Comprehensive Physiology Wiley Online Library

Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases

Full Article on Wiley Online Library



Abstract

The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS‐mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a “multiple parallel‐hit model” in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver‐related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167‐3192, 2022.

Figure 1. Figure 1. Mechanisms of generation of ROS‐mediated oxidative stress in the liver. Increased lipid accumulation in hepatocytes via fatty acid uptake and de novo lipogenesis using several lipogenic enzymes augments mitochondrial β‐oxidation leading to incessant generation of ROS. Hepatic nonparenchymal cells are also involved in ROS generation by activating the toll‐like receptors (TLRs) on the Kupffer cells and HSCs. In Kupffer cells, TLR4 in response to SFA and TLR1/2/6 for FFA activation triggers NOX‐2‐mediated ROS generation, resulting in oxidative stress. In HSCs, accumulation of cholesterol and acetyl‐CoA generates huge amount of ROS through glucose metabolism.
Figure 2. Figure 2. Putative sources of ROS and their contribution to pathologies of liver diseases. Under physiological conditions, organelle systems generate steady‐state ROS levels that promote redox signaling. On the other hand, under pathological conditions, excess ROS produced various danger signals such as DAMPS and ATP from the mitochondria and unfolded/misfolded proteins from the ER and oncogenes that promote mitochondrial dysfunction, ER stress, and DNA damage. All these factors lead to the development of liver pathologies such as inflammation, fibrosis, and even cancer.
Figure 3. Figure 3. Master regulators of oxidative stress response leading to inflammation and insulin resistance: Oxidative stress causes severe DNA damage sensed by p53 accumulation. Oxidative stress exerts its effects through the ER and mitochondrial stress (complete events mentioned in the review). NRF2 is the cumulative stress response marker induced by the ER and mitochondrial stress. ER stress‐induced inflammation is mediated by the recently discovered HMGB1 transcription factor, which further intersects with RAGE signaling. C‐GAS/STING pathway is the intracellular DNA‐sensing pathway activated by the mitochondrial DNA leaked into the cytosol. NLRP3 is either directly activated by TRPM2 or could be upstream of C‐GAS/STING pathway. Thus, NLRP3 co‐operates with C‐GAS/STING pathway to promote inflammation and insulin resistance.
Figure 4. Figure 4. The mechanisms of ROS‐induced oxidative stress in the pathogenesis of NAFLD. ROS can oxidize stored lipids through the process of lipid peroxidation, releasing lipid peroxidation reactive aldehydes, which result in lipotoxicity. Lipotoxicity involves in the production of several hepatic inflammatory mediators. ROS also increases the production of danger signals and mtDNA stimulating the innate immune system and inflammatory cytokines to promote liver inflammation. ROS‐associated lipid peroxidation and cytokines contribute to the inflammatory cell infiltrate. On the other hand, ROS‐mediated oxidative stress is a feature of liver fibrosis that activates HSCs by releasing several profibrotic stimuli and growth factors such as TGF‐β, leptin, AGEs, and PDGF. Further, ROS induces DNA damage, resulting in cancer cell transformation.


Figure 1. Mechanisms of generation of ROS‐mediated oxidative stress in the liver. Increased lipid accumulation in hepatocytes via fatty acid uptake and de novo lipogenesis using several lipogenic enzymes augments mitochondrial β‐oxidation leading to incessant generation of ROS. Hepatic nonparenchymal cells are also involved in ROS generation by activating the toll‐like receptors (TLRs) on the Kupffer cells and HSCs. In Kupffer cells, TLR4 in response to SFA and TLR1/2/6 for FFA activation triggers NOX‐2‐mediated ROS generation, resulting in oxidative stress. In HSCs, accumulation of cholesterol and acetyl‐CoA generates huge amount of ROS through glucose metabolism.


Figure 2. Putative sources of ROS and their contribution to pathologies of liver diseases. Under physiological conditions, organelle systems generate steady‐state ROS levels that promote redox signaling. On the other hand, under pathological conditions, excess ROS produced various danger signals such as DAMPS and ATP from the mitochondria and unfolded/misfolded proteins from the ER and oncogenes that promote mitochondrial dysfunction, ER stress, and DNA damage. All these factors lead to the development of liver pathologies such as inflammation, fibrosis, and even cancer.


Figure 3. Master regulators of oxidative stress response leading to inflammation and insulin resistance: Oxidative stress causes severe DNA damage sensed by p53 accumulation. Oxidative stress exerts its effects through the ER and mitochondrial stress (complete events mentioned in the review). NRF2 is the cumulative stress response marker induced by the ER and mitochondrial stress. ER stress‐induced inflammation is mediated by the recently discovered HMGB1 transcription factor, which further intersects with RAGE signaling. C‐GAS/STING pathway is the intracellular DNA‐sensing pathway activated by the mitochondrial DNA leaked into the cytosol. NLRP3 is either directly activated by TRPM2 or could be upstream of C‐GAS/STING pathway. Thus, NLRP3 co‐operates with C‐GAS/STING pathway to promote inflammation and insulin resistance.


Figure 4. The mechanisms of ROS‐induced oxidative stress in the pathogenesis of NAFLD. ROS can oxidize stored lipids through the process of lipid peroxidation, releasing lipid peroxidation reactive aldehydes, which result in lipotoxicity. Lipotoxicity involves in the production of several hepatic inflammatory mediators. ROS also increases the production of danger signals and mtDNA stimulating the innate immune system and inflammatory cytokines to promote liver inflammation. ROS‐associated lipid peroxidation and cytokines contribute to the inflammatory cell infiltrate. On the other hand, ROS‐mediated oxidative stress is a feature of liver fibrosis that activates HSCs by releasing several profibrotic stimuli and growth factors such as TGF‐β, leptin, AGEs, and PDGF. Further, ROS induces DNA damage, resulting in cancer cell transformation.
References
 1.Adams L, Franco MC, Estevez AG. Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240: 711‐717, 2015.
 2.Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 9: 735, 2019.
 3.Aharoni‐Simon M, Hann‐Obercyger M, Pen S, Madar Z, Tirosh O. Fatty liver is associated with impaired activity of PPARgamma‐coactivator 1alpha (PGC1alpha) and mitochondrial biogenesis in mice. Lab Invest 91: 1018‐1028, 2011.
 4.Akazawa Y, Nakashima R, Matsuda K, Okamaoto K, Hirano R, Kawasaki H, Miuma S, Miyaaki H, Malhi H, Abiru S, Itoh M, Kondo H, Fukuoka J, Nakao K, Nakashima M. Detection of DNA damage response in nonalcoholic fatty liver disease via p53‐binding protein 1 nuclear expression. Mod Pathol 32: 997‐1007, 2019.
 5.Aldini G, Orioli M, Carini M. Alpha, beta‐unsaturated aldehydes adducts to actin and albumin as potential biomarkers of carbonylation damage. Redox Rep 12: 20‐25, 2007.
 6.Aleffi S, Petrai I, Bertolani C, Parola M, Colombatto S, Novo E, Vizzutti F, Anania FA, Milani S, Rombouts K, Laffi G, Pinzani M, Marra F. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42: 1339‐1348, 2005.
 7.Alexopoulos SJ, Chen SY, Brandon AE, Salamoun JM, Byrne FL, Garcia CJ, Beretta M, Olzomer EM, Shah DP, Philp AM, Hargett SR, Lawrence RT, Lee B, Sligar J, Carrive P, Tucker SP, Philp A, Lackner C, Turner N, Cooney GJ, Santos WL, Hoehn KL. Mitochondrial uncoupler BAM15 reverses diet‐induced obesity and insulin resistance in mice. Nat Commun 11: 2397, 2020.
 8.Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: Time for translation? J Hepatol 70: 985‐998, 2019.
 9.Alric L, Orfila C, Carrere N, Beraud M, Carrera G, Lepert JC, Duffaut M, Pipy B, Vinel JP. Reactive oxygen intermediates and eicosanoid production by kupffer cells and infiltrated macrophages in acute and chronic liver injury induced in rats by CCl4. Inflamm Res 49: 700‐707, 2000.
 10.Ambrogini E, Almeida M, Martin‐Millan M, Paik JH, Depinho RA, Han L, Goellner J, Weinstein RS, Jilka RL, O'Brien CA, Manolagas SC. FoxO‐mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 11: 136‐146, 2010.
 11.Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: Current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16: 411‐428, 2019.
 12.Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373‐399, 2004.
 13.Arauz J, Ramos‐Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann Hepatol 15: 160‐173, 2016.
 14.Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J. Increase in long‐chain polyunsaturated fatty acid n ‐ 6/n ‐ 3 ratio in relation to hepatic steatosis in patients with non‐alcoholic fatty liver disease. Clin Sci (Lond) 106: 635‐643, 2004.
 15.Asare GA, Mossanda KS, Kew MC, Paterson AC, Kahler‐Venter CP, Siziba K. Hepatocellular carcinoma caused by iron overload: A possible mechanism of direct hepatocarcinogenicity. Toxicology 219: 41‐52, 2006.
 16.Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal. Oxid Med Cell Longev 2014: 360438, 2014.
 17.Aziz IA, Yacoub M, Rashid L, Solieman A. Malondialdehyde; Lipid peroxidation plasma biomarker correlated with hepatic fibrosis in human Schistosoma mansoni infection. Acta Parasitol 60: 735‐742, 2015.
 18.Baiocchini A, Del Nonno F, Taibi C, Visco‐Comandini U, D'Offizi G, Piacentini M, Falasca L. Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C. Sci Rep 9: 8760, 2019.
 19.Bajwa E, Pointer CB, Klegeris A. The role of mitochondrial damage‐associated molecular patterns in chronic neuroinflammation. Mediators Inflamm 2019: 4050796, 2019.
 20.Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144: 365‐373, 2015.
 21.Balogh J, Victor D 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM, Monsour HP Jr. Hepatocellular carcinoma: A review. J Hepatocell Carcinoma 3: 41‐53, 2016.
 22.Bankoglu EE, Tschopp O, Schmitt J, Burkard P, Jahn D, Geier A, Stopper H. Role of PTEN in oxidative stress and DNA damage in the liver of whole‐body pten haplodeficient mice. PLoS One 11: e0166956, 2016.
 23.Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M, Gentile F. Lipid peroxidation‐derived aldehydes, 4‐hydroxynonenal and malondialdehyde in aging‐related disorders. Antioxidants (Basel) 7: 102, 2018.
 24.Bartolini D, Dallaglio K, Torquato P, Piroddi M, Galli F. Nrf2‐p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma. Transl Res 193: 54‐71, 2018.
 25.Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 115: 209‐218, 2005.
 26.Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase‐derived reactive species: Physiological and pathological effects. Oxid Med Cell Longev 2016: 3527579, 2016.
 27.Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen alpha 1(I) gene expression is associated with lipid peroxidation in hepatocellular injury: A link to tissue fibrosis? Hepatology 19: 1262‐1271, 1994.
 28.Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58: 1497‐1507, 2013.
 29.Bell LN, Molleston JP, Morton MJ, Klipsch A, Saxena R, Vuppalanchi R, Chalasani N. Hepatic lipid peroxidation and cytochrome P‐450 2E1 in pediatric nonalcoholic fatty liver disease and its subtypes. J Clin Gastroenterol 45: 800‐807, 2011.
 30.Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the pathogenesis of non‐alcoholic steatohepatitis. Free Radic Biol Med 111: 173‐185, 2017.
 31.Benedict M, Zhang X. Non‐alcoholic fatty liver disease: An expanded review. World J Hepatol 9: 715‐732, 2017.
 32.Bernstein JD, Penniall R. Effects of chronic ethanol treatment upon rat liver mitochondria. Biochem Pharmacol 27: 2337‐2342, 1978.
 33.Bhogal RH, Weston CJ, Velduis S, GDL H, Reynolds GM, Davies S, Nyguet‐Thin L, Alfaifi M, Shepard EL, Boteon Y, Wallace L, Oo YH, Adams DH, Mirza DF, Mergental H, Muirhead G, Stephenson BTF, Afford SC. The reactive oxygen species‐mitophagy signaling pathway regulates liver endothelial cell survival during ischemia/reperfusion injury. Liver Transpl 24: 1437‐1452, 2018.
 34.Biel TG, Lee S, Flores‐Toro JA, Dean JW, Go KL, Lee MH, Law BK, Law ME, Dunn WA Jr, Zendejas I, Behrns KE, Kim JS. Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2‐dependent manner. Cell Death Differ 23: 279‐290, 2016.
 35.Binder V, Ljubojevic S, Haybaeck J, Holzer M, El‐Gamal D, Schicho R, Pieske B, Heinemann A, Marsche G. The myeloperoxidase product hypochlorous acid generates irreversible high‐density lipoprotein receptor inhibitors. Arterioscler Thromb Vasc Biol 33: 1020‐1027, 2013.
 36.Birk J, Meyer M, Aller I, Hansen HG, Odermatt A, Dick TP, Meyer AJ, Appenzeller‐Herzog C. Endoplasmic reticulum: Reduced and oxidized glutathione revisited. J Cell Sci 126: 1604‐1617, 2013.
 37.Black D, Lyman S, Qian T, Lemasters JJ, Rippe RA, Nitta T, Kim JS, Behrns KE. Transforming growth factor beta mediates hepatocyte apoptosis through Smad3 generation of reactive oxygen species. Biochimie 89: 1464‐1473, 2007.
 38.Bonekamp NA, Volkl A, Fahimi HD, Schrader M. Reactive oxygen species and peroxisomes: Struggling for balance. Biofactors 35: 346‐355, 2009.
 39.Boveris A. Biochemistry of free radicals: From electrons to tissues. Medicina (B Aires) 58: 350‐356, 1998.
 40.Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 128: 617‐630, 1972.
 41.Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5: a013201, 2013.
 42.Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp Hepatol 1: 1, 2002.
 43.Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress‐dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011‐2015, 2004.
 44.Bunik VI, Sievers C. Inactivation of the 2‐oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur J Biochem 269: 5004‐5015, 2002.
 45.Butterfield DA, Gu L, Di Domenico F, Robinson RA. Mass spectrometry and redox proteomics: Applications in disease. Mass Spectrom Rev 33: 277‐301, 2014.
 46.Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 1859: 940‐950, 2018.
 47.Caldwell SH, Swerdlow RH, Khan EM, Iezzoni JC, Hespenheide EE, Parks JK, Parker WD Jr. Mitochondrial abnormalities in non‐alcoholic steatohepatitis. J Hepatol 31: 430‐434, 1999.
 48.Cao L, Quan XB, Zeng WJ, Yang XO, Wang MJ. Mechanism of hepatocyte apoptosis. J Cell Death 9: 19‐29, 2016.
 49.Casas‐Grajales S, Muriel P. Antioxidants in liver health. World J Gastrointest Pharmacol Ther 6: 59‐72, 2015.
 50.Castro MC, Francini F, Gagliardino JJ, Massa ML. Lipoic acid prevents fructose‐induced changes in liver carbohydrate metabolism: Role of oxidative stress. Biochim Biophys Acta 1840: 1145‐1151, 2014.
 51.Catala A, Diaz M. Editorial: Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7: 423, 2016.
 52.Cederbaum AI. Alcohol metabolism. Clin Liver Dis 16: 667‐685, 2012.
 53.Cederbaum AI, Lieber CS, Rubin E. Effects of chronic ethanol treatment of mitochondrial functions damage to coupling site I. Arch Biochem Biophys 165: 560‐569, 1974.
 54.Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol‐induced liver injury. Arch Toxicol 83: 519‐548, 2009.
 55.Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia‐induced transcription. Proc Natl Acad Sci U S A 95: 11715‐11720, 1998.
 56.Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25: 138‐145, 2014.
 57.Chang M, Xue J, Sharma V, Habtezion A. Protective role of hemeoxygenase‐1 in gastrointestinal diseases. Cell Mol Life Sci 72: 1161‐1173, 2015.
 58.Chapman RW, Morgan MY, Laulicht M, Hoffbrand AV, Sherlock S. Hepatic iron stores and markers of iron overload in alcoholics and patients with idiopathic hemochromatosis. Dig Dis Sci 27: 909‐916, 1982.
 59.Chen L, Na R, Gu M, Salmon AB, Liu Y, Liang H, Qi W, Van Remmen H, Richardson A, Ran Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 7: 866‐878, 2008.
 60.Chen MF, Huang CC, Liu PS, Chen CH, Shiu LY. Saikosaponin a and saikosaponin d inhibit proliferation and migratory activity of rat HSC‐T6 cells. J Med Food 16: 793‐800, 2013.
 61.Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez‐Soto A, Jacob L, Patwa R, Shah H, Xu K, Cross JR, Massague J. Carcinoma‐astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533: 493‐498, 2016.
 62.Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem 278: 36027‐36031, 2003.
 63.Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 152: 116‐141, 2020.
 64.Cheng SB, Liu HT, Chen SY, Lin PT, Lai CY, Huang YC. Changes of oxidative stress, glutathione, and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLoS One 12: e0170016, 2017.
 65.Cheung SH, Kwok WK, To KF, Lau JY. Anti‐atherogenic effect of hydrogen sulfide by over‐expression of cystathionine gamma‐lyase (CSE) gene. PLoS One 9: e113038, 2014.
 66.Cho CS, Kowalsky AH, Namkoong S, Park SR, Wu S, Kim B, James A, Gu B, Semple IA, Tohamy MA, Solanki S, Cho US, Greenson JK, Shah YM, Kim M, Lee JH. Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 5: 60, 2019.
 67.Cho CS, Park HW, Ho A, Semple IA, Kim B, Jang I, Park H, Reilly S, Saltiel AR, Lee JH. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1‐mediated p62/sequestosome 1 phosphorylation. Hepatology 68: 1331‐1346, 2018.
 68.Choi S, Diehl AM. Role of inflammation in nonalcoholic steatohepatitis. Curr Opin Gastroenterol 21: 702‐707, 2005.
 69.Cichoz‐Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20: 8082‐8091, 2014.
 70.Cinaroglu A, Gao C, Imrie D, Sadler KC. Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology 54: 495‐508, 2011.
 71.Clugston RD, Jiang H, Lee MX, Piantedosi R, Yuen JJ, Ramakrishnan R, Lewis MJ, Gottesman ME, Huang LS, Goldberg IJ, Berk PD, Blaner WS. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: A targeted lipidomic and gene expression study. J Lipid Res 52: 2021‐2031, 2011.
 72.Contreras‐Ferrat A, Llanos P, Vasquez C, Espinosa A, Osorio‐Fuentealba C, Arias‐Calderon M, Lavandero S, Klip A, Hidalgo C, Jaimovich E. Insulin elicits a ROS‐activated and an IP(3)‐dependent Ca(2)(+) release, which both impinge on GLUT4 translocation. J Cell Sci 127: 1911‐1923, 2014.
 73.Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 17: 1195‐1214, 2003.
 74.Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 27: 147‐163, 2009.
 75.Crosas‐Molist E, Bertran E, Sancho P, Lopez‐Luque J, Fernando J, Sanchez A, Fernandez M, Navarro E, Fabregat I. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radic Biol Med 69: 338‐347, 2014.
 76.Cuevasanta E, Moller MN, Alvarez B. Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617: 9‐25, 2017.
 77.Cunningham RP, Moore MP, Moore AN, Healy JC, Roberts MD, Rector RS, Martin JS. Curcumin supplementation mitigates NASH development and progression in female Wistar rats. Physiol Rep 6: e13789, 2018.
 78.Cyr A, Chambers L, Waltz PK, Whelan SP, Kohut L, Carchman E, Dyer M, Luciano J, Kautza B, Gomez HD, Otterbein LE, Rosengart MR, Shiva S, Zuckerbraun BS. Endotoxin engages mitochondrial quality control via an iNOS‐reactive oxygen species signaling pathway in hepatocytes. Oxid Med Cell Longev 2019: 4745067, 2019.
 79.Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol 6: 472‐485, 2015.
 80.Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington SJ, Chen C, Melendez JA. Reactive oxygen species control senescence‐associated matrix metalloproteinase‐1 through c‐Jun‐N‐terminal kinase. J Cell Physiol 225: 52‐62, 2010.
 81.Davalli P, Marverti G, Lauriola A, D'Arca D. Targeting oxidatively induced dna damage response in cancer: Opportunities for novel cancer therapies. Oxid Med Cell Longev 2018: 2389523, 2018.
 82.Del Rio LA. ROS and RNS in plant physiology: An overview. J Exp Bot 66: 2827‐2837, 2015.
 83.dela Pena A, Leclercq IA, Williams J, Farrell GC. NADPH oxidase is not an essential mediator of oxidative stress or liver injury in murine MCD diet‐induced steatohepatitis. J Hepatol 46: 304‐313, 2007.
 84.DeLeve LD. Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest 123: 1861‐1866, 2013.
 85.Deng J, Liu AD, Hou GQ, Zhang X, Ren K, Chen XZ, Li SSC, Wu YS, Cao X. N‐acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. J Exp Clin Cancer Res 38: 2, 2019.
 86.DeSantis DA, Ko CW, Liu Y, Liu X, Hise AG, Nunez G, Croniger CM. Alcohol‐induced liver injury is modulated by Nlrp3 and Nlrc4 inflammasomes in mice. Mediators Inflamm 2013: 751374, 2013.
 87.Dhanasekaran DN, Reddy EP. JNK‐signaling: A multiplexing hub in programmed cell death. Genes Cancer 8: 682‐694, 2017.
 88.Diao L, Auger C, Konoeda H, Sadri AR, Amini‐Nik S, Jeschke MG. Hepatic steatosis associated with decreased beta‐oxidation and mitochondrial function contributes to cell damage in obese mice after thermal injury. Cell Death Dis 9: 530, 2018.
 89.Ding HR, Tang ZT, Tang N, Zhu ZY, Liu HY, Pan CY, Hu AY, Lin YZ, Gou P, Yuan XW, Cai JH, Dong CL, Wang JL, Ren HZ. Protective properties of FOXO1 inhibition in a murine model of non‐alcoholic fatty liver disease are associated with attenuation of ER stress and necroptosis. Front Physiol 11: 177, 2020.
 90.Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13: 852‐867, 2017.
 91.Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol 3: 785‐797, 2013.
 92.Dodson M, Darley‐Usmar V, Zhang J. Cellular metabolic and autophagic pathways: Traffic control by redox signaling. Free Radic Biol Med 63: 207‐221, 2013.
 93.Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha‐Goncalves C, Macedo MP. How inflammation impinges on NAFLD: A role for Kupffer cells. Biomed Res Int 2015: 984578, 2015.
 94.El Hadi H, Vettor R, Rossato M. Vitamin E as a treatment for nonalcoholic fatty liver disease: Reality or myth? Antioxidants (Basel) 7: 12, 2018.
 95.Ellis EM. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol Ther 115: 13‐24, 2007.
 96.Eun HS, Cho SY, Joo JS, Kang SH, Moon HS, Lee ES, Kim SH, Lee BS. Gene expression of NOX family members and their clinical significance in hepatocellular carcinoma. Sci Rep 7: 11060, 2017.
 97.Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: A marriage of many years. Molecules 22: 191, 2017.
 98.Feher J, Lengyel G. Silymarin in the prevention and treatment of liver diseases and primary liver cancer. Curr Pharm Biotechnol 13: 210‐217, 2012.
 99.Feierman DE, Winston GW, Cederbaum AI. Ethanol oxidation by hydroxyl radicals: Role of iron chelates, superoxide, and hydrogen peroxide. Alcohol Clin Exp Res 9: 95‐102, 1985.
 100.Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19: 968‐979, 2012.
 101.Fernandes R, Hosoya K, Pereira P. Reactive oxygen species downregulate glucose transport system in retinal endothelial cells. Am J Physiol Cell Physiol 300: C927‐C936, 2011.
 102.Ferrere G, Leroux A, Wrzosek L, Puchois V, Gaudin F, Ciocan D, Renoud ML, Naveau S, Perlemuter G, Cassard AM. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice. PLoS One 11: e0146177, 2016.
 103.Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122: 877‐902, 2018.
 104.Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121‐1131, 1994.
 105.Forstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 33: 829‐837, 837a‐837d, 2012.
 106.Franchina DG, Dostert C, Brenner D. Reactive oxygen species: Involvement in T cell signaling and metabolism. Trends Immunol 39: 489‐502, 2018.
 107.Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS‐metabolism: Implications for human disease. Biochim Biophys Acta 1822: 1363‐1373, 2012.
 108.Freitas‐Rodriguez S, Folgueras AR, Lopez‐Otin C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res 1864: 2015‐2025, 2017.
 109.French SW, Morimoto M, Reitz RC, Koop D, Klopfenstein B, Estes K, Clot P, Ingelman‐Sundberg M, Albano E. Lipid peroxidation, CYP2E1 and arachidonic acid metabolism in alcoholic liver disease in rats. J Nutr 127: 907S‐911S, 1997.
 110.Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275: 2247‐2250, 2000.
 111.Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23: 1144‐1170, 2015.
 112.Gadang V, Kohli R, Myronovych A, Hui DY, Perez‐Tilve D, Jaeschke A. MLK3 promotes metabolic dysfunction induced by saturated fatty acid‐enriched diet. Am J Physiol Endocrinol Metab 305: E549‐E556, 2013.
 113.Gallagher PE, Brent TP. Human 3‐methyladenine‐DNA glycosylase: Demonstration of a stimulatory factor. Biochem Biophys Res Commun 101: 956‐962, 1981.
 114.Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150: 1704‐1709, 2016.
 115.Gao J, Jiang Z, Wang S, Zhou Y, Shi X, Feng M. Endoplasmic reticulum stress of Kupffer cells involved in the conversion of natural regulatory T cells to Th17 cells in liver ischemia‐reperfusion injury. J Gastroenterol Hepatol 31: 883‐889, 2016.
 116.Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X. NEFA‐induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non‐alcoholic steatohepatitis. J Cell Mol Med 22: 3408‐3422, 2018.
 117.Gao X, Zhang Y, Burwinkel B, Xuan Y, Holleczek B, Brenner H, Schottker B. The associations of DNA methylation alterations in oxidative stress‐related genes with cancer incidence and mortality outcomes: A population‐based cohort study. Clin Epigenetics 11: 14, 2019.
 118.Garcia‐Ruiz C, Fernandez‐Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun 2: 1425‐1439, 2018.
 119.Garcia‐Ruiz I, Solis‐Munoz P, Fernandez‐Moreira D, Grau M, Colina F, Munoz‐Yague T, Solis‐Herruzo JA. High‐fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Dis Model Mech 7: 1287‐1296, 2014.
 120.Garcia‐Trevijano ER, Iraburu MJ, Fontana L, Dominguez‐Rosales JA, Auster A, Covarrubias‐Pinedo A, Rojkind M. Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide‐C/EBPbeta‐dependent mechanism in rat hepatic stellate cells. Hepatology 29: 960‐970, 1999.
 121.Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta‐cell dysfunction in diabetes mellitus. Antioxid Redox Signal 26: 501‐518, 2017.
 122.Giles GI, Jacob C. Reactive sulfur species: An emerging concept in oxidative stress. Biol Chem 383: 375‐388, 2002.
 123.Gillessen A, Schmidt HH. Silymarin as supportive treatment in liver diseases: A narrative review. Adv Ther 37: 1279‐1301, 2020.
 124.Gloire G, Legrand‐Poels S, Piette J. NF‐kappaB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol 72: 1493‐1505, 2006.
 125.Gordeuk VR, McLaren CE, MacPhail AP, Deichsel G, Bothwell TH. Associations of iron overload in Africa with hepatocellular carcinoma and tuberculosis: Strachan's 1929 thesis revisited. Blood 87: 3470‐3476, 1996.
 126.Gorlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 6: 260‐271, 2015.
 127.Gorlach A, Dimova EY, Petry A, Martinez‐Ruiz A, Hernansanz‐Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 6: 372‐385, 2015.
 128.Gough DR, Cotter TG. Hydrogen peroxide: A Jekyll and Hyde signalling molecule. Cell Death Dis 2: e213, 2011.
 129.Grisham MB. Methods to detect hydrogen peroxide in living cells: Possibilities and pitfalls. Comp Biochem Physiol A Mol Integr Physiol 165: 429‐438, 2013.
 130.Guerra‐Castellano A, Diaz‐Quintana A, Perez‐Mejias G, Elena‐Real CA, Gonzalez‐Arzola K, Garcia‐Maurino SM, De la Rosa MA, Diaz‐Moreno I. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A 115: 7955‐7960, 2018.
 131.Guillaumet‐Adkins A, Yanez Y, Peris‐Diaz MD, Calabria I, Palanca‐Ballester C, Sandoval J. Epigenetics and oxidative stress in aging. Oxid Med Cell Longev 2017: 9175806, 2017.
 132.Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8: 2003‐2014, 2013.
 133.Guo X, Liu WL, Yang D, Shen ZQ, Qiu ZG, Jin M, Li JW. Hepatitis C virus infection induces endoplasmic reticulum stress and apoptosis in human fetal liver stem cells. J Pathol 248: 155‐163, 2019.
 134.Gyorke S, Carnes C. Dysregulated sarcoplasmic reticulum calcium release: Potential pharmacological target in cardiac disease. Pharmacol Ther 119: 340‐354, 2008.
 135.Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans 35: 1147‐1150, 2007.
 136.Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, Vion AC, Merian J, Colnot N, Loyer X, Tedgui A, Codogno P, Lotersztajn S, Paradis V, Boulanger CM, Rautou PE. A defect in endothelial autophagy occurs in patients with non‐alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 72: 528‐538, 2020.
 137.Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non‐alcoholic fatty liver disease. J Hepatol 70: 1278‐1291, 2019.
 138.Han D, Johnson HS, Rao MP, Martin G, Sancheti H, Silkwood KH, Decker CW, Nguyen KT, Casian JG, Cadenas E, Kaplowitz N. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic Biol Med 102: 100‐110, 2017.
 139.Han H, Hu J, Lau MY, Feng M, Petrovic LM, Ji C. Altered methylation and expression of ER‐associated degradation factors in long‐term alcohol and constitutive ER stress‐induced murine hepatic tumors. Front Genet 4: 224, 2013.
 140.Hang TC, Lauffenburger DA, Griffith LG, Stolz DB. Lipids promote survival, proliferation, and maintenance of differentiation of rat liver sinusoidal endothelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 302: G375‐G388, 2012.
 141.Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins‐‐molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19: 1539‐1605, 2013.
 142.Harbrecht BG, Billiar TR. The role of nitric oxide in Kupffer cell‐hepatocyte interactions. Shock 3: 79‐87, 1995.
 143.Harmon JS, Bogdani M, Parazzoli SD, Mak SS, Oseid EA, Berghmans M, Leboeuf RC, Robertson RP. beta‐Cell‐specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology 150: 4855‐4862, 2009.
 144.Haus JM, Thyfault JP. Therapeutic potential of carbonyl‐scavenging carnosine derivative in metabolic disorders. J Clin Invest 128: 5198‐5200, 2018.
 145.He JD, Wang Z, Li SP, Xu YJ, Yu Y, Ding YJ, Yu WL, Zhang RX, Zhang HM, Du HY. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget 7: 84520‐84532, 2016.
 146.He Q, Fu Y, Ding X, Li D, Wang Z, Tian D, Yan W. High‐mobility group box 1 induces endoplasmic reticulum stress and activates hepatic stellate cells. Lab Invest 98: 1200‐1210, 2018.
 147.Heeboll S, Thomsen KL, Clouston A, Sundelin EI, Radko Y, Christensen LP, Ramezani‐Moghadam M, Kreutzfeldt M, Pedersen SB, Jessen N, Hebbard L, George J, Gronbaek H. Effect of resveratrol on experimental non‐alcoholic steatohepatitis. Pharmacol Res 95‐96: 34‐41, 2015.
 148.Henao‐Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome‐mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179‐185, 2012.
 149.Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 19: 562, 2018.
 150.Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, Fabregat I. Reactive oxygen species (ROS) mediates the mitochondrial‐dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 15: 741‐751, 2001.
 151.Herrera B, Murillo MM, Alvarez‐Barrientos A, Beltran J, Fernandez M, Fabregat I. Source of early reactive oxygen species in the apoptosis induced by transforming growth factor‐beta in fetal rat hepatocytes. Free Radic Biol Med 36: 16‐26, 2004.
 152.Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C‐C motif chemokine receptor 8 in mice. Hepatology 55: 898‐909, 2012.
 153.Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox‐dependent signalling. Nat Rev Mol Cell Biol 15: 411‐421, 2014.
 154.Hu J, Zhang Z, Shen WJ, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 7: 47, 2010.
 155.Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC. p53‐induced up‐regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64: 2350‐2356, 2004.
 156.Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275‐284, 2011.
 157.Ioannou GN, Dominitz JA, Weiss NS, Heagerty PJ, Kowdley KV. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 126: 1293‐1301, 2004.
 158.Islam SMT, Won J, Khan M, Chavin KD, Singh I. Peroxisomal footprint in the pathogenesis of nonalcoholic steatohepatitis. Ann Hepatol 19 (5): 466‐471, 2020.
 159.Ivancovsky‐Wajcman D, Fliss‐Isakov N, Salomone F, Webb M, Shibolet O, Kariv R, Zelber‐Sagi S. Dietary vitamin E and C intake is inversely associated with the severity of nonalcoholic fatty liver disease. Dig Liver Dis 51: 1698‐1705, 2019.
 160.Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int 26: 912‐919, 2006.
 161.Ji AR, Ku SY, Cho MS, Kim YY, Kim YJ, Oh SK, Kim SH, Moon SY, Choi YM. Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42: 175‐186, 2010.
 162.Ji C, Mehrian‐Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29: 1496‐1503, 2005.
 163.Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: From pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13: 316‐327, 2016.
 164.Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF‐kappaB activation: Distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7: 395‐403, 2005.
 165.Kakimoto PA, Tamaki FK, Cardoso AR, Marana SR, Kowaltowski AJ. H2O2 release from the very long chain acyl‐CoA dehydrogenase. Redox Biol 4: 375‐380, 2015.
 166.Kalpage HA, Wan J, Morse PT, Zurek MP, Turner AA, Khobeir A, Yazdi N, Hakim L, Liu J, Vaishnav A, Sanderson TH, Recanati MA, Grossman LI, Lee I, Edwards BFP, Huttemann M. Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 121: 105704, 2020.
 167.Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha‐induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649‐661, 2005.
 168.Kaminski M, Kiessling M, Suss D, Krammer PH, Gulow K. Novel role for mitochondria: Protein kinase Ctheta‐dependent oxidative signaling organelles in activation‐induced T‐cell death. Mol Cell Biol 27: 3625‐3639, 2007.
 169.Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, Lee CH. Adipocyte‐derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7: 485‐495, 2008.
 170.Kant S, Barrett T, Vertii A, Noh YH, Jung DY, Kim JK, Davis RJ. Role of the mixed‐lineage protein kinase pathway in the metabolic stress response to obesity. Cell Rep 4: 681‐688, 2013.
 171.Karin M. NF‐kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141, 2009.
 172.Karnati S, Luers G, Pfreimer S, Baumgart‐Vogt E. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol 140: 105‐117, 2013.
 173.Kartchner MM. Stroke prevention. West J Med 130: 254‐255, 1979.
 174.Kaur S, Tripathi D, Dongre K, Garg V, Rooge S, Mukopadhyay A, Sakhuja P, Sarin SK. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 57: 1193‐1198, 2012.
 175.Kawamata H, Manfredi G. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 13: 1375‐1384, 2010.
 176.Kawashima R, Mochida S, Matsui A, YouLuTu ZY, Ishikawa K, Toshima K, Yamanobe F, Inao M, Ikeda H, Ohno A, Nagoshi S, Uede T, Fujiwara K. Expression of osteopontin in Kupffer cells and hepatic macrophages and Stellate cells in rat liver after carbon tetrachloride intoxication: A possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun 256: 527‐531, 1999.
 177.Kendellen MF, Bradford JW, Lawrence CL, Clark KS, Baldwin AS. Canonical and non‐canonical NF‐kappaB signaling promotes breast cancer tumor‐initiating cells. Oncogene 33: 1297‐1305, 2014.
 178.Khan S, Ali A, Khan S, Bakillah A, Damanhouri G, Khan A, Makki A, AlAnsari I, Banu N. Current therapies in alleviating liver disorders and cancers with a special focus on the potential of vitamin D. Nutr Metab (Lond) 15: 13, 2018.
 179.Khomich O, Ivanov AV, Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells 9: 24, 2019.
 180.Kim I, Lemasters JJ. Mitochondrial degradation by autophagy (mitophagy) in GFP‐LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol 300: C308‐C317, 2011.
 181.Kim SY, Jeong JM, Kim SJ, Seo W, Kim MH, Choi WM, Yoo W, Lee JH, Shim YR, Yi HS, Lee YS, Eun HS, Lee BS, Chun K, Kang SJ, Kim SC, Gao B, Kunos G, Kim HM, Jeong WI. Pro‐inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4‐MD2 complex. Nat Commun 8: 2247, 2017.
 182.Kimura H. Physiological roles of hydrogen sulfide and polysulfides. Handb Exp Pharmacol 230: 61‐81, 2015.
 183.Klaassen CD, Reisman SA. Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol 244: 57‐65, 2010.
 184.Klatt P, Lamas S. Regulation of protein function by S‐glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267: 4928‐4944, 2000.
 185.Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717‐1721, 2000.
 186.Klotz LO, Sanchez‐Ramos C, Prieto‐Arroyo I, Urbanek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 6: 51‐72, 2015.
 187.Kluwe J, Pradere JP, Gwak GY, Mencin A, De Minicis S, Osterreicher CH, Colmenero J, Bataller R, Schwabe RF. Modulation of hepatic fibrosis by c‐Jun‐N‐terminal kinase inhibition. Gastroenterology 138: 347‐359, 2010.
 188.Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 145: 385‐427, 2019.
 189.Kolluru GK, Shen X, Kevil CG. Reactive sulfur species: A new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol 40: 874‐884, 2020.
 190.Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12: 213‐223, 2010.
 191.Konishi M, Iwasa M, Araki J, Kobayashi Y, Katsuki A, Sumida Y, Nakagawa N, Kojima Y, Watanabe S, Adachi Y, Kaito M. Increased lipid peroxidation in patients with non‐alcoholic fatty liver disease and chronic hepatitis C as measured by the plasma level of 8‐isoprostane. J Gastroenterol Hepatol 21: 1821‐1825, 2006.
 192.Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest 127: 55‐64, 2017.
 193.Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P. Emerging role of damage‐associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32: 157‐164, 2011.
 194.Kuhla A, Trieglaff C, Vollmar B. Role of age and uncoupling protein‐2 in oxidative stress, RAGE/AGE interaction and inflammatory liver injury. Exp Gerontol 46: 868‐876, 2011.
 195.Kushnareva Y, Murphy AN, Andreyev A. Complex I‐mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation‐reduction state. Biochem J 368: 545‐553, 2002.
 196.Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 33: 2‐22, 2020.
 197.Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181‐189, 2004.
 198.Lamkanfi M, Vande Walle L, Kanneganti TD. Deregulated inflammasome signaling in disease. Immunol Rev 243: 163‐173, 2011.
 199.Lamle J, Marhenke S, Borlak J, von Wasielewski R, Eriksson CJ, Geffers R, Manns MP, Yamamoto M, Vogel A. Nuclear factor‐eythroid 2‐related factor 2 prevents alcohol‐induced fulminant liver injury. Gastroenterology 134: 1159‐1168, 2008.
 200.Lan T, Kisseleva T, Brenner DA. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLoS One 10: e0129743, 2015.
 201.Langhans W. Role of the liver in the control of glucose‐lipid utilization and body weight. Curr Opin Clin Nutr Metab Care 6: 449‐455, 2003.
 202.Larosche I, Choumar A, Fromenty B, Letteron P, Abbey‐Toby A, Van Remmen H, Epstein CJ, Richardson A, Feldmann G, Pessayre D, Mansouri A. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD‐overexpressing transgenic mice, but not in their wild type littermates. Toxicol Appl Pharmacol 234: 326‐338, 2009.
 203.Lau N, Pluth MD. Reactive sulfur species (RSS): Persulfides, polysulfides, potential, and problems. Curr Opin Chem Biol 49: 1‐8, 2019.
 204.Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 21: 133‐142, 2019.
 205.Lazarow PB. The role of peroxisomes in mammalian cellular metabolism. J Inherit Metab Dis 10 (Suppl 1): 11‐22, 1987.
 206.Lazarus JV, Colombo M, Cortez‐Pinto H, Huang TT, Miller V, Ninburg M, Schattenberg JM, Seim L, Wong VWS, Zelber‐Sagi S. NAFLD ‐ sounding the alarm on a silent epidemic. Nat Rev Gastroenterol Hepatol 17: 377‐379, 2020.
 207.Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly‐Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non‐alcoholic fatty liver disease. J Hepatol 69: 927‐947, 2018.
 208.Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: Cross‐talk and redox signalling. Biochem J 441: 523‐540, 2012.
 209.Lee S, Kim S, Hwang S, Cherrington NJ, Ryu DY. Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget 8: 63370‐63381, 2017.
 210.Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J, Kim SS. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 21: 817‐834, 2011.
 211.Lee SJ, Hwang AB, Kenyon C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF‐1 activity. Curr Biol 20: 2131‐2136, 2010.
 212.Lemasters JJ, Zhong Z. Mitophagy in hepatocytes: Types, initiators and role in adaptive ethanol metabolism. Liver Res 2: 125‐132, 2018.
 213.Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, Dargel R, Poli G. The lipid peroxidation end product 4‐hydroxy‐2,3‐nonenal up‐regulates transforming growth factor beta1 expression in the macrophage lineage: A link between oxidative injury and fibrosclerosis. FASEB J 11: 851‐857, 1997.
 214.Leveille M, Estall JL. Mitochondrial dysfunction in the transition from NASH to HCC. Metabolites 9: 233, 2019.
 215.Li H, Zhou Y, Wang H, Zhang M, Qiu P, Zhang M, Zhang R, Zhao Q, Liu J. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front Immunol 11: 1169, 2020.
 216.Li J, Zhao YR, Tian Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol 11: 412‐420, 2019.
 217.Li JJ, Li Q, Du HP, Wang YL, You SJ, Wang F, Xu XS, Cheng J, Cao YJ, Liu CF, Hu LF. Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE‐H2S signaling via DNA hypermethylation of CSE promoter. Int J Mol Sci 16: 12560‐12577, 2015.
 218.Li L, Chen K, Xiang Y, Yoshimura T, Su S, Zhu J, Bian XW, Wang JM. New development in studies of formyl‐peptide receptors: Critical roles in host defense. J Leukoc Biol 99: 425‐435, 2016.
 219.Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35: 615‐621, 2015.
 220.Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid Med Cell Longev 2018: 7580707, 2018.
 221.Li M, Guo K, Vanella L, Taketani S, Adachi Y, Ikehara S. Stem cell transplantation upregulates Sirt1 and antioxidant expression, ameliorating fatty liver in type 2 diabetic mice. Int J Biol Sci 11: 472‐481, 2015.
 222.Li Q, Zhao Z. Influence of N‐acetyl‐L‐cysteine against bisphenol a on the maturation of mouse oocytes and embryo development: In vitro study. BMC Pharmacol Toxicol 20: 43, 2019.
 223.Li S, Dou X, Ning H, Song Q, Wei W, Zhang X, Shen C, Li J, Sun C, Song Z. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66: 936‐952, 2017.
 224.Li S, Tan HY, Wang N, Cheung F, Hong M, Feng Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid Med Cell Longev 2018: 8394818, 2018.
 225.Li S, Wang X, Wu Y, Zhang H, Zhang L, Wang C, Zhang R, Guo Z. 8‐Hydroxy‐2'‐deoxyguanosine expression predicts hepatocellular carcinoma outcome. Oncol Lett 3: 338‐342, 2012.
 226.Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102: 17717‐17722, 2005.
 227.Li Y, Chen M, Xu Y, Yu X, Xiong T, Du M, Sun J, Liu L, Tang Y, Yao P. Iron‐mediated lysosomal membrane permeabilization in ethanol‐induced hepatic oxidative damage and apoptosis: Protective effects of quercetin. Oxid Med Cell Longev 2016: 4147610, 2016.
 228.Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol 7: 17, 2016.
 229.Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della‐Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 13: 757‐772, 2018.
 230.Litwak SA, Pang L, Galic S, Igoillo‐Esteve M, Stanley WJ, Turatsinze JV, Loh K, Thomas HE, Sharma A, Trepo E, Moreno C, Gough DJ, Eizirik DL, de Haan JB, Gurzov EN. JNK activation of BIM promotes hepatic oxidative stress, steatosis, and insulin resistance in obesity. Diabetes 66: 2973‐2986, 2017.
 231.Liu H, Qi X, Cao S, Li P. Protective effect of flavonoid extract from Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit on alcoholic liver oxidative injury in mice. J Nat Med 68: 521‐529, 2014.
 232.Liu J, Li D, Zhang T, Tong Q, Ye RD, Lin L. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging And mitochondrial integrity. Cell Death Dis 8: e3158, 2017.
 233.Liu J, Wu KC, Lu YF, Ekuase E, Klaassen CD. Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev 2013: 305861, 2013.
 234.Liu RM, Desai LP. Reciprocal regulation of TGF‐beta and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol 6: 565‐577, 2015.
 235.Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, Diehl AM, Djedjos CS, Han L, Myers RP, Subramanian GM, McHutchison JG, Goodman ZD, Afdhal NH, Charlton MR, Investigators G‐U. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology 67: 549‐559, 2018.
 236.Lou H, Kaplowitz N. Glutathione depletion down‐regulates tumor necrosis factor alpha‐induced NF‐kappaB activity via IkappaB kinase‐dependent and ‐independent mechanisms. J Biol Chem 282: 29470‐29481, 2007.
 237.Lu H, Lei X, Zhang Q. Moderate activation of IKK2‐NF‐kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis. BMC Gastroenterol 15: 94, 2015.
 238.Luan J, Ju D. Inflammasome: A double‐edged sword in liver diseases. Front Immunol 9: 2201, 2018.
 239.Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting oxidative stress for the treatment of liver fibrosis. Rev Physiol Biochem Pharmacol 175: 71‐102, 2018.
 240.Luedde T, Schwabe RF. NF‐kappaB in the liver‐‐linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8: 108‐118, 2011.
 241.Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224: 164‐175, 2014.
 242.Lv H, Wang C, Fang T, Li T, Lv G, Han Q, Yang W, Wang H. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT‐2. NPJ Precis Oncol 2: 1, 2018.
 243.Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells 9: 837, 2020.
 244.Ma Y, Chai H, Ding Q, Qian Q, Yan Z, Ding B, Dou X, Li S. Hepatic SIRT3 upregulation in response to chronic alcohol consumption contributes to alcoholic liver disease in mice. Front Physiol 10: 1042, 2019.
 245.MacDonald GA, Bridle KR, Ward PJ, Walker NI, Houglum K, George DK, Smith JL, Powell LW, Crawford DH, Ramm GA. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 16: 599‐606, 2001.
 246.Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150: 1769‐1777, 2016.
 247.Mahesh M, Bharathi M, Raja Gopal Reddy M, Pappu P, Putcha UK, Vajreswari A, Jeyakumar SM. Carrot juice ingestion attenuates high fructose‐induced circulatory pro‐inflammatory mediators in weanling Wistar rats. J Sci Food Agric 97: 1582‐1591, 2017.
 248.Mahesh M, Bharathi M, Reddy MR, Kumar MS, Putcha UK, Vajreswari A, Jeyakumar SM. Carrot juice administration decreases liver stearoyl‐CoA desaturase 1 and improves docosahexaenoic acid levels, but not steatosis in high fructose diet‐fed weanling Wistar rats. Prev Nutr Food Sci 21: 171‐180, 2016.
 249.Mailloux RJ. Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longev 2018: 7857251, 2018.
 250.Mailloux RJ, McBride SL, Harper ME. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38: 592‐602, 2013.
 251.Malik AN, Simoes ICM, Rosa HS, Khan S, Karkucinska‐Wieckowska A, Wieckowski MR. A diet induced maladaptive increase in hepatic mitochondrial DNA precedes OXPHOS defects and may contribute to non‐alcoholic fatty liver disease. Cells 8: 1222, 2019.
 252.Mandishona E, MacPhail AP, Gordeuk VR, Kedda MA, Paterson AC, Rouault TA, Kew MC. Dietary iron overload as a risk factor for hepatocellular carcinoma in Black Africans. Hepatology 27: 1563‐1566, 1998.
 253.Mano J. Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59: 90‐97, 2012.
 254.Mano J, Biswas MS, Sugimoto K. Reactive carbonyl species: A missing link in ROS signaling. Plants (Basel) 8: 391, 2019.
 255.Ma‐On C, Sanpavat A, Whongsiri P, Suwannasin S, Hirankarn N, Tangkijvanich P, Boonla C. Oxidative stress indicated by elevated expression of Nrf2 and 8‐OHdG promotes hepatocellular carcinoma progression. Med Oncol 34: 57, 2017.
 256.Mari M, Colell A, Morales A, von Montfort C, Garcia‐Ruiz C, Fernandez‐Checa JC. Redox control of liver function in health and disease. Antioxid Redox Signal 12: 1295‐1331, 2010.
 257.Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO‐based therapy targeted to the liver. Pharmacol Rep 67: 689‐694, 2015.
 258.Massoud O, Charlton M. Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis and hepatocellular carcinoma. Clin Liver Dis 22: 201‐211, 2018.
 259.Matsumoto M, Zhang J, Zhang X, Liu J, Jiang JX, Yamaguchi K, Taruno A, Katsuyama M, Iwata K, Ibi M, Cui W, Matsuno K, Marunaka Y, Itoh Y, Torok NJ, Yabe‐Nishimura C. The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease. Free Radic Biol Med 115: 412‐420, 2018.
 260.McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36: 197‐204, 2004.
 261.McKeown‐Longo PJ, Higgins PJ. Integration of canonical and noncanonical pathways in TLR4 signaling: Complex regulation of the wound repair program. Adv Wound Care (New Rochelle) 6: 320‐329, 2017.
 262.McLoughlin MR, Orlicky DJ, Prigge JR, Krishna P, Talago EA, Cavigli IR, Eriksson S, Miller CG, Kundert JA, Sayin VI, Sabol RA, Heinemann J, Brandenberger LO, Iverson SV, Bothner B, Papagiannakopoulos T, Shearn CT, Arner ESJ, Schmidt EE. TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. Proc Natl Acad Sci U S A 116: 11408‐11417, 2019.
 263.McMahan RH, Porsche CE, Edwards MG, Rosen HR. Free fatty acids differentially downregulate chemokines in liver sinusoidal endothelial cells: Insights into non‐alcoholic fatty liver disease. PLoS One 11: e0159217, 2016.
 264.Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova‐Kostova AT, Dillon JF, Hayes JD, Ashford ML. Susceptibility of Nrf2‐null mice to steatohepatitis and cirrhosis upon consumption of a high‐fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol 34: 3305‐3320, 2014.
 265.Mello T, Zanieri F, Ceni E, Galli A. Oxidative stress in the healthy and wounded hepatocyte: A cellular organelles perspective. Oxid Med Cell Longev 2016: 8327410, 2016.
 266.Mesquita A, Weinberger M, Silva A, Sampaio‐Marques B, Almeida B, Leao C, Costa V, Rodrigues F, Burhans WC, Ludovico P. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U S A 107: 15123‐15128, 2010.
 267.Meyer J, Balaphas A, Fontana P, Morel P, Robson SC, Sadoul K, Gonelle‐Gispert C, Buhler L. Platelet interactions with liver sinusoidal endothelial cells and hepatic stellate cells lead to hepatocyte proliferation. Cells 9, 2020.
 268.Mittler R. ROS are good. Trends Plant Sci 22: 11‐19, 2017.
 269.Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302: G1310‐G1321, 2012.
 270.Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75: 767‐772, 2002.
 271.Molina DK, DiMaio VJ. Normal organ weights in men: Part II‐the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol 33: 368‐372, 2012.
 272.Montosi G, Garuti C, Iannone A, Pietrangelo A. Spatial and temporal dynamics of hepatic stellate cell activation during oxidant‐stress‐induced fibrogenesis. Am J Pathol 152: 1319‐1326, 1998.
 273.Mooli RGR, Mukhi D, Chen Z, Buckner N, Ramakrishnan SK. An indispensable role for dynamin‐related protein 1 in beige and brown adipogenesis. J Cell Sci 133: jcs247593, 2020.
 274.Mooli RGR, Mukhi D, Watt M, Edmunds L, Xie B, Capooci J, Reslink M, Eze C, Mills A, Stolz DB, Jurczak M, Ramakrishnan SK. Sustained mitochondrial biogenesis is essential to maintain caloric restriction‐induced beige adipocytes. Metabolism 107: 154225, 2020.
 275.Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF‐kappaB signaling. Cell Res 21: 103‐115, 2011.
 276.Morimoto M, Zern MA, Hagbjork AL, Ingelman‐Sundberg M, French SW. Fish oil, alcohol, and liver pathology: Role of cytochrome P450 2E1. Proc Soc Exp Biol Med 207: 197‐205, 1994.
 277.Moshfegh CM, Collins CW, Gunda V, Vasanthakumar A, Cao JZ, Singh PK, Godley LA, Case AJ. Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4(+) and CD8(+) T‐lymphocytes. Redox Biol 27: 101141, 2019.
 278.Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66: 1037‐1046, 2017.
 279.Muller M, Ahumada‐Castro U, Sanhueza M, Gonzalez‐Billault C, Court FA, Cardenas C. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Front Neurosci 12: 470, 2018.
 280.Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 417: 1‐13, 2009.
 281.Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17: 865‐886, 2018.
 282.Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nystrom T, Belousov V, Schumacker PT, Winterbourn CC. Unraveling the biological roles of reactive oxygen species. Cell Metab 13: 361‐366, 2011.
 283.Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 15: 8713‐8742, 2014.
 284.Nemeth E, Baird AW, O'Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol 31: 333‐343, 2009.
 285.Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau‐Hyam M, Jones DP, Miller GW. The exposome: Molecules to populations. Annu Rev Pharmacol Toxicol 59: 107‐127, 2019.
 286.Niki E, Yoshida Y. Biomarkers for oxidative stress: Measurement, validation, and application. J Med Invest 52 (Suppl): 228‐230, 2005.
 287.Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69: 719‐723, 2005.
 288.Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 98: 56‐62, 2014.
 289.Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, Savina A, Ogier‐Denis E, Enninga J, Amigorena S, Leclerc C, Dadaglio G. Mitochondrial reactive oxygen species regulate the induction of CD8(+) T cells by plasmacytoid dendritic cells. Nat Commun 9: 2241, 2018.
 290.Odegaard JI, Ricardo‐Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity‐induced insulin resistance. Cell Metab 7: 496‐507, 2008.
 291.Oliveira CP, Gayotto LC, Tatai C, Della Nina BI, Lima ES, Abdalla DS, Lopasso FP, Laurindo FR, Carrilho FJ. Vitamin C and vitamin E in prevention of Nonalcoholic Fatty Liver Disease (NAFLD) in choline deficient diet fed rats. Nutr J 2: 9, 2003.
 292.Orford KW, Scadden DT. Deconstructing stem cell self‐renewal: Genetic insights into cell‐cycle regulation. Nat Rev Genet 9: 115‐128, 2008.
 293.Orr AL, Quinlan CL, Perevoshchikova IV, Brand MD. A refined analysis of superoxide production by mitochondrial sn‐glycerol 3‐phosphate dehydrogenase. J Biol Chem 287: 42921‐42935, 2012.
 294.Orr WC, Sohal RS. Extension of life‐span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128‐1130, 1994.
 295.Owusu‐Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461: 537‐541, 2009.
 296.Paardekooper LM, Dingjan I, Linders PTA, Staal AHJ, Cristescu SM, Verberk W, van den Bogaart G. Human monocyte‐derived dendritic cells produce millimolar concentrations of ROS in phagosomes per second. Front Immunol 10: 1216, 2019.
 297.Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315‐424, 2007.
 298.Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20: 1000‐1037, 2014.
 299.Paniker NV, Srivastava SK, Beutler E. Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta 215: 456‐460, 1970.
 300.Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide‐induced production of reactive oxygen species and activation of NF‐kappa B. J Immunol 173: 3589‐3593, 2004.
 301.Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, Meikle PJ, Meex RCR. Mitochondrial dysfunction‐related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 59: 1977‐1986, 2018.
 302.Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: The bright side of the moon. Exp Mol Med 52: 192‐203, 2020.
 303.Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40: 435‐445, 2015.
 304.Perrone A, Giovino A, Benny J, Martinelli F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev 2020: 3818196, 2020.
 305.Perumpail BJ, Li AA, John N, Sallam S, Shah ND, Kwong W, Cholankeril G, Kim D, Ahmed A. The role of vitamin E in the treatment of NAFLD. Diseases 6: 86, 2018.
 306.Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010, 2010.
 307.Piccoli C, Scrima R, Quarato G, D'Aprile A, Ripoli M, Lecce L, Boffoli D, Moradpour D, Capitanio N. Hepatitis C virus protein expression causes calcium‐mediated mitochondrial bioenergetic dysfunction and nitro‐oxidative stress. Hepatology 46: 58‐65, 2007.
 308.Pinto M, Moraes CT. Mechanisms linking mtDNA damage and aging. Free Radic Biol Med 85: 250‐258, 2015.
 309.Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol 66: 212‐227, 2017.
 310.Poli G, Albano E, Dianzani MU. The role of lipid peroxidation in liver damage. Chem Phys Lipids 45: 117‐142, 1987.
 311.Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC. Mouse model of X‐linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9: 202‐209, 1995.
 312.Ponsero AJ, Igbaria A, Darch MA, Miled S, Outten CE, Winther JR, Palais G, D'Autreaux B, Delaunay‐Moisan A, Toledano MB. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip. Mol Cell 67: 962‐973 e965, 2017.
 313.Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress‐related human diseases. Trends Pharmacol Sci 38: 592‐607, 2017.
 314.Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30: 398‐408, 2004.
 315.Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res 44: 458‐467, 2011.
 316.Presa N, Clugston RD, Lingrell S, Kelly SE, Merrill AH Jr, Jana S, Kassiri Z, Gomez‐Munoz A, Vance DE, Jacobs RL, van der Veen JN. Vitamin E alleviates non‐alcoholic fatty liver disease in phosphatidylethanolamine N‐methyltransferase deficient mice. Biochim Biophys Acta Mol Basis Dis 1865: 14‐25, 2019.
 317.Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ. Free radical biology and medicine: It's a gas, man! Am J Physiol Regul Integr Comp Physiol 291: R491‐R511, 2006.
 318.Qureshi AA, Zuvanich EG, Khan DA, Mushtaq S, Silswal N, Qureshi N. Proteasome inhibitors modulate anticancer and anti‐proliferative properties via NF‐kB signaling, and ubiquitin‐proteasome pathways in cancer cell lines of different organs. Lipids Health Dis 17: 62, 2018.
 319.Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288: 26464‐26472, 2013.
 320.Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A 115: 5839‐5848, 2018.
 321.Rafiei H, Omidian K, Bandy B. Dietary polyphenols protect against oleic acid‐induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients 11: 541, 2019.
 322.Rang FJ, Boonstra J. Causes and consequences of age‐related changes in DNA methylation: A role for ROS? Biology (Basel) 3: 403‐425, 2014.
 323.Reyes‐Gordillo K, Shah R, Muriel P. Oxidative stress and inflammation in hepatic diseases: current and future therapy. Oxid Med Cell Longev 2017: 3140673, 2017.
 324.Rhee SG. Redox signaling: Hydrogen peroxide as intracellular messenger. Exp Mol Med 31: 53‐59, 1999.
 325.Ricci JE, Munoz‐Pinedo C, Fitzgerald P, Bailly‐Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH, Green DR. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117: 773‐786, 2004.
 326.Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front Physiol 5: 500, 2014.
 327.Rivera CA, Bradford BU, Hunt KJ, Adachi Y, Schrum LW, Koop DR, Burchardt ER, Rippe RA, Thurman RG. Attenuation of CCl(4)‐induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 281: G200‐G207, 2001.
 328.Romero‐Puertas MC, Sandalio LM. Nitric oxide level is self‐regulating and also regulates its ROS partners. Front Plant Sci 7: 316, 2016.
 329.Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: New insights from molecular studies. Cell Mol Life Sci 74: 1391‐1412, 2017.
 330.Ruart M, Chavarria L, Camprecios G, Suarez‐Herrera N, Montironi C, Guixe‐Muntet S, Bosch J, Friedman SL, Garcia‐Pagan JC, Hernandez‐Gea V. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 70: 458‐469, 2019.
 331.Saadati S, Sadeghi A, Mansour A, Yari Z, Poustchi H, Hedayati M, Hatami B, Hekmatdoost A. Curcumin and inflammation in non‐alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol 19: 133, 2019.
 332.Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Vasilaki A, Griffiths RD, Jackson MJ, McArdle A. Mitochondrial ROS regulate oxidative damage and mitophagy but not age‐related muscle fiber atrophy. Sci Rep 6: 33944, 2016.
 333.Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H. NF‐kappaB inhibits TNF‐induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22: 3898‐3909, 2003.
 334.Salomone F, Godos J, Zelber‐Sagi S. Natural antioxidants for non‐alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int 36: 5‐20, 2016.
 335.Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, Atkuri KR, Sahaf B, Herzenberg LA, Herzenberg LA, Mullen L, Ghezzi P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin‐2, which acts as a danger signal. Proc Natl Acad Sci U S A 111: 12157‐12162, 2014.
 336.Sans J, Aguilera AM, Faundez P, Troncoso P, Fernandez V, Videla LA. Influence of copper‐(II) on colloidal carbon‐induced Kupffer cell‐dependent oxygen uptake in rat liver: Relation to hepatotoxicity. Free Radic Res 30: 489‐498, 1999.
 337.Sanyal AJ, Campbell‐Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120: 1183‐1192, 2001.
 338.Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochim Biophys Acta 1857: 1116‐1126, 2016.
 339.Sato K, Gosho M, Yamamoto T, Kobayashi Y, Ishii N, Ohashi T, Nakade Y, Ito K, Fukuzawa Y, Yoneda M. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: A meta‐analysis of randomized controlled trials. Nutrition 31: 923‐930, 2015.
 340.Sato M, Suzuki S, Senoo H. Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cell Struct Funct 28: 105‐112, 2003.
 341.Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the united states and the rest of the world. Clin Liver Dis 20: 205‐214, 2016.
 342.Scherz‐Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg 4. EMBO J 26: 1749‐1760, 2007.
 343.Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 24: R453‐R462, 2014.
 344.Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF‐kappa B transcription factor and HIV‐1. EMBO J 10: 2247‐2258, 1991.
 345.Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 15: 349‐364, 2018.
 346.Schwarz DS, Blower MD. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol Life Sci 73: 79‐94, 2016.
 347.Schweikl H, Gallorini M, Forstner M, Petzel C, Bolay C, Hiller KA, Cataldi A, Krifka S, Buchalla W. Flavin‐containing enzymes as a source of reactive oxygen species in HEMA‐induced apoptosis. Dent Mater 33: e255‐e271, 2017.
 348.Selye H. Forty years of stress research: Principal remaining problems and misconceptions. Can Med Assoc J 115: 53‐56, 1976.
 349.Selye H. A syndrome produced by diverse nocuous agents. J Neuropsychiatry Clin Neurosci 10: 230‐231, 1998.
 350.Semchyshyn HM. Reactive carbonyl species in vivo: Generation and dual biological effects. ScientificWorldJournal 2014: 417842, 2014.
 351.Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48: 158‐167, 2012.
 352.Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS. Mitochondria are required for antigen‐specific T cell activation through reactive oxygen species signaling. Immunity 38: 225‐236, 2013.
 353.Senoo H. Structure and function of hepatic stellate cells. Med Electron Microsc 37: 3‐15, 2004.
 354.Senoo H, Mezaki Y, Fujiwara M. The stellate cell system (vitamin A‐storing cell system). Anat Sci Int 92: 387‐455, 2017.
 355.Seo K, Shin SM. Induction of Lipin1 by ROS‐Dependent SREBP‐2 Activation. Toxicol Res 33: 219‐224, 2017.
 356.Serviddio G, Bellanti F, Stanca E, Lunetti P, Blonda M, Tamborra R, Siculella L, Vendemiale G, Capobianco L, Giudetti AM. Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med 73: 117‐126, 2014.
 357.Severi T, van Malenstein H, Verslype C, van Pelt JF. Tumor initiation and progression in hepatocellular carcinoma: Risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 31: 1409‐1420, 2010.
 358.Shah V, Haddad FG, Garcia‐Cardena G, Frangos JA, Mennone A, Groszmann RJ, Sessa WC. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100: 2923‐2930, 1997.
 359.Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 108: 4788‐4793, 2011.
 360.Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells ‐ gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 15: 555‐567, 2018.
 361.Shi C, Wang Q, Rao Z, Shi Y, Wei S, Wang H, Lu X, Wang P, Lu L, Zhou H, Cheng F. Diabetes induces hepatocyte pyroptosis by promoting oxidative stress‐mediated NLRP3 inflammasome activation during liver ischaemia and reperfusion injury. Ann Transl Med 8: 739, 2020.
 362.Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91: 10771‐10778, 1994.
 363.Shih VF, Tsui R, Caldwell A, Hoffmann A. A single NFkappaB system for both canonical and non‐canonical signaling. Cell Res 21: 86‐102, 2011.
 364.Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 4: 180‐183, 2015.
 365.Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 86: 715‐748, 2017.
 366.Sies H, Cadenas E. Oxidative stress: Damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311: 617‐631, 1985.
 367.Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21: 363‐383, 2020.
 368.Singh CK, Chhabra G, Ndiaye MA, Garcia‐Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28: 643‐661, 2018.
 369.Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid‐peroxidation derived carbonyls. Chem Biol Interact 234: 261‐273, 2015.
 370.Singh R, Czaja MJ. Regulation of hepatocyte apoptosis by oxidative stress. J Gastroenterol Hepatol 22 (Suppl 1): S45‐S48, 2007.
 371.Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49: 87‐96, 2009.
 372.Sivell C. Nonalcoholic fatty liver disease: a silent epidemic. Gastroenterol Nurs 42: 428‐434, 2019.
 373.Siwecka N, Rozpedek W, Pytel D, Wawrzynkiewicz A, Dziki A, Dziki L, Diehl JA, Majsterek I. Dual role of endoplasmic reticulum stress‐mediated unfolded protein response signaling pathway in carcinogenesis. Int J Mol Sci 20: 4354, 2019.
 374.Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther 203: 107401, 2019.
 375.Sorato E, Menazza S, Zulian A, Sabatelli P, Gualandi F, Merlini L, Bonaldo P, Canton M, Bernardi P, Di Lisa F. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies. Free Radic Biol Med 75: 40‐47, 2014.
 376.Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 25: 101084, 2019.
 377.Staniek K, Nohl H. Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460: 268‐275, 2000.
 378.Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alpha‐ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24: 7779‐7788, 2004.
 379.Stone JR, Yang S. Hydrogen peroxide: A signaling messenger. Antioxid Redox Signal 8: 243‐270, 2006.
 380.Sun B, Karin M. NF‐kappaB signaling, liver disease and hepatoprotective agents. Oncogene 27: 6228‐6244, 2008.
 381.Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin‐resistant conditions by repressing PTP1B. Cell Metab 6: 307‐319, 2007.
 382.Sun L, Wu Q, Nie Y, Cheng N, Wang R, Wang G, Zhang D, He H, Ye RD, Qian F. A role for MK2 in enhancing neutrophil‐derived ROS production and aggravating liver ischemia/reperfusion injury. Front Immunol 9: 2610, 2018.
 383.Sunny NE, Bril F, Cusi K. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol Metab 28: 250‐260, 2017.
 384.Sunshine H, Iruela‐Arispe ML. Membrane lipids and cell signaling. Curr Opin Lipidol 28: 408‐413, 2017.
 385.Sutton A, Nahon P, Pessayre D, Rufat P, Poire A, Ziol M, Vidaud D, Barget N, Ganne‐Carrie N, Charnaux N, Trinchet JC, Gattegno L, Beaugrand M. Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol‐induced cirrhosis. Cancer Res 66: 2844‐2852, 2006.
 386.Suzuki T, Yamamoto M. Stress‐sensing mechanisms and the physiological roles of the Keap1‐Nrf2 system during cellular stress. J Biol Chem 292: 16817‐16824, 2017.
 387.Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49: 197‐202, 2008.
 388.Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6: 662‐680, 2007.
 389.Takami T, Sakaida I. Iron regulation by hepatocytes and free radicals. J Clin Biochem Nutr 48: 103‐106, 2011.
 390.Tan BL, Norhaizan ME, Liew WP. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev 2018: 9719584, 2018.
 391.Tang T, Sui Y, Lian M, Li Z, Hua J. Pro‐inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation‐induced cell death. PLoS One 8: e81949, 2013.
 392.Tang W, Jiang YF, Ponnusamy M, Diallo M. Role of Nrf2 in chronic liver disease. World J Gastroenterol 20: 13079‐13087, 2014.
 393.Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem 286: 14681‐14690, 2011.
 394.Tarantino G, Citro V, Finelli C. What non‐alcoholic fatty liver disease has got to do with obstructive sleep apnoea syndrome and viceversa? J Gastrointestin Liver Dis 23: 291‐299, 2014.
 395.Tarao K, Nozaki A, Ikeda T, Sato A, Komatsu H, Komatsu T, Taguri M, Tanaka K. Real impact of liver cirrhosis on the development of hepatocellular carcinoma in various liver diseases‐meta‐analytic assessment. Cancer Med 8: 1054‐1065, 2019.
 396.Taylor RS, Taylor RJ, Bayliss S, Hagstrom H, Nasr P, Schattenberg JM, Ishigami M, Toyoda H, Wai‐Sun Wong V, Peleg N, Shlomai A, Sebastiani G, Seko Y, Bhala N, Younossi ZM, Anstee QM, McPherson S, Newsome PN. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta‐analysis. Gastroenterology 158: 1611‐1625 e1612, 2020.
 397.Teodoro JS, Duarte FV, Gomes AP, Varela AT, Peixoto FM, Rolo AP, Palmeira CM. Berberine reverts hepatic mitochondrial dysfunction in high‐fat fed rats: A possible role for SirT3 activation. Mitochondrion 13: 637‐646, 2013.
 398.Terlecky SR, Terlecky LJ, Giordano CR. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 3: 93‐97, 2012.
 399.Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18: 888‐898, 2013.
 400.Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris) 58: 214‐219, 2010.
 401.Theodotou M, Fokianos K, Moniatis D, Kadlenic R, Chrysikou A, Aristotelous A, Mouzouridou A, Diakides J, Stavrou E. Effect of resveratrol on non‐alcoholic fatty liver disease. Exp Ther Med 18: 559‐565, 2019.
 402.Tinggi U. Selenium: Its role as antioxidant in human health. Environ Health Prev Med 13: 102‐108, 2008.
 403.Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43: 4‐15, 2007.
 404.Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 27: R1147‐R1151, 2017.
 405.Tsukamoto H, Horne W, Kamimura S, Niemela O, Parkkila S, Yla‐Herttuala S, Brittenham GM. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96: 620‐630, 1995.
 406.Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci 15: 7711‐7730, 2014.
 407.Ueno T, Komatsu M. Autophagy in the liver: Functions in health and disease. Nat Rev Gastroenterol Hepatol 14: 170‐184, 2017.
 408.Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol 8: 205‐215, 2016.
 409.Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91: 4753‐4761, 2006.
 410.Vaka VR, McMaster KM, Cunningham MW Jr, Ibrahim T, Hazlewood R, Usry N, Cornelius DC, Amaral LM, LaMarca B. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension 72: 703‐711, 2018.
 411.Valerio LG Jr, Parks T, Petersen DR. Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcohol‐induced liver injury. Alcohol Clin Exp Res 20: 1352‐1361, 1996.
 412.Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44‐84, 2007.
 413.Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 4: 3‐12, 2012.
 414.Volani C, Doerrier C, Demetz E, Haschka D, Paglia G, Lavdas AA, Gnaiger E, Weiss G. Dietary iron loading negatively affects liver mitochondrial function. Metallomics 9: 1634‐1644, 2017.
 415.Wan D, Jiang W, Hao J. Research advances in how the cGAS‐STING pathway controls the cellular inflammatory response. Front Immunol 11: 615, 2020.
 416.Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis 5: e996, 2014.
 417.Wang L, Wang X, Xie G, Wang L, Hill CK, DeLeve LD. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest 122: 1567‐1573, 2012.
 418.Wang ML, Yu XJ, Li XG, Pang DZ, Su Q, Saahene RO, Li HB, Mao XY, Liu KL, Fu LY, Li Y, Zhu GQ, Kang YM. Blockade of TLR4 within the paraventricular nucleus attenuates blood pressure by regulating ROS and inflammatory cytokines in prehypertensive rats. Am J Hypertens 31: 1013‐1023, 2018.
 419.Wang T, Weinman SA. Interactions between hepatitis C virus and mitochondria: impact on pathogenesis and innate immunity. Curr Pathobiol Rep 1: 179‐187, 2013.
 420.Wang X, Rao H, Zhao J, Wee A, Li X, Fei R, Huang R, Wu C, Liu F, Wei L. STING expression in monocyte‐derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab Invest 100: 542‐552, 2020.
 421.Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217: 1915‐1928, 2018.
 422.Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou Z, Song Z. Nuclear factor (erythroid‐derived 2)‐like 2 activation‐induced hepatic very‐low‐density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology 59: 1381‐1392, 2014.
 423.Wang Z, Li Z, Ye Y, Xie L, Li W. Oxidative stress and liver cancer: etiology and therapeutic targets. Oxid Med Cell Longev 2016: 7891574, 2016.
 424.Wang Z, Liu Y, Zhao X, Liu S, Liu Y, Wang D. Aronia melanocarpa prevents alcohol‐induced chronic liver injury via regulation of Nrf2 signaling in C57BL/6 mice. Oxid Med Cell Longev 2020: 4054520, 2020.
 425.Wasik U, Milkiewicz M, Kempinska‐Podhorodecka A, Milkiewicz P. Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis. Sci Rep 7: 44769, 2017.
 426.Watanabe K, Shibuya S, Ozawa Y, Nojiri H, Izuo N, Yokote K, Shimizu T. Superoxide dismutase 1 loss disturbs intracellular redox signaling, resulting in global age‐related pathological changes. Biomed Res Int 2014: 140165, 2014.
 427.Wei PL, Huang CY, Chang YJ. Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One 14: e0210513, 2019.
 428.Wei Y, Wang D, Gentile CL, Pagliassotti MJ. Reduced endoplasmic reticulum luminal calcium links saturated fatty acid‐mediated endoplasmic reticulum stress and cell death in liver cells. Mol Cell Biochem 331: 31‐40, 2009.
 429.Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 38: 982‐995, 2019.
 430.Wheeler ML, Defranco AL. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189: 4405‐4416, 2012.
 431.Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 275: 122‐133, 2014.
 432.Williams JA, Ni HM, Ding Y, Ding WX. Parkin regulates mitophagy and mitochondrial function to protect against alcohol‐induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol 309: G324‐G340, 2015.
 433.Win S, Than TA, Zhang J, Oo C, Min RWM, Kaplowitz N. New insights into the role and mechanism of c‐Jun‐N‐terminal kinase signaling in the pathobiology of liver diseases. Hepatology 67: 2013‐2024, 2018.
 434.Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, Hoffman HM, Feldstein AE. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59: 898‐910, 2014.
 435.Wu D, Cederbaum AI. Ethanol‐induced apoptosis to stable HepG2 cell lines expressing human cytochrome P‐4502E1. Alcohol Clin Exp Res 23: 67‐76, 1999.
 436.Wu JR, You RI, Hu CT, Cheng CC, Rudy R, Wu WS. Hydrogen peroxide inducible clone‐5 sustains NADPH oxidase‐dependent reactive oxygen species‐c‐jun N‐terminal kinase signaling in hepatocellular carcinoma. Oncogenesis 8: 40, 2019.
 437.Wyck S, Herrera C, Requena CE, Bittner L, Hajkova P, Bollwein H, Santoro R. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics Chromatin 11: 60, 2018.
 438.Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol 9: 162‐176, 2008.
 439.Xie WH, Ding J, Xie XX, Yang XH, Wu XF, Chen ZX, Guo QL, Gao WY, Wang XZ, Li D. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflamm Res 69: 683‐696, 2020.
 440.Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The role of Nrf2 in liver disease: Novel molecular mechanisms and therapeutic approaches. Front Pharmacol 9: 1428, 2018.
 441.Xu R, Chen MY, Liang W, Chen Y, Guo MY. Zinc deficiency aggravation of ROS and inflammatory injury leading to renal fibrosis in mice. Biol Trace Elem Res 199 (2): 622‐632, 2021.
 442.Yan B, Chen G, Saigal K, Yang X, Jensen ST, Van Waes C, Stoeckert CJ, Chen Z. Systems biology‐defined NF‐kappaB regulons, interacting signal pathways and networks are implicated in the malignant phenotype of head and neck cancer cell lines differing in p53 status. Genome Biol 9: R53, 2008.
 443.Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2‐FXR‐LXR pathway in NAFLD mice. Biomed Pharmacother 105: 274‐281, 2018.
 444.Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X, Lu Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 33: 3140‐3152, 2019.
 445.Yang J, Fernandez‐Galilea M, Martinez‐Fernandez L, Gonzalez‐Muniesa P, Perez‐Chavez A, Martinez JA, Moreno‐Aliaga MJ. Oxidative stress and non‐alcoholic fatty liver disease: Effects of omega‐3 fatty acid supplementation. Nutrients 11: 872, 2019.
 446.Yang SF, Chang CW, Wei RJ, Shiue YL, Wang SN, Yeh YT. Involvement of DNA damage response pathways in hepatocellular carcinoma. Biomed Res Int 2014: 153867, 2014.
 447.Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, Fu L, Tian C, Yang J, He F, Tang L. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 10: 1076, 2019.
 448.Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 113: E4966‐E4975, 2016.
 449.Yang WS, Stockwell BR. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 26: 165‐176, 2016.
 450.Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC. Lipid peroxidation and cell cycle signaling: 4‐Hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50: 319‐336, 2003.
 451.Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, Kim JK, Lee AS. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet‐induced obesity and insulin resistance. Diabetes 59: 6‐16, 2010.
 452.Yi SW, Choi JS, Yi JJ, Lee YH, Han KJ. Risk factors for hepatocellular carcinoma by age, sex, and liver disorder status: A prospective cohort study in Korea. Cancer 124: 2748‐2757, 2018.
 453.Yoboue ED, Sitia R, Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 9: 331, 2018.
 454.Yuan K, Lei Y, Chen HN, Chen Y, Zhang T, Li K, Xie N, Wang K, Feng X, Pu Q, Yang W, Wu M, Xiang R, Nice EC, Wei Y, Huang C. HBV‐induced ROS accumulation promotes hepatocarcinogenesis through Snail‐mediated epigenetic silencing of SOCS3. Cell Death Differ 23: 616‐627, 2016.
 455.Zakhari S. Overview: How is alcohol metabolized by the body? Alcohol Res Health 29: 245‐254, 2006.
 456.Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43: 435‐443, 2006.
 457.Zhang CY, Yuan WG, He P, Lei JH, Wang CX. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol 22: 10512‐10522, 2016.
 458.Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS‐mediated cellular signaling. Oxid Med Cell Longev 2016: 4350965, 2016.
 459.Zhang K, Li L, Qi Y, Zhu X, Gan B, DePinho RA, Averitt T, Guo S. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153: 631‐646, 2012.
 460.Zhang K, Wang S, Malhotra J, Hassler JR, Back SH, Wang G, Chang L, Xu W, Miao H, Leonardi R, Chen YE, Jackowski S, Kaufman RJ. The unfolded protein response transducer IRE1alpha prevents ER stress‐induced hepatic steatosis. EMBO J 30: 1357‐1375, 2011.
 461.Zhang NP, Liu XJ, Xie L, Shen XZ, Wu J. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Invest 99: 749‐763, 2019.
 462.Zhang T, Ono K, Tsutsuki H, Ihara H, Islam W, Akaike T, Sawa T. Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock. Cell Chem Biol 26: 686‐698 e684, 2019.
 463.Zhao L, Zhang N, Yang D, Yang M, Guo X, He J, Wu W, Ji B, Cheng Q, Zhou F. Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol‐induced hepatic damage in a mouse model. Nutrients 10: 1754, 2018.
 464.Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44: 3‐15, 2019.
 465.Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA. Magnesium deficiency and oxidative stress: An update. Biomedicine (Taipei) 6: 20, 2016.
 466.Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, Qiao L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 4: 1611, 2013.
 467.Zhou Z, Xu MJ, Cai Y, Wang W, Jiang JX, Varga ZV, Feng D, Pacher P, Kunos G, Torok NJ, Gao B. Neutrophil‐hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol 5: 399‐413, 2018.
 468.Zhuang A, Yap FY, Bruce C, Leung C, Plan MR, Sullivan MA, Herath C, McCarthy D, Sourris KC, Kantharidis P, Coughlan MT, Febbraio MA, Hodson MP, Watt MJ, Angus P, Schulz BL, Forbes JM. Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Sci Rep 7: 12292, 2017.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Raja Gopal Reddy Mooli, Dhanunjay Mukhi, Sadeesh K. Ramakrishnan. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022, 12: 3167-3192. doi: 10.1002/cphy.c200021