Comprehensive Physiology Wiley Online Library

Novel Pharmacological Targets for Pulmonary Arterial Hypertension

Full Article on Wiley Online Library



Abstract

Pulmonary arterial hypertension (PAH) is a rare disease characterized by an obliterative vasculopathy of the distal pulmonary circulation that results in severe elevation in pulmonary pressure and pulmonary vascular resistance. PAH is a progressive and devastating disease that usually results in right heart failure and death. Currently available medications have only moderate effects and none are curative. Thus, there is a pressing need for new pharmacologic approaches to this disease. In order to meaningfully advance the treatment of PAH, new agents must target the underlying cause of disease induction and progression. This review discusses the extensive work that has been done in the areas of altered glucose metabolism, tyrosine kinase inhibitions, signaling pathways associated with disease causing gene mutations such as the bone morphogenic protein receptor 2, and inflammation and immunomodulation including the effects of mesenchymal stem cells and the extracellular vesicles they secrete. Epigenetic modifications including the roles of micro RNAs, DNA methylation, histone acetylation and transcription factors that modulate pulmonary vascular remodeling are also reviewed. A brief background of each area of interest is provided with emphasis on those components that have potential to be exploited for the treatment of PAH. Significant findings of cell‐based and animal studies and, where available, the results of early clinical trials, are presented to illustrate the potential of these novel therapeutic targets. Current challenges to the development of small peptides and biologicals for the treatment of PAH and direction for future studies are also briefly discussed. © 2021 American Physiological Society. Compr Physiol 11:2297‐2349, 2021.

Figure 1. Figure 1. Characteristic histopathologic findings in patients with idiopathic pulmonary arterial hypertension. (A) Intimal (arrows) and medial (arrow heads) thickening in a pulmonary artery. (B) Concentric “onion skin” intimal thickening with near‐complete occlusion of the vessel lumen. (C) Muscularization of distal, normally nonmuscularized pulmonary artery. (D) The characteristic plexiform lesion (arrow), demonstrating disorganized endothelial proliferation obstructing the vessel lumen. (E) Intravascular thrombus (nonembolic) in a pulmonary artery. (F) Normal pulmonary artery from a patient without pulmonary hypertension. Scale bars = 100 μm except where noted otherwise. (A‐E) Adapted, with permission, from Stacher E, et al., 2012 440. (F) Adapted, with permission, from Humbert M, et al., 2019 196.
Figure 2. Figure 2. Metabolic pathways in proliferating cells. Growth factor‐activated cell surface receptors signal through tyrosine kinases and activate AKT, PI3K to stimulate glucose uptake and flux through the early part of glycolysis. Pyruvate kinase M2 and pyruvate dehydrogenase play key regulatory roles in steering glucose metabolism to Acetyl‐CoA, providing substrate for the TCA cycle and oxidative phosphorylation. Growth stimuli such as tyrosine kinase signaling negatively regulate flux through the late steps of glycolysis and shift glucose metabolism to lactate generation despite the availability of sufficient oxygen (aerobic glycolysis), making glycolytic intermediates available for macromolecular synthesis as well as supporting NADPH production. Enzymes controlling critical steps in key metabolic pathways are shown in blue boxes. Some of these enzymes are candidates as novel therapeutic targets in pulmonary hypertension. See text for further discussion. Adapted, with permission, from Vander Heiden MG, et al., 2009 488.
Figure 3. Figure 3. Change from baseline in mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), and 6‐minute walking distance in meters after 16 weeks of treatment with dichloroacetate (DCA) in patients with pulmonary arterial hypertension. Results are stratified by the number of single‐nucleotide polymorphisms in each of the two alleles of the sirtuin 3 and uncoupling protein 2 genes that cause resistance to dichloroacetate. Number of patients per each group shown in parentheses. Adapted, with permission, from Michelakis ED, et al., 2017 308.
Figure 4. Figure 4. General signaling pathways of receptor tyrosine kinases. Ligand (L) binding to the extracellular domain of the tyrosine kinase receptor causes dimerization that results in autophosphorylation and activation of the intracellular kinase domain (K). The ensuing phosphorylation of docking sites on the receptor leads to the recruitment of enzymes such as phosphoinositide 3‐kinase (PI3K), phospholipase Cγ1 (PLCγ1), proto‐oncogene tyrosine‐protein kinase (SRC), and signal transducer and activator of transcription 3 (STAT3) and adaptor molecules (for example, growth factor receptor‐bound protein 2 (GRB2)) and activation of downstream signaling pathways. These include the AKT (also known as PKB), mitogen‐activated protein kinase, Rac and Rho, and Janus kinase (JAK)‐STAT pathways. The signaling pathways regulate a diverse array of processes including transcription, translation, metabolism, cell proliferation, survival, differentiation, and motility. DAG, diacyl glycerol; ERK, extracellular signal‐regulated kinase; Ins(1,4,5)P3, inositol‐1,4,5‐trisphosphate; MEK, mitogen‐activated protein kinase‐ERK kinase; PDK, phosphoinositide‐dependent kinase; PKC, protein kinase C; PtdIns(4,5)P2, phosphatidylinositol‐4,5‐bisphosphate; PtdIns(4,5)P3, phosphatidyl inositol‐3,4,5‐trisphosphate. Adapted, with permission, from Grimminger F, et al., 2010 152. © 2010, Springer Nature.
Figure 5. Figure 5. The BMPR2 signaling pathway illustrating canonical (green) and noncanonical (gray, blue) targets that can be activated. The activation of downstream signaling targets is influenced by the combination of type 1 and type 2 receptors as well as the ligand. ActR, activin receptor; Akt, protein kinase b; ALK, activin‐like receptor; BMP, bone morphogenetic protein; BMPR, Bone Morphogenetic Protein Receptor; BRE, BMP response element; c‐Src, proto‐oncogene tyrosine‐protein kinase Src; CLIC4, chloride intracellular channel 4; Dvl, Disheveled; Erk, extracellular signal‐regulated kinase; FKBP1A, FK binding protein 1A; GSK3‐β, glycogen synthase kinase 3‐β; ID, inhibitor of differentiation; JNK, c‐Jun N‐terminal kinase; LIMK, Lin11, Isl‐1, and Mec‐3 domain kinase; MAPK, mitogen‐activated protein kinase; PI3K, phosphoinositide 3‐kinase; PPARγ, peroxisome proliferator‐activated receptor gamma; Rac1, Ras‐related C3 botulinum toxin substrate 1; RAGE, receptor for advanced glycation end products; RhoA, Ras homolog gene family, member A; SMAD, Mothers against decapentaplegic; SMURF, SMAD‐specific E3 ubiquitin protein ligase; Tak1, transforming growth factor‐β activated kinase 1; VEGFR3, vascular endothelial growth factor receptor 3. Adapted, with permission, from Andruska A and Spiekerkoetter E, 2018 14. Licenced under CC BY 4.0.
Figure 6. Figure 6. BMPR2 mutations associated with PAH. Red bars represent all different mutation categories and the relative occurrence in the exon. Abbreviation: TM region, transmembrane region. Adapted, with permission, from Tielemans B, et al., 2019 466.
Figure 7. Figure 7. Diagram of hematopoiesis. Common myeloid and lymphoid progenitor cells are derived from hematopoietic stem cells. Common myeloid progenitors differentiate into megakaryocytes, erythrocytes, mast cells, and myeloblasts. The latter undergo further differentiation into polymorphonuclear leukocytes and monocytes/macrophages. Common lymphoid progenitors give rise to natural killer cells and lymphocytes. The latter differentiate into T and B cells. Adapted, with permission, from Rad A and Mikael Häggström MD, 2009, Simplified hematopoiesis. Licenced under CC BY SA 3.0.
Figure 8. Figure 8. (A) Right ventricular systolic pressure (RVSP). (B) Right ventricle to left ventricle + septum weight ratio (RV/LV + S) in rats kept under normoxic conditions (Nx) and in rats with pulmonary hypertension induced by treatment with Sugen 5416 followed by 3 weeks of hypoxia (SuHx) that were treated with phosphate‐buffered saline (PBS), mesenchymal stem cell‐derived extracellular vesicles (MSC‐EV), or extracellular vesicles derived from human adventitial fibroblasts (FL‐EV). (C) Diagram of study protocol and timing of treatments. (D‐F) Muscularization of peripheral pulmonary arteries from Nx‐, SuHx‐PBS‐, and SuHx‐MSC‐EV‐treated rats, respectively. Adapted, with permission of the American Thoracic Society. Copyright © 2021 American Thoracic Society. All rights reserved. Klinger JR, et al., 2020 236.
Figure 9. Figure 9. Biological factors and environmental exposures that may increase the risk of developing pulmonary hypertension via epigenetic modifications. Epigenetic mechanisms mainly include DNA methylation via DNA methyltransferase (DNMT) and histone modification. Histone acetylation and deacetylation are regulated by histone acetyltransferase (HAT) and histone deacetylases (HDAC). MicroRNAs can act to downregulate gene expression by inhibiting RNA translation or directly promote degradation of target mRNAs. LncRNAs recruit chromatin modifiers while inducing chromatin remodeling and histone modifications. Adapted, with permission, from Wang Y, et al., 2018 503. Licenced under CC BY 4.0.


Figure 1. Characteristic histopathologic findings in patients with idiopathic pulmonary arterial hypertension. (A) Intimal (arrows) and medial (arrow heads) thickening in a pulmonary artery. (B) Concentric “onion skin” intimal thickening with near‐complete occlusion of the vessel lumen. (C) Muscularization of distal, normally nonmuscularized pulmonary artery. (D) The characteristic plexiform lesion (arrow), demonstrating disorganized endothelial proliferation obstructing the vessel lumen. (E) Intravascular thrombus (nonembolic) in a pulmonary artery. (F) Normal pulmonary artery from a patient without pulmonary hypertension. Scale bars = 100 μm except where noted otherwise. (A‐E) Adapted, with permission, from Stacher E, et al., 2012 440. (F) Adapted, with permission, from Humbert M, et al., 2019 196.


Figure 2. Metabolic pathways in proliferating cells. Growth factor‐activated cell surface receptors signal through tyrosine kinases and activate AKT, PI3K to stimulate glucose uptake and flux through the early part of glycolysis. Pyruvate kinase M2 and pyruvate dehydrogenase play key regulatory roles in steering glucose metabolism to Acetyl‐CoA, providing substrate for the TCA cycle and oxidative phosphorylation. Growth stimuli such as tyrosine kinase signaling negatively regulate flux through the late steps of glycolysis and shift glucose metabolism to lactate generation despite the availability of sufficient oxygen (aerobic glycolysis), making glycolytic intermediates available for macromolecular synthesis as well as supporting NADPH production. Enzymes controlling critical steps in key metabolic pathways are shown in blue boxes. Some of these enzymes are candidates as novel therapeutic targets in pulmonary hypertension. See text for further discussion. Adapted, with permission, from Vander Heiden MG, et al., 2009 488.


Figure 3. Change from baseline in mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), and 6‐minute walking distance in meters after 16 weeks of treatment with dichloroacetate (DCA) in patients with pulmonary arterial hypertension. Results are stratified by the number of single‐nucleotide polymorphisms in each of the two alleles of the sirtuin 3 and uncoupling protein 2 genes that cause resistance to dichloroacetate. Number of patients per each group shown in parentheses. Adapted, with permission, from Michelakis ED, et al., 2017 308.


Figure 4. General signaling pathways of receptor tyrosine kinases. Ligand (L) binding to the extracellular domain of the tyrosine kinase receptor causes dimerization that results in autophosphorylation and activation of the intracellular kinase domain (K). The ensuing phosphorylation of docking sites on the receptor leads to the recruitment of enzymes such as phosphoinositide 3‐kinase (PI3K), phospholipase Cγ1 (PLCγ1), proto‐oncogene tyrosine‐protein kinase (SRC), and signal transducer and activator of transcription 3 (STAT3) and adaptor molecules (for example, growth factor receptor‐bound protein 2 (GRB2)) and activation of downstream signaling pathways. These include the AKT (also known as PKB), mitogen‐activated protein kinase, Rac and Rho, and Janus kinase (JAK)‐STAT pathways. The signaling pathways regulate a diverse array of processes including transcription, translation, metabolism, cell proliferation, survival, differentiation, and motility. DAG, diacyl glycerol; ERK, extracellular signal‐regulated kinase; Ins(1,4,5)P3, inositol‐1,4,5‐trisphosphate; MEK, mitogen‐activated protein kinase‐ERK kinase; PDK, phosphoinositide‐dependent kinase; PKC, protein kinase C; PtdIns(4,5)P2, phosphatidylinositol‐4,5‐bisphosphate; PtdIns(4,5)P3, phosphatidyl inositol‐3,4,5‐trisphosphate. Adapted, with permission, from Grimminger F, et al., 2010 152. © 2010, Springer Nature.


Figure 5. The BMPR2 signaling pathway illustrating canonical (green) and noncanonical (gray, blue) targets that can be activated. The activation of downstream signaling targets is influenced by the combination of type 1 and type 2 receptors as well as the ligand. ActR, activin receptor; Akt, protein kinase b; ALK, activin‐like receptor; BMP, bone morphogenetic protein; BMPR, Bone Morphogenetic Protein Receptor; BRE, BMP response element; c‐Src, proto‐oncogene tyrosine‐protein kinase Src; CLIC4, chloride intracellular channel 4; Dvl, Disheveled; Erk, extracellular signal‐regulated kinase; FKBP1A, FK binding protein 1A; GSK3‐β, glycogen synthase kinase 3‐β; ID, inhibitor of differentiation; JNK, c‐Jun N‐terminal kinase; LIMK, Lin11, Isl‐1, and Mec‐3 domain kinase; MAPK, mitogen‐activated protein kinase; PI3K, phosphoinositide 3‐kinase; PPARγ, peroxisome proliferator‐activated receptor gamma; Rac1, Ras‐related C3 botulinum toxin substrate 1; RAGE, receptor for advanced glycation end products; RhoA, Ras homolog gene family, member A; SMAD, Mothers against decapentaplegic; SMURF, SMAD‐specific E3 ubiquitin protein ligase; Tak1, transforming growth factor‐β activated kinase 1; VEGFR3, vascular endothelial growth factor receptor 3. Adapted, with permission, from Andruska A and Spiekerkoetter E, 2018 14. Licenced under CC BY 4.0.


Figure 6. BMPR2 mutations associated with PAH. Red bars represent all different mutation categories and the relative occurrence in the exon. Abbreviation: TM region, transmembrane region. Adapted, with permission, from Tielemans B, et al., 2019 466.


Figure 7. Diagram of hematopoiesis. Common myeloid and lymphoid progenitor cells are derived from hematopoietic stem cells. Common myeloid progenitors differentiate into megakaryocytes, erythrocytes, mast cells, and myeloblasts. The latter undergo further differentiation into polymorphonuclear leukocytes and monocytes/macrophages. Common lymphoid progenitors give rise to natural killer cells and lymphocytes. The latter differentiate into T and B cells. Adapted, with permission, from Rad A and Mikael Häggström MD, 2009, Simplified hematopoiesis. Licenced under CC BY SA 3.0.


Figure 8. (A) Right ventricular systolic pressure (RVSP). (B) Right ventricle to left ventricle + septum weight ratio (RV/LV + S) in rats kept under normoxic conditions (Nx) and in rats with pulmonary hypertension induced by treatment with Sugen 5416 followed by 3 weeks of hypoxia (SuHx) that were treated with phosphate‐buffered saline (PBS), mesenchymal stem cell‐derived extracellular vesicles (MSC‐EV), or extracellular vesicles derived from human adventitial fibroblasts (FL‐EV). (C) Diagram of study protocol and timing of treatments. (D‐F) Muscularization of peripheral pulmonary arteries from Nx‐, SuHx‐PBS‐, and SuHx‐MSC‐EV‐treated rats, respectively. Adapted, with permission of the American Thoracic Society. Copyright © 2021 American Thoracic Society. All rights reserved. Klinger JR, et al., 2020 236.


Figure 9. Biological factors and environmental exposures that may increase the risk of developing pulmonary hypertension via epigenetic modifications. Epigenetic mechanisms mainly include DNA methylation via DNA methyltransferase (DNMT) and histone modification. Histone acetylation and deacetylation are regulated by histone acetyltransferase (HAT) and histone deacetylases (HDAC). MicroRNAs can act to downregulate gene expression by inhibiting RNA translation or directly promote degradation of target mRNAs. LncRNAs recruit chromatin modifiers while inducing chromatin remodeling and histone modifications. Adapted, with permission, from Wang Y, et al., 2018 503. Licenced under CC BY 4.0.
References
 1.Adir Y, Humbert M. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir J 35 (6): 1396‐1406, 2010. DOI: 10.1183/09031936.00175909.
 2.Aiello RJ, Bourassa PA, Zhang Q, Dubins J, Goldberg DR, De Lombaert S, Humbert M, Guignabert C, Cavasin MA, McKinsey TA, Paralkar V. Tryptophan hydroxylase 1 inhibition impacts pulmonary vascular remodeling in two rat models of pulmonary hypertension. J Pharmacol Exp Ther 360 (2): 267‐279, 2017. DOI: 10.1124/jpet.116.237933.
 3.Akagi S, Nakamura K, Matsubara H, Kondo M, Miura D, Matoba T, Egashira K, Ito H. Intratracheal administration of prostacyclin analogue‐incorporated nanoparticles ameliorates the development of monocrotaline and sugen‐hypoxia‐induced pulmonary arterial hypertension. J Cardiovasc Pharmacol 67 (4): 290‐298, 2016. DOI: 10.1097/FJC.0000000000000352.
 4.Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S. Mesenchymal‐stem‐cell‐induced immunoregulation involves FAS‐ligand‐/FAS‐mediated T cell apoptosis. Cell Stem Cell 10 (5): 544‐555, 2012. DOI: 10.1016/j.stem.2012.03.007.
 5.Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. New York, NY: Garland Science, 2002. ISBN: 0‐8153‐3218‐1.
 6.Alencar AKN, Pimentel‐Coelho PM, Montes GC, da Silva MMC, Mendes LVP, Montagnoli TL, Silva AMS, Vasques JF, Rosado‐de‐Castro PH, Gutfilen B, Cunha VDMN, Fraga AGM, Silva PMRE, Martins MA, Ferreira TPT, Mendes‐Otero R, Trachez MM, Sudo RT, Zapata‐Sudo G. Human mesenchymal stem cell therapy reverses Su5416/hypoxia‐induced pulmonary arterial hypertension in mice. Front Pharmacol 9: 1395, 2018.
 7.Aliotta JM, Keaney PJ, Warburton RR, DelTatto M, Dooner MS, Passero MA, Quesenberry PJ, Klinger JR. Marrow cell infusion attenuates vascular remodeling in a murine model of monocrotaline‐induced pulmonary hypertension. Stem Cells Dev 18 (5): 773‐782, 2009. DOI: 10.1089/scd.2008.0237.
 8.Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z, Hasslinger A, El‐Bizri R, Rounds SI, Quesenberry PJ, Klinger JR. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline‐treated mice. Cardiovasc Res 100 (3): 354‐362, 2013. DOI: 10.1093/cvr/cvt184.
 9.Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR. Exosomes induce and reverse monocrotaline‐induced pulmonary hypertension in mice. Cardiovasc Res 110 (3): 319‐330, 2016. DOI: 10.1093/cvr/cvw054.
 10.Alkhatib Y, Albashaireh D, Al‐Aqtash T, Awdish R. The role of tyrosine kinase inhibitor "Lapatinib" in pulmonary hypertension. Pulm Pharmacol Ther 37: 81‐84, 2016. DOI: 10.1016/j.pupt.2016.03.002.
 11.Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, De Marco T, Yeghiazarians Y. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177 (11): 1268‐1275, 2008. DOI: 10.1164/rccm.200710‐1458OC.
 12.Amsellem V, Abid S, Poupel L, Parpaleix A, Rodero M, Gary‐Bobo G, Latiri M, Dubois‐Rande JL, Lipskaia L, Combadiere C, Adnot S. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 56 (5): 597‐608, 2017. DOI: 10.1165/rcmb.2016‐0201OC.
 13.Amsellem V, Lipskaia L, Abid S, Poupel L, Houssaini A, Quarck R, Marcos E, Mouraret N, Parpaleix A, Bobe R, Gary‐Bobo G, Saker M, Dubois‐Randé J, Gladwin M, Norris KA, Delcroix M, Combadière C, Adnot S. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation 130: 880‐891, 2014. DOI: 10.1161/CIRCULATIONAHA.114.010757.
 14.Andruska A, Spiekerkoetter E. Consequences of BMPR2 deficiency in the pulmonary vasculature and beyond: Contributions to pulmonary arterial hypertension. Int J Mol Sci 19 (9): 2499, 2018. DOI: 10.3390/ijms19092499.
 15.Antebi Y, Linton JM, Klumpe H, Bintu B, Gong M, Su C, McCardell R, Elowitz MB. Combinatorial signal perception in the BMP pathway. Cell 170 (6): 1184‐1196, 2017. DOI: 10.1016/j.cell.2017.08.015.
 16.Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg‐Maitland M, Thébaud B, Husain AN, Cipriani N, Rehman J. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: A basis for excessive cell proliferation and a new therapeutic target. Circulation 121 (24): 2661‐2671, 2010. DOI: 10.1161/CIRCULATIONAHA.109.916098.
 17.Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med 192: 259‐270, 2000. DOI: 10.1084/jem.192.2.259.
 18.Aslam M, Baveja R, Liang OD, Fernandez‐Gonzalez A, Lee C, Mitsialis SA, Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180 (11): 1122‐1130, 2009. DOI: 10.1164/rccm.200902‐0242OC.
 19.Assad TR, Hemnes AR. Metabolic dysfunction in pulmonary arterial hypertension. Curr Hypertens Rep 17 (3): 20, 2015. DOI: 10.1007/s11906‐014‐0524‐y.
 20.Austin M, Quesenberry PJ, Ventetuolo CE, Liang O, Reagan JL. Prevalence and effect on survival of pulmonary hypertension in myelofibrosis. Clin Lymphoma Myeloma Leuk 19 (9): 593‐597, 2019. DOI: 10.1016/j.clml.2019.05.009.
 21.Ayaz F, Osborne B. Non‐canonical Notch signaling in cancer and immunity. Front Oncol 4: 345, 2014.
 22.Aykul S, Martinez‐Hackert E. Transforming growth factor‐β family ligands can function as antagonists by competing for type II receptor binding. J Biol Chem 291 (20): 10792‐10804, 2016. DOI: 10.1074/jbc.M115.713487.
 23.Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14 (3): 283‐291., 2004, 2004. DOI: 10.1016/j.sbi.2004.05.004.
 24.Baglio SR, Rooijers K, Koppers‐Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM. Human bone marrow‐ and adipose‐mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6: 127, 2015. DOI: 10.1186/s13287‐015‐0116‐z.
 25.Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, Shah SJ, Schumacker PT. Regulation of hypoxia‐induced pulmonary hypertension by vascular smooth muscle hypoxia‐inducible factor‐1α. Am J Respir Crit Care Med 189 (3): 314‐324, 2014. DOI: 10.1164/rccm.201302‐0302OC.
 26.Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116 (2): 281‐297, 2004. DOI: 10.1016/s0092‐8674(04)00045‐5.
 27.Bartel DP. Metazoan microRNAs. Cell 173 (1): 20‐51, 2018. DOI: 10.1016/j.cell.2018.03.006.
 28.Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of long‐term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL registry. Chest 142 (2): 448‐456, 2012.
 29.Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221 (1): 249‐258, 2000. DOI: 10.1006/dbio.2000.9670.
 30.Bersin RM, Stacpoole PW. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 134 (5 pt 1): 841‐855, 1997. DOI: 10.1016/s0002‐8703(97)80007‐5.
 31.Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO, Graham BB, Kumar R, Black SM, Fratz S, Fineman JR, West JD, Haley KJ, Waxman AB, Chau BN, Cottrill KA, Chan SY. Systems‐level regulation of microRNA networks by miR‐130/301 promotes pulmonary hypertension. J Clin Invest 124 (8): 3514‐3528, 2014. DOI: 10.1172/JCI74773.
 32.Bhargava A, Kumar A, Yuan N, Gewitz MH, Mathew R. Monocrotaline induces interleukin‐6 mRNA expression in rat lungs. Heart Dis 1 (3): 126‐132, 1999.
 33.Bi P, Kuang S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 26: 248‐255, 2015.
 34.Bilandzic M, Stenvers KL. Betaglycan: A multifunctional accessory. Mol Cell Endocrinol 339 (1‐2): 180‐189, 2011. DOI: 10.1016/j.mce.2011.04.014.
 35.Bjornsson J, Edwards WD. Primary pulmonary hypertension: A histopathologic study of 80 cases. Mayo Clin Proc 60: 16‐25, 1985.
 36.Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA, Kreipe H, Laenger F, Jonigk D. Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant 31 (7): 764‐772, 2012. DOI: 10.1016/j.healun.2012.03.010.
 37.Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, Kasper M, Natarajan R, Voelkel NF. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 183 (10): 1402‐1410, 2011. DOI: 10.1164/rccm.201007‐1106OC.
 38.Bonauer A, Dimmeler S. The microRNA‐17‐92 cluster: Still a miracle/. Cell Cycle 8 (23): 3866‐3873, 2009. DOI: 10.4161/cc.8.23.9994.
 39.Bonnet S, Michelaki ED, Porter CJ, Andrade‐Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL. An abnormal mitochondrial‐hypoxia inducible factor‐1alpha‐kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation 113 (22): 2630‐2641, 2006. DOI: 10.1161/CIRCULATIONAHA.105.609008.
 40.Bonnet S, Provencher S, Guignabert C, Perros F, Boucherat O, Schermuly RT, Hassoun PM, Rabinovitch M, Nicolls MR, Humbert M. Translating research into improved patient care in pulmonary arterial hypertension. Am J Respir Crit Care Med 195 (5): 583‐595, 2017. DOI: 10.1164/rccm.201607‐1515PP.
 41.Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104 (27): 11418‐11423, 2007. DOI: 10.1073/pnas.0610467104.
 42.Börger V, Bremer M, Ferrer‐Tur R, Gockeln L, Stambouli O, Becic A, Giebel B. Mesenchymal stem/stromal cell‐derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci 18 (7): 1450, 2017. DOI: 10.3390/ijms18071450.
 43.Bose S, Le A. Glucose metabolism in cancer. Adv Exp Med Biol 1063: 3‐12, 2018.
 44.Bouchentouf M, Forner KA, Cuerquis J, Michaud V, Zheng J, Paradis P, Schiffrin EL, Galipeau J. Induction of cardiac angiogenesis requires killer cell lectin‐like receptor 1 and α4β7 integrin expression by NK cells. J Immunol 185 (11): 7014‐7025, 2010. DOI: 10.4049/jimmunol.1001888.
 45.Boucherat O, Chabot S, Paulin R, Trinh I, Bourgeois A, Potus F, Bonnet S. HDAC6: A novel histone deacetylase implicated in pulmonary arterial hypertension. Sci Rep 7 (1): 4546, 2017. DOI: 10.1038/s41598‐017‐04874‐4.
 46.Boucherat O, Potus F, Bonnet S. microRNA and pulmonary hypertension. Adv Exp Med Biol 888: 237‐252, 2015. DOI: 10.1007/978‐3‐319‐22671‐2_12.
 47.Boucherat O, Provencher S, Bonnet S. Therapeutic value of ASK1 inhibition in pulmonary arterial hypertension. Am J Respir Crit Care Med 197: 284‐286, 2018.
 48.Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169 (6): 764‐769, 2004. DOI: 10.1164/rccm.200301‐147OC.
 49.Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, Lang S. Tissue‐resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88 (5): 1005‐1015, 2010, 2010. DOI: 10.1189/jlb.0410207.
 50.Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC. Interleukin‐6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3‐ microRNA cluster 17/92 pathway. Circ Res 104 (10): 1184‐1191, 2009. DOI: 10.1161/CIRCRESAHA.109.197491.
 51.Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 5 (1): 30‐55, 2010, 2010. DOI: 10.1186/1479‐7364‐5‐1‐30.
 52.Brown JM, Nemeth K, Kushnir‐Sukhov NM, Metcalfe DD, Mezey E. Bone marrow stromal cells inhibit mast cell function via a COX2‐dependent mechanism. Clin Exp Allergy 41 (4): 526‐534., 2011, 2011. DOI: 10.1111/j.1365‐2222.2010.03685.x.
 53.Budas GR, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S, Novoyatleva T, Grimminger F, Hinojosa‐Kirschenbaum F, Ghofrani HA, Weissmann N, Seeger W, Liles JT, Schermuly RT. ASK1 inhibition halts disease progression in preclinical models of pulmonary arterial hypertension. Am J Respir Crit Care Med 197 (3): 373‐385, 2018. DOI: 10.1164/rccm.201703‐0502OC.
 54.Burke AP, Farb A. Virmani: The pathology of primary pulmonary hypertension. Mod Pathol: 4, 269‐282, 283, 1991.
 55.Burke DL, Frid MG, Kunrath CL, Karoor V, Anwar A, Wagner BD, Strassheim D, Stenmark KR. Sustained hypoxia promotes the development of a pulmonary artery‐specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 297: L238‐L250, 2009.
 56.Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH. A role for miR‐145 in pulmonary arterial hypertension: Evidence from mouse models and patient samples. Circ Res 111 (3): 290‐300, 2012. DOI: 10.1161/CIRCRESAHA.112.267591.
 57.Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez‐Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, D'Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, Carmeliet P, Stewart DJ, Morrell NW. Identification of microRNA‐124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation 136 (25): 2451‐2467, 2017. DOI: 10.1161/CIRCULATIONAHA.117.028034.
 58.Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, MacDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, Baker AH. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 30 (4): 716‐723, 2010. DOI: 10.1161/ATVBAHA.109.202028.
 59.Cavasin MA, Demos‐Davies K, Horn TR, Walker LA, Lemon DD, Birdsey N, McKinsey T. Selective class I histone deacetylase inhibition suppresses hypoxia‐induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res 110 (5): 739‐748., 2012, 2012. DOI: 10.1161/CIRCRESAHA.111.258426.
 60.Chaar M, Kamta J, Ait‐Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors‐associated cardiovascular toxicities. Onco Targets Ther 11: 6227‐6237, 2018. eCollection 2018. DOI: 10.2147/OTT.S170138..
 61.Chabert C, Khochbin S, Rousseaux S, Veyrenc S, Furze R, Smithers N, Prinjha Rab K, Schlattner U, Pison C, Dubouchaud H. Inhibition of BET proteins reduces right ventricle hypertrophy and pulmonary hypertension resulting from combined hypoxia and pulmonary inflammation. Int J Mol Sci 19 (8): 2224, 2018. DOI: 10.3390/ijms19082224.
 62.Chabrol A, Mayenga M, Hamid AM, Friard S, Salvator H, Doubre H, Fraboulet S, Metivier AC, Catherinot E, Rivaud E, Chaumais MC, Montani D, Couderc LJ, Tcherakian C. Lorlatinib – Induced pulmonary arterial hypertension. Lung Cancer 120: 60‐61, 2018. DOI: 10.1016/j.lungcan.2018.03.023.
 63.Chan SY, Loscalzo J. MicroRNA‐210: A unique and pleiotropic hypoxamir. Cell Cycle 9 (6): 1072‐1083, 2010. DOI: 10.4161/cc.9.6.11006.
 64.Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia‐inducible factor‐dependent signaling between triple‐negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci USA 111 (20): E2120‐E2129., 2014, 2014. DOI: 10.1073/pnas.1406655111.
 65.Chazova I, Loyd JE, Newman JH, Belenkov Y, Meyrick B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol 146: 389‐397, 1995.
 66.Chen C, Pore N, Behrooz A, Ismail‐Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia‐inducible factor‐1. Interaction between H‐ras and hypoxia. J Biol Chem 276 (12): 9519‐9525, 2001. DOI: 10.1074/jbc.M010144200.
 67.Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 22 (4): 233‐241, 2004. DOI: 10.1080/08977190412331279890.
 68.Chen J, Hu C, Pan P. Extracellular vesicle microRNA transfer in lung diseases. Front Physiol 8: 1028, 2017. eCollection 2017. DOI: 10.3389/fphys.2017.01028.
 69.Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, Liu JH, Xiao MY, Chen YF. Therapeutic effects of mesenchymal stem cell‐derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 35 (9): 1121‐1128, 2014. DOI: 10.1038/aps.2014.61.
 70.Chen S, Lee B, Bae Y. Notch signaling in skeletal stem cells. Calcif Tissue Int 94: 68‐77, 2014.
 71.Chen T, Huang JB, Dai J, Zhou Q, Raj JU, Zhou G. PAI‐1 is a novel component of the miR‐17∼92 signaling that regulates pulmonary artery smooth muscle cell phenotypes. Am J Physiol Lung Cell Mol Physiol 315 (2): L149‐L161, 2018. DOI: 10.1152/ajplung.00137.2017.
 72.Chen T, Zhou G, Zhou Q, Tang H, Ibe JCF, Cheng H, Gou D, Chen J, Yuan JXJ, Raj JU. Loss of microRNA‐17∼92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med 191 (6): 678‐692, 2015. DOI: 10.1164/rccm.201405‐0941OC.
 73.Chen T, Zhou Q, Tang H, Bozkanat M, Yuan JXJ, Raj JU, Zhou G. miR‐17/20 controls prolyl hydroxylase 2 (PHD2)/hypoxia‐inducible factor 1 (HIF1) to regulate pulmonary artery smooth muscle cell proliferation. J Am Heart Assoc 5 (12): e004510, 2016. DOI: 10.1161/JAHA.116.004510.
 74.Cheng Y, Liu X, Yang J, Lin Y, Xu D‐Z, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C. MicroRNA‐145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105 (2): 158‐166, 2019. DOI: 10.1161/CIRCRESAHA.109.197517.
 75.Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow‐derived macrophages. Exp Mol Med 46 (1): e70, 2014. DOI: 10.1038/emm.2013.135.
 76.Cho YK, Eom GH, Kee HJ, Kim HS, Choi WY, Nam KI, Sook Ma J, Kook H. Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ J 74 (4): 760‐770, 2010. DOI: 10.1253/circj.cj‐09‐0580.
 77.Christman BW, McPherson CD, Newman JH, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327 (2): 70‐75, 1992. DOI: 10.1056/NEJM199207093270202.
 78.Cohen MH, Williams G, Johnson JR, Duan J, Jogarao R, Atiqur B, Kimberly L, John K, Sung K, Wood R, Rothmann M, Chen G, Maung U, Khin S, Ann M, Pazdur R. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8 (5): 935‐942, 2002.
 79.Colice GL, Hill N, Lee YJ, Du H, Klinger J, Leiter JC, Ou LC. Exaggerated pulmonary hypertension with monocrotaline in rats susceptible to chronic mountain sickness. J Appl Physiol 83 (1): 25‐31, 1997.
 80.Colvin KL, Cripe PJ, Ivy DD, Stenmark KR, Yeager ME. Bronchus‐associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies. Am J Respir Crit Care Med 188 (9): 1126‐1136, 2013. DOI: 10.1164/rccm.201302‐0403OC.
 81.Consentius C, Akyuz L, Schmidt‐Lucke JA, Tschope C, Pinzur L, Ofir R, Reinke P, Volk HD, Juelke K. Mesenchymal stromal cells prevent allostimulation in vivo and control checkpoints of Th1 priming: Migration of human DC to lymph nodes and NK cell activation. Stem Cells 33 (10): 3087‐3099., 2015, 2015. DOI: 10.1002/stem.2104.
 82.Cool CD, Kennedy D, Voelkel NF, Tuder RM. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodefi ‐ ciency virus infection. Hum Pathol 28 (4): 434‐442, 1997. DOI: 10.1016/s0046‐8177(97)90032‐0.
 83.Corada M, Orsenigo F, Morini MF, Pitulescu ME, Bhat G, Nyqvist D, Breviario F, Conti V, Briot A, Iruela‐Arispe ML, Adams RH, Dejana E. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4: 2609, 2013. DOI: 10.1038/ncomms3609.
 84.Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee T‐H, Miano JM, Ivey KN, Srivastava D. miR‐145 and miR‐143 regulate smooth muscle cell fate and plasticity. Nature 460 (7256): 705‐710, 2009. DOI: 10.1038/nature08195.
 85.Cotran RS, Kumar V, Collins T, Robbins SL. Robbins Pathologic Basis of Disease. Philadelphia: W. B. Suanders Company, 1999. ISBN: 0‐7216‐7335‐X.
 86.Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: The expanding relevance of the Warburg effect. Eur J Clin Invest 43 (8): 855‐865, 2013. DOI: 10.1111/eci.12104.
 87.Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Côté J, Simard MJ, Bonnet S. Role for miR‐204 in human pulmonary arterial hypertension. J Exp Med 208 (3): 535‐548, 2011. DOI: 10.1084/jem.20101812.
 88.Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke‐Labesque F, Pison C. Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164 (6): 1038‐1042, 2001. DOI: 10.1164/ajrccm.164.6.2104033.
 89.Curnock AL, Dweik RA, Higgins BH, Saadi HF, Arroliga AC. High prevalence of hypothyroidism in patients with primary pulmonary hypertension. Am J Med Sci 318 (5): 289‐292, 1999. DOI: 10.1097/00000441‐199911000‐00001.
 90.Dai Z, Li M, Wharton J, Zhu MM, Zhao YY. Prolyl‐4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia‐inducible factor‐2α. Circulation 133 (24): 2447‐2458, 2016. DOI: 10.1161/CIRCULATIONAHA.116.021494.
 91.Dai Z, Zhu MM, Peng Y, Machireddy N, Evans CE, Machado R, Zhang X, Zhao YY. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF‐2α inhibitor. Am J Respir Crit Care Med 198 (11): 1423‐1434, 2018. DOI: 10.1164/rccm.201710‐2079OC.
 92.Daley E, Emson C, Guignabert C, Rene LJ, Kurup V, Hogaboam C, Taraseviciene‐Stewart L, Voelkel NF, Rabinovitch M, Grunig E, Grunig G. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205 (2): 361‐372, 2008. DOI: 10.1084/jem.20071008.
 93.Dalgaard LT. Genetic variance in uncoupling protein 2 in relation to obesity, type 2 diabetes, and related metabolic traits: Focus on the functional −866G>a promoter variant (rs659366). J Obes 2011: 340241, 2011. DOI: 10.1155/2011/340241.
 94.Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB. Imatinib mesylate inhibits the profibrogenic activity of TGF‐beta and prevents bleomycin‐mediated lung fibrosis. J Clin Invest 114 (9): 1308‐1316, 2004. DOI: 10.1172/JCI19603.
 95.David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor‐like kinase 1 (ALK1) in endothelial cells. Blood 109 (5): 1953‐1961, 2007. DOI: 10.1182/blood‐2006‐07‐034124.
 96.Davies RJ, Holmes AM, Deighton J, Long L, Yang X, Barker L, Walker C, Budd DC, Upton PD, Morrell NW. BMP type II receptor deficiency confers resistance to growth inhibition by TGF‐β in pulmonary artery smooth muscle cells: Role of proinflammatory cytokines. Am J Physiol Lung Cell Mol Physiol 302 (6): L604‐L615, 2012. DOI: 10.1152/ajplung.00309.2011.
 97.Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA‐mediated microRNA maturation. Nature 454 (7200): 56‐61, 2008. DOI: 10.1038/nature07086.
 98.Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39 (3): 373‐384, 2010. DOI: 10.1016/j.molcel.2010.07.011.
 99.Davis‐Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A. Down‐regulation of Kruppel‐like factor‐4 (KLF4) by microRNA‐143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor‐beta and bone morphogenetic protein 4. J Biol Chem 286 (32): 28097‐28110, 2011. DOI: 10.1074/jbc.M111.236950.
 100.de Caestecker M. The transforming growth factor‐beta superfamily of receptors. Cytokine Growth Factor Rev 15 (1): 1‐11, 2004.
 101.de Mendonça L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, Capelozzi VL, Zapata‐Sudo G, Rocco PRM, Silva PL. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther 8 (1): 220, 2017. DOI: 10.1186/s13287‐017‐0669‐0.
 102.de Raaf MA, Schalij I, Gomez‐Arroyo J, Rol N, Happé C, de Man FS, Vonk‐Noordegraaf A, Westerhof N, Voelkel NF, Bogaard HJ. SuHx rat model: Partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respir J 44 (1): 160‐168, 2014.
 103.Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect Immun 80 (6): 1948‐1957, 2012. DOI: 10.1128/IAI.06014‐11.
 104.Delot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130 (1): 209‐220, 2003. DOI: 10.1242/dev.00181.
 105.Deng C, Zhong Z, Wu D, Chen Y, Lian N, Ding H, Zhang Q, Lin Q, Wu S. Role of FoxO1 and apoptosis in pulmonary vascular remolding in a rat model of chronic thromboembolic pulmonary hypertension. Sci Rep 7 (1): 2270, 2017, 2017. DOI: 10.1038/s41598‐017‐02007‐5.
 106.Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH. MicroRNA‐143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117 (10): 870‐883, 2015. DOI: 10.1161/CIRCRESAHA.115.306806.
 107.Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor‐II gene. Am J Hum Genet 67 (3): 737‐744, 2000. DOI: 10.1086/303059.
 108.Di Nicola M, Carlo‐Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T‐lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99 (10): 3838‐3843, 2002, 2002. DOI: 10.1182/blood.v99.10.3838.
 109.Dinarello CA. Interleukin‐1 in the pathogenesis and treatment of inflammatory diseases. Blood 117 (14): 3720‐3732, 2011. DOI: 10.1182/blood‐2010‐07‐273417.
 110.Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 49 (3): 403‐409, 2013. DOI: 10.1165/rcmb.2013‐0100OC.
 111.Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, Erzurum SC, Aldred MA. Altered MicroRNA processing in heritable pulmonary arterial hypertension: An important role for Smad‐8. Am J Respir Crit Care Med 184 (12): 1400‐1408, 2011. DOI: 10.1164/rccm.201106‐1130OC.
 112.Dresdale DT, Michtom RJ, Schultz M. Recent studies in primary pulmonary hypertension, including pharmacodynamic observations on pulmonary vascular resistance. Bull N Y Acad Med 30 (3): 195‐207, 1954. PMID: 13141055; PMCID: PMC1804415.
 113.Dromparis P, Paulin R, Sutendra G, Qi AC, Bonnet S, Michelakis ED. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res 113 (2): 126‐136, 2013. DOI: 10.1161/CIRCRESAHA.112.300699.
 114.Duensing A, Heinrich MC, Fletcher CD, Fletcher JA. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest 22 (1): 106‐116, 2004. DOI: 10.1081/cnv‐120027585.
 115.El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, Li M, Pullamsetti SS, Savai R, Nagel MA, Fini MA, Graham BB, Tuder RM, Friedman JE, Eltzschig HK, Sokol RJ, Stenmark KR. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol 193 (2): 597‐609, 2014. DOI: 10.4049/jimmunol.1303048.
 116.Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G. The knockout of miR‐143 and ‐145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death Differ 16 (12): 1590‐1598, 2009. DOI: 10.1038/cdd.2009.153.
 117.Engebretsen BJ, Irwin D, Valdez ME, O'Donovan MK, Tucker A, van Patot MT. Acute hypobaric hypoxia (5486 m) induces greater pulmonary HIF‐1 activation in hilltop compared to madison rats. High Alt Med Biol 8 (4): 312‐321, 2007.
 118.Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL‐9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107 (1): 43‐54, 2001. DOI: 10.1016/s0092‐8674(01)00507‐4.
 119.Estephan LE, Genuardi MV, Kosanovich CM, Risbano MG, Zhang Y, Petro N, Watson A, Al Aaraj Y, Sembrat JC, Rojas M, Goncharov DA, Simon MA, Goncharova EA, Vaidya A, Smith A, Mazurek J, Han Y, Chan SY. Distinct plasma gradients of microRNA‐204 in the pulmonary circulation of patients suffering from WHO Groups I and II pulmonary hypertension. Pulm Circ 9 (2): 2045894019840646, 2019. DOI: 10.1177/2045894019840646.
 120.Evans JD, Girerd B, Montani D, Wang XJ, Galiè N, Austin ED, Elliott G, Asano K, Grünig E, Yan Y, Jing ZC, Manes A, Palazzini M, Wheeler LA, Nakayama I, Satoh T, Eichstaedt C, Hinderhofer K, Wolf M, Rosenzweig EB, Chung WK, Soubrier F, Simonneau G, Sitbon O, Gräf S, Kaptoge S, Di Angelantonio E, Humbert M, Morrell NW. BMPR2 mutations and survival in pulmonary arterial hypertension: An individual participant data meta‐analysis. Lancet Respir Med 4 (2): 129‐137, 2016. DOI: 10.1016/S2213‐2600(15)00544‐5.
 121.Fan J, Fan X, Li Y, Ding L, Zheng Q, Guo J, Xia D, Xue F, Wang Y, Liu S, Gong Y. Chronic normobaric hypoxia induces pulmonary hypertension in rats: Role of NF‐κB. High Alt Med Biol 17 (1): 43‐49, 2016. DOI: 10.1089/ham.2015.0086.
 122.Farkas D, Alhussaini AA, Kraskauskas D, Kraskauskiene V, Cool CD, Nicolls MR, Natarajan R, Farkas L. Nuclear factor κB inhibition reduces lung vascular lumen obliteration in severe pulmonary hypertension in rats. Am J Respir Cell Mol Biol 51 (3): 413‐425, 2014. DOI: 10.1165/rcmb.2013‐0355OC.
 123.Feng W, Wang J, Yan X, Zhai C, Shi W, Wang Q, Zhang Q, Li M. Paclitaxel alleviates monocrotaline‐induced pulmonary arterial hypertension via inhibition of FoxO1‐mediated autophagy. Naunyn Schmiedebergs Arch Pharmacol 392 (5): 605‐613, 2019. DOI: 10.1007/s00210‐019‐01615‐4.
 124.Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post‐transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 9 (2): 102‐114, 2008. DOI: 10.1038/nrg2290.
 125.Fleming R. Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 9: 599‐607, 1998.
 126.Florentin J, Coppin E, Vasamsetti SB, Zhao J, Tai YY, Tang Y, Zhang Y, Watson A, Sembrat J, Rojas M, Vargas SO, Chan SY, Dutta P. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood‐borne monocytes. J Immunol 200 (10): 3612‐3625, 2018. DOI: 10.4049/jimmunol.1701287.
 127.Fouty BW, Grimison B, Fagan KA, Le Cras TD, Harral JW, Hoedt‐Miller M, Sclafani RA, Rodman DM. p27(Kip1) is important in modulating pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 25 (5): 652‐658, 2001. DOI: 10.1165/ajrcmb.25.5.4592.
 128.Francois M, Romieu‐Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3‐dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20 (1): 187‐195, 2012. DOI: 10.1038/mt.2011.189.
 129.Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyo JM, Weimar W, Betjes MG, Baan CC, Hoogduijn MJ. Human adipose tissue‐derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 33 (3): 880‐891, 2015. DOI: 10.1002/stem.1881.
 130.Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi‐Castagnoli P. NFAT control of innate immunity. Blood 120 (7): 1380‐1389, 2012. DOI: 10.1182/blood‐2012‐02‐404475.
 131.Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR. Hypoxia‐induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168 (2): 659‐669, 2006. DOI: 10.2353/ajpath.2006.050599.
 132.Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19 (1): 92‐105, 2009, 2009. DOI: 10.1101/gr.082701.108.
 133.Frischmeyer PA, Dietz HC. Nonsense‐mediated mRNA decay in health and disease. Hum Mol Genet 8 (10): 1893‐1900, 1999. DOI: 10.1093/hmg/8.10.1893.
 134.Fukumitsu M, Suzuki K. Mesenchymal stem/stromal cell therapy for pulmonary arterial hypertension: Comprehensive review of preclinical studies. J Cardiol 74 (4): 304‐312, 2019. DOI: 10.1016/j.jjcc.2019.04.006.
 135.Galletti M, Cantoni S, Zambelli F, Valente S, Palazzini M, Manes A, Ventura C. Dissecting histone deacetylase role in pulmonary arterial smooth muscle cell proliferation and migration. Biochem Pharmacol 91 (2): 181‐190, 2014, 2014. DOI: 10.1016/j.bcp.2014.07.011.
 136.Galván‐Peña S, O'Neill LAJ. Metabolic reprograming in macrophage polarization. Front Immunol 5: 420, 2014. eCollection 2014. DOI: 10.3389/fimmu.2014.00420.
 137.Ge Q, Zhang H, Hou J, Wan L, Cheng W, Wang X, Dong D, Chen C, Xia J, Guo J, Chen X, Wu X. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep 17 (1): 1667‐1675, 2018. DOI: 10.3892/mmr.2017.8059.
 138.Ghofrani HA, Galiè N, Grimminger F, Grünig E, Humbert M, Jing ZC, Keogh AM, Langleben D, Kilama MO, Fritsch A, Neuser D, Rubin LJ, PATENT‐1 Study Group. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369 (4): 330‐340, 2013. DOI: 10.1056/NEJMoa1209655.
 139.Ghofrani HA, Morrell NW, Hoeper MM, Olschewski H, Peacock AJ, Barst RJ, Shapiro S, Golpon H, Toshner M, Grimminger F, Pascoe S. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 182 (9): 1171‐1177, 2010. DOI: 10.1164/rccm.201001‐0123OC.
 140.Ghofrani HA, Seeger W, Grimminger F. Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 353 (13): 1412‐1413, 2005. DOI: 10.1056/NEJMc051946.
 141.Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333 (4): 214‐221, 1995.
 142.Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ. Expression of endothelin‐1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328 (24): 1732‐1739, 1993.
 143.Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105 (7): 2821‐2827, 2005. DOI: 10.1182/blood‐2004‐09‐3696.
 144.Goldthorpe H, Jiang JY, Taha M, Deng Y, Sinclair T, Ge CX, Jurasz P, Turksen K, Mei SH, Stewart DJ. Occlusive lung arterial lesions in endothelial‐targeted, fas‐induced apoptosis transgenic mice. Am J Respir Cell Mol Biol 53: 712‐718, 2015. DOI: 10.1165/rcmb.2014‐0311OC.
 145.Gomberg‐Maitland M, Maitland ML, Barst RJ, Sugeng L, Coslet S, Perrino TJ, Bond L, Lacouture ME, Archer SL, Ratain MJ. A dosing/cross‐development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin Pharmacol Ther 87 (3): 303‐310, 2020. DOI: 10.1038/clpt.2009.217.
 146.Goncharova EA. mTOR and vascular remodeling in lung diseases: Current challenges and therapeutic prospects. FASEB J 27 (5): 1796‐1807, 2013. DOI: 10.1096/fj.12‐222224.
 147.Goto T, Takano M. Transcriptional role of FOXO1 in drug resistance through antioxidant defense systems. Adv Exp Med Biol 665: 171‐179, 2009.
 148.Gou D, Ramchandran R, Peng X, Yao L, Kang K, Sarkar J, Wang Z, Zhou G, Raj JU. miR‐210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303 (8): L682‐L691, 2012. DOI: 10.1152/ajplung.00344.2011.
 149.Goveia J, Zecchin A, Morales Rodriguez F, Moens S, Stapor P, Carmeliet P. Endothelial cell differentiation by SOX17: Promoting the tip cell or stalking its neighbor instead? Circ Res 115 (2): 205‐207, 2014. DOI: 10.1161/CIRCRESAHA.114.304234.
 150.Gräf S, Haimel M, Bleda M, Hadinnapola C, Southgate L, Li W, Hodgson J, Liu B, Salmon RM, Southwood M, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, Shamardina O, Whitehorn D, Holden S, Aldred M, Bogaard HJ, Church C, Coghlan G, Condliffe R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani HA, Gibbs JSR, Girerd B, Houweling AC, Howard L, Humbert M, Kiely DG, Kovacs G, MacKenzie Ross RV, Moledina S, Montani D, Newnham M, Olschewski A, Olschewski H, Peacock AJ, Pepke‐Zaba J, Prokopenko I, Rhodes CJ, Scelsi L, Seeger W, Soubrier F, Stein DF, Suntharalingam J, Swietlik EM, Toshner MR, van Heel DA, Vonk Noordegraaf A, Waisfisz Q, Wharton J, Wort SJ, Ouwehand WH, Soranzo N, Lawrie A, Upton PD, Wilkins MR, Trembath RC, Morrell NW. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun 9 (1): 1416, 2018. DOI: 10.1038/s41467‐018‐03672‐4.
 151.Grimminger F, Schermuly RT, Ghofrani HA. Targeting non‐malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 9 (12): 956‐970, 2010. DOI: 10.1038/nrd3297.
 152.Grinnan D, Trankle C, Andruska A, Bloom B, Spiekerkoetter E. Drug repositioning in pulmonary arterial hypertension: Challenges and opportunities. Pulm Circ 9 (1): 2045894019832226, 2019. DOI: 10.1177/2045894019832226.
 153.Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res 15 (1): 47, 2014. DOI: 10.1186/1465‐9921‐15‐47.
 154.Gu J, Tamura M, Yamada KM. Tumor suppressor PTEN inhibits integrin‐ and growth factor‐mediated mitogen‐activated protein (MAP) kinase signaling pathways. J Cell Biol 143 (5): 1375‐1383, 1998. DOI: 10.1083/jcb.143.5.1375.
 155.Guignabert C, Phan C, Seferian A. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest 126 (9): 3207‐3218, 2016. DOI: 10.1172/JCI86249.
 156.Guo Y, Chan KH, Lai WH, Siu CW, Kwan SC, Tse HF, Wing‐Lok Ho P, Wing‐Man Ho J. Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis. Neuroimmunomodulation 20 (5): 294‐303, 2013. DOI: 10.1159/000351450.
 157.Hamblin M, Chang L, Fan Y, Zhang J, Chen YE. PPARs and the cardiovascular system. Antioxid Redox Signal 11 (6): 1415‐1452, 2009. DOI: 10.1089/ars.2008.2280.
 158.Halili MA, Andrews MR, Sweet MJ, Fairlie DP. Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 9 (3): 309‐319, 2009. DOI: 10.2174/156802609788085250.
 159.Hamada H, Terai M, Kimura H, Hirano K, Oana S, Niimi H. Increased expression of mast cell chymase in the lungs of patients with congenital heart disease associated with early pulmonary vascular disease. Am J Respir Crit Care Med 160 (4): 1303‐1308, 1999. DOI: 10.1164/ajrccm.160.4.9810058.
 160.Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 144 (5): 646‐674, 2011. DOI: 10.1016/j.cell.2011.02.013.
 161.Hanna J, Goldman‐Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson‐Yaron S, Prus D, Cohen‐Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal‐maternal interface. Nat Med 12: 1065‐1074, 2006. DOI: 10.1038/nm1452.
 162.Harrison RE, Berger R, Haworth SG, Tulloh R, Mache CJ, Morrell NW, Aldred MA, Trembath RC. Transforming growth factor‐beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111 (4): 435‐441, 2005. DOI: 10.1161/01.CIR.0000153798.78540.87.
 163.Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, Elliott CG, Robbins IM, Olschewski H, McLaughlin V, Gruenig E, Kermeen F, Halme M, Räisänen‐Sokolowski A, Laitinen T, Morrell NW, Trembath RC. Molecular and functional analysis identifies ALK‐1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet 40 (12): 865‐871, 2003. DOI: 10.1136/jmg.40.12.865.
 164.Haschemi A, Kosma P, Gille L, Evans C, Burant C, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein JA, Wagner O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15 (6): 813‐826, 2012. DOI: 10.1016/j.cmet.2012.04.023.
 165.Hata A, Chen YG. TGF‐β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8 (9): a022061, 2016. DOI: 10.1101/cshperspect.a022061.
 166.Hautefort A, Mendes‐Ferreira P, Sabourin J, Manaud G, Bertero T, Rucker‐Martin C, Riou M, Adão R, Manoury B, Lambert M, Boet A, Lecerf F, Domergue V, Brás‐Silva C, Gomez AM, Montani D, Girerd B, Humbert M, Antigny F, Perros F. Bmpr2 mutant rats develop pulmonary and cardiac characteristics of pulmonary arterial hypertension. Circulation 139 (7): 932‐948, 2019.
 167.Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K. Bone marrow‐derived cells contribute to pulmonary vascular remodeling in hypoxia‐induced pulmonary hypertension. Chest 127 (5): 1793‐1798, 2005. DOI: 10.1378/chest.127.5.1793.
 168.Heath D, Yacoub M. Lung mast cells in plexogenic pulmonary arteriopathy. J Clin Pathol 44 (12): 1003‐1006, 1991. DOI: 10.1136/jcp.44.12.1003.
 169.Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CDM, Fletcher JA. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299 (5607): 708‐710, 2003. DOI: 10.1126/science.1079666.
 170.Henao Agudelo JS, Braga TT, Amano MT, Cenedeze MA, Cavinato RA, Peixoto‐Santos AR, Muscará MN, Teixeira SA, Cruz MC, Castoldi A, Sinigaglia‐Coimbra R, Pacheco‐Silva A, de Almeida DC, Camara NOS. Mesenchymal stromal cell‐derived microvesicles regulate an internal pro‐inflammatory program in activated macrophages. Front Immunol 8: 881, 2017. eCollection 2017. DOI: 10.3389/fimmu.2017.00881.
 171.Hennigan S, Channick RN, Silverman GJ. Rituximab treatment of pulmonary arterial hypertension associated with systemic lupus erythematosus: A case report. Lupus 17 (8): 754‐756, 2008. DOI: 10.1177/0961203307087610.
 172.Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14 (3): 249‐256, 2012. DOI: 10.1038/ncb2441.
 173.Hernandez‐Gonzalez I, Tenorio J, Palomino‐Doza J, Martinez Meñaca A, Morales Ruiz R, Lago‐Docampo M, Valverde Gomez M, Gomez Roman J, Enguita Valls AB, Perez‐Olivares C, Valverde D, Gil Carbonell J, Garrido‐Lestache Rodríguez‐Monte E, Del Cerro MJ, Lapunzina P, Escribano‐Subias P. Clinical heterogeneity of pulmonary arterial hypertension associated with variants in TBX4. PLoS One 15 (4): e0232216, 2020. eCollection 2020. DOI: 10.1371/journal.pone.0232216.
 174.Hester J, Ventetuolo C, Lahm T. Sex, gender, and sex hormones in pulmonary hypertension and right ventricular failure. Compr Physiol 10 (1): 125‐170, 2019. DOI: 10.1002/cphy.c190011.
 175.Hida T, Ogawa S, Park JC, Park JY, Shimizu J, Horio Y, Yoshida K. Gefitinib for the treatment of non‐small‐cell lung cancer. Expert Rev Anticancer Ther 9 (1): 17‐35, 2009. DOI: 10.1586/14737140.9.1.17.
 176.Hill NS, Gillespie MN, McMurtry IF. Fifty years of monocrotaline‐induced pulmonary hypertension: What has it meant to the field? Chest 152 (6): 1106‐1108, 2017.
 177.Hiraide T, Kataoka M, Suzuki H, Aimi Y, Chiba T, Kanekura K, Satoh T, Fukuda K, Gamou S, Kosaki K. SOX17 Mutations in Japanese Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 198 (9): 1231‐1233, 2018. DOI: 10.1164/rccm.201804‐0766LE.
 178.Hirayama Y, Sakamaki S, Takayanagi N, Tsuji Y, Sagawa T, Chiba H, Matsunaga T, Niitsu Y. Chemotherapy with ubenimex corresponding to patient age and organ disorder for 18 cases of acute myelogeneous leukemia in elderly patients‐‐effects, complications and long‐term survival. Cancer Chemother 30 (8): 1113‐1118, 2003.
 179.Hiress ML, Tu L, Ricard N, Phan C, Thuillet R, Fadel E, Dorfmüller P, Montani D, de Man F, Humbert M, Huertas A, Guignabert C. Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension. Role of the macrophage migration inhibitory factor/CD74 complex. Am J Respir Crit Care Med 192 (8): 983‐997, 2015. DOI: 10.1164/rccm.201402‐0322OC.
 180.Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y, Kitamura Y. Gain‐of‐function mutations of plateletderived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125 (3): 660‐667, 2003. DOI: 10.1016/s0016‐5085(03)01046‐1.
 181.Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, Le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E, Mehrmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE, Target Validation Team. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35: S129‐S150, 2015. DOI: 10.1016/j.semcancer.2015.10.002.
 182.Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stančáková A, Goetzman E, Lam MM, Schwer B, Stevens RD, Muehlbauer MJ, Kakar S, Bass NM, Kuusisto J, Laakso M, Alt FW, Newgard CB, Farese RV Jr, Kahn CR, Verdin E. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44 (2): 177‐190, 2011. DOI: 10.1016/j.molcel.2011.07.019.
 183.Ho MS, Mei SH, Stewart DJ. The immunomodulatory and therapeutic effects of mesenchymal stromal cells for acute lung injury and sepsis. J Cell Physiol 230 (11): 2606‐2617, 2015. DOI: 10.1002/jcp.25028.
 184.Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galié N, Gómez‐Sánchez MA, Grimminger F, Grünig E, Hassoun PM, Morrell NW, Peacock AJ, Satoh T, Simonneau G, Tapson VF, Torres F, Lawrence D, Quinn DA, Ghofrani HA. Imatinib mesylate as add‐on therapy for pulmonary arterial hypertension: Results of the randomized IMPRES study. Circulation 127 (10): 1128‐1138, 2013. DOI: 10.1161/CIRCULATIONAHA.112.000765.
 185.Hogan BL, Blessing M, Winnier GE, Suzuki N, Jones CM. Growth factors in development: The role of TGF‐beta related polypeptide signalling molecules in embryogenesis. Dev Suppl: 53‐60, 1994. PMID: 7579524.
 186.Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, Ilagan RM. Mesenchymal stromal cell‐derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 316 (5): L723‐L737, 2019. DOI: 10.1152/ajplung.00058.2018.
 187.Holmquist‐Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon‐Christersson J, Borg A, Gradin K, Poellinger L, Påhlman S. Recruitment of HIF‐1alpha and HIF‐2alpha to common target genes is differentially regulated in neuroblastoma: HIF‐2alpha promotes an aggressive phenotype. Cancer Cell 10 (5): 413‐423, 2006. DOI: 10.1016/j.ccr.2006.08.026.
 188.Horwitz EM, Le Blanc K, Dominici M, Mueller I, SlaperCortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T. Clarifcation of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7 (5): 393‐395, 2005, 2005. DOI: 10.1080/14653240500319234.
 189.Hosokawa S, Haraguchi G, Sasaki A, Arai H, Muto S, Itai A, Doi S, Mizutani S, Isobe M. Pathophysiological roles of nf‐kb in pulmonary arterial hypertension: Effects of synthetic selective nf‐kb inhibitor imd‐0354. Cardiovasc Res 99 (1): 35‐43, 2013. DOI: 10.1093/cvr/cvt105.
 190.Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca‐1 and PDGFR‐alpha. Nat Protoc 7 (12): 2103‐2111, 2012, 2012. DOI: 10.1038/nprot.2012.125.
 191.Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, Yu Q, Nie H, Zhang J, He D, Xu R, Chen X, Liu B, Zhang D. Antigen‐presenting effects of effector memory Vγ9Vδ2 T cells in rheumatoid arthritis. Cell Mol Immunol 9 (3): 245‐254, 2012. DOI: 10.1038/cmi.2011.50.
 192.Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia‐induced pulmonary hypertension. Eur Respir J 54 (6): 1900378, 2019. DOI: 10.1183/13993003.00378‐2019.
 193.Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya J, Bhattacharya S, Bonsignore MR, Dewachter L, Dinh‐Xuan AT, Dorfmüller P, Gladwin MT, Humbert M, Kotsimbos T, Vassilakopoulos T, Sanchez O, Savale L, Testa U, Wilkins MR. Pulmonary vascular endothelium: The orchestra conductor in respiratory diseases: Highlights from basic research to therapy. Eur Respir J 51 (4), 2018. pii: 1700745.
 194.Huertas A, Phan C, Bordenave J, Tu L, Thuillet R, Le Hiress M, Avouac J, Tamura Y, Allanore Y, Jovan R, Sitbon O, Guignabert C, Humbert M. Regulatory t cell dysfunction in idiopathic, heritable and connective tissue‐associated pulmonary arterial hypertension. Chest 149 (6): 1482‐1493, 2016. DOI: 10.1016/j.chest.2016.01.004.
 195.Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur Respir J 53 (1): 1801887, 2019.
 196.Humbert M, McLaughlin V, Gibbs JSR, Gomberg‐Maitland M, Hoeper MM, Preston IR, Souza R, Waxman A, Escribano Subias P, Feldman J, Meyer G, Montani D, Olsson KM, Manimaran S, Barnes J, Linde PG, de Oliveira Pena J, Badesch DB, PULSAR Trial Investigators. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med. 384 (13): 1204‐1215, 2021.
 197.Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot‐Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D. Increases interleukin‐1 and interleukin‐6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151 (5): 1628‐1631, 1995. DOI: 10.1164/ajrccm.151.5.7735624.
 198.Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud‐Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G. Pulmonary arterial hypertension in France: Results from a national registry. Am J Respir Crit Care Med 173 (9): 1023‐1030, 2006. DOI: 10.1164/rccm.200510‐1668OC.
 199.Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: Its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci 353 (1368): 583‐605, 1998. DOI: 10.1098/rstb.1998.0228.
 200.Hurst LA, Dunmore BJ, Long L, Crosby A, Al‐Lamki R, Deighton J, Southwood M, Yang X, Nikolic MZ, Herrera B, Inman GJ, Bradley JR, Rana AA, Upton PD, Morrell NW. TNFα drives pulmonary arterial hypertension by suppressing the BMP type‐II receptor and altering NOTCH signalling. Nat Commun 8: 14079, 2017. DOI: 10.1038/ncomms14079.
 201.Ibrahim U, Saqib A, Dhar V, Odaimi M. Dasatinib‐induced pulmonary arterial hypertension ‐ A rare late complication. J Oncol Pharm Pract 25 (3): 727‐730, 2019. DOI: 10.1177/1078155217753740.
 202.Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium‐derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84 (24): 9265‐9269, 1987.
 203.Imaizumi S, Grijalva V, Navab M, Van Lenten BJ, Wagner AC, Anantharamiah GM, Fogelman AM, Reddy ST. L‐4F differentially alters plasma levels of oxidized fatty acids resulting in more anti‐inflammatory HDL in mice. Drug Metab Lett 4 (3): 139‐148, 2010. DOI: 10.2174/187231210791698438.
 204.Isakova IA, Baker KC, Dufour J, Phinney DG. Mesenchymal stem cells yield transient improvements in motor function in an infant rhesus macaque with severe early‐onset Krabbe disease. Stem Cells Transl Med 6 (1): 99‐109, 2017. DOI: 10.5966/sctm.2015‐0317.
 205.Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. Mitochondrial transfer from bone‐marrow‐derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18 (5): 759‐765, 2012. DOI: 10.1038/nm.2736.
 206.Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha. Genes Dev 12 (2): 149‐162, 1998. DOI: 10.1101/gad.12.2.149.
 207.Jais X, Launay D, Yaici A, Le Pavec J, Tcherakian C, Sitbon O, Simonneau G, Humbert M. Immunosuppressive therapy in lupus‐ and mixed connective tissue disease‐associated pulmonary arterial hypertension: A retrospective analysis of twenty‐three cases. Arthritis Rheum 58 (2): 521‐531, 2008. DOI: 10.1002/art.23303.
 208.Jankov RP, Luo X, Belcastro R, Copland I, Frndova H, Lye SJ, Hoidal JR, Post M, Tanswell AK. Gadolinium chloride inhibits pulmonary macrophage influx and prevents O(2)‐induced pulmonary hypertension in the neonatal rat. Pediatr Res 50 (2): 172‐183, 2001. DOI: 10.1203/00006450‐200108000‐00003. PMID: 11477200.
 209.Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall KM, Everts B, Pearce EJ, Driggers EM, Artyomov MN. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42 (3): 419‐430, 2015. DOI: 10.1016/j.immuni.2015.02.005.
 210.Jiang L, Song XH, Liu P, Zeng CL, Huang ZS, Zhu LJ, Jiang YZ, Ouyang HW, Hu H. Platelet‐mediated mesenchymal stem cells homing to the lung reduces monocrotaline‐induced rat pulmonary hypertension. Cell Tranplant 21 (7): 1463‐1475, 2012. DOI: 10.3727/096368912X640529.
 211.Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz‐Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418 (6893): 41‐49, 2002, 2002. DOI: 10.1038/nature00870.
 212.Jonigk D, Golpon H, Bockmeyer CL, Maegel L, Hoeper MM, Gottlieb J, Nickel N, Hussein K, Maus U, Lehmann U, Janciauskiene S, Welte T, Haverich A, Rische J, Kreipe H, Laenger F. Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. Am J Pathol 179 (1): 167‐179, 2011.
 213.Joyce CE, Saadatpour A, Ruiz‐Gutierrez M, Bolukbasi OV, Jiang L, Thomas DD, Young S, Hofmann I, Sieff CA, Myers KC, Whangbo J, Libermann TA, Nusbaum C, Yuan GC, Shimamura A, Novina CD. TGFβ signaling underlies hematopoietic dysfunction and bone marrow failure in Shwachman‐Diamond Syndrome. J Clin Invest 130: 3821‐3826, 2019. DOI: 10.1172/JCI125375.
 214.Jurasz P, Courtman D, Babaie S, Stewart DJ. Role of apoptosis in pulmonary hypertension: From experimental models to clinical trials. Pharmacol Ther 126 (1): 1‐8, 2010. DOI: 10.1016/j.pharmthera.2009.12.006.
 215.Kallio EA, Koskinen PK, Aavik E, Buchdunger E, Lemstrom KB. Role of platelet‐derived growth factor in obliterative bronchiolitis (chronic rejection) in the rat. Am J Respir Crit Care Med 160 (4): 1324‐1332, 1999. DOI: 10.1164/ajrccm.160.4.9802006.
 216.Kanki‐Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 114 (1 Suppl): I181‐I185, 2006. DOI: 10.1161/CIRCULATIONAHA.105.001487.
 217.Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, Shay S, French JL, West J, Haase VH. The endothelial prolyl‐ 4‐hydroxylase domain 2/hypoxia‐inducible factor 2 axis regulates pulmonary artery pressure in mice. Mol Cell Biol 36 (10): 1584‐1594, 2016. DOI: 10.1128/MCB.01055‐15.
 218.Karolak JA, Vincent M, Deutsch G, Gambin T, Cogné B, Pichon O, Vetrini F, Mefford HC, Dines JN, Golden‐Grant K, Dipple K, Freed AS, Leppig KA, Dishop M, Mowat D, Bennetts B, Gifford AJ, Weber MA, Lee AF, Boerkoel CF, Bartell TM, Ward‐Melver C, Besnard T, Petit F, Bache I, Tümer Z, Denis‐Musquer M, Joubert M, Martinovic J, Bénéteau C, Molin A, Carles D, André G, Bieth E, Chassaing N, Devisme L, Chalabreysse L, Pasquier L, Secq V, Don M, Orsaria M, Missirian C, Mortreux J, Sanlaville D, Pons L, Küry S, Bézieau S, Liet JM, Joram N, Bihouée T, Scott DA, Brown CW, Scaglia F, Tsai AC, Grange DK, Phillips JA 3rd, Pfotenhauer JP, Jhangiani SN, Gonzaga‐Jauregui CG, Chung WK, Schauer GM, Lipson MH, Mercer CL, van Haeringen A, Liu Q, Popek E, Coban Akdemir ZH, Lupski JR, Szafranski P, Isidor B, Le Caignec C, Stankiewicz P. Complex compound inheritance of lethal lung developmental disorders due to disruption of the TBX‐FGF pathway. Am J Hum Genet 104 (2): 213‐228, 2019. DOI: 10.1016/j.ajhg.2018.12.010.
 219.Kassa B, Mickael C, Kumar R, Sanders L, Koyanagi D, Hernandez‐Saavedra D, Tuder RM, Graham BB. Paclitaxel blocks Th2‐mediated TGF‐β activation in Schistosoma mansoni‐induced pulmonary hypertension. Pulm Circ 9 (1): 2045894018820813. DOI: 10.1177/2045894018820813.
 220.Kato M, Kataoka H, Odani T, Fujieda Y, Otomo K, Oku K, Horita T, Yasuda S, Atsumi T, Ohira H, Tsujino I, Nishimura M, Koike T. The short‐term role of corticosteroid therapy for pulmonary arterial hypertension associated with connective tissue diseases: Report of five cases and a literature review. Lupus 20 (10): 1047‐1056, 2011. DOI: 10.1177/0961203311403347.
 221.Kawut SM, Archer‐Chicko CL, DeMichele A, Fritz JS, Klinger JR, Ky B, Palevsky HI, Palmisciano AJ, Patel M, Pinder D, Propert KJ, Smith KA, Stanczyk F, Tracy R, Vaidya A, Whittenhall ME, Ventetuolo CE. Anastrozole in pulmonary arterial hypertension. A randomized, double‐blind, placebo‐controlled trial. Am J Respir Crit Care Med 195 (3): 360‐368, 2017. DOI: 10.1164/rccm.201605‐1024OC.
 222.Kawut SM, Bagiella E, Lederer DJ, Shimbo D, Horn EM, Roberts KE, Hill NS, Barr RG, Rosenzweig EB, Post W, Tracy RP, Palevsky HI, Hassoun PM, Girgis RE, ASA‐STAT Study Group. Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension: ASA‐STAT. Circulation 123 (25): 2985‐2993, 2011. DOI: 10.1161/CIRCULATIONAHA.110.015693.
 223.Ke X, Johnson H, Jing X, Michalkiewicz T, Huang YW, Lane RH, Konduri GG. Persistentpulmonary hypertension alters the epigenetic characteristics of endothelial nitric oxide synthase gene in pulmonary artery endothelial cells in a fetal lamb model. Physiol Genomics 50 (10): 828‐836, 2018. DOI: 10.1152/physiolgenomics.00047.2018.
 224.Keating A. Mesenchymal stromal cells: New directions. Cell Stem Cell 10 (6): 709‐716, 2012, 2012. DOI: 10.1016/j.stem.2012.05.015.
 225.Keilin D, Keilin J. The History of Cell Respiration and Cytochrome. London, England: Cambridge University Press, 1966.
 226.Kemaladewi DU, de Gorter DJ, Aartsma‐Rus A, van Ommen GJ, ten Dijke P, 't Hoen PA, Hoogaars WM. Cell‐type specific regulation of myostatin signaling. FASEB J 26 (4): 1462‐1472, 2012. DOI: 10.1096/fj.11‐191189.
 227.Kerstjens‐Frederikse WS, Bongers EM, Roofthooft MT, Leter EM, Douwes JM, Van Dijk A, Vonk‐Noordegraaf A, Dijk‐Bos KK, Hoefsloot LH, Hoendermis ES, Gille JJ, Sikkema‐Raddatz B, Hofstra RM, Berger RM. TBX4 mutations (small patella syndrome) are associated with childhood‐onset pulmonary arterial hypertension. J Med Genet 50 (8): 500‐506, 2013. DOI: 10.1136/jmedgenet‐2012‐101152.
 228.Kim HS, Yun JW, Shin TH, Lee SH, Lee BC, Yu KR, Seo Y, Lee S, Kang TW, Choi SW, Seo KW, Kang KS. Human umbilical cord blood mesenchymal stem cell‐derived PGE2 and TGF‐beta1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells 33 (4): 1254‐1266, 2015, 2015. DOI: 10.1002/stem.1913.
 229.Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Chun HJ. Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation 131 (2): 190‐199, 2015, 2015. DOI: 10.1161/CIRCULATIONAHA.114.013339.
 230.Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, Lee MS, Kim J. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med 47 (7): e175, 2015. DOI: 10.1038/emm.2015.45.
 231.Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF‐1‐mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3 (3): 177‐185, 2016. DOI: 10.1016/j.cmet.2006.02.002.
 232.Kimura G, Kataoka M, Inami T, Fukuda K, Yoshino H, Satoh T. Sorafenib as a potential strategy for refractory pulmonary arterial hypertension. Pulm Pharmacol Ther 44: 46‐49, 2017. DOI: 10.1016/j.pupt.2017.03.009.
 233.Kinnaird T, Stabile E, Burnett M, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow‐derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109 (12): 1543‐1549, 2004. DOI: 10.1161/01.CIR.0000124062.31102.57.
 234.Klinger JR, Abman SH, Gladwin MT. Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension. Am J Respir Crit Care Med 188 (6): 639‐646, 2013. DOI: 10.1164/rccm.201304‐0686PP.
 235.Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Ventetuolo CE, Quesenberry PJ, Liang OD. Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. Am J Respir Cell Mol Biol 62 (5): 577‐587, 2020. DOI: 10.1165/rcmb.2019‐0154OC.
 236.Koehler R, Grünig E, Pauciulo MW, Hoeper MM, Olschewski H, Wilkens H, Halank M, Winkler J, Ewert R, Bremer H, Kreuscher S, Janssen B, Nichols WC. Low frequency of BMPR2 mutations in a German cohort of patients with sporadic idiopathic pulmonary arterial hypertension. J Med Genet 41 (12): e127, 2004. DOI: 10.1136/jmg.2004.023101.
 237.Kommireddy S, Bhyravavajhala S, Kurimeti K, Chennareddy S, Kanchinadham S, Vara Prasad IR, Rajasekhar L. Pulmonary arterial hypertension in systemic lupus erythematosus may benefit by addition of immunosuppression to vasodilator therapy: An observational study. Rheumatology (Oxford) 54 (9): 1673‐1679, 2015. DOI: 10.1093/rheumatology/kev097.
 238.Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11 (5): 325‐337, 2011.
 239.Kosanovic D, Dahal BK, Peters DM, Seimetz M, Wygrecka M, Hoffmann K, Antel J, Reiss I, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Schermuly RT. Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease. Pulm Circ 4 (1): 128‐136, 2014. DOI: 10.1086/675642.
 240.Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 20 (4): 207‐212, 2008.
 241.Lalich JJ, Ehrhart LA. Monocrotaline‐induced pulmonary arteritis in rats. J Atheroscler Res 2: 482‐488, 1962.
 242.Lalich JJ, Merkow L. Pulmonary arteritis produced in rat by feeding Crotalaria spectabilis. Lab Invest 10: 744‐750, 1961.
 243.Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF‐β receptor, cause familial primary pulmonary hypertension. Nat Genet 26 (1): 81‐84, 2000. DOI: 10.1038/79226.
 244.Lang M, Kojonazarov B, Tian X, Kalymbetov A, Weissmann N, Grimminger F, Kretschmer A, Stasch JP, Seeger W, Ghofrani HA, Schermuly RT. The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS One 7 (8): e43433, 2012. DOI: 10.1371/journal.pone.0043433.
 245.Lange AW, Haitchi HM, LeCras TD, Sridharan A, Xu Y, Wert SE, James J, Udell N, Thurner PJ, Whitsett JA. Sox17 is required for normal pulmonary vascular morphogenesis. Dev Biol 387 (1): 109‐120, 2014. DOI: 10.1016/j.ydbio.2013.11.018.
 246.Larkin EK, Newman JH, Austin ED, Hemnes AR, Wheeler L, Robbins IM, West JD, Phillips JA 3rd, Hamid R, Loyd JE. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med 186 (9): 892‐896, 2012. DOI: 10.1164/rccm.201205‐0886OC.
 247.Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat Rev Immunol 11 (11): 750‐761, 2011. DOI: 10.1038/nri3088.
 248.Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson K, Pickworth J, Kiely DG, Crossman DC, Francis SE. Paigen diet‐fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin‐1‐dependent manner. Am J Pathol 179 (4): 1693‐1705, 2011. DOI: 10.1016/j.ajpath.2011.06.037.
 249.Lee A, McLean D, Choi J, Kang H, Chang W, Kim J. Therapeutic implications of microRNAs in pulmonary arterial hypertension. BMB Rep 47 (6): 311‐317, 2014. DOI: 10.5483/bmbrep.2014.47.6.085.
 250.Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez‐Gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia‐induced pulmonary hypertension. Circulation 126 (22): 2601‐2611, 2012. DOI: 10.1161/CIRCULATIONAHA.112.114173.
 251.Lee KY, Bae SC. TGF‐beta‐dependent cell growth arrest and apoptosis. J Biochem Mol Biol 35 (1): 47‐53, 2002. DOI: 10.5483/bmbrep.2002.35.1.047.
 252.Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun‐Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSC improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti‐inflammatory protein TSG‐6. Cell Stem Cell 5 (1): 54‐63, 2009. DOI: 10.1016/j.stem.2009.05.003.
 253.Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, Yoon JK, Koh GY, Kim I. Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 115 (2): 215‐226, 2014. DOI: 10.1161/CIRCRESAHA.115.303142.
 254.Leoni V, Biondi A. Tyrosine kinase inhibitors in BCR‐ABL positive acute lymphoblastic leukemia. Haematologica 100 (3): 295‐299, 2015. DOI: 10.3324/haematol.2015.124016.
 255.Levine AJ, Puzio‐Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330 (6009): 1340‐1344, 2010. DOI: 10.1126/science.1193494.
 256.Levitzki A, Gazit A. Tyrosine kinase inhibition: An approach to drug development. Science 267 (5205): 1782‐1788, 1995. DOI: 10.1126/science.7892601.
 257.Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 (1): 15‐20, 2005, 2005. DOI: 10.1016/j.cell.2004.12.035.
 258.Li M, Riddle S, Zhang H, D'Alessandro A, Flockton A, Serkova NJ, Hansen KC, Moldvan R, McKeon BA, Frid M, Kumar S, Li H, Liu H, Caanovas A, Medrano JF, Thomas MG, Iloska D, Plecita‐Hlavata L, Jezek P, Pullamsetti S, Fini MA, El Kasmi KC, Zhang Q, Stenmark KR. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor c‐terminal binding protein‐1. Circulation 134 (15): 1105‐1121, 2016. DOI: 10.1161/CIRCULATIONAHA.116.023171.
 259.Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol 187 (5): 2711‐2722, 2011. DOI: 10.4049/jimmunol.1100479.
 260.Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 74 (13): 2345‐2360, 2017. DOI: 10.1007/s00018‐017‐2473‐5.
 261.Li N, Sanyour H, Remund T, Kelly P, Hong Z. Vascular extracellular matrix and fibroblasts‐coculture directed differentiation of human mesenchymal stem cells toward smooth muscle‐like cells for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 93: 61‐69, 2018. DOI: 10.1016/j.msec.2018.07.061.
 262.Li S, Zhai C, Shi W, Feng W, Xie X, Pan Y, Wang J, Yan X, Chai L, Wang Q, Zhang Q, Liu P, Li M. Leukotriene B(4) induces proliferation of rat pulmonary arterial smooth muscle cells via modulating GSK‐3β/β‐catenin pathway. Eur J Pharmacol 867: 172823, 2020. DOI: 10.1016/j.ejphar.2019.172823.
 263.Li X, Kang N, Zhang X, Dong X, Wei W, Cui L, Ba D, He W. Generation of human regulatory gamma delta T cells by TCRgammadelta stimulation in the presence of TGF‐beta and their involvement in the pathogenesis of systemic lupus erythematosus. J Immunol 186 (12): 6693‐6700, 2011. DOI: 10.4049/jimmunol.1002776.
 264.Li X, Xiang D, Shu Y, Hu K, Zhang Y, Li Y. MicroRNA‐204 as an indicator of severity of pulmonary hypertension in children with congenital heart disease complicated with pulmonary hypertension. Med Sci Monit 25: 10173‐10179, 2019. DOI: 10.12659/MSM.917662.
 265.Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15 (11): 1289‐1297, 2009.
 266.Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M, Fernandez‐Gonzalez A, Liu X, Baveja R, Kourembanas S. Mesenchymal stromal cells expressing heme oxygenase‐1 reverse pulmonary hyperten‐ sion. Stem Cells 29 (1): 99‐107, 2011. DOI: 10.1002/stem.548.
 267.Liang OD, Pereira M, Jeong E‐M, Soy E‐Y, Wu KQ, Del Tatto M, Dooner M, Ventetuolo C, Quesenberry P, Klinger JR. Inhibition of RUNX1‐dependent aberrant hematopoiesis and macrophage polarization as a novel treatment modality for pulmonary arterial hypertension. Am J Respir Crit Care Med 201: A2673, 2020.
 268.Liang OD, So EY, Egan PC, Goldberg LR, Aliotta JM, Wu KQ, Dubielecka PM, Ventetuolo CE, Reginato AM, Quesenberry PJ, Klinger JR. Endothelial to haematopoietic transition contributes to pulmonary arterial hypertension. Cardiovasc Res 113 (13): 1560‐1573, 2017. DOI: 10.1093/cvr/cvx161.
 269.Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A, Schlessinger J. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313 (5998): 144‐147, 1985. DOI: 10.1038/313144a0.
 270.Liu F, Ventura F, Doody J, Massagué J. Human type II receptor for bone morphogenic proteins (BMPs): Extension of the two‐ kinase receptor model to the BMPs. Mol Cell Biol 15 (7): 3479‐3486, 1995. DOI: 10.1128/mcb.15.7.3479.
 271.Liu J, Han Z, Han Z, He Z. Mesenchymal stem cell‐conditioned media sup‐presses inflammation‐associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med 11 (2): 467‐475, 2016. DOI: 10.3892/etm.2015.2953.
 272.Liu WX, Zhang S, Gu SZ, Sang LX, Dai C. Mesenchymal stem cells recruit macrophages to alleviate experimental colitis through TGF beta 1. Cell Physiol Biochem 35 (3): 858‐865, 2015, 2015. DOI: 10.1159/000369743.
 273.Liu Y, Cao Y, Sun S, Zhu J, Gao S, Pang J, Zhu D, Sun Z. Transforming growth factor‐beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways. Int J Biochem Cell Biol 77 (Pt A): 141‐154, 2016. DOI: 10.1016/j.biocel.2016.06.006.
 274.Liu Z, Liu J, Xiao M, Wang J, Yao F, Zeng W, Yu L, Guan Y, Wei W, Peng Z, Zhu K, Wang J, Yang Z, Zhong J, Chen J. Mesenchymal stem cell‐derived microvesicles alleviate pulmonary arterial hypertension by regulating renin‐angiotensin system. J Am Soc Hypertens 12 (6): 470‐478, 2018. DOI: 10.1016/j.jash.2018.02.006.
 275.Lizama CO, Hawkins JS, Schmitt CE, Bos FL, Zape JP, Cautivo KM, Borges Pinto H, Rhyner AM, Yu H, Donohoe ME, Wythe JD, Zovein AC. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat Commun 6: 7739, 2015. DOI: 10.1038/ncomms8739.
 276.Lobe CG. Transcription factors and mammalian development. Curr Top Dev Biol 27: 351‐383, 1992.
 277.Loboda A, Jozkowicz A, Dulak J. HIF‐1 and HIF‐2 transcription factors ‐ similar but not identical. Mol Cells 29 (5): 435‐442, 2010. DOI: 10.1007/s10059‐010‐0067‐2.
 278.Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, Southwood M, James V, Trembath RC, Morrell NW. Serotonin increases susceptibility to pulmonary hypertension in BMPR2‐deficient mice. Circ Res 98 (6): 818‐827, 2006. DOI: 10.1161/01.RES.0000215809.47923.fd.
 279.Long L, Ormiston ML, Yang X, Southwood M, Graf S, Machado RD, Mueller M, Kinzel B, Yung LM, Wilkinson JM, Moore SD, Drake KM, Aldred MA, Yu PB, Upton PD, Morrell NW. Selective enhancement of endothelial BMPR‐II with BMP9 reverses pulmonary arterial hypertension. Nat Med 21 (7): 777‐785, 2015. DOI: 10.1038/nm.3877.
 280.Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, Morrell NW. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 112 (8): 1159‐1170, 2013. DOI: 10.1161/CIRCRESAHA.111.300483.
 281.Luz‐Crawford P, Kurte M, Bravo‐Alegria J, Contreras R, Nova‐Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F. Mesenchymal stem cells generate a CD4+ CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4 (3): 65, 2013, 2013. DOI: 10.1186/scrt216.
 282.Lv FJ, Tuan RS, Cheung KM, Leung VY. Conscise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 32 (6): 1408‐1419, 2014. DOI: 10.1002/stem.1681.
 283.Ma L, Roman‐Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Trégouët DA, Borczuk A, Berman Rosenzweig E, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK. A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369 (4): 351‐361, 2013. DOI: 10.1056/NEJMoa1211097.
 284.Maarman GJ, Schulz R, Sliwa K, Schermuly RT, Lecour S. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: A review of current literature. Br J Pharmacol 174 (7): 497‐511, 2017. DOI: 10.1111/bph.13721.
 285.Macchia A, Marchioli R, Marfisi R, Scarano M, Levantesi G, Tavazzi L, Tognoni G. A meta‐analysis of trials of pulmonary hypertension: A clinical condition looking for drugs and research methodology. Am Heart J 153: 1037‐1047, 2007.
 286.Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Gruenig E, Janssen B, Koehler R, Seeger W, Eickelberg O, Olschewski H, Elliott CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewczyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Kyotani S, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW, Trembath RC. Mutations of the TGF‐beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27 (2): 121‐132, 2006. DOI: 10.1002/humu.20285.
 287.Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA III, Soubrier F, Trembath RC, Chung WK. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54 (1 Suppl): S32‐S42, 2009. DOI: 10.1016/j.jacc.2009.04.015.
 288.Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, Chung WK, Benjamin N, Elliott CG, Eyries M, Fischer C, Gräf S, Hinderhofer K, Humbert M, Keiles SB, Loyd JE, Morrell NW, Newman JH, Soubrier F, Trembath RC, Rodríguez Viales R, Grünig E. Pulmonary arterial hypertension: A current perspective on established and emerging molecular genetic defects. Hum Mutat 36 (12): 1113‐1127, 2015. DOI: 10.1002/humu.22904.
 289.Madonna R, De Caterina R, Geng YJ. Epigenetic regulation of insulin‐like growth factor signaling: A novel insight into the pathophysiology of neonatal pulmonary hypertension. Vascul Pharmacol 73: 4‐7, 2015. DOI: 10.1016/j.vph.2015.08.002.
 290.Maia J, Caja S, Strano Moraes MC, Couto N, Costa‐Silva B. Exosome‐based cell‐cell communication in the tumor microenvironment. Front Cell Dev Biol 6: 18, 2018. eCollection 2018. DOI: 10.3389/fcell.2018.00018.
 291.Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat Rev Cancer 9 (3): 153‐166, 2009. DOI: 10.1038/nrc2602.
 292.Mammoto T, Muyleart M, Konduri GG, Mammoto A. Twist1 in hypoxia‐induced pulmonary hypertension through transforming growth factor‐β‐smad signaling. Am J Respir Cell Mol Biol 58 (2): 194‐207, 2018. DOI: 10.1165/rcmb.2016‐0323OC.
 293.Marsh LM, Jandl K, Grünig G, Foris V, Bashir M, Ghanim B, Klepetko W, Olschewski H, Olschewski A, Kwapiszewska G. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension. Eur Respir J 51 (1): 1701214, 2018. DOI: 10.1183/13993003.01214‐2017.
 294.Martin MP, Olesen SH, Georg GI, Schonbrunn E. Cyclin‐dependent kinase inhibitor dinaciclib interacts with the acetyl‐lysine recognition site of bromodomains. ACS Chem Biol 8 (11): 2360‐2365, 2013. DOI: 10.1021/cb4003283.
 295.Martinet Y, Rom WN, Grotendorst GR, Martin GR, Crystal RG. Exaggerated spontaneous release of platelet‐derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis. N Engl J Med 317 (4): 202‐209, 1987. DOI: 10.1056/NEJM198707233170404.
 296.Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 6: 13, 2014. eCollection 2014. DOI: 10.12703/P6‐13.
 297.Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 13: 453‐461, 2008. DOI: 10.2741/2692.
 298.Matei D, Emerson RE, Schilder J, Menning N, Baldridge LA, Johnson CS, Breen T, McClean J, Stephens D, Whalen C, Sutton G. Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum‐resistant ovarian cancer and primary peritoneal carcinomatosis: A Hoosier Oncology Group trial. Cancer 113 (4): 723‐732, 2008. DOI: 10.1002/cncr.23605.
 299.Mathai SC, Puhan MA, Lam D, Wise RA. The minimal important difference in the 6‐minute walk test for patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 186 (5): 428‐433, 2012.
 300.McLendon JM, Joshi SR, Sparks J, Matar M, Fewell JG, Abe K, Oka M, McMurtry IF, Gerthoffer WT. Lipid nanoparticle delivery of a microRNA‐145 inhibitor improves experimental pulmonary hypertension. J Control Release 210: 67‐75, 2015. DOI: 10.1016/j.jconrel.2015.05.261.
 301.McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95 (8): 830‐840, 2004. DOI: 10.1161/01.RES.0000145360.16770.9f.
 302.Melao, Alice MSC. Acceleron's Sotatercept Granted FDA's Breakthrough Therapy Status for PAH. Pulmonary Hypertension News. Pulmonaryhypertensionnews.com. Sept 2017.
 303.Meloche J, Paulin R, Provencher S, Bonnet S. Therapeutic potential of microRNA modulation in pulmonary arterial hypertension. Curr Vasc Pharmacol 13 (3): 331‐340, 2015. DOI: 10.2174/15701611113119990010.
 304.Merklinger SL, Jones PL, Martinez EC, Rabinovitch M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112 (3): 423‐431, 2005. DOI: 10.1161/CIRCULATIONAHA.105.540542.
 305.Messa C, Russo F, Caruso MG, Di LA. EGF, TGF‐alpha, and EGF‐R in human colorectal adenocarcinoma. Acta Oncol 37 (3): 285‐289, 1998. DOI: 10.1080/028418698429595.
 306.Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol Biol Rep 45 (6): 2883‐2896, 2018. DOI: 10.1007/s11033‐018‐4335‐0.
 307.Michelakis ED, Gurtu V, Webster L, Barnes G, Watson G, Howard L, Cupitt J, Paterson I, Thompson RB, Chow K, O'Regan DP, Zhao L, Wharton J, Kiely DG, Kinnaird A, Boukouris AE, White C, Nagendran J, Freed DH, Wort SJ, Gibbs JSR, Wilkins MR. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci Transl Med 9 (413): eaao4583, 2017. DOI: 10.1126/scitranslmed.aao4583.
 308.Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: Role of increased expression and activity of voltage‐gated potassium channels. Circulation 105 (2): 244‐250, 2002. DOI: 10.1161/hc0202.101974.
 309.Mitani Y, Ueda M, Maruyama K, Shimpo H, Kojima A, Matsumura M, Aoki K, Sakurai M. Mast cell chymase in pulmonary hypertension. Thorax 54 (1): 88‐90, 1999. DOI: 10.1136/thx.54.1.88.
 310.Miyata M, Sakuma F, Ito M, Ohira H, Sato Y, Kasukawa R. Athymic nude rats develop severe pulmonary hypertension following monocrotaline administration. Int Arch Allergy Immunol 121 (3): 246‐252, 2000. DOI: 10.1159/000024324.
 311.Miyazawa K, Miyazono K. Regulation of TGF‐β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 9 (3): a022095, 2017. DOI: 10.1101/cshperspect.a022095.
 312.Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263 (5579): 663‐665, 1976.
 313.Moon SK, Kim HM, Kim CH. PTEN induces G1 cell cycle arrest and inhibits MMP‐9 expression via the regulation of NF‐kappaB and AP‐1 in vascular smooth muscle cells. Arch Biochem Biophys 421 (2): 267‐276, 2004. DOI: 10.1016/j.abb.2003.11.007.
 314.Morgan DO. The Cell Cycle: Principles of Control (1st ed). London: New Science Press, 2007. ISBN: 978‐0‐87893‐508‐6.
 315.Morisaki H, Nakanishi N, Kyotani S, Takashima A, Tomoike H, Morisaki T. BMPR2 mutations found in Japanese patients with familial and sporadic primary pulmonary hypertension. Hum Mutat 23 (6): 632, 2004. DOI: 10.1002/humu.9251.
 316.Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 196 (10): 1275‐1286, 2017. DOI: 10.1164/rccm.201701‐0170OC.
 317.Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF‐beta signaling in regulation of cell growth and differentiation. Immunol Lett 82 (1‐2): 85‐91, 2002. DOI: 10.1016/s0165‐2478(02)00023‐8.
 318.Mueller TD, Nickel J. Promiscuity and specificity in BMP receptor activation. FEBS Lett 586 (14): 1846‐1859, 2012. DOI: 10.1016/j.febslet.2012.02.043.
 319.Munir S, Xu G, Wu Y, Yang B, Lala PK, Peng C. Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J Biol Chem 279 (30): 31277‐31286, 2004. DOI: 10.1074/jbc.M400641200.
 320.Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JSR, Wilkins MR, Ohta‐Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat 32 (12): 1385‐1389, 2011. DOI: 10.1002/humu.21605.
 321.Nemenoff RA, Simpson PA, Furgeson SB, Kaplan‐Albuquerque N, Crossno J, Garl PJ, Cooper J, Weiser‐Evans MCM. Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell‐derived factor‐1alpha. Circ Res 102 (9): 1036‐1045, 2008. DOI: 10.1161/CIRCRESAHA.107.169896.
 322.Nicolls MR, Taraseviciene‐Stewart L, Rai PR, Badesch DB, Voelkel NF. Autoimmunity and pulmonary hypertension: A perspective. Eur Respir J 26 (6): 1110‐1118, 2005. DOI: 10.1183/09031936.05.00045705.
 323.Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF‐β and BMP pathways: Implications for cancer progression. EBioMedicine 41: 702‐710, 2019. DOI: 10.1016/j.ebiom.2019.02.033.
 324.Nishihara A, Watabe T, Imamura T, Miyazono K. Functional heterogeneity of bone morphogenetic protein receptor‐II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell 13 (9): 3055‐3063, 2002. DOI: 10.1091/mbc.e02‐02‐0063.
 325.Niu XL, Li J, Hakim ZS, Rojas M, Runge MS, Madamanchi NR. Leukocyte antigen‐related deficiency enhances insulin‐like growth factor‐1 signaling in vascular smooth muscle cells and promotes neointima formation in response to vascular injury. J Biol Chem 282 (27): 19808‐19819, 2007. DOI: 10.1074/jbc.M610452200.
 326.O'Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213 (1): 15‐23, 2016. DOI: 10.1084/jem.20151570.
 327.Odegaard JI, Ricardo‐Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage‐specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447 (7148): 1116‐11120, 2007. DOI: 10.1038/nature05894.
 328.Ogorodnikova N, Arenz C. MicroRNA‐145‐targeted drug and its preventive effect on pulmonary arterial hypertension (patent WO2012153135 A1). Expert Opin Ther Pat 25 (6): 723‐727, 2015. DOI: 10.1517/13543776.2015.1025751.
 329.Oki Y, Kondo Y, Yamamoto K, Ogura M, Kasai M, Kobayashi Y, Watanabe T, Uike N, Ohyashiki K, Okamoto S, Ohnishi K, Tomita A, Miyazaki Y, Tohyama K, Mukai HY, Hotta T, Tomonaga M. Phase I/II study of decitabine in patients with myelodysplastic syndrome: A multi‐center study in Japan. Cancer Sci 103 (10): 1839‐1847, 2012. DOI: 10.1111/j.1349‐7006.2012.02386.x.
 330.Olapade‐Olaopa EO, Moscatello DK, MacKay EH, Horsburgh T, Sandhu DP, Terry TR, Wong AJ, Habib FK. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br J Cancer 82 (1): 186‐194, 2000. DOI: 10.1054/bjoc.1999.0898.
 331.Ooi A, Takehana T, Li X, Suzuki S, Kunitomo K, Lino H, Fujii H, Takeda Y, Dobashi Y. Protein overexpression and gene amplification of HER‐2 and EGFR in colorectalcancers: An immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 17 (8): 895‐904, 2004. DOI: 10.1038/modpathol.3800137.
 332.Ormiston ML, Chang C, Long LL, Soon E, Jones D, Machado R, Treacy C, Toshner MR, Campbell K, Riding A, Southwood M, Pepke‐Zaba J, Exley A, Trembath RC, Colucci F, Wills M, Trowsdale J, Morrell NW. Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension. Circulation 126 (9): 1099‐1109, 2012. DOI: 10.1161/CIRCULATIONAHA.112.110619.
 333.Ormiston ML, Deng Y, Rundle N, Bendjelloul F, Tsoporis JN, Parker TG, Stewart DJ, Courtman DW. A lymphocyte‐dependent mode of action for imatinib mesylate in experimental pulmonary hypertension. Am J Pathol 182 (5): 1541‐1551, 2013. DOI: 10.1016/j.ajpath.2013.01.031.
 334.Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3‐kinases and PTEN. Cardiovasc Res 82 (2): 250‐260, 2009. DOI: 10.1093/cvr/cvp014.
 335.Özgür Yurttaş N, Eşkazan AE. Dasatinib‐induced pulmonary arterial hypertension. Br J Clin Pharmacol 84 (5): 835‐845, 2018. DOI: 10.1111/bcp.13508.
 336.Paik JH. FOXOs in the maintenance of vascular homoeostasis. Biochem Soc Trans 34 (Pt 5): 731‐734, 2006. DOI: 10.1042/BST0340731.
 337.Pak O, Sommer N, Hoeres T, Bakr A, Waisbrod S, Sydykov A, Haag D, Esfandiary A, Kojonazarov B, Veit F, Fuchs B, Weisel FC, Hecker M, Schermuly RT, Grimminger F, Ghofrani HA, Seeger W, Weissmann N. Mitochondrial hyperpolarization in pulmonary vascular remodeling. Mitochondrial uncoupling protein deficiency as disease model. Am J Respir Cell Mol Biol 49 (3): 358‐367, 2013. DOI: 10.1165/rcmb.2012‐0361OC.
 338.Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature 327 (6122): 524‐526, 1987. PubMed PMID: 3495737.
 339.Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF‐1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3 (3): 187‐197, 2006. DOI: 10.1016/j.cmet.2006.01.012.
 340.Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner LC, Fujiwara Y, Orkin SH, Haley KJ, Barabási AL, Loscalzo J, Chan SY. MicroRNA‐21 integrates pathogenic signaling to control pulmonary hypertension: Results of a network bioinformatics approach. Circulation 125 (12): 1520‐1532, 2012. DOI: 10.1161/CIRCULATIONAHA.111.060269.
 341.Park MJ, Kwok SK, Lee SH, Kim EK, Park SH, Cho ML. Adipose tissue‐derived mesenchymal stem cells induce expansion of interleukin‐10‐producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant 24 (11): 2367‐2377, 2015, 2015. DOI: 10.3727/096368914X685645.
 342.Parpaleix A, Amsellem V, Houssaini A, Abid S, Breau M, Marcos E, Sawaki D, Delcroix M, Quarck R, Maillard A, Couillin I, Ryffel B, Adnot S. Role of interleukin‐1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. Eur Respir J 48 (2): 470‐483, 2016. DOI: 10.1183/13993003.01448‐2015.
 343.Pasteur L. Experiences et vues nouvelles sur la nature des fermentations. Comp Rend Acad Sci 52: 1260‐1124, 1861.
 344.Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, Wang M, Meldrum KK, Lillemoe KD, Meldrum DR. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res 143 (2): 281‐285, 2007. DOI: 10.1016/j.jss.2006.11.006.
 345.Patterson KC, Weissmann A, Ahmadi T, Farber HW. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann Intern Med 145 (2): 152‐153, 2006. DOI: 10.7326/0003‐4819‐145‐2‐200607180‐00020.
 346.Paulin R, Dromparis P, Sutendra G, Gurtu V, Zervopoulos S, Bowers L, Haromy A, Webster L, Provencher S, Bonnet S, Michelakis ED. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab 20 (5): 827‐839, 2014. DOI: 10.1016/j.cmet.2014.08.011.
 347.Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res 115 (1): 148‐164, 2014. DOI: 10.1161/CIRCRESAHA.115.301130.
 348.Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 12 (4): 351‐360, 2012. DOI: 10.2174/187153012803832602.
 349.Peng Y, Chen X, Liu Q, Zhang X, Huang K, Liu L, Li H, Zhou M, Huang F, Fan Z, Sun J, Liu Q, Ke M, Li X, Zhang Q, Xiang AP. Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia 29 (3): 636‐646, 2015, 2015. DOI: 10.1038/leu.2014.225.
 350.Pepper MS. Transforming growth factor‐beta: Vasculogeneis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8 (1): 21‐43, 1997. DOI: 10.1016/s1359‐6101(96)00048‐2.
 351.Perrin S. Preclinical research: Make mouse studies work. Nature 507 (7493): 423‐425, 2014. DOI: 10.1038/507423a.
 352.Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen‐Kaminsky S, Humbert M, Lambrecht BN. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 185 (3): 311‐321, 2012. DOI: 10.1164/rccm.201105‐0927OC.
 353.Perros F, Dorfmuller P, Souza R, Durand‐Gasselin I, Mussot S, Mazmanian M, Herve P, Emilie D, Simonneau G, Humbert M. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J 29 (3): 462‐468, 2007. DOI: 10.1183/09031936.00094706.
 354.Peters‐Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med 357 (18): 1841‐1854, 2007. DOI: 10.1056/NEJMra071371.
 355.Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6: 8472, 2015. DOI: 10.1038/ncomms9472.
 356.Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D. The therapeutic potential of mesenchymal stem cells. Cell‐ & tissue‐based therapy. Expert Opin Biol Ther 7 (7): 965‐973, 2007. DOI: 10.1517/14712598.7.7.965.
 357.Pickworth J, Rothman A, Iremonger J, Casbolt H, Hopkinson K, Hickey PM, Gladson S, Shay S, Morrell NW, Francis SE, West JD, Lawrie A. Differential IL‐1 signaling induced by BMPR2 deficiency drives pulmonary vascular remodeling. Pulm Circ 7 (4): 768‐776, 2017. DOI: 10.1177/2045893217729096.
 358.Pietra GG, Edwards WD, Kay JM, Rich S, Kernis J, Schloo B, Ayres SM, Bergofsky EH, Brundage BH, Detre KM. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation 80: 1198‐1206, 1989.
 359.Plecita‐Hlavata L, Tauber J, Li M, Zhang H, Flockton AR, Pullamsetti SS, Chelladurai P, D'Alessandro A, El Kasmi KC, Jezek P, Stenmark KR. Constitutive reprogramming of fibroblast mitochondrial metabolism in pulmonary hypertension. Am J Respir Cell Mol Biol 55 (1): 47‐57, 2016. DOI: 10.1165/rcmb.2015‐0142OC.
 360.Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19 (9): 1597‐1604, 2005, 2005. DOI: 10.1038/sj.leu.2403871.
 361.Pollett JB, Benza RL, Murali S, Shields KJ, Passineau MJ. Harvest of pulmonary artery endothelial cells from patients undergoing right heart catheterization. J Heart Lung Transplant 32 (7): 746‐749, 2013. DOI: 10.1016/j.healun.2013.04.013.
 362.Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol 98 (1): 12‐22, 2020. DOI: 10.1139/bcb‐2019‐0045.
 363.Preston IR, Hill NS, Warburton RR, Fanburg BL. Role of 12‐lipoxygenase in hypoxia‐induced rat pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 290 (2): L367‐L374, 2006. DOI: 10.1152/ajplung.00114.2005.
 364.Price LC, Wort SJ, Perros F, Dorfmüller P, Huertas A, Montani D, Cohen‐Kaminsky S, Humbert M. Inflammation in pulmonary arterial hypertension. Chest 141 (1): 210‐221, 2012. DOI: 10.1378/chest.11‐0793.
 365.Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing medications for treatment of pulmonary arterial hypertension: What's old is new again. J Am Heart Assoc 8 (1): e011343, 2019. DOI: 10.1161/JAHA.118.011343.
 366.Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther 20 (1): 14‐20, 2012. DOI: 10.1038/mt.2011.211.
 367.Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, Lacasse Y, Bonnet S. Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research. Circ Res 122 (7): 1021‐1032, 2018. DOI: 10.1161/CIRCRESAHA.117.312579.
 368.Puigserver P. Tissue‐specific regulation of metabolic pathways through the transcriptional coactivator PGC1‐α. Int J Obes (Lond) 29 (Suppl 1): S5‐S9, 2005. DOI: 10.1038/sj.ijo.0802905.
 369.Pullamsetti S, Savai R, Janssen W, Dahal BK, Seeger W, Grimminger F, Ghofrani HA, Weissmann N, Schermuly RT. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin Microbiol Infect 17 (1): 7‐14, 2011. DOI: 10.1111/j.1469‐0691.2010.03285.x.
 370.Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT. Inhibition of microRNA‐17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185 (4): 409‐419, 2012. DOI: 10.1164/rccm.201106‐1093OC.
 371.Pullamsetti SS, Perros F, Chelladurai P, Yuan J, Stenmark K. Transcription factors, transcriptional coregulators, and epigenetic modulation in the control of pulmonary vascular cell phenotype: Therapeutic implications for pulmonary hypertension (2015 Grover Conference series). Pulm Circ 6 (4): 448‐464, 2016. DOI: 10.1086/688908.
 372.Pullamsetti SS, Savai R. Macrophage regulation during vascular remodeling: Implications for pulmonary hypertension therapy. Am J Respir Cell Mol Biol 56 (5): 556‐558, 2017. DOI: 10.1165/rcmb.2017‐0033ED.
 373.Pullamsetti SS, Savai R, Seeger W, Goncharova EA. Translational advances in the field of pulmonary hypertension. from cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs. Am J Respir Crit Care Med 195: 425‐437, 2017, 2017.
 374.Qian J, Tian W, Jiang X, Tamosiuniene R, Sung YK, Shuffle EM, Tu AB, Valenzuela A, Jiang S, Zamanian RT, Fiorentino DF, Voelkel NF, Peters‐Golden M, Stenmark KR, Chung L, Rabinovitch M, Nicolls MR. Leukotriene b4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension. Hypertension 66 (6): 1227‐1239, 2015. DOI: 10.1161/HYPERTENSIONAHA.115.06370.
 375.Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115 (1): 165‐175, 2014. DOI: 10.1161/CIRCRESAHA.113.301141.
 376.Racker E. Bioenergetics and the problem of tumor growth. Am Sci 60: 56‐63, 1972.
 377.Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Pistoia V. Human mesenchymal stem cells inhibit neutrophil apoptosis: A model for neutrophil preservation in the bone marrow niche. Stem cells 26 (1): 151‐162, 2008, 2008. DOI: 10.1634/stemcells.2007‐0416.
 378.Rafikova O, Meadows ML, Kinchen JM, Mohney RP, Maltepe E, Desai AA, Yuan JX, Garcia JG, Fineman JR, Rafikov R, Black SM. Metabolic changes precede the development of pulmonary hypertension in the monocrotaline exposed rat lung. PLoS One 11 (3): e0150480, 2016. eCollection 2016. DOI: 10.1371/journal.pone.0150480.
 379.Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, Ahmad F. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 298 (4): H1235‐H1248, 2010. DOI: 10.1152/ajpheart.00254.2009.
 380.Ranchoux B, Antigny F, Rucker‐Martin C, Hautefort A, Péchoux C, Bogaard HJ, Dorfmüller P, Remy S, Lecerf F, Planté S, Chat S, Fadel E, Houssaini A, Anegon I, Adnot S, Simonneau G, Humbert M, Cohen‐Kaminsky S, Perros F. Endothelial‐to‐mesenchymal transition in pulmonary hypertension. Circulation 131 (11): 1006‐1018, 2015. DOI: 10.1161/CIRCULATIONAHA.114.008750.
 381.Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JX, Perez VJ. Endothelial dysfunction in pulmonary arterial hypertension: An evolving landscape (2017 Grover Conference Series). Pulm Circ 8 (1): 2045893217752912, 2018.
 382.Raoul W, Wagner‐Ballon O, Saber G, Hulin A, Marcos E, Giraudier S, Vainchenker W, Adnot S, Addahibi S, Maitre B. Effects of bone marrow‐derived cells on monocrotaline‐ and hypoxia‐induced pulmonary hypertension in mice. Resp Res 8 (1): 8, 2007. DOI: 10.1186/1465‐9921‐8‐8.
 383.Rätsep MT, Moore SD, Jafri S, Mitchell M, Brady HJM, Mandelboim O, Southwood M, Morrell NW, Colucci F, Ormiston ML. Spontaneous pulmonary hypertension in genetic mouse models of natural killer cell deficiency. Am J Physiol Lung Cell Mol Physiol 315 (6): L977‐L990, 2018. DOI: 10.1152/ajplung.00477.2017.
 384.Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, Rivera BK, Sai‐Sudhakar CB, Kuppusamy P. Dysregulation of PTEN in cardiopulmonary vascular remodeling induced by pulmonary hypertension. Cell Biochem Biophys 67 (2): 363‐372, 2013. DOI: 10.1007/s12013‐011‐9332‐z.
 385.Rehman J, Archer SL. A proposed mitochondrial‐metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn‐hooded rats: The Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661: 171‐185, 2010.
 386.Reynolds AM, Holmes MD, Danilov SM, Reynolds PN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J 39 (2): 329‐343, 2012, 2012. DOI: 10.1183/09031936.00187310.
 387.Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak‐Stothard B, Chakrabarti A, Howard LS, Gibbs JSR, Lawrie A, Condliffe R, Elliot CA, Kiely DG, Huson L, Ghofrani HA, Tiede H, Schermuly R, Zeiher AM, Dimmeler S, Wilkins MR. Reduced microRNA‐150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187 (3): 294‐302, 2013. DOI: 10.1164/rccm.201205‐0839OC.
 388.Rich S, Kieras K, Hart K, Groves BM, Stobo JD, Brundage BH. Antinuclear antibodies in primary pulmonary hypertension. J Am Coll Cardiol 8 (6): 1307‐1311, 1986. DOI: 10.1016/s0735‐1097(86)80301‐1.
 389.Richter MJ, Ewert J, Grimminger F, Ghofrani HA, Kojonazarov B, Petrovic A, Seeger W, Schermuly RT, Tello K, Gall H. Nintedanib in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 198 (6): 808‐810, 2018. DOI: 10.1164/rccm.201801‐0195LE.
 390.Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Köcher T, Superti‐Furga G. Chemical proteomic profiles of the BCR‐ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110 (12): 4055‐4063, 2007. DOI: 10.1182/blood‐2007‐07‐102061.
 391.Robbins IM, Kawut SM, Yung D, Reilly MP, Lloyd W, Cunningham G, Loscalzo J, Kimmel SE, Christman BW, Barst RJ. A study of aspirin and clopidogrel in idiopathic pulmonary arterial hypertension. Eur Respir J 27 (3): 578‐584, 2006. DOI: 10.1183/09031936.06.00095705.
 392.Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: A critical assessment. Protoplasma 253 (1): 31‐43, 2016. DOI: 10.1007/s00709‐015‐0887‐1.
 393.Rodriguez‐Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin‐Sanz P, Cascante M, Boscá L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J Immunol 185 (1): 605‐614, 2010. DOI: 10.4049/jimmunol.0901698.
 394.Romieu‐Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182 (12): 7963‐7973, 2009, 2009. DOI: 10.4049/jimmunol.0803864.
 395.Roskoski R Jr. Cyclin‐dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 107: 249‐275, 2016. DOI: 10.1016/j.phrs.2016.03.012.
 396.Ross DJ, Hough G, Hama S, Aboulhosn J, Belperio JA, Saggar R, Van Lenten BJ, Ardehali A, Eghbali M, Reddy S, Fogelman AM, Navab M. Proinflammatory high‐density lipoprotein results from oxidized lipid mediators in the pathogenesis of both idiopathic and associated types of pulmonary arterial hypertension. Pulm Circ 5 (4): 640‐648, 2015. DOI: 10.1086/683695.
 397.Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 115 (1): 176‐188, 2014.
 398.Sa S, Gu M, Chappell J, Shao NY, Ameen M, Elliott KA, Li D, Grubert F, Li CG, Taylor S, Cao A, Ma Y, Fong R, Nguyen L, Wu JC, Snyder MP, Rabinovitch M. Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity. Am J Respir Crit Care Med 195 (7): 930‐941, 2017. DOI: 10.1164/rccm.201606‐1200OC.
 399.Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R. Diverse contribution of bone marrow‐derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation 115 (4): 509‐517, 2007. DOI: 10.1161/CIRCULATIONAHA.106.655837.
 400.Sainsbury JR, Farndon JR, Sherbet GV, Harris AL. Epidermal‐growth‐factor receptors and oestrogen receptors in human breast cancer. Lancet 1 (8425): 364‐366, 1985. DOI: 10.1016/s0140‐6736(85)91385‐6.
 401.Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez‐Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 285 (27): 21037‐21048, 2010. DOI: 10.1074/jbc.M110.114959.
 402.Sanchez O, Sitbon O, Jais X, Simonneau G, Humbert M. Immunosuppressive therapy in connective tissue diseases‐associated pulmonary arterial hypertension. Chest 130 (1): 182‐189, 2006. DOI: 10.1378/chest.130.1.182.
 403.Sanges S, Yelnik CM, Sitbon O, Benveniste O, Mariampillai K, PhillipsHoulbracq M, Pison C, Deligny C, Inamo J, Cottin V, Mouthon L, Launay D, Lambert M, Hatron P‐Y, Rottat L, Humbert M, Hachulla E. Pulmonary arterial hypertension in idiopathic inflammatory myopathies: Data from the French pulmonary hypertension registry and review of the literature. Medicine (Baltimore) 95 (39): e4911, 2016. DOI: 10.1097/MD.0000000000004911.
 404.Sanz J, Sánchez‐Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC State‐of‐the‐art review. J Am Coll Cardiol 73 (12): 1463‐1482, 2019. DOI: 10.1016/j.jacc.2018.12.076.
 405.Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA‐21 plays a role in hypoxia‐mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299 (6): L861‐L871, 2010. DOI: 10.1152/ajplung.00201.2010.
 406.Savai R, Al‐Tamari HM, Sedding D, Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N, Grimminger F, Seeger W, Schermuly RT, Pullamsetti SS. Pro‐proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med 20 (11): 1289‐1300, 2014. DOI: 10.1038/nm.3695.
 407.Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, Scheed A, Ritter C, Dahal BK, Vater A, Klussmann S, Ghofrani HA, Weissmann N, Klepetko W, Banat GA, Seeger W, Grimminger F, Schermuly RT. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 186 (9): 897‐908, 2012. DOI: 10.1164/rccm.201202‐0335OC.
 408.Sawada H, Saito T, Nickel NP, Alastalo TP, Glotzbach JP, Chan R, Haghighat L, Fuchs G, Januszyk M, Cao A, Lai YJ, Perez Vde J, Kim YM, Wang L, Chen PI, Spiekerkoetter E, Mitani Y, Gurtner GC, Sarnow P, Rabinovitch M. Reduced BMPR2 expression induces GM‐CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med 211 (2): 263‐280, 2014.
 409.Schermuly RTA, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115 (10): 2811‐2821, 2005. DOI: 10.1172/JCI24838.
 410.Schioppo T, Ingegnoli F. Current perspective on rituximab in rheumatic diseases. Drug Des Devel Ther 11: 2891‐2904, 2017. eCollection 2017. DOI: 10.2147/DDDT.S139248.
 411.Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 103 (2): 211‐225, 2000. DOI: 10.1016/s0092‐8674(00)00114‐8.
 412.Schmierer B, Hill CS. TGFβ‐SMAD signal transduction: Molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8 (12): 970‐982, 2007. DOI: 10.1038/nrm2297.
 413.Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in hostpathogen interactions. EMBO Rep 16 (1): 24‐43, 2015. DOI: 10.15252/embr.201439363.
 414.Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: The lung barrier. Transplant Proc 39 (2): 573‐576, 2007. DOI: 10.1016/j.transproceed.2006.12.019.
 415.Selleri S, Bifsha P, Civini S, Pacelli C, Dieng MM, Lemieux W, Jin P, Bazin R, Patey N, Marincola FM, Moldovan F, Zaouter C, Trudeau LE, Benabdhalla B, Louis I, Beausejour C, Stroncek D, Le Deist F, Haddad E. Human mesenchymal stromal cell‐secreted lactate induces M2‐macrophage differentiation by metabolic reprogramming. Oncotarget 7 (21): 30193‐30210, 2016, 2016. DOI: 10.18632/oncotarget.8623.
 416.Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas‐Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen‐G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4(+)CD25(high) FOXP3(+) regulatory T cells. Stem Cells 26 (1): 212‐222, 2008, 2008. DOI: 10.1634/stemcells.2007‐0554.
 417.Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia‐inducible factor 1. J Biol Chem 271 (51): 32529‐32537, 1996. DOI: 10.1074/jbc.271.51.32529.
 418.Seyfarth HJ, Hammerschmidt S, Halank M, Neuhaus P, Wirtz HR. Everolimus in patients with severe pulmonary hypertension: A safety and efficacy pilot trial. Pulm Circ 3 (3): 632‐638, 2013. DOI: 10.1086/674311.
 419.Sharma S, Umar S, Centala A, Eghbali M. Role of miR206 in genistein‐induced rescue of pulmonary hypertension in monocrotaline model. J Appl Physiol 119 (12): 1374‐1382, 2015. DOI: 10.1152/japplphysiol.00699.2014.
 420.Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D, Breuils‐Bonnet S, Mai D, Navab K, Ross D, Navab M, Provencher S, Fogelman AM, Bonnet S, Reddy ST, Eghbali M. Apolipoprotein A‐I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA‐193‐3p. Circulation 130 (9): 776‐785, 2014. DOI: 10.1161/CIRCULATIONAHA.114.007405.
 421.Sharp J, Farha S, Park MM, Comhair SA, Lundgrin EL, Tang WH, Bongard RD, Merker MP, Erzurum SC. Coenzyme Q supplementation in pulmonary arterial hypertension. Redox Biol 2: 884‐891, 2014. DOI: 10.1016/j.redox.2014.06.010.
 422.Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT. Partial HIF‐1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281 (1): L202‐L208, 2001. DOI: 10.1152/ajplung.2001.281.1.L202.
 423.Shinohara T, Sawada H, Otsuki S, Yodoya N, Kato T, Ohashi H, Zhang E, Saitoh S, Shimpo H, Maruyama K, Komada Y, Mitani Y. Macitentan reverses early obstructive pulmonary vasculopathy in rats: Early intervention in overcoming the survivin‐mediated resistance to apoptosis. Am J Physiol Lung Cell Mol Physiol 308 (6): L523‐L538, 2015. DOI: 10.1152/ajplung.00129.2014.
 424.Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46 (5): 331‐337, 2009. DOI: 10.1136/jmg.2008.062703.
 425.Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53 (1): 1801913, 2019.
 426.Sindi HA, Russomanno G, Satta S, Abdul‐Salam VB, Jo KB, Qazi‐Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, Pullamsetti SS, Alzaydi MM, Rhodes CJ, Piva R, Eichstaedt CA, Grünig E, Wilkins MR, Wojciak‐Stothard B. Therapeutic potential of KLF2‐induced exosomal microRNAs in pulmonary hypertension. Nat Commun 11 (1): 1185, 2020. DOI: 10.1038/s41467‐020‐14966‐x.
 427.Sitbon O, Channick R, Chin KM, Frey A, Gaine S, Galiè N, Ghofrani HA, Hoeper MM, Lang IM, Preiss R, Rubin LJ, Di Scala L, Tapson V, Adzerikho I, Liu J, Moiseeva O, Zeng X, Simonneau G, McLaughlin VV, GRIPHON Investigators. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med 373 (26): 2522‐2533, 2015. DOI: 10.1056/NEJMoa1503184.
 428.Sjoblom T, Boureux A, Rönnstrand L, Heldin CH, Ghysdael J, Ostman A. Characterization of the chronic myelomonocytic leukemia associated TEL‐PDGF βR fusion protein. Oncogene 18 (50): 7055‐7062, 1999. DOI: 10.1038/sj.onc.1203190.
 429.Skride A, Sablinskis M, Sablinskis K, Lesina K, Lejnieks A, Lejniece S. Pulmonary arterial hypertension in a patient treated with dasatinib: A case report. J Med Case Rep 11 (1): 362, 2017. DOI: 10.1186/s13256‐017‐1515‐9.
 430.Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174 (5): 1959‐1971, 2009. DOI: 10.2353/ajpath.2009.080995.
 431.Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, Rosenkranz S, Hoeper MM, Kiely DG. Current and future treatments of pulmonary arterial hypertension. Br J Pharmacol, 2020. DOI: 10.1111/bph.15016.
 432.Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, Appleby S, Shanahan CM, Bloch KD, Pepke‐Zaba J, Upton P, Morrell NW. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension. Am J Respir Crit Care Med 192 (7): 859‐872, 2015. DOI: 10.1164/rccm.201408‐1509OC.
 433.Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke‐Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122 (9): 920‐927, 2010. DOI: 10.1161/CIRCULATIONAHA.109.933762.
 434.Southgate L, Machado RD, Gräf S, Morrell NW. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol 17 (2): 85‐95, 2020. DOI: 10.1038/s41569‐019‐0242‐x.
 435.Souza R, Sitbon O, Parent F, Simonneau G, Humbert M. Long term imatinib treatment in pulmonary arterial hypertension. Thorax 61 (8): 736, 2006. DOI: 10.1136/thx.2006.064097.
 436.Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103 (5): 1283‐1288, 2006. DOI: 10.1073/pnas.0510511103.
 437.Spiekerkoetter E, Sung YK, Sudheendra D, Scott V, Del Rosario P, Bill M, Haddad F, Long‐Boyle J, Hedlin H, Zamanian RT. Randomized placebo controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J 50 (3): 1602449, 2017. DOI: 10.1183/13993003.02449‐2016.
 438.Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, El‐Bizri N, Sawada H, Haghighat R, Chan R, Haghighat L, de Jesus PV, Wang L, Reddy S, Zhao M, Bernstein D, Solow‐Cordero DE, Beachy PA, Wandless TJ, Ten Dijke P, Rabinovitch M. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123 (8): 3600‐3613, 2013. DOI: 10.1172/JCI65592.
 439.Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186 (3): 261‐272, 2012. DOI: 10.1164/rccm.201201‐0164OC.
 440.Stahl PD, Raposo G. Exosomes and extracellular vesicles: The path forward. Essays Biochem 62 (2): 119‐124, 2018. DOI: 10.1042/EBC20170088.
 441.Steffes LC, Froistad AA, Andruska A, Boehm M, McGlynn M, Zhang F, Zhang W, Hou D, Tian X, Miquerol L, Nadeau K, Metzger RJ, Spiekerkoetter E, Kumar ME. A Notch3‐marked subpopulation of vascular smooth muscle cells is the cell of origin for occlusive pulmonary vascular lesions. Circulation 142 (16): 1545‐1561, 2020.
 442.Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin‐6 overexpression induces pulmonary hypertension. Circ Res 104 (2): 236‐244, 2009. DOI: 10.1161/CIRCRESAHA.108.182014.
 443.Stenmark KR, Bouchey D, Nemenoff R, Dempsey EC, Das M. Hypoxia‐induced pulmonary vascular remodeling: Contribution of the adventitial fibroblasts. Physiol Res 49 (5): 503‐517, 2000.
 444.Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: The hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297: L1013‐L1032, 2009.
 445.Stenmark KR, Tuder RM. Peroxisome proliferator‐activated receptor γ and mitochondria: Drivers or passengers on the road to pulmonary hypertension? Am J Respir Cell Mol Biol 58 (5): 555‐557, 2018. DOI: 10.1165/rcmb.2017‐0318ED.
 446.Stenmark KR, Yeager ME, El Kasmi KC, Nozik‐Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG. The adventitia: Essential regulator of vascular wall structure and function. Annu Rev Physiol 75: 23‐47, 2013. DOI: 10.1146/annurev‐physiol‐030212‐183802.
 447.Stevens HC, Deng L, Grant JS, Pinel K, Thomas M, Morrell NW, MacLean MR, Baker AH, Denby L. Regulation and function of miR‐214 in pulmonary arterial hypertension. Pulm Circ 6 (1): 109‐117, 2016. DOI: 10.1086/685079.
 448.Suarez Y, Fernández‐Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela‐Arispe ML, Merkenschlager M, Sessa WC. Dicerdependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 105 (37): 14082‐14087, 2008. DOI: 10.1073/pnas.0804597105.
 449.Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27 (6): 1421‐1432, 2009.
 450.Sun M, Ramchandran R, Chen J, Yang Q, Raj JU. Smooth muscle insulin‐like growth factor‐1 mediates hypoxia‐induced pulmonary hypertension in neonatal mice. Am J Respir Cell Mol Biol 55 (6): 779‐791, 2016. DOI: 10.1165/rcmb.2015‐0388OC.
 451.Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, Davies MV, Alexander MJ, Devine M, Loveday KS, Underwood KW, Grinberg AV, Quisel JD, Chopra R, Pearsall RS, Seehra J, Kumar R. Transforming growth factor‐β superfamily ligand trap ACE‐536 corrects anemia by promoting late‐stage erythropoiesis. Nat Med 20 (4): 408‐414, 2014. DOI: 10.1038/nm.3512.
 452.Sztuka K, Orszulak‐Michalak D, Jasińska‐Stroschein M. Systematic review and meta‐analysis of interventions tested in animal models of pulmonary hypertension. Vascul Pharmacol 110: 55‐63, 2018. DOI: 10.1016/j.vph.2018.08.004.
 453.Takagi K, Kawamoto M, Higuchi T, Tochimoto A, Harigai M, Kawaguchi Y. Single nucleotide polymorphisms of the HIF1A gene are associated with susceptibility to pulmonary arterial hypertension in systemic sclerosis and contribute to SSc‐PAH disease severity. Int J Rheum Dis, 2020. DOI: 10.1111/1756‐185X.13822.
 454.Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, Imaizumi T. Mesenchymal stem cell‐based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 105 (3): 409‐417, 2010. DOI: 10.1007/s00395‐009‐0065‐8.
 455.Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson AJ, Agrawal R, Rabinovitch M, Ambler K, Long CS, Voelkel NF, Nicolls MR. Regulatory t cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res 109 (8): 867‐879, 2011. DOI: 10.1161/CIRCRESAHA.110.236927.
 456.Tanaka E, Harigai M, Tanaka M, Kawaguchi Y, Hara M, Kamatani N. Pulmonary hypertension in systemic lupus erythematosus: Evaluation of clinical characteristics and response to immunosuppressive treatment. J Rheumatol 29: 282‐287, 2002.
 457.Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, Wang Z, Zhang Q, Balistrieri A, Ayon RJ, Rischard F, Vanderpool R, Chen J, Zhou G, Desai AA, Black SM, Garcia JGN, Yuan JX, Makino A. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension. JACC Basic Transl Sci 3 (6): 744‐762, 2018. DOI: 10.1016/j.jacbts.2018.08.009.
 458.Tannahill GM, Curtis AM, Adamik J, Palsson‐McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O'Neill LA. Succinate is an inflammatory signal that induces IL‐1β through HIF‐1α. Nature 496 (7444): 238‐242, 2013. DOI: 10.1038/nature11986.
 459.Taraseviciene‐Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death‐dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15 (2): 427‐438, 2001. DOI: 10.1096/fj.00‐0343com.
 460.Taraseviciene‐Stewart L, Nicolls MR, Kraskauskas D, Scerbavicius R, Burns N, Cool C, Wood K, Parr JE, Boackle SA, Voelkel NF. Absence of t cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 175 (12): 1280‐1289, 2007. DOI: 10.1164/rccm.200608‐1189OC.
 461.Ten Freyhaus H, Berghausen EM, Janssen W, Leuchs M, Zierden M, Murmann K, Klinke A, Vantler M, Caglayan E, Kramer T, Baldus S, Schermuly RT, Tallquist MD, Rosenkranz S. Genetic ablation of PDGF‐dependent signaling pathways abolishes vascular remodeling and experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 35 (5): 1236‐1245, 2015. DOI: 10.1161/ATVBAHA.114.304864.
 462.Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9 (8): 581‐593, 2009. DOI: 10.1038/nri2567.
 463.Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters‐Golden M, Voelkel NF, Nicolls MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med 5 (200): 200ra117, 2013. DOI: 10.1126/scitranslmed.3006674.
 464.Tian W, Rockson S, Jiang X, Kim J, Begaye A, Shuffle EM, Tu AB, Cribb M, Nepiyushchikh Z, Feroze AH, Zamanian RT, Dhillon RT, Voelkel NF, Peters‐Golden M, Kitajewski J, Dixon JB, Nicolls MR. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci Transl Med 9 (389): eaal3920, 2017. DOI: 10.1126/scitranslmed.aal3920.
 465.Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 24 (3): 703‐716, 2017. DOI: 10.1016/j.drudis.2018.12.001.
 466.Tikkanen JM, Hollmén M, Nykänen AI, Wood J, Koskinen PK, Lemström KB. Role of platelet‐derived growth factor and vascular endothelial growth factor in obliterative airway disease. Am J Respir Crit Care Med 174 (10): 1145‐1152, 2006. DOI: 10.1164/rccm.200601‐044OC.
 467.Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto‐enzymes in the form of micro‐vesicles. Biochim Biophys Acta 645 (1): 63‐70, 1981. DOI: 10.1016/0005‐2736(81)90512‐5.
 468.Trankle CR, Canada JM, Kadariya D, Markley R, De Chazal HM, Pinson J, Fox A, Van Tassell BW, Abbate A, Grinnan D. IL‐1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: A single‐arm, open‐label, phase IB/II Pilot Study. Am J Respir Crit Care Med 199 (3): 381‐384, 2019. DOI: 10.1164/rccm.201809‐1631LE.
 469.Trembath RC. Mutations in the TGF‐beta type 1 receptor, ALK1, in combined primary pulmonary hypertension and hereditary haemorrhagic telangiectasia, implies pathway specificity. J Heart Lung Transplant 20 (2): 175, 2001. DOI: 10.1016/s1053‐2498(00)00352‐1.
 470.Tual‐Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, Martinez MC. Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 182 (2): 261‐268, 2010. DOI: 10.1164/rccm.200909‐1347OC.
 471.Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res 367 (3): 643‐649, 2017.
 472.Tuder RM, Archer SL, Dorfmüller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell MW. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 62 (25 Suppl): D4‐D12, 2013. DOI: 10.1016/j.jacc.2013.10.025.
 473.Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, Voelkel NF. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159 (6): 1925‐1932, 1999.
 474.Tuder RM, Davis LA, Graham BB. Targeting energetic metabolism: A new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med 185 (3): 260‐266, 2012. DOI: 10.1164/rccm.201108‐1536PP.
 475.Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144 (2): 275‐285, 1994.
 476.Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration 75 (3): 272‐280, 2008. DOI: 10.1159/000111548.
 477.Umar S, de Visser YP, Steendijk P, Schutte CI, Laghmani el H, Wagenaar GT, Bax WH, Mantikou E, Pijnappels DA, Atsma DE, Schalij MJ, van der Wall EE, van der Laarse A. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 297 (5): H1606‐H1616, 2009. DOI: 10.1152/ajpheart.00590.2009.
 478.Vajner L, Vytásek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7‐day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP‐13 expression in rats. Int J Exp Pathol 87 (5): 383‐391, 2006. DOI: 10.1111/j.1365‐2613.2006.00493.x.
 479.van de Veerdonk MC, Bogaard HJ, Voelkel NF. The right ventricle and pulmonary hypertension. Heart Fail Rev 21 (3): 259‐271, 2016. DOI: 10.1007/s10741‐016‐9526‐y.
 480.Van der Feen DE, Kurakula K, Tremblay E, Boucherat O, Bossers GP, Szulcek R, Goumans MJ. Multicenter preclinical validation of BET inhibition for the treatment of pulmonary arterial hypertension. Am J Respir Crit Care Med 200 (7): 910‐920, 2019. DOI: 10.1164/rccm.201812‐2275OC.
 481.van der Vorst EPC, de Jong RJ, Donners MMPC. Message in a microbottle: Modulation of vascular inflammation and atherosclerosis by extracellular vesicles. Front Cardiovasc Med 5: 2, 2018.
 482.Van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Waring AJ, Lehrer RI, Watson AD, Hama S, Navab M, Anantharamaiah GM, Fogelman AM. Anti‐inflammatory apoA‐I‐mimetic peptides bind oxidized lipids with much higher affinity than human apoA‐I. J Lipid Res 49 (11): 2302‐2311, 2008. DOI: 10.1194/jlr.M800075‐JLR200.
 483.Van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19 (4): 213‐228, 2018. DOI: 10.1038/nrm.2017.125.
 484.Van Tassell BW, Abouzaki NA, Oddi Erdle CO, Carbone S, Trankle CR, Melchior RD, Turlington JS, Thurber CJ, Christopher S, Dixon DL, Fronk DT, Thomas CS, Rose SW, Buckley LF, Dinarello CA, Biondi‐Zoccai G, Abbate A. Interleukin‐1 blockade in acute decompensated heart failure: A randomized, double‐blinded, placebo‐controlled pilot study. J Cardiovasc Pharmacol 67 (6): 544‐551, 2016. DOI: 10.1097/FJC.0000000000000378.
 485.Van Tassell BW, Canada J, Carbone S, Trankle C, Buckley L, Erdle CO, Abouzaki NA, Dixon D, Kadariya D, Christopher S, Schatz A, Regan J, Viscusi M, Del Buono M, Melchior R, Mankad P, Lu J, Sculthorpe R, Biondi‐Zoccai G, Lesnefsky E, Arena R, Abbate A. Interleukin‐1 blockade in recently decompensated systolic heart failure: Results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ Heart Fail 10 (11): e004373, 2017. DOI: 10.1161/CIRCHEARTFAILURE.117.004373.
 486.van Weel V, Toes RE, Seghers L, Deckers MM, de Vries MR, Eilers PH, Sipkens J, Schepers A, Eefting D, van Hinsbergh VW, van Bockel JH, Quax PH. Natural killer cells and CD4+ T‐cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27 (11): 2310‐2318, 2007. DOI: 10.1161/ATVBAHA.107.151407.
 487.Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324 (5930): 1029‐1033, 2009. DOI: 10.1126/science.1160809.
 488.Veith C, Schermuly RT, Brandes RP, Weissmann N. Molecular mechanisms of hypoxia‐inducible factor‐induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension. J Physiol 594 (5): 1167‐1177, 2016. DOI: 10.1113/JP270689.
 489.Ventetuolo CE, Aliotta JM, Braza J, Chichger H, Dooner M, McGuirl D, Mullin CJ, Newton J, Pereira M, Princiotto A, Quesenberry PJ, Walsh T, Whittenhall M, Klinger JR, Harrington EO. Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: Considerations for use in pulmonary vascular disease. Eur Respir J 55 (3): 1901313, 2020. DOI: 10.1183/13993003.01313‐2019. PMID: 31949110; PMCID: PMC7147989.
 490.Ventetuolo CE, Gabler NB, Fritz JS, Smith KA, Palevsky HI, Klinger JR, Halpern SD, Kawut SM. Are hemodynamics surrogate end points in pulmonary arterial hypertension? Circulation 130 (9): 768‐775, 2014. DOI: 10.1161/CIRCULATIONAHA.114.009690.
 491.Vergadi E, Chang MS, Lee C, Liang O, Liu X, Fernandez‐Gonzalez A, Mitsialis SA, Kourembanas S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia‐induced pulmonary hypertension. Circulation 123 (18): 1986‐1995, 2011. DOI: 10.1161/CIRCULATIONAHA.110.978627.
 492.Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC. Activation of the p38 mitogen‐ activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor‐β on normal hematopoiesis. J Biol Chem 277 (10): 7726‐7735, 2002. DOI: 10.1074/jbc.M106640200.
 493.Voelkel NF, Gomez‐Arroyo J. The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am J Respir Cell Mol Biol 51 (4): 474‐484, 2014. DOI: 10.1165/rcmb.2014‐0045TR.
 494.Voelkel NF, Tuder RM. Interleukin‐1 receptor antagonist inhibits pulmonary hypertension induced by inflammation. Ann N Y Acad Sci 725: 104‐109, 1994. DOI: 10.1111/j.1749‐6632.1994.tb39794.x.
 495.Voelkel NF, Tuder RM, Wade K, Höper M, Lepley RA, Goulet JL, Koller BH, Fitzpatrick F. Inhibition of 5‐lipoxygenase‐activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest 97 (11): 2491‐2498, 1996. DOI: 10.1172/JCI118696.
 496.Vogler S, Goedde R, Miterski B, Gold R, Kroner A, Koczan D, Zettl U‐K, Rieckmann P, Epplen JT, Ibrahim SM. Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis. J Mol Med 83 (10): 806‐811, 2005. DOI: 10.1007/s00109‐005‐0661‐5.
 497.Wagenvoort CA, Wagenvoort N. Primary pulmonary hypertension. A pathologic study of the lung vessels in 156 clinically diagnosed cases. Circulation 42: 1163‐1184, 1970.
 498.Wakabayashi N, Chartoumpekis D, Kensler T. Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med 88: 158‐167, 2015.
 499.Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg 55 (2): 257‐265, 2018. DOI: 10.1016/j.ejvs.2017.10.012.
 500.Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA‐124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114 (1): 67‐78, 2014. DOI: 10.1161/CIRCRESAHA.114.301633.
 501.Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92 (12): 5510‐5514, 1995. DOI: 10.1073/pnas.92.12.5510.
 502.Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic regulation and its therapeutic potential in pulmonary hypertension. Front Pharmacol 9: 241, 2018. eCollection 2018. DOI: 10.3389/fphar.2018.00241.
 503.Warburg O, Posener K, Negelein E. Ueber den Stoffwechsel der Tumoren. Biochem Z 152: 319‐344, 1924.
 504.Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 8 (6): 519‐530, 1927. DOI: 10.1085/jgp.8.6.519.
 505.Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM. Fibroblast growth factor‐2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61 (1): 32‐36, 2007. DOI: 10.1203/01.pdr.0000250013.77008.28.
 506.Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, Pullamsetti SS, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT. Targeting cyclin‐dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 10 (1): 2204, 2019. DOI: 10.1038/s41467‐019‐10135‐x.
 507.Wharton J, Strange JW, Møller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172 (1): 105‐113, 2005. DOI: 10.1164/rccm.200411‐1587OC.
 508.Willis GR, Fernandez‐Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197 (1): 104‐116, 2018. DOI: 10.1164/rccm.201705‐0925OC.
 509.Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 13 (3): 269‐288, 1967. DOI: 10.1111/j.1365‐2141.1967.tb08741.x.
 510.Wong WK, Knowles JA, Morse JH. Bone morphogenetic protein receptor type II C‐terminus interacts with c‐Src: Implication for a role in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 33 (5): 438‐446, 2005. DOI: 10.1165/rcmb.2005‐0103OC.
 511.Wright L, Tuder RM, Wang J, Cool CD, Lepley RA, Voelkel NF. 5‐Lipoxygenase and 5‐lipoxygenase activating protein (FLAP) immunoreactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med 157 (1): 219‐229, 1998. DOI: 10.1164/ajrccm.157.1.9704003.
 512.Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, Ho M, Peng CT, Wu HP, Huang JL. Effective treatment of severe steroid‐resistant acute graft‐versus‐host disease with umbilical cord‐derived mesenchymal stem cells. Transplantation 91 (12): 1412‐1416, 2011, 2011. DOI: 10.1097/TP.0b013e31821aba18.
 513.Wu KQ, Muratore CS, So EY, Sun C, Dubielecka PM, Reginato AM, Liang OD. M1 macrophage‐induced endothelial‐to‐mesenchymal transition promotes infantile hemangioma regression. Am J Pathol 187 (9): 2102‐2111, 2017. DOI: 10.1016/j.ajpath.2017.05.014.
 514.Xing XQ, Li B, Xu SL, Zhang CF, Liu J, Deng YS, Yang J. 5‐Aza‐2'‐deoxycytidine, a DNA methylation inhibitor, attenuates hypoxic pulmonary hypertension via demethylation of the PTEN promoter. Eur J Pharmacol 855: 227‐234, 2019. DOI: 10.1016/j.ejphar.2019.05.021.
 515.Xu W, Erzurum SC. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol 1 (1): 357‐372, 2011. DOI: 10.1002/cphy.c090005.
 516.Xu XF, Ma XL, Shen Z, Wu XL, Cheng F, Du LD. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens 28 (11): 2227‐2235, 2010. DOI: 10.1097/HJH.0b013e32833e08f1.
 517.Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino‐Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. Transcriptome‐based network analysis reveals a spectrum model of human macrophage activation. Immunity 40 (2): 274‐288, 2014. DOI: 10.1016/j.immuni.2014.01.006.
 518.Yamaji‐Kegan K, Su Q, Angelini DJ, Myers AC, Cheadle C, Johns RA. Hypoxia‐induced mitogenic factor (HIMF/FIZZ1/RELM_) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL‐4–dependent mechanism. J Immunol 185 (9): 5539‐5548, 2010. DOI: 10.4049/jimmunol.0904021.
 519.Yan L, Chen X, Talati M, Nunley BW, Gladson S, Blackwell T, Cogan J, Austin E, Wheeler F, Loyd J, West J, Hamid R. Bone marrow‐derived cells contribute to the pathogenesis of pulmonary arterial hypertension. Am J Respir Crit Care Med 193 (8): 898‐909, 2016.
 520.Yan X, Hegab AE, Endo J, Anzai A, Matsuhashi T, Katsumata Y, Ito K, Yamamoto T, Betsuyaku T, Shinmura K, Shen W, Vivier E, Fukuda K, Sano M. Lung natural killer cells play a major counter‐regulatory role in pulmonary vascular hyperpermeability after myocardial infarction. Circ Res 114 (4): 637‐649, 2014. DOI: 10.1161/CIRCRESAHA.114.302625.
 521.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332 (6163): 411‐415, 1988.
 522.Yang H, Lee S, Lee S, Kim K, Yang Y, Kim JH, Adams RH, Wells JM, Morrison SJ, Koh GY, Kim I. Sox17 promotes tumor angiogenesis and destabilizes tumor vessels in mice. J Clin Invest 123 (1): 418‐431, 2013. DOI: 10.1172/JCI64547.
 523.Yang S, Banerjee S, Freitas AD, Cui H, Xie N, Abraham E, Liu G. miR‐21 regulates chronic hypoxia‐induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302 (6): L521‐L529, 2012. DOI: 10.1152/ajplung.00316.2011.
 524.Yeligar SM, Kang BY, Bijli KM, Kleinhelz JM, Murphy TC, Torres G, San Martin A, Sutliff RL, Hart CM. PPARγ regulates mitochondrial structure and function and human pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 58 (5): 648‐657, 2018. DOI: 10.1165/rcmb.2016‐0293OC.
 525.Yin Y, Wu X, Yang Z, Zhao J, Wang X, Zhang Q, Yuan M, Xie L, Liu H, He Q. The potential efficacy of R8‐modified paclitaxel loaded liposomes on pulmonary arterial hypertension. Pharm Res 30 (8): 2050‐2062, 2013, 2013. DOI: 10.1007/s11095‐013‐1058‐8.
 526.Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y, Shi YF. TNFalpha‐activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+neutrophils. Oncogene 36 (4): 482‐490, 2016, 2017. DOI: 10.1038/onc.2016.217.
 527.Yu X, Zhao X, Zhang J, Li Y, Sheng P, Ma C, Zhang L, Hao X, Zheng X, Xing Y, Qiao H, Qu L, Zhu D. Dacomitinib, a new pan‐EGFR inhibitor, is effective in attenuating pulmonary vascular remodeling and pulmonary hypertension. Eur J Pharmacol 850: 97‐108, 2019. DOI: 10.1016/j.ejphar.2019.02.008.
 528.Yuan K, Orcholski M, Tian X, Liao X, de Jesus Perez VA. MicroRNAs: Promising therapeutic targets for the treatment of pulmonary arterial hypertension. Expert Opin Ther Targets 17 (5): 557‐564, 2013. DOI: 10.1517/14728222.2013.765863.
 529.Yung LM, Nikolic I, Paskin‐Flerlage SD, Pearsall RS, Kumar R, Yu PB. A selective transforming growth factor‐β ligand trap attenuates pulmonary hypertension. Am J Respir Crit Care Med 194 (9): 1140‐1151, 2016. DOI: 10.1164/rccm.201510‐1955OC.
 530.Yung LM, Yang P, Joshi S, Augur ZM, Kim SSJ, Bocobo GA, Dinter T, Troncone L, Chen PS, McNeil ME, Southwood M, Poli de Frias S, Knopf J, Rosas IO, Sako D, Pearsall RS, Quisel JD, Li G, Kumar R, Yu PB. ACTRIIA‐Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci Transl Med 12 (543): eaaz5660, 2020. DOI: 10.1126/scitranslmed.aaz5660.
 531.Zainal Abidin N, Haq IJ, Gardner AI, Brodlie M. Ataluren in cystic fibrosis: Development, clinical studies and where are we now? Expert Opin Pharmacother 18 (13): 1363‐1371, 2017. DOI: 10.1080/14656566.2017.1359255.
 532.Zaloudikova M, Vytasek R, Vajnerova O, Hnilickova O, Vizek M, Hampl V, Herget J. Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia‐induced increase in serum concentration of MCP‐1. Physiol Res 65 (5): 763‐768, 2016. DOI: 10.33549/physiolres.933187.
 533.Zamanian RT, Badesch D, Chung L, Domsic RT, Medsger T, Pinckney A, Keyes‐Elstein L, D'Aveta C, Spychala M, White RJ, Hassoun PM, Torres F, Sweatt AJ, Molitor JA, Khanna D, Maecker H, Welch B, Goldmuntz E, Nicolls MR. NIH ASC01 Study Group. Safety and efficacy of B‐cell depletion with rituximab for the treatment of systemic sclerosis associated pulmonary arterial hypertension: A multi‐center, double‐blind, randomized, placebo‐controlled trial. Am J Respir Crit Care Med, 2021. Online ahead of print. DOI: 10.1164/rccm.202009‐3481OC.
 534.Zanatta E, Polito P, Famoso G, Larosa M, De Zorzi E, Scarpieri E, Cozzi F, Doria A. Pulmonary arterial hypertension in connective tissue disorders: Pathophysiology and treatment. Exp Biol Med (Maywood) 244 (2): 120‐131, 2019. DOI: 10.1177/1535370218824101.
 535.Zhang H, Wang D, Li M, Plecitá‐Hlavatá L, D'Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Ježek P, Morrell NW, Hu CJ, Stenmark KR. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA‐124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation 136 (25): 2468‐2485, 2017. DOI: 10.1161/CIRCULATIONAHA.117.028069.
 536.Zhang M, Feng Z, Huang R, Sun C, Xu Z. Characteristics of pulmonary vascular remodeling in a novel model of shunt‐associated pulmonary arterial hypertension. Med Sci Monit 24: 1624‐1632, 2018.
 537.Zhang QZ, Su WR, Shi SH, Wilder‐Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD. Human gingiva‐derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28 (10): 1856‐1868, 2010, 2010. DOI: 10.1002/stem.503.
 538.Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 17 (2): 1163‐1170, 2019. DOI: 10.3892/etm.2018.7045.
 539.Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, Cupitt J, Pullamsetti SS, Cotroneo E, Jones H, Tomasi G, Nguyen QD, Aboagye EO, El‐Bahrawy MA, Barnes G, Howard LS, Gibbs JS, Gsell W, He JG, Wilkins MR. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: Potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128 (11): 1214‐1224, 2013. DOI: 10.1161/CIRCULATIONAHA.113.004136.
 540.Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wilkins MR. Histone deacetylation inhibition in pulmonary hypertension: Therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126 (4): 455‐467, 2012, 2012. DOI: 10.1161/CIRCULATIONAHA.112.103176.
 541.Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline‐induced pulmonary arterial hypertension using bone marrow‐derived endothelial‐like progenitor cells. Efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96 (4): 442‐450, 2005. DOI: 10.1161/01.RES.0000157672.70560.7b.
 542.Zhou G, Chen T, Raj JU. MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 52 (2): 139‐151, 2015. DOI: 10.1165/rcmb.2014‐0166TR.
 543.Zhu D, Ran Y. Role of 15‐lipoxygenase/15‐hydroxyeicosatetraenoic acid in hypoxia‐induced pulmonary hypertension. J Physiol Sci 62 (3): 163‐172, 2012. DOI: 10.1007/s12576‐012‐0196‐9.
 544.Zhu N, Gonzaga‐Jauregui C, Welch CL, Ma L, Qi H, King AK, Krishnan U, Rosenzweig EB, Ivy DD, Austin ED, Hamid R, Nichols WC, Pauciulo MW, Lutz KA, Sawle A, Reid JG, Overton JD, Baras A, Dewey F, Shen Y, Chung WK. Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults. Circ Genom Precis Med 11 (4): e001887, 2018. DOI: 10.1161/CIRCGEN.117.001887.
 545.Zhu N, Pauciulo MW, Welch CL, Lutz KA, Coleman AW, Gonzaga‐Jauregui C, Wang J, Grimes JM, Martin LJ, He H, PAH Biobank Enrolling Centers' Investigators, Shen Y, Chung WK, Nichols WC. Novel risk genes and mechanisms implicated by exome sequencing of 2572 individuals with pulmonary arterial hypertension. Genome Med 11 (1): 69, 2019. DOI: 10.1186/s13073‐019‐0685‐z.
 546.Zhu N, Welch CL, Wang J, Allen PM, Gonzaga‐Jauregui C, Ma L, King AK, Krishnan U, Rosenzweig EB, Dunbar Ivy D, Austin ED, Hamid R, Pauciulo MW, Lutz KA, Nichols WC, Reid JG, Overton JD, Baras A, Dewey FE, Shen Y, Chung WK. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease. Genome Med 10 (1): 56, 2018. DOI: 10.1186/s13073‐018‐0566‐x.
 547.Zhu R, Bi L, Kong H, Xie W, Hong Y, Wang H. Ruscogenin exerts beneficial effects on monocrotaline‐induced pulmonary hypertension by inhibiting NF‐κB expression. Int J Clin Exp Pathol 8 (10): 12169‐12176, 2015. eCollection 2015.
 548.Zimmer J, Takahashi T, Hofmann AD, Puri P. Imbalance of NFATc2 and KV1.5 expression in rat pulmonary vasculature of nitrofen‐induced congenital diaphragmatic hernia. Eur J Pediatr Surg 27 (1): 68‐73, 2017. DOI: 10.1055/s‐0036‐1587589.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James R. Klinger. Novel Pharmacological Targets for Pulmonary Arterial Hypertension. Compr Physiol 2021, 11: 2297-2349. doi: 10.1002/cphy.c200015