Comprehensive Physiology Wiley Online Library

Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology

Full Article on Wiley Online Library



Abstract

Pericytes are mesenchymal‐derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro‐inflammatory and pro‐fibrotic cytokines, differentiation into myofibroblast‐like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar‐capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro‐inflammatory/pro‐fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS‐COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227‐2247, 2021.

Figure 1. Figure 1. Distribution of pericytes across the length of the capillary wall. Note that the morphology of the pericyte can be variable depending on whether the pericyte is located close to the precapillary arteriole, the capillary body, or the postcapillary venule. Reused, with permission, from Hartmann DA, et al., 2015 68, Society of Photo‐Optical Instrumentation Engineers (SPIE). Licensed under CC BY 4.0.
Figure 2. Figure 2. Electron microscopy images of the human lung illustrate the intimate association between pericytes and endothelial cells in human lung capillaries. The pericytes are located within the basement membrane and extend long thin processes that establish contacts with the adjacent endothelial cell. Right panel is a higher magnification image of the area within the square. PP, pericyte processes; B, basement membrane; F, cytoplasmic filaments; E, endothelium; P, pericyte; A, alveolus.
Figure 3. Figure 3. Signaling pathways that regulate crosstalk between endothelial cells and pericytes in the vasculature. These events are critical for the establishment of functional vessels and disruption of one or more pathways can result in vascular dysfunction and inappropriate angiogenesis.


Figure 1. Distribution of pericytes across the length of the capillary wall. Note that the morphology of the pericyte can be variable depending on whether the pericyte is located close to the precapillary arteriole, the capillary body, or the postcapillary venule. Reused, with permission, from Hartmann DA, et al., 2015 68, Society of Photo‐Optical Instrumentation Engineers (SPIE). Licensed under CC BY 4.0.


Figure 2. Electron microscopy images of the human lung illustrate the intimate association between pericytes and endothelial cells in human lung capillaries. The pericytes are located within the basement membrane and extend long thin processes that establish contacts with the adjacent endothelial cell. Right panel is a higher magnification image of the area within the square. PP, pericyte processes; B, basement membrane; F, cytoplasmic filaments; E, endothelium; P, pericyte; A, alveolus.


Figure 3. Signaling pathways that regulate crosstalk between endothelial cells and pericytes in the vasculature. These events are critical for the establishment of functional vessels and disruption of one or more pathways can result in vascular dysfunction and inappropriate angiogenesis.
References
 1.Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid‐19. N Engl J Med 383: 120‐128, 2020.
 2.Akamatsu T, Arai Y, Kosugi I, Kawasaki H, Meguro S, Sakao M, Shibata K, Suda T, Chida K, Iwashita T. Direct isolation of myofibroblasts and fibroblasts from bleomycin‐injured lungs reveals their functional similarities and differences. Fibrogenesis Tissue Repair 6: 15, 2013.
 3.Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin‐2 in vascular physiology and pathophysiology. Cells 8: 471, 2019.
 4.Allt G, Lawrenson JG. Pericytes: Cell biology and pathology. Cells Tissues Organs 169: 1‐11, 2001.
 5.Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y, Macdonald LE, Thurston G, Daly C, Lin HC, Economides AN, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gale NW. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein‐coupled receptor. Proc Natl Acad Sci U S A 108: 2807‐2812, 2011.
 6.Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 97: 512‐523, 2005.
 7.Armulik A, Genove G, Betsholtz C. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21: 193‐215, 2011.
 8.Attwell D, Mishra A, Hall CN, O'Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab 36: 451‐455, 2016.
 9.Bagley RG, Rouleau C, Morgenbesser SD, Weber W, Cook BP, Shankara S, Madden SL, Teicher BA. Pericytes from human non‐small cell lung carcinomas: An attractive target for anti‐angiogenic therapy. Microvasc Res 71: 163‐174, 2006.
 10.Bagley RG, Weber W, Rouleau C, Teicher BA. Pericytes and endothelial precursor cells: Cellular interactions and contributions to malignancy. Cancer Res 65: 9741‐9750, 2005.
 11.Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: From benchside to clinical practice. Can Respir J 17: e85‐e93, 2010.
 12.Bergers G, Song S. The role of pericytes in blood‐vessel formation and maintenance. Neuro‐Oncology 7: 452‐464, 2005.
 13.Bergers G, Song S, Meyer‐Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111: 1287‐1295, 2003.
 14.Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor‐beta signal transduction in angiogenesis and vascular disorders. Chest 128: 585S‐590S, 2005.
 15.Bessa V, Loukides S, Hillas G, Delimpoura V, Simoes D, Kontogianni K, Papiris S, Kostikas K, Alchanatis M, Bakakos P. Levels of angiopoietins 1 and 2 in induced sputum supernatant in patients with COPD. Cytokine 58: 455‐460, 2012.
 16.Birau A, Ceausu RA, Cimpean AM, Gaje P, Raica M, Olariu T. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma. Oncol Lett 4: 1183‐1186, 2012.
 17.Birbrair A. Pericyte biology: Development, homeostasis, and disease. Adv Exp Med Biol 1109: 1‐3, 2018.
 18.Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10: 67‐84, 2013.
 19.Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6: 245, 2014.
 20.Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128: 81‐93, 2015.
 21.Blervaque L, Passerieux E, Pomies P, Catteau M, Heraud N, Blaquiere M, Bughin F, Ayoub B, Molinari N, Cristol JP, Perez‐Martin A, Mercier J, Hayot M, Gouzi F. Impaired training‐induced angiogenesis process with loss of pericyte‐endothelium interactions is associated with an abnormal capillary remodelling in the skeletal muscle of COPD patients. Respir Res 20: 278, 2019.
 22.Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, Le Vely B, Fadel E, Nadaud S, Savale L, Humbert M, Huertas A, Guignabert C. Lineage tracing reveals the dynamic contribution of pericytes to the blood vessel remodeling in pulmonary hypertension. Arterioscler Thromb Vasc Biol 40: 766‐782, 2020.
 23.Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME. The angiopoietin/Tie‐2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49: 2163‐2171, 2008.
 24.Cardot‐Leccia N, Hubiche T, Dellamonica J, Burel‐Vandenbos F, Passeron T. Pericyte alteration sheds light on micro‐vasculopathy in COVID‐19 infection. Intensive Care Med 46: 1777‐1778, 2020.
 25.Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298‐307, 2011.
 26.Carnio S, Novello S, Papotti M, Loiacono M, Scagliotti GV. Prognostic and predictive biomarkers in early stage non‐small cell lung cancer: Tumor based approaches including gene signatures. Transl Lung Cancer Res 2: 372‐381, 2013.
 27.Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ, Lee JS, Lin HY, Ciardiello F, Herbst RS, Langley RR, Heymach JV. Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor‐resistant human lung adenocarcinoma. J Clin Invest 121: 1313‐1328, 2011.
 28.Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2. Cardiovasc Res 116: 1097‐1100, 2020.
 29.Chen S, Lechleider RJ. Transforming growth factor‐beta‐induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94: 1195‐1202, 2004.
 30.Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136: 507‐523, 2018.
 31.Cho YJ, Ma JE, Yun EY, Kim YE, Kim HC, Lee JD, Hwang YS, Jeong YY. Serum angiopoietin‐2 levels are elevated during acute exacerbations of COPD. Respirology 16: 284‐290, 2011.
 32.Corselli M, Crisan M, Murray IR, West CC, Scholes J, Codrea F, Khan N, Peault B. Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 83: 714‐720, 2013.
 33.Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301‐313, 2008.
 34.Crnkovic S, Marsh LM, El Agha E, Voswinckel R, Ghanim B, Klepetko W, Stacher‐Priehse E, Olschewski H, Bloch W, Bellusci S, Olschewski A, Kwapiszewska G. Resident cell lineages are preserved in pulmonary vascular remodeling. J Pathol 244: 485‐498, 2018.
 35.Cuervo H, Pereira B, Nadeem T, Lin M, Lee F, Kitajewski J, Lin CS. PDGFRbeta‐P2A‐CreER(T2) mice: A genetic tool to target pericytes in angiogenesis. Angiogenesis 20: 655‐662, 2017.
 36.Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B. GPR124, an orphan G protein‐coupled receptor, is required for CNS‐specific vascularization and establishment of the blood‐brain barrier. Proc Natl Acad Sci U S A 108: 5759‐5764, 2011.
 37.Darland DC, Massingham LJ, Smith SR, Piek E, Saint‐Geniez M, D'Amore PA. Pericyte production of cell‐associated VEGF is differentiation‐dependent and is associated with endothelial survival. Dev Biol 264: 275‐288, 2003.
 38.de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt‐beta‐catenin and Wnt‐RhoA‐Rac1 pathways. J Cell Biol 184: 83‐99, 2009.
 39.Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193: 169‐181, 1998.
 40.Dewi NA, Aulanni'am A, Sujuti H, Widodo MA, Soeatmadji DW. Mechanism of retinal pericyte migration through Angiopoietin/Tie‐2 signaling pathway on diabetic rats. Int J Ophthalmol 11: 375‐381, 2018.
 41.Diaz‐Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin‐Vasallo P, Diaz‐Flores L Jr. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24: 909‐969, 2009.
 42.Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor‐beta 1 knock out mice. Development 121: 1845‐1854, 1995.
 43.Eilken HM, Dieguez‐Hurtado R, Schmidt I, Nakayama M, Jeong HW, Arf H, Adams S, Ferrara N, Adams RH. Pericytes regulate VEGF‐induced endothelial sprouting through VEGFR1. Nat Commun 8: 1574, 2017.
 44.Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte‐mediated endothelial cell survival mechanisms. FASEB J 18: 338‐340, 2004.
 45.Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood‐Evans A, Wood J, Lorens JB. Mural cell associated VEGF is required for organotypic vessel formation. PLoS One 4: e5798, 2009.
 46.Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, Oliner JD, McDonald DM. Contrasting actions of selective inhibitors of angiopoietin‐1 and angiopoietin‐2 on the normalization of tumor blood vessels. Am J Pathol 175: 2159‐2170, 2009.
 47.Ferland‐McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 171: 30‐42, 2017.
 48.Fernández Fabrellas E, Peris Sánchez R, Sabater Abad C, Juan Samper G. Prognosis and follow‐up of idiopathic pulmonary fibrosis. Med Sci (Basel) 6: 51, 2018.
 49.Fuxe J, Tabruyn S, Colton K, Zaid H, Adams A, Baluk P, Lashnits E, Morisada T, Le T, O'Brien S, Epstein DM, Koh GY, McDonald DM. Pericyte requirement for anti‐leak action of angiopoietin‐1 and vascular remodeling in sustained inflammation. Am J Pathol 178: 2897‐2909, 2011.
 50.Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial‐mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29: 630‐638, 2009.
 51.Galaris G, Thalgott JH, Lebrin FPG. Pericytes in hereditary hemorrhagic telangiectasia. Adv Exp Med Biol 1147: 215‐246, 2019.
 52.Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM. Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 127: 2262‐2276, 2017.
 53.Gerhardt H, Betsholtz C. Endothelial‐pericyte interactions in angiogenesis. Cell Tissue Res 314: 15‐23, 2003.
 54.Gianni‐Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, Groppa E, Burger MG, Hlushchuk R, Heberer M, Schaefer DJ, Gurke L, Djonov V, Vollmar B, Banfi A. PDGF‐BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF‐induced endothelial proliferation. Angiogenesis 21: 883‐900, 2018.
 55.Gibson PG, Simpson JL. The overlap syndrome of asthma and COPD: What are its features and how important is it? Thorax 64: 728‐735, 2009.
 56.Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jais X, Tregouet D, Reis A, Drouin‐Garraud V, Fraisse A, Sitbon O, O'Callaghan DS, Simonneau G, Soubrier F, Humbert M. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 181: 851‐861, 2010.
 57.Gouirand V, Guillaumond F, Vasseur S. Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Oncol 8: 117, 2018.
 58.Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF‐beta type I receptors. EMBO J 21: 1743‐1753, 2002.
 59.Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456: 809‐813, 2008.
 60.Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, Duffau H, Lamszus K, Rothhut B, Hugnot JP. Notch1 stimulation induces a vascularization switch with pericyte‐like cell differentiation of glioblastoma stem cells. Stem Cells 33: 21‐34, 2015.
 61.Guimaraes‐Camboa N, Cattaneo P, Sun Y, Moore‐Morris T, Gu Y, Dalton ND, Rockenstein E, Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20: 345‐359 e345, 2017.
 62.Hall AP. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol 34: 763‐775, 2006.
 63.Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508: 55‐60, 2014.
 64.Hamilton NB, Attwell D, Hall CN. Pericyte‐mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease. Front Neuroenerg 2: 5, 2010.
 65.Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631‐637, 2004.
 66.Hantzidiamantis PJ, Amaro E. Physiology, Alveolar to Arterial Oxygen Gradient (Aa Gradient). Treasure Island (FL): StatPearls, 2020.
 67.Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 25: 21, 2018.
 68.Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high‐resolution imaging of transgenic mice. Neurophotonics 2 (4): 041402, 2015.
 69.Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156: 1363‐1380, 2000.
 70.He L, Mäe MA, Sun Y, Muhl L, Nahar K, Liébanas EV, Fagerlund MJ, Oldner A, Liu J, Genové G, Pietilä R, Zhang L, Xie Y, Leptidis S, Mocci G, Stritt S, Osman A, Anisimov A, Hemanthakumar KA, Räsenen M, Björkegren J, Vanlandewijck M, Blomgren K, Hansson E, Mäkinen T, Peng X‐R, Arnold TD, Alitalo K, Eriksson LI, Lendahl U, Betsholtz C. Pericyte‐specific vascular expression of SARS‐CoV‐2 receptor ACE2 – implications for microvascular inflammation and hypercoagulopathy in COVID‐19 patients. bioRxiv, 2020. DOI: 10.1101/2020.05.11.088500.
 71.Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543‐553, 2001.
 72.Hirota JA, Ask K, Farkas L, Smith JA, Ellis R, Rodriguez‐Lecompte JC, Kolb M, Inman MD. In vivo role of platelet‐derived growth factor‐BB in airway smooth muscle proliferation in mouse lung. Am J Respir Cell Mol Biol 45: 566‐572, 2011.
 73.Hirschi KK, D'Amore PA. Pericytes in the microvasculature. Cardiovasc Res 32: 687‐698, 1996.
 74.Hirschi KK, Rohovsky SA, D'Amore PA. PDGF, TGF‐beta, and heterotypic cell‐cell interactions mediate endothelial cell‐induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141: 805‐814, 1998.
 75.Hoch RV, Soriano P. Roles of PDGF in animal development. Development 130: 4769‐4784, 2003.
 76.Hoshino M, Nakamura Y, Hamid QA. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J Allergy Clin Immunol 107: 1034‐1038, 2001.
 77.Hung C, Linn G, Chow Y‐H, Kobayashi A, Mittelsteadt K, Altemeier WA, Gharib SA, Schnapp LM, Duffield JS. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188: 820‐830, 2013.
 78.Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS, Altemeier WA. Lung pericyte‐like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol 312: L556‐L567, 2017.
 79.Hung CF, Wilson CL, Chow Y‐H, Schnapp LM. Role of integrin alpha8 in murine model of lung fibrosis. PLoS One 13: e0197937, 2018.
 80.Invernizzi R, Quaglia F, Klersy C, Pagella F, Ornati F, Chu F, Matti E, Spinozzi G, Plumitallo S, Grignani P, Olivieri C, Bastia R, Bellistri F, Danesino C, Benazzo M, Balduini CL. Efficacy and safety of thalidomide for the treatment of severe recurrent epistaxis in hereditary haemorrhagic telangiectasia: Results of a non‐randomised, single‐centre, phase 2 study. Lancet Haematol 2: e465‐e473, 2015.
 81.Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebo F, Baumann M, Kalimo H, Lendahl U. Notch signaling regulates platelet‐derived growth factor receptor‐beta expression in vascular smooth muscle cells. Circ Res 102: 1483‐1491, 2008.
 82.Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak‐Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA. Mutations in the activin receptor‐like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13: 189‐195, 1996.
 83.Johnson JR, Folestad E, Rowley JE, Noll EM, Walker SA, Lloyd CM, Rankin SM, Pietras K, Eriksson U, Fuxe J. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am J Physiol Lung Cell Mol Physiol 308: L658‐L671, 2015.
 84.Kanazawa H, Asai K, Hirata K, Yoshikawa J. Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med 114: 354‐358, 2003.
 85.Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Rosenstiel PE, Shawber CJ, Kitajewski J. NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5: 182‐197, 2015.
 86.Kardas G, Daszynska‐Kardas A, Marynowski M, Brzakalska O, Kuna P, Panek M. Role of platelet‐derived growth factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target. Front Pharmacol 11: 47, 2020.
 87.Kasahara Y, Tuder RM, Taraseviciene‐Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106: 1311‐1319, 2000.
 88.Kato K, Dieguez‐Hurtado R, Park DY, Hong SP, Kato‐Azuma S, Adams S, Stehling M, Trappmann B, Wrana JL, Koh GY, Adams RH. Pulmonary pericytes regulate lung morphogenesis. Nat Commun 9: 2448, 2018.
 89.Kofler NM, Cuervo H, Uh MK, Murtomaki A, Kitajewski J. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep 5: 16449, 2015.
 90.Kranenburg AR, de Boer WI, Alagappan VK, Sterk PJ, Sharma HS. Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk‐1 and Flt‐1) in patients with chronic obstructive pulmonary disease. Thorax 60: 106‐113, 2005.
 91.Kratzer A, Chu HW, Salys J, Moumen Z, Leberl M, Bowler R, Cool C, Zamora M, Taraseviciene‐Stewart L. Endothelial cell adhesion molecule CD146: Implications for its role in the pathogenesis of COPD. J Pathol 230: 388‐398, 2013.
 92.Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ. Essential regulation of CNS angiogenesis by the orphan G protein‐coupled receptor GPR124. Science 330: 985‐989, 2010.
 93.Kume T. Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res 1: 8, 2009.
 94.Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S. Abnormal angiogenesis but intact hematopoietic potential in TGF‐beta type I receptor‐deficient mice. EMBO J 20: 1663‐1673, 2001.
 95.Laudes IJ, Guo RF, Riedemann NC, Speyer C, Craig R, Sarma JV, Ward PA. Disturbed homeostasis of lung intercellular adhesion molecule‐1 and vascular cell adhesion molecule‐1 during sepsis. Am J Pathol 164: 1435‐1445, 2004.
 96.Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest 127: 321‐334, 2017.
 97.Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Breant C, Mathivet T, Larrivee B, Thomas JL, Arthur HM, Westermann CJ, Disch F, Mager JJ, Snijder RJ, Eichmann A, Mummery CL. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16: 420‐428, 2010.
 98.Lee CG, Ma B, Takyar S, Ahangari F, Delacruz C, He CH, Elias JA. Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 8: 512‐515, 2011.
 99.Lee SH, Lee SH, Kim CH, Yang KS, Lee EJ, Min KH, Hur GY, Lee SH, Lee SY, Kim JH, Shin C, Shim JJ, In KH, Kang KH, Lee SY. Increased expression of vascular endothelial growth factor and hypoxia inducible factor‐1alpha in lung tissue of patients with chronic bronchitis. Clin Biochem 47: 552‐559, 2014.
 100.Li P, Zhou Y, Goodwin AJ, Cook JA, Halushka PV, Zhang XK, Wilson CL, Schnapp LM, Zingarelli B, Fan H. Fli‐1 governs pericyte dysfunction in a murine model of sepsis. J Infect Dis 218: 1995‐2005, 2018.
 101.Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450‐454, 2003.
 102.Lim SB, Tan SJ, Lim WT, Lim CT. An extracellular matrix‐related prognostic and predictive indicator for early‐stage non‐small cell lung cancer. Nat Commun 8: 1734, 2017.
 103.Lin C, He H, Liu H, Li R, Chen Y, Qi Y, Jiang Q, Chen L, Zhang P, Zhang H, Li H, Zhang W, Sun Y, Xu J. Tumour‐associated macrophages‐derived CXCL8 determines immune evasion through autonomous PD‐L1 expression in gastric cancer. Gut 68: 1764‐1773, 2019.
 104.Liu R, Lauridsen HM, Amezquita RA, Pierce RW, Jane‐Wit D, Fang C, Pellowe AS, Kirkiles‐Smith NC, Gonzalez AL, Pober JS. IL‐17 promotes neutrophil‐mediated immunity by activating microvascular pericytes and not endothelium. J Immunol 197: 2400‐2408, 2016.
 105.Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci 77: 1745‐1770, 2020.
 106.Martin K, Borgel D, Lerolle N, Feys HB, Trinquart L, Vanhoorelbeke K, Deckmyn H, Legendre P, Diehl JL, Baruch D. Decreased ADAMTS‐13 (A disintegrin‐like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis‐induced organ failure. Crit Care Med 35: 2375‐2382, 2007.
 107.McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak‐Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA. Endoglin, a TGF‐beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8: 345‐351, 1994.
 108.McDonald J, Bayrak‐Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Genet Med 13: 607‐616, 2011.
 109.Meyrick B, Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Investig 38: 188‐200, 1978.
 110.Meyrick B, Reid L. Ultrastructural findings in lung biopsy material from children with congenital heart defects. Am J Pathol 101: 527‐542, 1980.
 111.Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174: 221‐232, 1996.
 112.Moore MW, Herzog EL. Regulation and relevance of myofibroblast responses in idiopathic pulmonary fibrosis. Curr Pathobiol Rep 1: 199‐208, 2013.
 113.Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, Black BL, Simons M. FGF‐dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest 121: 2668‐2678, 2011.
 114.Mushaben EM, Hershey GK, Pauciulo MW, Nichols WC, Le Cras TD. Chronic allergic inflammation causes vascular remodeling and pulmonary hypertension in BMPR2 hypomorph and wild‐type mice. PLoS One 7: e32468, 2012.
 115.Nasarre P, Thomas M, Kruse K, Helfrich I, Wolter V, Deppermann C, Schadendorf D, Thurston G, Fiedler U, Augustin HG. Host‐derived angiopoietin‐2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res 69: 1324‐1333, 2009.
 116.Navarro R, Compte M, Alvarez‐Vallina L, Sanz L. Immune regulation by pericytes: Modulating innate and adaptive immunity. Front Immunol 7: 480, 2016.
 117.Navarro R, Delgado‐Wicke P, Nunez‐Prado N, Compte M, Blanco‐Toribio A, Nunez G, Alvarez‐Vallina L, Sanz L. Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation. J Cell Mol Med 20: 980‐986, 2016.
 118.Nowak‐Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela‐Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero‐Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte‐Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin‐Arik B, Yla‐Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21: 425‐532, 2018.
 119.Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E. Activin receptor‐like kinase 1 modulates transforming growth factor‐beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97: 2626‐2631, 2000.
 120.Olson LE, Soriano P. PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20: 815‐826, 2011.
 121.Orlova VV, Liu Z, Goumans MJ, ten Dijke P. Controlling angiogenesis by two unique TGF‐beta type I receptor signaling pathways. Histol Histopathol 26: 1219‐1230, 2011.
 122.Papkoff J, Rubinfeld B, Schryver B, Polakis P. Wnt‐1 regulates free pools of catenins and stabilizes APC‐catenin complexes. Mol Cell Biol 16: 2128‐2134, 1996.
 123.Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY. Plastic roles of pericytes in the blood‐retinal barrier. Nat Commun 8: 15296, 2017.
 124.Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, Oh SH, Walter G, Raizada MK, Sorg BS, Oh SP. Real‐time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119: 3487‐3496, 2009.
 125.Park SW, Yun JH, Kim JH, Kim KW, Cho CH, Kim JH. Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy. Diabetes 63: 3057‐3068, 2014.
 126.Perez VA, Ali Z, Alastalo TP, Ikeno F, Sawada H, Lai YJ, Kleisli T, Spiekerkoetter E, Qu X, Rubinos LH, Ashley E, Amieva M, Dedhar S, Rabinovitch M. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways. J Cell Biol 192: 171‐188, 2011.
 127.Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105: 16626‐16630, 2008.
 128.Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 122: 4306‐4313, 2012.
 129.Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C. Increased pericyte coverage mediated by endothelial‐derived fibroblast growth factor‐2 and interleukin‐6 is a source of smooth muscle‐like cells in pulmonary hypertension. Circulation 129: 1586‐1597, 2014.
 130.Risau W. Mechanisms of angiogenesis. Nature 386: 671‐674, 1997.
 131.Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108: E1475‐E1483, 2011.
 132.Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci 38: 291‐304, 2017.
 133.Rydell‐Tormanen K, Uller L, Erjefalt JS. Allergic airway inflammation initiates long‐term vascular remodeling of the pulmonary circulation. Int Arch Allergy Immunol 149: 251‐258, 2009.
 134.Saharinen P, Alitalo K. The yin, the yang, and the angiopoietin‐1. J Clin Invest 121: 2157‐2159, 2011.
 135.Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH. Paclitaxel‐carboplatin alone or with bevacizumab for non‐small‐cell lung cancer. N Engl J Med 355: 2542‐2550, 2006.
 136.Sava P, Ramanathan A, Dobronyi A, Peng X, Sun H, Ledesma‐Mendoza A, Herzog EL, Gonzalez AL. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight 2: e96352, 2017.
 137.Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep 6: 33123, 2016.
 138.Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: Pulmonary arterial hypertension. Nat Rev Cardiol 8: 443‐455, 2011.
 139.Schor AM, Allen TD, Canfield AE, Sloan P, Schor SL. Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97 (Pt 3): 449‐461, 1990.
 140.Schor AM, Canfield AE, Sutton AB, Allen TD, Sloan P, Schor SL. The behaviour of pericytes in vitro: Relevance to angiogenesis and differentiation. EXS 61: 167‐178, 1992.
 141.Schor AM, Canfield AE, Sutton AB, Arciniegas E, Allen TD. Pericyte differentiation. Clin Orthop Relat Res (313): 81‐91, 1995.
 142.Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin S‐L, Davis GE, Gharib SA, Humphreys BD, Duffield JS. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol 23: 868‐883, 2012.
 143.Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981‐990, 1997.
 144.Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood‐island formation and vasculogenesis in Flk‐1‐deficient mice. Nature 376: 62‐66, 1995.
 145.Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension. Cell Rep 6: 809‐817, 2014.
 146.Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med 7: 308ra159, 2015.
 147.Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol 15: 44, 2015.
 148.Shulman JM, Perrimon N, Axelrod JD. Frizzled signaling and the developmental control of cell polarity. Trends Genet 14: 452‐458, 1998.
 149.Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 67: 7‐30, 2017.
 150.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 70: 7‐30, 2020.
 151.Sil S, Niu F, Tom E, Liao K, Periyasamy P, Buch S. Cocaine mediated neuroinflammation: Role of dysregulated autophagy in pericytes. Mol Neurobiol 56: 3576‐3590, 2019.
 152.Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela‐Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S, American Heart Association Council on Basic Cardiovascular S, Council on Cardiovascular S, and Anesthesia. State‐of‐the‐art methods for evaluation of angiogenesis and tissue vascularization: A scientific statement From the American Heart Association. Circ Res 116: e99‐e132, 2015.
 153.Sims DE. The pericyte‐‐a review. Tissue Cell 18: 153‐174, 1986.
 154.Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK. Transforming growth factor‐beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 287: C1560‐C1568, 2004.
 155.Song AJ, Palmiter RD. Detecting and avoiding problems when using the cre‐lox system. Trends Genet 34: 333‐340, 2018.
 156.Soriano P. Abnormal kidney development and hematological disorders in PDGF beta‐receptor mutant mice. Genes Dev 8: 1888‐1896, 1994.
 157.Stallcup WB. The NG2 proteoglycan in pericyte biology. Adv Exp Med Biol 1109: 5‐19, 2018.
 158.Stark K, Pekayvaz K, Massberg S. Role of pericytes in vascular immunosurveillance. Front Biosci (Landmark Ed) 23: 767‐781, 2018.
 159.Stearns‐Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 6: 19‐48, 2011.
 160.Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in cerebrovascular diseases: An emerging therapeutic target. Front Cell Neurosci 13: 519, 2019.
 161.Takahashi J, Orcholski M, Yuan K, de Jesus Perez V. PDGF‐dependent beta‐catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension. FEBS Lett 590: 101‐109, 2016.
 162.Tattersall IW, Du J, Cong Z, Cho BS, Klein AM, Dieck CL, Chaudhri RA, Cuervo H, Herts JH, Kitajewski J. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment. Angiogenesis 19: 201‐215, 2016.
 163.Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, Ruckdeschel T, Hasanov Z, Srivastava K, Hu J, Hertel S, Bartol A, Schlereth K, Augustin HG. Pericyte‐expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8: 16106, 2017.
 164.Teichert‐Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ. Bone morphogenetic protein receptor‐2 signaling promotes pulmonary arterial endothelial cell survival: Implications for loss‐of‐function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98: 209‐217, 2006.
 165.Thalgott J, Dos‐Santos‐Luis D, Lebrin F. Pericytes as targets in hereditary hemorrhagic telangiectasia. Front Genet 6: 37, 2015.
 166.Tian DY, Jin XR, Zeng X, Wang Y. Notch signaling in endothelial cells: Is it the therapeutic target for vascular neointimal hyperplasia? Int J Mol Sci 18: 1615, 2017.
 167.Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, Cai Y, Lu Z, Wang J, Wang Y, Liu S, Cheng B, Wang J, Zhang M, Wang L, Niu S, Yao Z, Deng X, Zhou F, Wei W, Li Q, Chen X, Chen W, Yang Q, Wu S, Fan J, Shu B, Hu Z, Wang S, Yang XP, Liu W, Miao X, Wang Z. Clinical characteristics and risk factors associated with COVID‐19 disease severity in patients with cancer in Wuhan, China: A multicentre, retrospective, cohort study. Lancet Oncol 21: 893‐903, 2020.
 168.Tian M, Neil JR, Schiemann WP. Transforming growth factor‐beta and the hallmarks of cancer. Cell Signal 23: 951‐962, 2011.
 169.Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, Xiao SY. Pathological study of the 2019 novel coronavirus disease (COVID‐19) through postmortem core biopsies. Mod Pathol 33: 1007‐1014, 2020.
 170.Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, Chang S, Conley SD, Mori Y, Seita J, Berry GJ, Shrager JB, Metzger RJ, Kuo CS, Neff N, Weissman IL, Quake SR, Krasnow MA. A molecular cell atlas of the human lung from single cell RNA sequencing. bioRxiv, 2020. DOI: 10.1101/742320.
 171.Tuder RM, Abman SH, Braun T, Capron F, Stevens T, Thistlethwaite PA, Haworth SG. Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54: S3‐S9, 2009.
 172.van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C. The complex mural cell: Pericyte function in health and disease. Int J Cardiol 190: 75‐89, 2015.
 173.van Rens MT, de la Riviere AB, Elbers HR, van Den Bosch JM. Prognostic assessment of 2,361 patients who underwent pulmonary resection for non‐small cell lung cancer, stage I, II, and IIIA. Chest 117: 374‐379, 2000.
 174.Vanlaere I, Libert C. Matrix metalloproteinases as drug targets in infections caused by gram‐negative bacteria and in septic shock. Clin Microbiol Rev 22: 224‐239, Table of Contents, 2009.
 175.Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554: 475‐480, 2018.
 176.Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta‐catenin‐independent Wnt signaling. Dev Cell 5: 367‐377, 2003.
 177.Vlahovic G, Rabbani ZN, Herndon JE 2nd, Dewhirst MW, Vujaskovic Z. Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR‐beta and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation. Br J Cancer 95: 1013‐1019, 2006.
 178.Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II. A mesoderm‐derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7: 718‐729, 2010.
 179.Voelkel NF, Gomez‐Arroyo J, Abbate A, Bogaard HJ, Nicolls MR. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 40: 1555‐1565, 2012.
 180.Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red‐Horse K. Pericytes are progenitors for coronary artery smooth muscle. Elife 4: e10036, 2015.
 181.Walshe TE, Saint‐Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA. TGF‐beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One 4: e5149, 2009.
 182.Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non‐small cell lung cancer. Oncotarget 8: 53854‐53872, 2017.
 183.Wang N, Deng Y, Liu A, Shen N, Wang W, Du X, Tang Q, Li S, Odeh Z, Wu T, Lin H. Novel mechanism of the pericyte‐myofibroblast transition in renal interstitial fibrosis: Core fucosylation regulation. Sci Rep 7: 16914, 2017.
 184.Wang Y‐C, Chen Q, Luo J‐M, Nie J, Meng Q‐H, Shuai W, Xie H, Xia J‐M, Wang H. Notch1 promotes the pericyte‐myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med 51: 1‐11, 2019.
 185.Weibel ER. On pericytes, particularly their existence on lung capillaries. Microvasc Res 8: 218‐235, 1974.
 186.Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, Pullamsetti SS, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT. Targeting cyclin‐dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 10: 2204, 2019.
 187.Wessels A, Perez‐Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276: 43‐57, 2004.
 188.Westermark B, Siegbahn A, Heldin CH, Claesson‐Welsh L. B‐type receptor for platelet‐derived growth factor mediates a chemotactic response by means of ligand‐induced activation of the receptor protein‐tyrosine kinase. Proc Natl Acad Sci U S A 87: 128‐132, 1990.
 189.Wilson CL, Stephenson SE, Higuero JP, Feghali‐Bostwick C, Hung CF, Schnapp LM. Characterization of human PDGFR‐β‐positive pericytes from IPF and non‐IPF lungs. Am J Physiol Lung Cell Mol Physiol 315: L991‐L1002, 2018.
 190.Wu Q, Case SR, Minor MN, Jiang D, Martin RJ, Bowler RP, Wang J, Hartney J, Karimpour‐Fard A, Chu HW. A novel function of MUC18: Amplification of lung inflammation during bacterial infection. Am J Pathol 182: 819‐827, 2013.
 191.Xu B, Wu YQ, Huey M, Arthur HM, Marchuk DA, Hashimoto T, Young WL, Yang GY. Vascular endothelial growth factor induces abnormal microvasculature in the endoglin heterozygous mouse brain. J Cereb Blood Flow Metab 24: 237‐244, 2004.
 192.Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron‐Maguire M, Rand EB, Weinmaster G, Gridley T. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8: 723‐730, 1999.
 193.Yamaguchi M, Hirai S, Tanaka Y, Sumi T, Tada M, Takahashi H, Watanabe A, Sakuma Y. Pericyte‐myofibroblast transition in the human lung. Biochem Biophys Res Commun 528: 269‐275, 2020.
 194.Yin GN, Jin HR, Choi MJ, Limanjaya A, Ghatak K, Minh NN, Ock J, Kwon MH, Song KM, Park HJ, Kim HM, Kwon YG, Ryu JK, Suh JK. Pericyte‐derived Dickkopf2 regenerates damaged penile neurovasculature through an angiopoietin‐1‐tie2 pathway. Diabetes 67: 1149‐1161, 2018.
 195.Yuan K, Liu Y, Zhang Y, Nathan A, Tian W, Yu J, Sweatt AJ, Shamshou EA, Condon D, Chakraborty A, Agarwal S, Auer N, Zhang S, Wu JC, Zamanian RT, Nicolls MR, de Jesus Perez VA. Mural cell SDF1 signaling is associated with the pathogenesis of pulmonary arterial hypertension. Am J Respir Cell Mol Biol 62: 747‐759, 2020.
 196.Yuan K, Orcholski ME, Panaroni C, Shuffle EM, Huang NF, Jiang X, Tian W, Vladar EK, Wang L, Nicolls MR, Wu JY, de Jesus Perez VA. Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol 185: 69‐84, 2015.
 197.Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, Mani V, Zeng Y, Ozen MO, Wang L, Demirci U, Tian W, Nicolls MR, de Jesus Perez VA. Loss of endothelium‐derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation 139: 1710‐1724, 2019.
 198.Zappa C, Mousa SA. Non‐small cell lung cancer: Current treatment and future advances. Transl Lung Cancer Res 5: 288‐300, 2016.
 199.Zeng H, He X, Tuo QH, Liao DF, Zhang GQ, Chen JX. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie‐2 and HIF‐2alpha/Notch3 pathways. Sci Rep 6: 20931, 2016.
 200.Zhang ZS, Zhou HN, He SS, Xue MY, Li T, Liu LM. Research advances in pericyte function and their roles in diseases. Chin J Traumatol 23: 89‐95, 2020.
 201.Zheng B, Sage M, Sheppeard EA, Jurecic V, Bradley A. Engineering mouse chromosomes with Cre‐loxP: Range, efficiency, and somatic applications. Mol Cell Biol 20: 648‐655, 2000.
 202.Zhou H, Tang T, Guo C, Zhang H, Zhong J, Zheng J, Luo J, Lin Y, Liu W, Luo W, Yang Q. Expression of angiopoietin‐1 and the receptor tie‐2 mRNA in rat brains following intracerebral hemorrhage. Acta Neurobiol Exp (Wars) 68: 147‐154, 2008.
 203.Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K, Dietzel S, Rohwedder I, Hinkel R, Gross L, Lee S, Hu J, Soehnlein O, Franz WM, Sperandio M, Pohl U, Thomas M, Weber C, Augustin HG, Fassler R, Deutsch U, Kupatt C. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest 123: 3436‐3445, 2013.
 204.Zonneville J, Safina A, Truskinovsky AM, Arteaga CL, Bakin AV. TGF‐beta signaling promotes tumor vasculature by enhancing the pericyte‐endothelium association. BMC Cancer 18: 670, 2018.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ke Yuan, Stuti Agarwal, Ananya Chakraborty, David F. Condon, Hiral Patel, Serena Zhang, Flora Huang, Salvador A. Mello, Obadiah I. Kirk, Rocio Vasquez, Vinicio A. de Jesus Perez. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021, 11: 2227-2247. doi: 10.1002/cphy.c200027