Comprehensive Physiology Wiley Online Library

Intestinal Calcium Absorption

Full Article on Wiley Online Library



Abstract

In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25‐dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β‐estradiol, calcitonin, and fibroblast growth factor‐23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin‐D9k) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage‐dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:2047‐2073, 2021.

Figure 1. Figure 1. Segmental heterogeneity of calcium absorption. Key features including magnitude of net absorptive calcium flux rate (Jnet = Jmucosa‐to‐serosa − Jserosa‐to‐mucosa) and percentage of total absorbed calcium under normal (calcium‐ and vitamin D‐replete) conditions are presented for each intestinal segment. The number of “+” signs represents the amount of net calcium flux compared to cecum which has the highest net flux marked with “++++”.
Figure 2. Figure 2. Intestinal segment‐specific sojourn time, calcium solubility, and expression profile of genes/proteins related to calcium transport. The number of “+” signifies the relative abundance of a feature for a given intestinal segment. A “–” indicates that an mRNA expression is absent in a segment. The sojourn time in the table represents time of chyme. The lower lines of each segment (red text) represent distribution of mRNA expression of genes related to calcium transport in female rats refer to our previous study 219. N/A, not available; S, sexual disparity in the expression profile; Cldn, claudin; PMCA1b, plasma membrane Ca2+ ATPase‐1b; TRPV6, transient receptor potential cation channel, subfamily V, member 6; VDR, vitamin D receptor.
Figure 3. Figure 3. Diagrams of intestinal villi. (A) Longitudinal section of villous showing sites of net calcium absorption at villous (a) and net calcium secretion at crypts of intestine (b). The heterogeneity of calbindin‐D9k (S100 calcium‐binding protein G, S100G) expression and the primary direction of calcium flux are presented along the crypt‐villous axis. (B) Transverse section of villous tip featuring transcellular (c) and paracellular calcium absorption (d), secretion (e), and the existence of unstirred water layer and acid microclimate (f).
Figure 4. Figure 4. Mechanism of transcellular calcium transport across the enterocyte. Calcium is transported across apical membrane through transient receptor potential cation channel, subfamily V, member 6 (TRPV6), and, to a lesser extent, TRPV5, facilitated diffusion through the cytosol, and active basolateral extrusion by the plasma membrane Ca2+ ATPase‐1b (PMCA1b) and other transporters [e.g., Na+/Ca2+ exchanger 1 (NCX1) and K+‐dependent Na+/Ca2+ exchanger (NCKX)]. Some inhibitors of each calcium transporter are also indicated. Calcium‐binding proteins including calbindin‐D9k (CaBP‐9k) and calmodulin (CAM) may play a role in a buffering system to prevent intracellular calcium overload as well as translocate calcium ions from the mucosa to the serosa. The stoichiometry for NCX1 is 4 Na+ to 1‐2 Ca2+ moved per transport cycle; however, an average stoichiometry is 3 Na+:1 Ca2+. The stoichiometry of NKA is 3 Na+:2 K+. TRPV6, NKA, and NCX1 activities are inhibited by ruthenium red, ouabain, and KB‐R7943, respectively. PMCA1b activity is inhibited by trifluoperazine and vanadate.
Figure 5. Figure 5. Effect of apical membrane potential changes on transcellular intestinal calcium absorption. During glucose uptake via Na+‐dependent glucose transporter (SGLT)‐1, sodium entry induces slight depolarization of the apical membrane, thereby triggering Cav1.3 opening at slight depolarized potential of approximately −40 mV as compared with −47 mV resting potential of the apical membrane. Cav1.3 activity is inhibited by dihydropyridine. PMCA1b, plasma membrane Ca2+ ATPase‐1b; NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; calbindin‐D9k (S100 calcium‐binding protein G, S100G); CAM, calmodulin.
Figure 6. Figure 6. Model of vesicular and reticular transport of calcium. Diagram shows vesicular calcium transport and calcium tunneling through the meshwork of endoplasmic reticulum (ER). Calcium enters the cell through TRPV6 or other calcium channels. Intracellular calcium pool (Cai) in the apical compartment is moved into the vesicles or pumped into ER lumen by sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA). Calcium diffuses along the ER tunnel to the basolateral side and released into the cytoplasm by 1,4,5‐trisphosphate receptor (IP3R) and ryanodine receptor (RyR) and extrudes by the plasma membrane Ca2+ ATPase‐1b (PMCA1b). In cellular calcium depleted condition, a calcium sensor stromal interacting molecule 1 (STIM1) is translocated to the apical membrane to induce electrogenic calcium influx. The pathways with red texts (i.e., STIM1, SERCA, ER, IP3R, and RyR) are hypothetical from indirect evidence and need more investigations to confirm their physiological significance. TRPV6, transient receptor potential cation channel, subfamily V, member 6.
Figure 7. Figure 7. Paracellular intestinal calcium transport. Although calcium concentration gradient is a driving force for paracellular calcium transport, the tight junction (i.e., claudins, occludin, ZO‐1) acts as a barrier to restricts paracellular ion movement in a charge‐ and size‐selective manner. Calcium and small water‐soluble molecules move along the stream of water in apical to basolateral direction (solvent drag‐induced calcium absorption). Elevation of NKA activity increases the driving force for the solvent drag‐induced calcium transport. ZO‐1, zonula occludens‐1.
Figure 8. Figure 8. Systemic control of mammalian calcium homeostasis by three organs (i.e., bone, kidney, and intestine). The details are fully explained in the section titled “Systemic Controls Mucosal Calcium Absorption”. Cyp27B1, 25‐hydroxyvitamin D3 1α‐hydroxylase; PTH, parathyroid hormone.
Figure 9. Figure 9. Extrinsic (humoral and neural) and intrinsic (luminal) regulators of intestinal calcium absorption. The luminal and endocrine factors that act as stimulator and inhibitor on intestinal calcium absorption showing in the green and orange boxes, respectively. Although the presented luminal and endocrine factors are known to modulate calcium absorption, the involvement of neurocrine factors (marked as italic text), or factors released from neuroendocrine cells in the enteric nervous system is in the emerging area of interest and needs more investigations to confirm the physiological significance. Cldn, claudin; FGF‐23, fibroblast growth factor‐23; GH, growth hormone; IGF‐1, insulin‐like growth factor‐1; SCFAs, short‐chain fatty acids; TTX, tetrodotoxin; VIP, vasoactive intestinal peptide; NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; PMCA1b, plasma membrane Ca2+ ATPase‐1b; calbindin‐D9k (S100 calcium‐binding protein G, S100G); TRPV, transient receptor potential cation channel, subfamily V.
Figure 10. Figure 10. The emerging topic of intestinal calcium absorption. (A) A schematic diagram shows possible mechanism of fibroblast growth factor (FGF)‐23 and calcium‐sensing receptor (CaSR) on local negative feedback regulation of calcium absorption. (B) A schematic diagram showing a possible mechanism of how short‐chain fatty acids (SCFAs) enhances transcellular calcium transport in the intestine. Hypothetical pathways or pathways with indirect evidence are presented as dashed lines. NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; PMCA1b, plasma membrane Ca2+ ATPase‐1b; calbindin‐D9k (S100 calcium‐binding protein G, S100G); TRPV, transient receptor potential cation channel, subfamily V.


Figure 1. Segmental heterogeneity of calcium absorption. Key features including magnitude of net absorptive calcium flux rate (Jnet = Jmucosa‐to‐serosa − Jserosa‐to‐mucosa) and percentage of total absorbed calcium under normal (calcium‐ and vitamin D‐replete) conditions are presented for each intestinal segment. The number of “+” signs represents the amount of net calcium flux compared to cecum which has the highest net flux marked with “++++”.


Figure 2. Intestinal segment‐specific sojourn time, calcium solubility, and expression profile of genes/proteins related to calcium transport. The number of “+” signifies the relative abundance of a feature for a given intestinal segment. A “–” indicates that an mRNA expression is absent in a segment. The sojourn time in the table represents time of chyme. The lower lines of each segment (red text) represent distribution of mRNA expression of genes related to calcium transport in female rats refer to our previous study 219. N/A, not available; S, sexual disparity in the expression profile; Cldn, claudin; PMCA1b, plasma membrane Ca2+ ATPase‐1b; TRPV6, transient receptor potential cation channel, subfamily V, member 6; VDR, vitamin D receptor.


Figure 3. Diagrams of intestinal villi. (A) Longitudinal section of villous showing sites of net calcium absorption at villous (a) and net calcium secretion at crypts of intestine (b). The heterogeneity of calbindin‐D9k (S100 calcium‐binding protein G, S100G) expression and the primary direction of calcium flux are presented along the crypt‐villous axis. (B) Transverse section of villous tip featuring transcellular (c) and paracellular calcium absorption (d), secretion (e), and the existence of unstirred water layer and acid microclimate (f).


Figure 4. Mechanism of transcellular calcium transport across the enterocyte. Calcium is transported across apical membrane through transient receptor potential cation channel, subfamily V, member 6 (TRPV6), and, to a lesser extent, TRPV5, facilitated diffusion through the cytosol, and active basolateral extrusion by the plasma membrane Ca2+ ATPase‐1b (PMCA1b) and other transporters [e.g., Na+/Ca2+ exchanger 1 (NCX1) and K+‐dependent Na+/Ca2+ exchanger (NCKX)]. Some inhibitors of each calcium transporter are also indicated. Calcium‐binding proteins including calbindin‐D9k (CaBP‐9k) and calmodulin (CAM) may play a role in a buffering system to prevent intracellular calcium overload as well as translocate calcium ions from the mucosa to the serosa. The stoichiometry for NCX1 is 4 Na+ to 1‐2 Ca2+ moved per transport cycle; however, an average stoichiometry is 3 Na+:1 Ca2+. The stoichiometry of NKA is 3 Na+:2 K+. TRPV6, NKA, and NCX1 activities are inhibited by ruthenium red, ouabain, and KB‐R7943, respectively. PMCA1b activity is inhibited by trifluoperazine and vanadate.


Figure 5. Effect of apical membrane potential changes on transcellular intestinal calcium absorption. During glucose uptake via Na+‐dependent glucose transporter (SGLT)‐1, sodium entry induces slight depolarization of the apical membrane, thereby triggering Cav1.3 opening at slight depolarized potential of approximately −40 mV as compared with −47 mV resting potential of the apical membrane. Cav1.3 activity is inhibited by dihydropyridine. PMCA1b, plasma membrane Ca2+ ATPase‐1b; NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; calbindin‐D9k (S100 calcium‐binding protein G, S100G); CAM, calmodulin.


Figure 6. Model of vesicular and reticular transport of calcium. Diagram shows vesicular calcium transport and calcium tunneling through the meshwork of endoplasmic reticulum (ER). Calcium enters the cell through TRPV6 or other calcium channels. Intracellular calcium pool (Cai) in the apical compartment is moved into the vesicles or pumped into ER lumen by sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA). Calcium diffuses along the ER tunnel to the basolateral side and released into the cytoplasm by 1,4,5‐trisphosphate receptor (IP3R) and ryanodine receptor (RyR) and extrudes by the plasma membrane Ca2+ ATPase‐1b (PMCA1b). In cellular calcium depleted condition, a calcium sensor stromal interacting molecule 1 (STIM1) is translocated to the apical membrane to induce electrogenic calcium influx. The pathways with red texts (i.e., STIM1, SERCA, ER, IP3R, and RyR) are hypothetical from indirect evidence and need more investigations to confirm their physiological significance. TRPV6, transient receptor potential cation channel, subfamily V, member 6.


Figure 7. Paracellular intestinal calcium transport. Although calcium concentration gradient is a driving force for paracellular calcium transport, the tight junction (i.e., claudins, occludin, ZO‐1) acts as a barrier to restricts paracellular ion movement in a charge‐ and size‐selective manner. Calcium and small water‐soluble molecules move along the stream of water in apical to basolateral direction (solvent drag‐induced calcium absorption). Elevation of NKA activity increases the driving force for the solvent drag‐induced calcium transport. ZO‐1, zonula occludens‐1.


Figure 8. Systemic control of mammalian calcium homeostasis by three organs (i.e., bone, kidney, and intestine). The details are fully explained in the section titled “Systemic Controls Mucosal Calcium Absorption”. Cyp27B1, 25‐hydroxyvitamin D3 1α‐hydroxylase; PTH, parathyroid hormone.


Figure 9. Extrinsic (humoral and neural) and intrinsic (luminal) regulators of intestinal calcium absorption. The luminal and endocrine factors that act as stimulator and inhibitor on intestinal calcium absorption showing in the green and orange boxes, respectively. Although the presented luminal and endocrine factors are known to modulate calcium absorption, the involvement of neurocrine factors (marked as italic text), or factors released from neuroendocrine cells in the enteric nervous system is in the emerging area of interest and needs more investigations to confirm the physiological significance. Cldn, claudin; FGF‐23, fibroblast growth factor‐23; GH, growth hormone; IGF‐1, insulin‐like growth factor‐1; SCFAs, short‐chain fatty acids; TTX, tetrodotoxin; VIP, vasoactive intestinal peptide; NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; PMCA1b, plasma membrane Ca2+ ATPase‐1b; calbindin‐D9k (S100 calcium‐binding protein G, S100G); TRPV, transient receptor potential cation channel, subfamily V.


Figure 10. The emerging topic of intestinal calcium absorption. (A) A schematic diagram shows possible mechanism of fibroblast growth factor (FGF)‐23 and calcium‐sensing receptor (CaSR) on local negative feedback regulation of calcium absorption. (B) A schematic diagram showing a possible mechanism of how short‐chain fatty acids (SCFAs) enhances transcellular calcium transport in the intestine. Hypothetical pathways or pathways with indirect evidence are presented as dashed lines. NCX1, Na+/Ca2+ exchanger 1; NKA, Na+/K+‐ATPase; PMCA1b, plasma membrane Ca2+ ATPase‐1b; calbindin‐D9k (S100 calcium‐binding protein G, S100G); TRPV, transient receptor potential cation channel, subfamily V.
References
 1.Ahlem A, Ali el H, Leila T. Lysosomes of the liver and the duodenal enterocytes, a site of handling of two rare earths. Ultrastructural and microanalytical study. Biol Trace Elem Res 124: 40‐51, 2008.
 2.Akhter S, Kutuzova GD, Christakos S, DeLuca HF. Calbindin D9k is not required for 1,25‐dihydroxyvitamin D3‐mediated Ca2+ absorption in small intestine. Arch Biochem Biophys 460: 227‐232, 2007.
 3.Alexander RT, Rievaj J, Dimke H. Paracellular calcium transport across renal and intestinal epithelia. Biochem Cell Biol 92: 467‐480, 2014.
 4.Altimimi HF, Schnetkamp PP. Examining Ca2+ extrusion of Na+/Ca2+‐K+ exchangers. Ann NY Acad Sci 1099: 29‐33, 2007.
 5.Altimimi HF, Schnetkamp PP. Na+/Ca2+‐K+ exchangers (NCKX): Functional properties and physiological roles. Channels (Austin) 1: 62‐69, 2007.
 6.Amerongen HM, Mack JA, Wilson JM, Neutra MR. Membrane domains of intestinal epithelial cells: Distribution of Na+,K+‐ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J Cell Biol 109: 2129‐2138, 1989.
 7.Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1: a002584, 2009.
 8.Armbrecht HJ, Boltz MA, Christakos S, Bruns ME. Capacity of 1,25‐dihydroxyvitamin D to stimulate expression of calbindin D changes with age in the rat. Arch Biochem Biophys 352: 159‐164, 1998.
 9.Armbrecht HJ, Boltz MA, Kumar VB. Intestinal plasma membrane calcium pump protein and its induction by 1,25(OH)2D3 decrease with age. Am J Physiol 277: G41‐G47, 1999.
 10.Askari M, Karamzadeh R, Ansari‐Pour N, Karimi‐Jafari MH, Almadani N, Sadighi Gilani MA, Gourabi H, Vosough Taghi Dizaj A, Mohseni Meybodi A, Sadeghi M, Bashamboo A, McElreavey K, Totonchi M. Identification of a missense variant in CLDN2 in obstructive azoospermia. J Hum Genet 64: 1023‐1032, 2019.
 11.Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling‐Perry K, Gales B, Adams JS, Salusky IB, Hewison M. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25‐dihydroxyvitamin D in human monocytes. J Bone Miner Res 28: 46‐55, 2013.
 12.Barger‐Lux MJ, Heaney RP, Lanspa SJ, Healy JC, DeLuca HF. An investigation of sources of variation in calcium absorption efficiency. J Clin Endocrinol Metab 80: 406‐411, 1995.
 13.Beggs MR, Lee JJ, Busch K, Raza A, Dimke H, Weissgerber P, Engel J, Flockerzi V, Alexander RT. TRPV6 and Cav1.3 mediate distal small intestine calcium absorption before weaning. Cell Mol Gastroenterol Hepatol 8: 625‐642, 2019.
 14.Behar J, Kerstein MD. Intestinal calcium absorption: Differences in transport between duodenum and ileum. Am J Physiol 230: 1255‐1260, 1976.
 15.Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin‐D9k. Endocrinology 149: 3196‐3205, 2008.
 16.Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE, LaMont JT. Viscous fingering of HCl through gastric mucin. Nature 360: 458‐461, 1992.
 17.Bindels RJ, Timmermans JA, Hartog A, Coers W, van Os CH. Calbindin‐D9k and parvalbumin are exclusively located along basolateral membranes in rat distal nephron. J Am Soc Nephrol 2: 1122‐1129, 1991.
 18.Blais A, Aymard P, Lacour B. Paracellular calcium transport across Caco‐2 and HT29 cell monolayers. Pflugers Arch 434: 300‐305, 1997.
 19.Brommage R, Binacua C, Carrie AL. The cecum does not participate in the stimulation of intestinal calcium absorption by calcitriol. J Steroid Biochem Mol Biol 54: 71‐73, 1995.
 20.Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr 129: 9‐12, 1999.
 21.Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 250: G561‐G569, 1986.
 22.Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis‐independent mechanisms. J Immunol 171: 6164‐6172, 2003.
 23.Carrasco F, Basfi‐Fer K, Rojas P, Csendes A, Papapietro K, Codoceo J, Inostroza J, Krebs NF, Westcott JL, Miller LV, Ruz M. Calcium absorption may be affected after either sleeve gastrectomy or Roux‐en‐Y gastric bypass in premenopausal women: A 2‐y prospective study. Am J Clin Nutr 108: 24‐32, 2018.
 24.Carroll KM, Wood RJ, Chang EB, Rosenberg IH. Glucose enhancement of transcellular calcium transport in the intestine. Am J Physiol 255: G339‐G345, 1988.
 25.Cervetto L, Lagnado L, Perry RJ, Robinson DW, McNaughton PA. Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337: 740‐743, 1989.
 26.Chandra S, Fullmer CS, Smith CA, Wasserman RH, Morrison GH. Ion microscopic imaging of calcium transport in the intestinal tissue of vitamin D‐deficient and vitamin D‐replete chickens: A 44Ca stable isotope study. Proc Natl Acad Sci USA 87: 5715‐5719, 1990.
 27.Charoenphandhu N, Kraidith K, Lertsuwan K, Sripong C, Suntornsaratoon P, Svasti S, Krishnamra N, Wongdee K. Na+/H+ exchanger 3 inhibitor diminishes hepcidin‐enhanced duodenal calcium transport in hemizygous β‐globin knockout thalassemic mice. Mol Cell Biochem 427: 201‐208, 2017.
 28.Charoenphandhu N, Krishnamra N. Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Pharmacol 85: 569‐581, 2007.
 29.Charoenphandhu N, Laohapitakworn S, Kraidith K, Nakkrasae LI, Jongwattanapisan P, Tharabenjasin P, Krishnamra N. Electrogenic Na+/HCO3– co‐transporter‐1 is essential for the parathyroid hormone‐stimulated intestinal HCO3– secretion. Biochem Biophys Res Commun 409: 775‐779, 2011.
 30.Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol 79: 430‐438, 2001.
 31.Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly enhanced Na+/K+‐ and Ca2+‐ATPase activities in the duodenum of female rats. Can J Physiol Pharmacol 84: 555‐563, 2006.
 32.Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N. Two‐step stimulation of intestinal Ca2+ absorption during lactation by long‐term prolactin exposure and suckling‐induced prolactin surge. Am J Physiol Endocrinol Metab 297: E609‐E619, 2009.
 33.Charoenphandhu N, Suntornsaratoon P, Jongwattanapisan P, Wongdee K, Krishnamra N. Enhanced trabecular bone resorption and microstructural bone changes in rats after removal of the cecum. Am J Physiol Endocrinol Metab 303: E1069‐E1075, 2012.
 34.Charoenphandhu N, Teerapornpuntakit J, Lapmanee S, Krishnamra N, Charoenphandhu J. Duodenal calcium transporter mRNA expression in stressed male rats treated with diazepam, fluoxetine, reboxetine, or venlafaxine. Mol Cell Biochem 369: 87‐94, 2012.
 35.Charoenphandhu N, Tudpor K, Pulsook N, Krishnamra N. Chronic metabolic acidosis stimulated transcellular and solvent drag‐induced calcium transport in the duodenum of female rats. Am J Physiol Gastrointest Liver Physiol 291: G446‐G455, 2006.
 36.Charoenphandhu N, Wongdee K, Krishnamra N. Is prolactin the cardinal calciotropic maternal hormone? Trends Endocrinol Metab 21: 395‐401, 2010.
 37.Charoenphandhu N, Wongdee K, Teerapornpuntakit J, Thongchote K, Krishnamra N. Transcriptome responses of duodenal epithelial cells to prolactin in pituitary‐grafted rats. Mol Cell Endocrinol 296: 41‐52, 2008.
 38.Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non‐classical actions of vitamin D. J Steroid Biochem Mol Biol 121: 183‐187, 2010.
 39.Colegio OR, Van Itallie C, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284: C1346‐C1354, 2003.
 40.Cooke HJ. Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann NY Acad Sci 915: 77‐80, 2000.
 41.Corbeels K, Verlinden L, Lannoo M, Simoens C, Matthys C, Verstuyf A, Meulemans A, Carmeliet G, Van der Schueren B. Thin bones: Vitamin D and calcium handling after bariatric surgery. Bone Rep 8: 57‐63, 2018.
 42.Cormick G, Belizan JM. Calcium intake and health. Nutrients 11: 1606, 2019.
 43.Cramer CF. Effect of salmon calcitonin on in vivo calcium absorption in rats. Calcif Tissue Res 13: 169‐172, 1973.
 44.Cramer CF, Copp DH. Progress and rate of absorption of radiostrontium through intestinal tracts of rats. Proc Soc Exp Biol Med 102: 514‐517, 1959.
 45.Cui M, Li Q, Johnson R, Fleet JC. Villin promoter‐mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild‐type and vitamin D receptor knockout mice. J Bone Miner Res 27: 2097‐2107, 2012.
 46.Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, Rowe PS, Fields T, Sommer AJ, Tanikawa C, Kamatani Y, Evan AP, Totonchi M, Alexander RT, Matsuda K, Yu AS. Claudin‐2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 130: 1948‐1960, 2020.
 47.D'Amelio P, Sassi F. Gut microbiota, immune system, and bone. Calcif Tissue Int 102: 415‐425, 2018.
 48.Darwish HM, DeLuca HF. Identification of a 1,25‐dihydroxyvitamin D3‐response element in the 5'‐flanking region of the rat calbindin D‐9k gene. Proc Natl Acad Sci USA 89: 603‐607, 1992.
 49.Deevi RK, McClements J, McCloskey KD, Fatehullah A, Tkocz D, Javadi A, Higginson R, Marsh Durban V, Jansen M, Clarke A, Loughrey MB, Campbell FC. Vitamin D3 suppresses morphological evolution of the cribriform cancerous phenotype. Oncotarget 7: 49042‐49064, 2016.
 50.den Dekker E, Hoenderop JG, Nilius B, Bindels RJ. The epithelial calcium channels, TRPV5 & TRPV6: From identification towards regulation. Cell Calcium 33: 497‐507, 2003.
 51.Derler I, Hofbauer M, Kahr H, Fritsch R, Muik M, Kepplinger K, Hack ME, Moritz S, Schindl R, Groschner K, Romanin C. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+‐dependent inactivation. J Physiol 577: 31‐44, 2006.
 52.Descarries L, Riad M. Effects of the antidepressant fluoxetine on the subcellular localization of 5‐HT1A receptors and SERT. Philos Trans R Soc B 367: 2416‐2425, 2012.
 53.Dhawan P, Veldurthy V, Yehia G, Hsaio C, Porta A, Kim KI, Patel N, Lieben L, Verlinden L, Carmeliet G, Christakos S. Transgenic expression of the vitamin D receptor restricted to the ileum, cecum, and colon of vitamin D receptor knockout mice rescues vitamin D receptor‐dependent rickets. Endocrinology 158: 3792‐3804, 2017.
 54.Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 21: 7142‐7154, 2015.
 55.Dong H, Sellers ZM, Smith A, Chow JY, Barrett KE. Na+/Ca2+ exchange regulates Ca2+‐dependent duodenal mucosal ion transport and HCO3– secretion in mice. Am J Physiol Gastrointest Liver Physiol 288: G457‐G465, 2005.
 56.Donowitz M, Cusolito S, Battisti L, Fogel R, Sharp GW. Dopamine stimulation of active Na and Cl absorption in rabbit ileum: Interaction with α2‐adrenergic and specific dopamine receptors. J Clin Invest 69: 1008‐1016, 1982.
 57.Dorkkam N, Wongdee K, Suntornsaratoon P, Krishnamra N, Charoenphandhu N. Prolactin stimulates the L‐type calcium channel‐mediated transepithelial calcium transport in the duodenum of male rats. Biochem Biophys Res Commun 430: 711‐716, 2013.
 58.Douard V, Asgerally A, Sabbagh Y, Sugiura S, Shapses SA, Casirola D, Ferraris RP. Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J Am Soc Nephrol 21: 261‐271, 2010.
 59.Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25‐(OH)2D3‐dependent inhibition of intestinal and renal calcium transport in growing rats. Am J Physiol Endocrinol Metab 304: E1303‐E1313, 2013.
 60.Duflos C, Bellaton C, Pansu D, Bronner F. Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. J Nutr 125: 2348‐2355, 1995.
 61.Eaimworawuthikul S, Tunapong W, Chunchai T, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Altered gut microbiota ameliorates bone pathology in the mandible of obese‐insulin‐resistant rats. Eur J Nutr 59: 1453‐1462, 2020.
 62.Erben RG, Andrukhova O. FGF23‐Klotho signaling axis in the kidney. Bone 100: 62‐68, 2017.
 63.Favus MJ, Angeid‐Backman E, Breyer MD, Coe FL. Effects of trifluoperazine, ouabain, and ethacrynic acid on intestinal calcium transport. Am J Physiol 244: G111‐G115, 1983.
 64.Favus MJ, Kathpalia SC, Coe FL. Kinetic characteristics of calcium absorption and secretion by rat colon. Am J Physiol 240: G350‐G354, 1981.
 65.Feher JJ. Facilitated calcium diffusion by intestinal calcium‐binding protein. Am J Physiol 244: C303‐C307, 1983.
 66.Feher JJ, Fullmer CS, Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 262: C517‐C526, 1992.
 67.Feng Y, Zhang J, Miao Y, Guo W, Feng G, Yang Y, Guo T, Wu H, Zeng M. Prevention of zinc precipitation with calcium phosphate by casein hydrolysate improves zinc absorption in mouse small intestine ex vivo via a nanoparticle‐mediated mechanism. J Agric Food Chem 68: 652‐659, 2020.
 68.Fleet JC. Rapid, membrane‐initiated actions of 1,25 dihydroxyvitamin D: What are they and what do they mean? J Nutr 134: 3215‐3218, 2004.
 69.Fleet JC. Regulation of intestinal calcium and phosphate absorption. In: Feldman D, editor. Vitamin D. London, UK: Academic Press, 2018, p. 329‐342.
 70.Fleet JC, Bruns ME, Hock JM, Wood RJ. Growth hormone and parathyroid hormone stimulate intestinal calcium absorption in aged female rats. Endocrinology 134: 1755‐1760, 1994.
 71.Fleet JC, Eksir F, Hance KW, Wood RJ. Vitamin D‐inducible calcium transport and gene expression in three Caco‐2 cell lines. Am J Physiol Gastrointest Liver Physiol 283: G618‐G625, 2002.
 72.Fleet JC, Reyes‐Fernandez P. Intestinal responses to 1,25 dihydroxyvitamin D are not improved by higher intestinal VDR levels resulting from intestine‐specific transgenic expression of VDR in mice. J Steroid Biochem Mol Biol 200: 105670, 2020.
 73.Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 47: 181‐195, 2010.
 74.Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130: 55‐70, 2008.
 75.Freeman SA, Uderhardt S, Saric A, Collins RF, Buckley CM, Mylvaganam S, Boroumand P, Plumb J, Germain RN, Ren D, Grinstein S. Lipid‐gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367: 301‐305, 2020.
 76.Friedman J, Au WY, Raisz LG. Responses of fetal rat bone to thyrocalcitonin in tissue culture. Endocrinology 82: 149‐156, 1968.
 77.Friedman J, Raisz LG. Thyrocalcitonin: Inhibitor of bone resorption in tissue culture. Science 150: 1465‐1467, 1965.
 78.Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N. Differential expression and subcellular localization of claudin‐7, ‐8, ‐12, ‐13, and ‐15 along the mouse intestine. J Histochem Cytochem 54: 933‐944, 2006.
 79.Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin‐2 and ‐12 are critical for vitamin D‐dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19: 1912‐1921, 2008.
 80.Fukushima A, Aizaki Y, Sakuma K. Short‐chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco‐2 cells. J Nutr 139: 20‐25, 2009.
 81.Fullmer CS, Chandra S, Smith CA, Morrison GH, Wasserman RH. Ion microscopic imaging of calcium during 1,25‐dihydroxyvitamin D‐mediated intestinal absorption. Histochem Cell Biol 106: 215‐222, 1996.
 82.Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am 42: 319‐332, 2013.
 83.Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart‐Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE. Mice with a targeted disruption of the AE2 Cl–/HCO3– exchanger are achlorhydric. J Biol Chem 279: 30531‐30539, 2004.
 84.Gershon MD. 5‐Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14‐21, 2013.
 85.Ghia JE, Li N, Wang H, Collins M, Deng Y, El‐Sharkawy RT, Cote F, Mallet J, Khan WI. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137: 1649‐1660, 2009.
 86.Ghijsen WE, De Jong MD, Van Os CH. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine. Biochim Biophys Acta 730: 85‐94, 1983.
 87.Gill RK, Pant N, Saksena S, Singla A, Nazir TM, Vohwinkel L, Turner JR, Goldstein J, Alrefai WA, Dudeja PK. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am J Physiol Gastrointest Liver Physiol 294: G254‐G262, 2008.
 88.Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Sarwar Z, Turner JR, Ramaswamy K, Dudeja PK. Serotonin inhibits Na+/H+ exchange activity via 5‐HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterology 128: 962‐974, 2005.
 89.Gkika D, Topala CN, Chang Q, Picard N, Thebault S, Houillier P, Hoenderop JG, Bindels RJ. Tissue kallikrein stimulates Ca2+ reabsorption via PKC‐dependent plasma membrane accumulation of TRPV5. EMBO J 25: 4707‐4716, 2006.
 90.Gloux A, Le Roy N, Brionne A, Bonin E, Juanchich A, Benzoni G, Piketty ML, Prie D, Nys Y, Gautron J, Narcy A, Duclos MJ. Candidate genes of the transcellular and paracellular calcium absorption pathways in the small intestine of laying hens. Poult Sci 98: 6005‐6018, 2019.
 91.Gloux A, Le Roy N, Ezagal J, Meme N, Hennequet‐Antier C, Piketty ML, Prie D, Benzoni G, Gautron J, Nys Y, Narcy A, Duclos MJ. Possible roles of parathyroid hormone, 1.25(OH)2D3, and fibroblast growth factor 23 on genes controlling calcium metabolism across different tissues of the laying hen. Domest Anim Endocrinol 72: 106407, 2019.
 92.Grinstead WC, Pak CY, Krejs GJ. Effect of 1,25‐dihydroxyvitamin D3 on calcium absorption in the colon of healthy humans. Am J Physiol 247: G189‐G192, 1984.
 93.Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int J Oral Sci 7: 8‐13, 2015.
 94.Hasan R, Zhang X. Ca2+ regulation of TRP ion channels. Int J Mol Sci 19: 1256, 2018.
 95.He WQ, Wang J, Sheng JY, Zha JM, Graham WV, Turner JR. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int J Mol Sci 21: 993, 2020.
 96.Herrmann JR, Turner JR. Beyond Ussing's chambers: Contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol 310: C423‐C431, 2016.
 97.Hibino H, Takai M, Noguchi H, Sawamura S, Takahashi Y, Sakai H, Shiku H. An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution. J Physiol Sci 67: 439‐445, 2017.
 98.Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 85: 373‐422, 2005.
 99.Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, Nilius B. Function and expression of the epithelial Ca2+ channel family: Comparison of mammalian ECaC1 and 2. J Physiol 537: 747‐761, 2001.
 100.Hong EJ, Jeung EB. Biological significance of calbindin‐D9k within duodenal epithelium. Int J Mol Sci 14: 23330‐23340, 2013.
 101.Howard A, Legon S, Walters JR. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol 265: G917‐G925, 1993.
 102.Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae‐enriched plasma membranes and binds 1α,25(OH)2‐vitamin D3 in vivo and in vitro. Mol Endocrinol 18: 2660‐2671, 2004.
 103.Hung NT, Yamamoto H, Takei Y, Masuda M, Otani A, Kozai M, Ikeda S, Nakahashi O, Tanaka S, Taketani Y, Takeda E. Up‐regulation of stanniocalcin 1 expression by 1,25‐dihydroxy vitamin D3 and parathyroid hormone in renal proximal tubular cells. J Clin Biochem Nutr 50: 227‐233, 2012.
 104.Hwang I, Hong EJ, Yang H, Kang HS, Ahn C, An BS, Jeung EB. Regulation of tight junction gene expression in the kidney of calbindin‐D9k and/or ‐D28k knockout mice after consumption of a calcium‐ or a calcium/vitamin D‐deficient diet. BMC Biochem 15: 6, 2014.
 105.Hwang I, Yang H, Kang HS, Ahn C, Hong EJ, An BS, Jeung EB. Alteration of tight junction gene expression by calcium‐ and vitamin D‐deficient diet in the duodenum of calbindin‐null mice. Int J Mol Sci 14: 22997‐23010, 2013.
 106.Ishibashi K, Imai M. Prospect of a stanniocalcin endocrine/paracrine system in mammals. Am J Physiol Renal Physiol 282: F367‐F375, 2002.
 107.Jaeger P, Jones W, Clemens TL, Hayslett JP. Evidence that calcitonin stimulates 1,25‐dihydroxyvitamin D production and intestinal absorption of calcium in vivo. J Clin Invest 78: 456‐461, 1986.
 108.Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Prolactin‐stimulated transepithelial calcium transport in duodenum and Caco‐2 monolayer are mediated by the phosphoinositide 3‐kinase pathway. Am J Physiol Endocrinol Metab 293: E372‐E384, 2007.
 109.Jeung EB, Leung PC, Krisinger J. The human calbindin‐D9k gene. Complete structure and implications on steroid hormone regulation. J Mol Biol 235: 1231‐1238, 1994.
 110.Jimbo R, Kawakami‐Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, Yatomi Y, Fukumoto S, Fujita T, Shimosawa T. Fibroblast growth factor 23 accelerates phosphate‐induced vascular calcification in the absence of Klotho deficiency. Kidney Int 85: 1103‐1111, 2014.
 111.Jongwattanapisan P, Suntornsaratoon P, Wongdee K, Dorkkam N, Krishnamra N, Charoenphandhu N. Impaired body calcium metabolism with low bone density and compensatory colonic calcium absorption in cecectomized rats. Am J Physiol Endocrinol Metab 302: E852‐E863, 2012.
 112.Joshi AD. New insights into physiological and pathophysiological functions of stanniocalcin 2. Front Endocrinol (Lausanne) 11: 172, 2020.
 113.Jüppner H. Phosphate and FGF‐23. Kidney Int Suppl 79: S24‐S27, 2011.
 114.Kang S, Hong J, Lee JM, Moon HE, Jeon B, Choi J, Yoon NA, Paek SH, Roh EJ, Lee CJ, Kang SS. Trifluoperazine, a well‐known antipsychotic, inhibits glioblastoma invasion by binding to calmodulin and disinhibiting calcium release channel IP3R. Mol Cancer Ther 16: 217‐227, 2017.
 115.Karbach U. Segmental heterogeneity of cellular and paracellular calcium transport across the rat duodenum and jejunum. Gastroenterology 100: 47‐58, 1991.
 116.Karbach U. Paracellular calcium transport across the small intestine. J Nutr 122: 672‐677, 1992.
 117.Karbach U, Feldmeier H. The cecum is the site with the highest calcium absorption in rat intestine. Dig Dis Sci 38: 1815‐1824, 1993.
 118.Karbach U, Rummel W. Calcium transport across the colon ascendens and the influence of 1,25‐dihydroxyvitamin D3 and dexamethasone. Eur J Clin Invest 17: 368‐374, 1987.
 119.Karbach U, Rummel W. Cellular and paracellular calcium transport in the rat ileum and the influence of 1α,25‐dihydroxyvitamin D3 and dexamethasone. Naunyn Schmiedebergs Arch Pharmacol 336: 117‐124, 1987.
 120.Kellett GL. Alternative perspective on intestinal calcium absorption: Proposed complementary actions of Cav1.3 and TRPV6. Nutr Rev 69: 347‐370, 2011.
 121.Khanal RC, Nemere I. Regulation of intestinal calcium transport. Annu Rev Nutr 28: 179‐196, 2008.
 122.Khuituan P, Teerapornpuntakit J, Wongdee K, Suntornsaratoon P, Konthapakdee N, Sangsaksri J, Sripong C, Krishnamra N, Charoenphandhu N. Fibroblast growth factor‐23 abolishes 1,25‐dihydroxyvitamin D3‐enhanced duodenal calcium transport in male mice. Am J Physiol Endocrinol Metab 302: E903‐E913, 2012.
 123.Khuituan P, Wongdee K, Jantarajit W, Suntornsaratoon P, Krishnamra N, Charoenphandhu N. Fibroblast growth factor‐23 negates 1,25(OH)2D3‐induced intestinal calcium transport by reducing the transcellular and paracellular calcium fluxes. Arch Biochem Biophys 536: 46‐52, 2013.
 124.Kiela PR, Ghishan FK. Molecular mechanisms of intestinal transport of calcium, phosphate, and magnesium. In: Said H, editor. Physiology of the Gastrointestinal Tract. London, UK: Elsevier Inc., 2018, p. 1405‐1449.
 125.Kladnitsky O, Rozenfeld J, Azulay‐Debby H, Efrati E, Zelikovic I. The claudin‐16 channel gene is transcriptionally inhibited by 1,25‐dihydroxyvitamin D. Exp Physiol 100: 79‐94, 2015.
 126.Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK. 1α,25‐Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: The final link in a renal‐gastrointestinal‐skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289: G1036‐G1042, 2005.
 127.Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 93: 189‐268, 2013.
 128.Kovbasnjuk ON, Szmulowicz U, Spring KR. Regulation of the MDCK cell tight junction. J Membr Biol 161: 93‐104, 1998.
 129.Kraidith K, Jantarajit W, Teerapornpuntakit J, Nakkrasae LI, Krishnamra N, Charoenphandhu N. Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin. Pflugers Arch 458: 993‐1005, 2009.
 130.Kraidith K, Svasti S, Teerapornpuntakit J, Vadolas J, Chaimana R, Lapmanee S, Suntornsaratoon P, Krishnamra N, Fucharoen S, Charoenphandhu N. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in beta‐thalassemic mice: Reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am J Physiol Endocrinol Metab 311: E214‐E223, 2016.
 131.Krejs GJ, Nicar MJ, Zerwekh JE, Norman DA, Kane MG, Pak CY. Effect of 1,25‐dihydroxyvitamin D3 on calcium and magnesium absorption in the healthy human jejunum and ileum. Am J Med 75: 973‐976, 1983.
 132.Krishnamra N, Angkanaporn K, Deenoi T. Comparison of calcium absorptive and secretory capacities of segments of intact or functionally resected intestine during normo‐, hypo‐, and hyper‐calcemia. Can J Physiol Pharmacol 72: 764‐770, 1994.
 133.Kühne H, Hause G, Grundmann SM, Schutkowski A, Brandsch C, Stangl GI. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res 36: 184‐192, 2016.
 134.Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel‐Jehan C, Deluca HF. Calbindin D9k knockout mice are indistinguishable from wild‐type mice in phenotype and serum calcium level. Proc Natl Acad Sci USA 103: 12377‐12381, 2006.
 135.Kutuzova GD, Sundersingh F, Vaughan J, Tadi BP, Ansay SE, Christakos S, Deluca HF. TRPV6 is not required for 1α,25‐dihydroxyvitamin D3‐induced intestinal calcium absorption in vivo. Proc Natl Acad Sci USA 105: 19655‐19659, 2008.
 136.Laohapitakworn S, Thongbunchoo J, Nakkrasae LI, Krishnamra N, Charoenphandhu N. Parathyroid hormone (PTH) rapidly enhances CFTR‐mediated HCO3– secretion in intestinal epithelium‐like Caco‐2 monolayer: A novel ion regulatory action of PTH. Am J Physiol Cell Physiol 301: C137‐C149, 2011.
 137.Larsson D, Nemere I. Vectorial transcellular calcium transport in intestine: Integration of current models. J Biomed Biotechnol 2: 117‐119, 2002.
 138.Lee D, Obukhov AG, Shen Q, Liu Y, Dhawan P, Nowycky MC, Christakos S. Calbindin‐D28k decreases L‐type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046‐38. Cell Calcium 39: 475‐485, 2006.
 139.Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB. Phenotype of a calbindin‐D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res 22: 1968‐1978, 2007.
 140.Lee JJ, Liu X, O'Neill D, Beggs MR, Weissgerber P, Flockerzi V, Chen XZ, Dimke H, Alexander RT. Activation of the calcium sensing receptor attenuates TRPV6‐dependent intestinal calcium absorption. JCI Insight 5: e128013, 2019.
 141.Lertsuwan K, Wongdee K, Teerapornpuntakit J, Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: Interaction between calcium and iron metabolism. J Physiol Sci 68: 221‐232, 2018.
 142.Levitt MD, Furne JK, Levitt DG. Shaking of the intact rat and intestinal angulation diminish the jejunal unstirred layer. Gastroenterology 103: 1460‐1466, 1992.
 143.Li J, Zhao L, Ferries IK, Jiang L, Desta MZ, Yu X, Yang Z, Duncan RL, Turner CH. Skeletal phenotype of mice with a null mutation in Cav 1.3 L‐type calcium channel. J Musculoskelet Neuronal Interact 10: 180‐187, 2010.
 144.Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Cote F, Mallet J, Gershon MD. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31: 8998‐9009, 2011.
 145.Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 25: 287‐299, 2019.
 146.Liao W, Chen H, Jin W, Yang Z, Cao Y, Miao J. Three newly isolated calcium‐chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco‐2 cells. J Agric Food Chem 68: 2091‐2098, 2020.
 147.Liel Y, Shany S, Smirnoff P, Schwartz B. Estrogen increases 1,25‐dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology 140: 280‐285, 1999.
 148.Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, Guo X, Wu L, Mohandas N, An X. Impaired intestinal calcium absorption in protein 4.1R‐deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem 288: 11407‐11415, 2013.
 149.Lorieau L, Le Roux L, Gaucheron F, Ligneul A, Hazart E, Dupont D, Floury J. Bioaccessibility of four calcium sources in different whey‐based dairy matrices assessed by in vitro digestion. Food Chem 245: 454‐462, 2018.
 150.Lutz T, Scharrer E. Effect of short‐chain fatty acids on calcium absorption by the rat colon. Exp Physiol 76: 615‐618, 1991.
 151.Mace OJ, Morgan EL, Affleck JA, Lister N, Kellett GL. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine. J Physiol 580: 605‐616, 2007.
 152.Madsen KL, Tavernini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M, Olsen HS, Antonaccio MJ, Thomson AB, Fedorak RN. Stanniocalcin: A novel protein regulating calcium and phosphate transport across mammalian intestine. Am J Physiol 274: G96‐G102, 1998.
 153.Maier GW, Kreis ME, Zittel TT, Becker HD. Calcium regulation and bone mass loss after total gastrectomy in pigs. Ann Surg 225: 181‐192, 1997.
 154.Mainoya JR. Effects of bovine growth hormone, human placental lactogen and ovine prolactin on intestinal fluid and ion transport in the rat. Endocrinology 96: 1165‐1170, 1975.
 155.Marcus CS, Lengemann FW. Absorption of Ca45 and Sr85 from solid and liquid food at various levels of the alimentary tract of the rat. J Nutr 77: 155‐160, 1962.
 156.Meyer MB, Watanuki M, Kim S, Shevde NK, Pike JW. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25‐dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol 20: 1447‐1461, 2006.
 157.Misra M. Effects of hypogonadism on bone metabolism in female adolescents and young adults. Nat Rev Endocrinol 8: 395‐404, 2012.
 158.Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001: re1, 2001.
 159.Morgan EL, Mace OJ, Helliwell PA, Affleck J, Kellett GL. A role for Cav1.3 in rat intestinal calcium absorption. Biochem Biophys Res Commun 312: 487‐493, 2003.
 160.Moriya M, Linder MC. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco‐2 cell model. Am J Physiol Gastrointest Liver Physiol 290: G301‐G309, 2006.
 161.Murgue B, Tsunekawa S, Rosenberg I, deBeaumont M, Podolsky DK. Identification of a novel variant form of fibroblast growth factor receptor 3 (FGFR3 IIIb) in human colonic epithelium. Cancer Res 54: 5206‐5211, 1994.
 162.Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M. Claudin‐2‐deficient mice are defective in the leaky and cation‐selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA 107: 8011‐8016, 2010.
 163.Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Transepithelial calcium transport in prolactin‐exposed intestine‐like Caco‐2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Cav1.3. J Physiol Sci 60: 9‐17, 2010.
 164.Nellans HN, Goldsmith RS. Transepithelial calcium transport by rat cecum: High‐efficiency absorptive site. Am J Physiol 240: G424‐G431, 1981.
 165.Nellans HN, Kimberg DV. Anomalous calcium secretion in rat ileum: Role of paracellular pathway. Am J Physiol 236: E473‐E481, 1979.
 166.Nemere I. The 1,25D3‐MARRS protein: Contribution to steroid stimulated calcium uptake in chicks and rats. Steroids 70: 455‐457, 2005.
 167.Nemere I, Leathers V, Norman AW. 1,25‐Dihydroxyvitamin D3‐mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium‐binding protein (calbindin‐D28K). J Biol Chem 261: 16106‐16114, 1986.
 168.Nemere I, Norman AW. Parathyroid hormone stimulates calcium transport in perfused duodena from normal chicks: Comparison with the rapid (transcaltachic) effect of 1,25‐dihydroxyvitamin D3. Endocrinology 119: 1406‐1408, 1986.
 169.Nijenhuis T, Hoenderop JG, Bindels RJ. TRPV5 and TRPV6 in Ca2+ (re)absorption: Regulating Ca2+ entry at the gate. Pflugers Arch 451: 181‐192, 2005.
 170.Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G. Modulation of the epithelial calcium channel, ECaC, by intracellular Ca2+. Cell Calcium 29: 417‐428, 2001.
 171.Nilsson B, Delbro D, Friman S, Thune A, Svanvik J. Sympathetic and VIP‐ergic control of calcium and bicarbonate transport in the feline gall bladder mucosa in vivo. J Auton Nerv Syst 60: 49‐55, 1996.
 172.Noonan WT, Woo AL, Nieman ML, Prasad V, Schultheis PJ, Shull GE, Lorenz JN. Blood pressure maintenance in NHE3‐deficient mice with transgenic expression of NHE3 in small intestine. Am J Physiol Regul Integr Comp Physiol 288: R685‐R691, 2005.
 173.Norris SA, Pettifor JM, Gray DA, Buffenstein R. Calcium metabolism and bone mass in female rabbits during skeletal maturation: Effects of dietary calcium intake. Bone 29: 62‐69, 2001.
 174.Nunomura W, Denker SP, Barber DL, Takakuwa Y, Gascard P. Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na+/H+ exchanger isoform 1). Biochem J 446: 427‐435, 2012.
 175.Ognik K, Stepniowska A, Cholewinska E, Kozlowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult Sci 95: 2045‐2051, 2016.
 176.Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi E. Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr 125: 2417‐2424, 1995.
 177.Olson EB Jr, Deluca HF, Potts JT Jr. Calcitonin inhibition of vitamin D‐induced intestinal calcium absorption. Endocrinology 90: 151‐157, 1972.
 178.Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: Expression, function, and regulation. Annu Rev Nutr 22: 139‐166, 2002.
 179.Onodera K, Pouokam E, Diener M. STIM1‐regulated Ca2+ influx across the apical and the basolateral membrane in colonic epithelium. J Membr Biol 246: 271‐285, 2013.
 180.Orihuela D. Inhibitory effect of aluminium on calcium absorption in small intestine of rats with different thyroid hormone status. J Inorg Biochem 103: 1542‐1547, 2009.
 181.Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol 302: F943‐F956, 2012.
 182.Pansu D, Bellaton C, Bronner F. Effect of Ca intake on saturable and nonsaturable components of duodenal Ca transport. Am J Physiol 240: G32‐G37, 1981.
 183.Pansu D, Bellaton C, Roche C, Bronner F. Duodenal and ileal calcium absorption in the rat and effects of vitamin D. Am J Physiol 244: G695‐G700, 1983.
 184.Pardo VG, de Boland AR. Tyrosine phosphorylation signalling dependent on 1α,25(OH)2‐vitamin D3 in rat intestinal cells: Effect of ageing. Int J Biochem Cell Biol 36: 489‐504, 2004.
 185.Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA. Molecular cloning and characterization of a channel‐like transporter mediating intestinal calcium absorption. J Biol Chem 274: 22739‐22746, 1999.
 186.Petersen OH, Fedirko NV. Calcium signalling: Store‐operated channel found at last. Curr Biol 11: R520‐R523, 2001.
 187.Petith MM, Wilson HD, Schedl HP. Vitamin D dependence of in vivo calcium transport and mucosal calcium binding protein in rat large intestine. Gastroenterology 76: 99‐104, 1979.
 188.Pitcher T, Buffenstein R. Intestinal calcium transport in mole‐rats (Cryptomys damarensis and Heterocephalus glaber) is independent of both genomic and non‐genomic vitamin D mediation. Exp Physiol 80: 597‐608, 1995.
 189.Qu MH, Ji WS, Zhao TK, Fang CY, Mao SM, Gao ZQ. Neurophysiological mechanisms of bradykinin‐evoked mucosal chloride secretion in guinea pig small intestine. World J Gastrointest Pathophysiol 7: 150‐159, 2016.
 190.Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118: 3820‐3828, 2008.
 191.Quarles LD. Skeletal secretion of FGF‐23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol 8: 276‐286, 2012.
 192.Radhakrishnan VM, Gilpatrick MM, Parsa NA, Kiela PR, Ghishan FK. Expression of Cav1.3 calcium channel in the human and mouse colon: Posttranscriptional inhibition by IFNgamma. Am J Physiol Gastrointest Liver Physiol 312: G77‐G84, 2017.
 193.Reyes‐Fernandez PC, Fleet JC. Luminal glucose does not enhance active intestinal calcium absorption in mice: Evidence against a role for Cav1.3 as a mediator of calcium uptake during absorption. Nutr Res 35: 1009‐1015, 2015.
 194.Richter B, Faul C. FGF23 Actions on target tissues‐with and without Klotho. Front Endocrinol (Lausanne) 9: 189, 2018.
 195.Rievaj J, Pan W, Cordat E, Alexander RT. The Na+/H+ exchanger isoform 3 is required for active paracellular and transcellular Ca2+ transport across murine cecum. Am J Physiol Gastrointest Liver Physiol 305: G303‐G313, 2013.
 196.Rivoira M, Rodriguez V, Lopez MP, Tolosa de Talamoni N. Time dependent changes in the intestinal Ca2+ absorption in rats with type I diabetes mellitus are associated with alterations in the intestinal redox state. Biochim Biophys Acta 1852: 386‐394, 2015.
 197.Rivoira MA, Marchionatti AM, Centeno VA, Diaz de Barboza GE, Peralta Lopez ME, Tolosa de Talamoni NG. Sodium deoxycholate inhibits chick duodenal calcium absorption through oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol 162: 397‐405, 2012.
 198.Roche C, Bellaton C, Pansu D, Miller A 3rd, Bronner F. Localization of vitamin D‐dependent active Ca2+ transport in rat duodenum and relation to CaBP. Am J Physiol 251: G314‐G320, 1986.
 199.Rodrat M, Wongdee K, Panupinthu N, Thongbunchoo J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Prolonged exposure to 1,25(OH)2D3 and high ionized calcium induces FGF‐23 production in intestinal epithelium‐like Caco‐2 monolayer: A local negative feedback for preventing excessive calcium transport. Arch Biochem Biophys 640: 10‐16, 2018.
 200.Rodríguez V, Rivoira M, Guizzardi S, Tolosa de Talamoni N. Naringin prevents the inhibition of intestinal Ca2+ absorption induced by a fructose rich diet. Arch Biochem Biophys 636: 1‐10, 2017.
 201.Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo‐Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J Clin Endocrinol Metab 96: 53‐58, 2011.
 202.Ryan ZC, Craig TA, Filoteo AG, Westendorf JJ, Cartwright EJ, Neyses L, Strehler EE, Kumar R. Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25‐dihydroxyvitamin D3. Biochem Biophys Res Commun 467: 152‐156, 2015.
 203.Sakaki T, Sawada N, Komai K, Shiozawa S, Yamada S, Yamamoto K, Ohyama Y, Inouye K. Dual metabolic pathway of 25‐hydroxyvitamin D3 catalyzed by human CYP24. Eur J Biochem 267: 6158‐6165, 2000.
 204.Sampson HW, Krawitt EL. A morphometric investigation of the duodenal mucosa of normal, vitamin D‐deficient, and vitamin D‐replete rats. Calcif Tissue Res 21: 213‐218, 1976.
 205.Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Del Fattore A, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15: 674‐681, 2009.
 206.Schnetkamp PP, Basu DK, Szerencsei RT. Na+‐Ca2+ exchange in bovine rod outer segments requires and transports K+. Am J Physiol 257: C153‐C157, 1989.
 207.Schwaller B. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2: a004051, 2010.
 208.Schwerdtfeger LA, Tobet SA. Vasoactive intestinal peptide regulates ileal goblet cell production in mice. Physiol Rep 8: e14363, 2020.
 209.Sharma RV, Butters CA, McEldoon JP, Bhalla RC. Characterization of Ca2+ uptake in plasma membrane vesicles isolated from guinea pig ileum smooth muscle. Cell Calcium 8: 65‐77, 1987.
 210.Shekhawat PB, Pokharkar VB. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 7: 260‐280, 2017.
 211.Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T. Vitamin D receptor‐independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289: F1088‐F1095, 2005.
 212.Song Y, Fleet JC. 1,25 dihydroxycholecalciferol‐mediated calcium absorption and gene expression are higher in female than in male mice. J Nutr 134: 1857‐1861, 2004.
 213.Song Y, Kato S, Fleet JC. Vitamin D receptor (VDR) knockout mice reveal VDR‐independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133: 374‐380, 2003.
 214.Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 144: 3885‐3894, 2003.
 215.Sterling TM, Nemere I. Calcium uptake and membrane trafficking in response to PTH or 25(OH)D3 in polarized intestinal epithelial cells. Steroids 72: 151‐157, 2007.
 216.Swaminathan R, Ker J, Care D. Calcitonin and intestinal calcium absorption. J Endocrinol 61: 83‐94, 1974.
 217.Takaishi S, Sawada M, Morita Y, Seno H, Fukuzawa H, Chiba T. Identification of a novel alternative splicing of human FGF receptor 4: Soluble‐form splice variant expressed in human gastrointestinal epithelial cells. Biochem Biophys Res Commun 267: 658‐662, 2000.
 218.Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S. Loss of claudin‐15, but not claudin‐2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140: 913‐923, 2011.
 219.Teerapornpuntakit J, Dorkkam N, Wongdee K, Krishnamra N, Charoenphandhu N. Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. Am J Physiol Endocrinol Metab 296: E775‐E786, 2009.
 220.Thammayon N, Wongdee K, Lertsuwan K, Suntornsaratoon P, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Na+/H+ exchanger 3 inhibitor diminishes the amino‐acid‐enhanced transepithelial calcium transport across the rat duodenum. Amino Acids 49: 725‐734, 2017.
 221.Thongon N, Nakkrasae LI, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Enhancement of calcium transport in Caco‐2 monolayer through PKCzeta‐dependent Cav1.3‐mediated transcellular and rectifying paracellular pathways by prolactin. Am J Physiol Cell Physiol 296: C1373‐C1382, 2009.
 222.Thwaites DT, Anderson CM. H+‐coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92: 603‐619, 2007.
 223.Timmermans JA, Kaune R, Bindels RJ, van Os CH. Quantif ication of Ca2+‐ATPases in porcine duodenum. Effects of 1,25(OH)2D3 deficiency. Biochim Biophys Acta 1065: 177‐184, 1991.
 224.Toverud SU, Dostal LA. Calcium absorption during development: Experimental studies of the rat small intestine. J Pediatr Gastroenterol Nutr 5: 688‐695, 1986.
 225.Turner JR, Black ED. NHE3‐dependent cytoplasmic alkalinization is triggered by Na+‐glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol 281: C1533‐C1541, 2001.
 226.Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL. Physiological regulation of epithelial tight junctions is associated with myosin light‐chain phosphorylation. Am J Physiol 273: C1378‐C1385, 1997.
 227.Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG, Carmeliet P, Verhaeghe J, Bouillon R, Carmeliet G. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor‐independent mechanisms. J Bone Miner Res 18: 1725‐1736, 2003.
 228.Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion‐selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285: F1078‐F1084, 2003.
 229.Vervloet M. Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol 15: 109‐120, 2019.
 230.Wallace TC, Reider C, Fulgoni VL 3rd. Calcium and vitamin D disparities are related to gender, age, race, household income level, and weight classification but not vegetarian status in the United States: Analysis of the NHANES 2001‐2008 data set. J Am Coll Nutr 32: 321‐330, 2013.
 231.Walling MW, Brasitus TA, Kimberg DV. Effects of calcitonin and substance P on the transport of Ca, Na and Cl across rat ileum in vitro. Gastroenterology 73: 89‐94, 1977.
 232.Walling MW, Kimberg DV. Active secretion of calcium by adult rat ileum and jejunum in vitro. Am J Physiol 225: 415‐422, 1973.
 233.Wang L, Klopot A, Freund JN, Dowling LN, Krasinski SD, Fleet JC. Control of differentiation‐induced calbindin‐D9k gene expression in Caco‐2 cells by cdx‐2 and HNF‐1α. Am J Physiol Gastrointest Liver Physiol 287: G943‐G953, 2004.
 234.Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr 134: 3137‐3139, 2004.
 235.Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos Int 27: 1281‐1386, 2016.
 236.Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald‐Clarke CJ, McCabe LD, McCabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose‐response trial in free‐living pubertal females. J Nutr 146: 1298‐1306, 2016.
 237.Wongdee K, Charoenphandhu N. Regulation of epithelial calcium transport by prolactin: From fish to mammals. Gen Comp Endocrinol 181: 235‐240, 2013.
 238.Wongdee K, Charoenphandhu N. Vitamin D‐enhanced duodenal calcium transport. Vitam Horm 98: 407‐440, 2015.
 239.Wongdee K, Rodrat M, Keadsai C, Jantarajit W, Teerapornpuntakit J, Thongbunchoo J, Charoenphandhu N. Activation of calcium‐sensing receptor by allosteric agonists cinacalcet and AC‐265347 abolishes the 1,25(OH)2D3‐induced Ca2+ transport: Evidence that explains how the intestine prevents excessive Ca2+ absorption. Arch Biochem Biophys 657: 15‐22, 2018.
 240.Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: Hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 69: 683‐696, 2019.
 241.Wongdee K, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N. Duodenal villous hypertrophy and upregulation of claudin‐15 protein expression in lactating rats. J Mol Histol 44: 103‐109, 2013.
 242.Wongdee K, Teerapornpuntakit J, Sripong C, Longkunan A, Chankamngoen W, Keadsai C, Kraidith K, Krishnamra N, Charoenphandhu N. Intestinal mucosal changes and upregulated calcium transporter and FGF‐23 expression during lactation: Contribution of lactogenic hormone prolactin. Arch Biochem Biophys 590: 109‐117, 2016.
 243.Wood RJ, Serfaty‐Lacrosniere C. Gastric acidity, atrophic gastritis, and calcium absorption. Nutr Rev 50: 33‐40, 1992.
 244.Wood RJ, Tchack L, Angelo G, Pratt RE, Sonna LA. DNA microarray analysis of vitamin D‐induced gene expression in a human colon carcinoma cell line. Physiol Genomics 17: 122‐129, 2004.
 245.Wu P, Xie F, Xue M, Xu X, He S, Lin M, Bai L. Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway. Eur J Cell Biol 94: 190‐203, 2015.
 246.Xiang J, Guo R, Wan C, Wu L, Yang S, Guo D. Regulation of intestinal epithelial calcium transport proteins by stanniocalcin‐1 in Caco2 cells. Int J Mol Sci 17: 1095, 2016.
 247.Xiao Y, Cui J, Shi YH, Sun J, Wang ZP, Le GW. Effects of duodenal redox status on calcium absorption and related genes expression in high‐fat diet‐fed mice. Nutrition 26: 1188‐1194, 2010.
 248.Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology 136: 1317‐1327, 2009.
 249.Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A serotonin‐dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138: 976‐989, 2009.
 250.Yang H, Ahn C, Shin EK, Lee JS, An BS, Jeung EB. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model. Mol Cell Endocrinol 454: 93‐102, 2017.
 251.Yang JH, Hou JF, Farquharson C, Zhou ZL, Deng YF, Wang L, Yu Y. Localisation and expression of TRPV6 in all intestinal segments and kidney of laying hens. Br Poult Sci 52: 507‐516, 2011.
 252.Ye L, Morse LR, Zhang L, Sasaki H, Mills JC, Odgren PR, Sibbel G, Stanley JR, Wong G, Zamarioli A, Battaglino RA. Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid‐dependent calcium absorption. PLoS Genet 11: e1005057, 2015.
 253.Zamparelli C, Macquaide N, Colotti G, Verzili D, Seidler T, Smith GL, Chiancone E. Activation of the cardiac Na+‐Ca2+ exchanger by sorcin via the interaction of the respective Ca2+‐binding domains. J Mol Cell Cardiol 49: 132‐141, 2010.
 254.Zhang Q, Wastney ME, Rosen CJ, Beamer WG, Weaver CM. Insulin‐like growth factor‐1 increases bone calcium accumulation only during rapid growth in female rats. J Nutr 141: 2010‐2016, 2011.
 255.Zhu MX, Evans AM, Ma J, Parrington J, Galione A. Two‐pore channels for integrative Ca signaling. Commun Integr Biol 3: 12‐17, 2010.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kannikar Wongdee, Krittikan Chanpaisaeng, Jarinthorn Teerapornpuntakit, Narattaphol Charoenphandhu. Intestinal Calcium Absorption. Compr Physiol 2021, 11: 2047-2073. doi: 10.1002/cphy.c200014