inactive peptide YY3‐34 in humans. Am J Physiol Regul Integr Comp Physiol 310: R866‐R874, 2016.
 564.Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 407: 908‐913, 2000.
 565.Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 50: 707‐709, 2001.
 566.Tucker JD, Dhanvantari S, Brubaker PL. Proglucagon processing in islet and intestinal cell lines. Regul Pept 62: 29‐35, 1996.
 567.Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for glucagon‐like peptide‐1 in the central regulation of feeding. Nature 379: 69‐72, 1996.
 568.Uchida A, Zechner JF, Mani BK, Park WM, Aguirre V, Zigman JM. Altered ghrelin secretion in mice in response to diet‐induced obesity and Roux‐en‐Y gastric bypass. Mol Metab 3: 717‐730, 2014.
 569.Ueberberg B, Unger N, Saeger W, Mann K, Petersenn S. Expression of ghrelin and its receptor in human tissues. Hormone Metab Res 41: 814‐821, 2009.
 570.Unger RH, Ohneda A, Valverde I, Eisentraut AM, Exton J. Characterization of the responses of circulating glucagon‐like immunoreactivity to intraduodenal and intravenous administration of glucose. J Clin Invest 47: 48‐65, 1968.
 571.Ustabas Kahraman F, Vehapoglu A, Ozgen IT, Terzioglu S, Cesur Y, Dundaroz R. Correlation of brain neuropeptide (nesfatin‐1 and orexin‐A) concentrations with anthropometric and biochemical parameters in malnourished children. J Clin Res Pediatr Endocrinol 7: 197‐202, 2015.
 572.Valentino MA, Lin JE, Snook AE, Li P, Kim GW, Marszalowicz G, Magee MS, Hyslop T, Schulz S, Waldman SA. A uroguanylin‐GUCY2C endocrine axis regulates feeding in mice. J Clin Invest 121: 3578‐3588, 2011.
 573.Valverde I, Rigopoulou D, Exton J, Ohneda A, Eisentraut A, Unger RH. Demonstration and characterization of a second fraction of glucagon‐like immunoreactivity in jejunal extracts. Am J Med Sci 255: 415‐420, 1968.
 574.van Avesaat M, Troost FJ, Ripken D, Hendriks HF, Masclee AA. Ileal brake activation: Macronutrient‐specific effects on eating behavior? Int J Obes 39: 235‐243, 2015.
 575.van der Kooy D. Area postrema: Site where cholecystokinin acts to decrease food intake. Brain Res 295: 345‐347, 1984.
 576.Van Dijk G, Thiele TE, Donahey JC, Campfield LA, Smith FJ, Burn P, Bernstein IL, Woods SC, Seeley RJ. Central infusions of leptin and GLP‐1‐(7‐36) amide differentially stimulate c‐FLI in the rat brain. Am J Physiol 271: R1096‐R1100, 1996.
 577.Vazquez Roque MI, Camilleri M, Stephens DA, Jensen MD, Burton DD, Baxter KL, Zinsmeister AR. Gastric sensorimotor functions and hormone profile in normal weight, overweight, and obese people. Gastroenterology 131: 1717‐1724, 2006.
 578.Velasquez DA, Martinez G, Romero A, Vazquez MJ, Boit KD, Dopeso‐Reyes IG, Lopez M, Vidal A, Nogueiras R, Dieguez C. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 60: 1177‐1185, 2011.
 579.Veldhuis JD, Reynolds GA, Iranmanesh A, Bowers CY. Twenty‐four hour continuous ghrelin infusion augments physiologically pulsatile, nycthemeral, and entropic (feedback‐regulated) modes of growth hormone secretion. J Clin Endocrinol Metab 93: 3597‐3603, 2008.
 580.Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM, Long SJ, Morgan LM, Holst JJ, Astrup A. A meta‐analysis of the effect of glucagon‐like peptide‐1 (7‐36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86: 4382‐4389, 2001.
 581.Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal‐induced satiety–effect of obesity and weight reduction. Int J Obes Relat Metab Disord 25: 1206‐1214, 2001.
 582.Verhulst PJ, De Smet B, Saels I, Thijs T, Ver Donck L, Moechars D, Peeters TL, Depoortere I. Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice. Gastroenterology 135: 1267‐1276, 2008.
 583.Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88: 2706‐2713, 2003.
 584.Vizcarra FR, Verghese M, Vizcarra JA. Effect of short‐ and long‐term feed restriction on ghrelin concentrations in turkeys. Poult Sci 97: 2183‐2188, 2018.
 585.Vona‐Davis L, McFadden D. NPY family of hormones: Clinical relevance and potential use in gastrointestinal disease. Curr Top Med Chem 7: 1710‐1720, 2007.
 586.Wallace Fitzsimons SE, Chruscicka B, Druelle C, Stamou P, Nally K, Dinan TG, Cryan JF, Schellekens H. A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 152: 90‐101, 2019.
 587.Wang L, Barachina MD, Martínez V, Wei JY, Taché Y. Synergistic interaction between CCK and leptin to regulate food intake. Regul Pept 92: 79‐85, 2000.
 588.Wang L, Martínez V, Barrachina MD, Taché Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res 791: 157‐166, 1998.
 589.Wang L, Martínez V, Rivier JE, Taché Y. Peripheral urocortin inhibits gastric emptying and food intake in mice: Differential role of CRF receptor 2. Am J Physiol Regul Integr Comp Physiol 281: R1401‐R1410, 2001.
 590.Wang Q, Liu C, Uchida A, Chuang JC, Walker A, Liu T, Osborne‐Lawrence S, Mason BL, Mosher C, Berglund ED, Elmquist JK, Zigman JM. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab 3: 64‐72, 2014.
 591.Washington MC, Coggeshall J, Sayegh AI. Cholecystokinin‐33 inhibits meal size and prolongs the subsequent intermeal interval. Peptides 32: 971‐977, 2011.
 592.Washington MC, Mhalhal TR, Sayegh AI. Cholecystokinin‐33, but not cholecystokinin‐8 shows gastrointestinal site specificity in regulating feeding behaviors in male rats. Horm Behav 85: 36‐42, 2016.
 593.Washington MC, Williams K, Sayegh AI. The feeding responses evoked by endogenous cholecystokinin are regulated by different gastrointestinal sites. Horm Behav 78: 79‐85, 2016.
 594.Wei W, Wang G, Qi X, Englander EW, Greeley GH Jr. Characterization and regulation of the rat and human ghrelin promoters. Endocrinology 146: 1611‐1625, 2005.
 595.Wellman M, Abizaid A. Growth hormone secretagogue receptor dimers: A new pharmacological target. eNeuro 2: ENEURO.0053‐14.2015, 2015.
 596.Wen J, Phillips SF, Sarr MG, Kost LJ, Holst JJ. PYY and GLP‐1 contribute to feedback inhibition from the canine ileum and colon. Am J Physiol 269: G945‐G952, 1995.
 597.Wewer Albrechtsen NJ, Hornburg D, Albrechtsen R, Svendsen B, Toräng S, Jepsen SL, Kuhre RE, Hansen M, Janus C, Floyd A, Lund A, Vilsbøll T, Knop FK, Vestergaard H, Deacon CF, Meissner F, Mann M, Holst JJ, Hartmann B. Oxyntomodulin identified as a marker of type 2 diabetes and gastric bypass surgery by mass‐spectrometry based profiling of human plasma. EBioMedicine 7: 112‐120, 2016.
 598.Willesen MG, Kristensen P, Romer J. Co‐localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70: 306‐316, 1999.
 599.Williams DL, Cummings DE, Grill HJ, Kaplan JM. Meal‐related ghrelin suppression requires postgastric feedback. Endocrinology 144: 2765‐2767, 2003.
 600.Williams DL, Grill HJ, Cummings DE, Kaplan JM. Vagotomy dissociates short‐ and long‐term controls of circulating ghrelin. Endocrinology 144: 5184‐5187, 2003.
 601.Witte AB, Gryback P, Holst JJ, Hilsted L, Hellstrom PM, Jacobsson H, Schmidt PT. Differential effect of PYY1‐36 and PYY3‐36 on gastric emptying in man. Regul Pept 158: 57‐62, 2009.
 602.Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, Moncrieffe M, Thabet K, Cox HJ, Yancopoulos GD, Wiegand SJ, Sleeman MW. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 101: 8227‐8232, 2004.
 603.Wortley KE, del Rincon JP, Murray JD, Garcia K, Iida K, Thorner MO, Sleeman MW. Absence of ghrelin protects against early‐onset obesity. J Clin Invest 115: 3573‐3578, 2005.
 604.Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992, 2001.
 605.Wright J, Campos C, Herzog T, Covasa M, Czaja K, Ritter RC. Reduction of food intake by cholecystokinin requires activation of hindbrain NMDA‐type glutamate receptors. Am J Physiol Regul Integr Comp Physiol 301: R448‐R455, 2011.
 606.Wu D, Yang M, Chen Y, Jia Y, Ma ZA, Boden G, Li L, Yang G. Hypothalamic nesfatin‐1/NUCB2 knockdown augments hepatic gluconeogenesis that is correlated with inhibition of mTOR‐STAT3 signaling pathway in rats. Diabetes 63: 1234‐1247, 2014.
 607.Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, Rayner CK. Effects of rectal administration of taurocholic acid on glucagon‐like peptide‐1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 15: 474‐477, 2013.
 608.Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, Bloom SR. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: A randomised controlled trial. Int J Obes 30: 1729‐1736, 2006.
 609.Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, Wren AM, Frost GS, Meeran K, Ghatei MA, Bloom SR. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: A double‐blind, randomized, controlled trial. Diabetes 54: 2390‐2395, 2005.
 610.Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite‐stimulating peptide hormone. Cell 132: 387‐396, 2008.
 611.Yang J, Zhao TJ, Goldstein JL, Brown MS. Inhibition of ghrelin O‐acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci USA 105: 10750‐10755, 2008.
 612.Yang L, Qi Y, Yang Y. Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep 11: 798‐807, 2015.
 613.Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L, Yang G. Nesfatin‐1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet‐induced insulin resistance. Diabetes 61: 1959‐1968, 2012.
 614.Yang Y, Atasoy D, Su HH, Sternson SM. Hunger states switch a flip‐flop memory circuit via a synaptic AMPK‐dependent positive feedback loop. Cell 146: 992‐1003, 2011.
 615.Yang Y, Zhang B, Nakata M, Nakae J, Mori M, Yada T. Islet β‐cell‐produced NUCB2/nesfatin‐1 maintains insulin secretion and glycemia along with suppressing UCP‐2 in β‐cells. J Physiol Sci 69: 733‐739, 2019.
 616.Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signaling pathways: Evidence from intestinal endocrine L cells. Endocrinology 149: 2341‐2351, 2008.
 617.Yin Y, Li Z, Gao L, Li Y, Zhao J, Zhang W. AMPK‐dependent modulation of hepatic lipid metabolism by nesfatin‐1. Mol Cell Endocrinol 417: 20‐26, 2015.
 618.Yoshida‐Yoneda E, O‐Lee TJ, Wei JY, Vigna SR, Taché Y. Peripheral bombesin induces gastric vagal afferent activation in rats. Am J Physiol‐Regul Integr Comp Physiol 271: R1584‐R1593, 1996.
 619.Yosten GL, Samson WK. The anorexigenic and hypertensive effects of nesfatin‐1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 298: R1642‐R1647, 2010.
 620.Yuan JH, Chen X, Dong J, Zhang D, Song K, Zhang Y, Wu GB, Hu XH, Jiang ZY, Chen P. Nesfatin‐1 in the lateral parabrachial nucleus inhibits food intake, modulates excitability of glucosensing neurons, and enhances UCP1 expression in brown adipose tissue. Front Physiol 8: 235, 2017.
 621.Zanchi D, Depoorter A, Egloff L, Haller S, Mählmann L, Lang UE, Drewe J, Beglinger C, Schmidt A, Borgwardt S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci Biobehav Rev 80: 457‐475, 2017.
 622.Zhan J, Weng J, Hunt BG, Sean Davidson W, Liu M, Lo CC. Apolipoprotein A‐IV enhances cholecystokinnin secretion. Physiol Behav 188: 11‐17, 2018.
 623.Zhang AQ, Li XL, Jiang CY, Lin L, Shi RH, Chen JD, Oomura Y. Expression of nesfatin‐1/NUCB2 in rodent digestive system. World J Gastroenterol 16: 1735‐1741, 2010.
 624.Zhang T, Wang M, Liu L, He B, Hu J, Wang Y. Hypothalamic nesfatin‐1 mediates feeding behavior via MC3/4R‐ERK signaling pathway after weight loss in obese Sprague‐Dawley rats. Peptides 119: 170080, 2019.
 625.Zhang X, Tang N, Qi J, Wang S, Hao J, Wu Y, Chen H, Tian Z, Wang B, Chen D, Li Z. CCK reduces the food intake mainly through CCK1R in Siberian sturgeon (Acipenser baerii Brandt). Sci Rep 7: 12413, 2017.
 626.Zhang X, Wang S, Chen H, Tang N, Qi J, Wu Y, Hao J, Tian Z, Wang B, Chen D, Li Z. The inhibitory effect of NUCB2/nesfatin‐1 on appetite regulation of Siberian sturgeon (Acipenser baerii Brandt). Horm Behav 103: 111‐120, 2018.
 627.Zhao L, Wang B, Wang L, Zhao X, Chen Z, Sun L. Design, screening and biological evaluation of novel fatty acid chain‐modified oxyntomodulin‐based derivatives with prolonged glucose‐lowering ability and potent anti‐obesity effects. Org Biomol Chem 17: 7760‐7771, 2019.
 628.Zhao TJ, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Goldstein JL, Brown MS. Ghrelin O‐acyltransferase (GOAT) is essential for growth hormone‐mediated survival of calorie‐restricted mice. Proc Natl Acad Sci USA 107: 7467‐7472, 2010.
 629.Zhao TJ, Sakata I, Li RL, Liang G, Richardson JA, Brown MS, Goldstein JL, Zigman JM. Ghrelin secretion stimulated by {beta}1‐adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc Natl Acad Sci USA 107: 15868‐15873, 2010.
 630.Zhu G, Yan J, Smith WW, Moran TH, Bi S. Roles of dorsomedial hypothalamic cholecystokinin signaling in the controls of meal patterns and glucose homeostasis. Physiol Behav 105: 234‐241, 2012.
 631.Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk‐Melody JE, Schmidt K, Bagchi A, Griffin PR, Thornberry NA, Sinha RR. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: In vivo metabolism of pituitary adenylate cyclase activating polypeptide‐(1‐38). J Biol Chem 278: 22418‐22423, 2003.
 632.Zhu X‐G, Greeley GH Jr, Lewis BG, Lilja P, Thompson JC. Blood‐CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. J Neurosci Res 15: 393‐403, 1986.
 633.Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494: 528‐548, 2006.
 634.Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD, Williams TD, Lachey JL, Seeley RJ, Lowell BB, Elmquist JK. Mice lacking ghrelin receptors resist the development of diet‐induced obesity. J Clin Invest 115: 3564‐3572, 2005.
 635.Zwirska‐Korczala K, Konturek SJ, Sodowski M, Wylezol M, Kuka D, Sowa P, Adamczyk‐Sowa M, Kukla M, Berdowska A, Rehfeld JF, Bielanski W, Brzozowski T. Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J Physiol Pharmacol 58 (Suppl 1): 13‐35, 2007.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Martha A. Schalla, Yvette Taché, Andreas Stengel. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021, 11: 1679-1730. doi: 10.1002/cphy.c200007