Comprehensive Physiology Wiley Online Library

Physiology and Pharmacology of Neurotransmitter Transporters

Full Article on Wiley Online Library



Abstract

Regulation of the ability of a neurotransmitter [our focus: serotonin, norepinephrine, dopamine, acetylcholine, glycine, and gamma‐aminobutyric acid (GABA)] to reach its receptor targets is regulated in part by controlling the access the neurotransmitter has to receptors. Transporters, located at both the cellular plasma membrane and in subcellular vesicles, carry a myriad of responsibilities that include enabling neurotransmitter release and controlling uptake of neurotransmitter back into a cell or vesicle. Driven largely by electrochemical gradients, these transporters move neurotransmitters. The regulation of the transporters themselves through changes in expression and/or posttranslational modification allows for fine‐tuning of this system. Transporters have been best recognized as targets for psychoactive stimulants and remain a mainstay target of primarily central nervous system (CNS) acting drugs for treatment of debilitating diseases such as depression and anxiety. Studies reveal, however, that transporters are found and functional in tissues outside the CNS (gastrointestinal and cardiovascular tissues, for example). The importance of neurotransmitter transporters is underscored with discoveries that dysfunction of transporters can cause life‐changing disease. This article provides a high‐level review of major classes of both plasma membrane transporters and vesicular transporters. © 2021 American Physiological Society. Compr Physiol 11:2279‐2295, 2021.

Figure 1. Figure 1. Rendition of plasma membrane transporters (A; blue) compared to vesicular transporters (B; purple) and the associated cellular machinery that drive electrical and concentration gradients that enable transport. (C) Depiction comparing and contrasting uniport, symport, and antiport transport.
Figure 2. Figure 2. Dendrograms of plasma membrane (A) Reused, with permission, from Focke PJ, et al., 2013 29. and vesicular (B) transporters. Reused, with permission, from Lawal HO and Krantz DE, 2013 49.
Figure 3. Figure 3. NET transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aggarwal S and Mortensen OV, 2017 1 and Schroeder C and Jordan J, 2012 84.
Figure 4. Figure 4. SERT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Rudnick G and Sandtner W, 2019 80.
Figure 5. Figure 5. DAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aggarwal S and Mortensen OV, 2017 1 and Lohr KM, et al., 2017 54.
Figure 6. Figure 6. GAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Scimemi A, 2014 85.
Figure 7. Figure 7. GlyT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aragon C and Lopez‐Corcuera B, 2003 5.
Figure 8. Figure 8. OCT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Koepsell H, 2020 44.
Figure 9. Figure 9. EAAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Malik AR and Willnow TE, 2019 55 and Rose CR, et al., 2018 77.
Figure 10. Figure 10. PAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Boll M, et al., 2004 13, Fan SJ and Goberdhan DCI, 2018 27 and Thwaites DT and Anderson CMH, 2011 89.
Figure 11. Figure 11. VAChT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Lawal HO and Krantz DE, 2013 49 and Prado VF, et al., 2013 70.
Figure 12. Figure 12. VMAT transport. The table shares genetic, substrate, inhibitor, physiological and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from German CL, et al., 2015 33 and Yaffe D, et al., 2018 96.
Figure 13. Figure 13. VGLUT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Liguz‐Lecznar M and Skangiel‐Kramska J, 2007 51.
Figure 14. Figure 14. VIAAT/VGAY transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Gasnier B, 2004 32.
Figure 15. Figure 15. VNUT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Hasuzawa N, et al., 2020 36, Miras‐Portugal MT, et al., 2019 61 and Moriyama Y, et al., 2017 62.


Figure 1. Rendition of plasma membrane transporters (A; blue) compared to vesicular transporters (B; purple) and the associated cellular machinery that drive electrical and concentration gradients that enable transport. (C) Depiction comparing and contrasting uniport, symport, and antiport transport.


Figure 2. Dendrograms of plasma membrane (A) Reused, with permission, from Focke PJ, et al., 2013 29. and vesicular (B) transporters. Reused, with permission, from Lawal HO and Krantz DE, 2013 49.


Figure 3. NET transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aggarwal S and Mortensen OV, 2017 1 and Schroeder C and Jordan J, 2012 84.


Figure 4. SERT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Rudnick G and Sandtner W, 2019 80.


Figure 5. DAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aggarwal S and Mortensen OV, 2017 1 and Lohr KM, et al., 2017 54.


Figure 6. GAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Scimemi A, 2014 85.


Figure 7. GlyT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Aragon C and Lopez‐Corcuera B, 2003 5.


Figure 8. OCT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Koepsell H, 2020 44.


Figure 9. EAAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Malik AR and Willnow TE, 2019 55 and Rose CR, et al., 2018 77.


Figure 10. PAT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Boll M, et al., 2004 13, Fan SJ and Goberdhan DCI, 2018 27 and Thwaites DT and Anderson CMH, 2011 89.


Figure 11. VAChT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Lawal HO and Krantz DE, 2013 49 and Prado VF, et al., 2013 70.


Figure 12. VMAT transport. The table shares genetic, substrate, inhibitor, physiological and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from German CL, et al., 2015 33 and Yaffe D, et al., 2018 96.


Figure 13. VGLUT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Liguz‐Lecznar M and Skangiel‐Kramska J, 2007 51.


Figure 14. VIAAT/VGAY transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Gasnier B, 2004 32.


Figure 15. VNUT transport. The table shares genetic, substrate, inhibitor, physiological, and functional information while the cartoon at the right depicts membrane transport. Adapted, with permission, from Hasuzawa N, et al., 2020 36, Miras‐Portugal MT, et al., 2019 61 and Moriyama Y, et al., 2017 62.
References
 1.Aggarwal S, Mortensen OV. Overview of monoamine transporters. Curr Protoc Pharmacol 79: 12.16.1‐12.16.17, 2017. DOI: 10.1002/cpph.32.
 2.Alfadhel M, Nashabat M, Qahtani HA, Alfares A, Mutairi FA, Shaalan HA, Douglas GV, Wierenga K, Juusola J, Alrifai MT, Arold ST, Alkuraya F, Ali QA. Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non‐ketotic hyperglycinemia in humans. Hum Genet 135: 1263‐1268, 2016. DOI: 10.1007/s00439‐016‐1719‐x.
 3.Al‐Khrasani M, Mohammadzadeh A, Balogh M, Kiraly K, Barsi S, Hajnal B, Koles L, Zadori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 152: 143‐158, 2019. DOI: 10.1016/j.brainresbull.2019.07.008.
 4.Anne C, Gasnier B. Vesicular neurotransmitter transporters: Mechanistic aspects. Curr Top Membr 73: 149‐174, 2014. DOI: 10.1016/B978‐0‐12‐800223‐0.00003‐7.
 5.Aragon C, Lopez‐Corcuera B. Structure, function and regulation of glycine neurotransporters. Eur J Pharmacol 479: 249‐262, 2003. DOI: 10.1016/j.ejphar.2003.08.074.
 6.Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Sharman JL, Campo B, Cavanagh DR, Alexander SPH, Davenport AP, Spedding M, Davies JA, Nc I. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res 48: D1006‐D1021, 2020. DOI: 10.1093/nar/gkz951.
 7.Aubrey KR. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem Int 98: 94‐102, 2016. DOI: 10.1016/j.neuint.2016.06.002.
 8.Ayala‐Lopez N, Jackson WF, Burnett R, Wilson JN, Thompson JM, Watts SW. Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue. Am J Physiol Heart Circ Physiol 309: H1904‐H1914, 2015. DOI: 10.1152/ajpheart.00308.2015.
 9.Ayka A, Sehirli AO. The role of the SLC transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci 18: 174‐187, 2020. DOI: 10.9758/cpn.2020.18.2.174.
 10.Beart PM. SLC1 family of amino acid transporters (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide Pharmacol 4, 2019. DOI: 10.2218/gtopdb/F139/2019.4. https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=139
 11.Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: An underexplored pharmacological target. Neurochem Int 73: 89‐97, 2014. DOI: 10.1016/j.neuint.2013.12.003.
 12.Betz H, Gomeza J, Armsen W, Scholze P, Eulenburg V. Glycine transporters: Essential regulators of synaptic transmission. Biochem Soc Trans 34: 55‐58, 2006. DOI: 10.1042/BST0340055.
 13.Boll M, Daniel H, Gasnier B. The SLC36 family: Proton‐coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 447: 776‐779, 2004. DOI: 10.1007/s00424‐003‐1073‐4.
 14.Brindley RL, Bauer MB, Blakely RD, Currie KPM. Serotonin and serotonin transporters in the adrenal medulla: A potential hub for modulation of the sympathetic stress response. ACS Chem Neurosci 8: 943‐954, 2017. DOI: 10.1021/acschemneuro.7b00026.
 15.Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88: 249‐286, 2008. DOI: 10.1152/physrev.00018.2006.
 16.Bunch L, Erichsen MN, Jensen AA. Excitatory amino acid transporters as potential drug targets. Expert Opin Ther Targets 13: 719‐731, 2009. DOI: 10.1517/14728220902926127.
 17.Carvill GL, McMahon JM, Schneider A, Zemel M, Myers CT, Saykally J, Nguyen J, Robbiano A, Zara F, Specchio N, Mecarelli O, Smith RL, Leventer RJ, Moller RS, Nikanorova M, Dimova P, Jordanova A, Petrou S, Euro ERESM‐AE, Dravet working group, Helbig I, Striano P, Weckhuysen S, Berkovic SF, Scheffer IE, Mefford HC. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic‐atonic seizures. Am J Hum Genet 96: 808‐815, 2015. DOI: 10.1016/j.ajhg.2015.02.016.
 18.Caudle WM, Richardson JR, Delea KC, Guillot TS, Wang M, Pennell KD, Miller GW. Polychlorinated biphenyl‐induced reduction of dopamine transporter expression as a precursor to Parkinson's disease‐associated dopamine toxicity. Toxicol Sci 92: 490‐499, 2006. DOI: 10.1093/toxsci/kfl018.
 19.Cheng MH, Bahar I. Monoamine transporters: Structure, intrinsic dynamics and allosteric regulation. Nat Struct Mol Biol 26: 545‐556, 2019. DOI: 10.1038/s41594‐019‐0253‐7.
 20.Cui H, Li L, Wang W, Shen J, Yue Z, Zheng X, Zuo X, Liang B, Gao M, Fan X, Yin X, Shen C, Yang C, Zhang C, Zhang X, Sheng Y, Gao J, Zhu Z, Lin D, Zhang A, Wang Z, Liu S, Sun L, Yang S, Cui Y, Zhang X. Exome sequencing identifies SLC17A9 pathogenic gene in two Chinese pedigrees with disseminated superficial actinic porokeratosis. J Med Genet 51: 699‐704, 2014. DOI: 10.1136/jmedgenet‐2014‐102486.
 21.De La Fuente‐Fernández R. Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology 78: 696‐701, 2012. DOI: 10.1212/WNL.0b013e318248e520.
 22.Dutertre S, Becker CM, Betz H. Inhibitory glycine receptors: An update. J Biol Chem 48: 40216‐40223, 2012. DOI: 10.1074/jbc.R112.408229.
 23.Efange SM, Garland EM, Staley JK, Khare AB, Mash DC. Vesicular acetylcholine transporter density and Alzheimer's disease. Neurobiol Aging 18: 407‐413, 1997. DOI: 10.1016/s0197‐4580(97)00038‐9.
 24.Erickson JD, De Gois S, Varoqui H, Schafer MKH, Weihe E. Activity‐dependent regulation of vesicular glutamate and GABA transporters: A means to scale quantal size. Neurochem Int 48: 643‐649, 2006. DOI: 10.1016/j.neuint.2005.12.029.
 25.Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: Source, fate, and functions. Physiol Rev 70: 963‐985, 1990. DOI: 10.1152/physrev.1990.70.4.963.
 26.Eulenburg V, Armsen W, Betz H, Gomeza J. Glycine transporters: Essential regulators of neurotransmission. Trends Biochem Sci 30: 325‐333, 2005. DOI: 10.1016/j.tibs.2005.04.004.
 27.Fan SJ, Goberdhan DCI. PATs and SNATs: Amino acid sensors in disguise. Front Pharmacol 9: 640, 2018. DOI: 10.3389/fphar.2018.00640.
 28.Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention‐deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87: 255‐270, 2018. DOI: 10.1016/j.neubiorev.2018.02.001.
 29.Focke PJ, Wang X, Larsson HP. Neurotransmitter transporters: Structure meets function. Structure 21: 694‐705, 2013. DOI: 10.1016/j.str.2013.03.002.
 30.Foster JD, Vaughan RA. Phosphorylation mechanisms in dopamine transporter regulation. J Chem Neuroanat 83–84: 10‐18, 2017. DOI: 10.1016/j.jchemneu.2016.10.004.
 31.Fraser‐Spears R, Krause‐Heuer AM, Basiouny M, Mayer FP, Manishimwe R, Wyatt NA, Dobrowolski JC, Roberts MP, Greguric I, Kumar N, Koek W, Sitte HH, Callaghan PD, Fraser BH, Daws LC. Comparative analysis of novel decynium‐22 analogs to inhibit transport by the low‐affinity, high‐capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur J Pharmacol 842: 351‐364, 2019. DOI: 10.1016/j.ejphar.2018.10.028.
 32.Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 447: 756‐759, 2004. DOI: 10.1007/s00424‐003‐1091‐2.
 33.German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease. Pharmacol Rev 67: 1005‐1024, 2015. DOI: 10.1124/pr.114.010397.
 34.Grewer C, Gameiro A, Rauen T. SLC1 glutamate transporters. Pflugers Arch 466: 3‐24, 2014. DOI: 10.1007/s00424‐013‐1397‐7.
 35.Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, Belovich AN, Daly MJ, Gibbs RA, Boerwinkle E, Buxbaum JD, Cook EH, Devlin B, Lim ET, Neale BM, Roeder K, Sabo A, Schellenberg GD, Stevens C, Sutcliffe JS, Sahai MA, Cook EH, Gether U, Mchaourab HS, Matthies HJG, Sutcliffe JS, Galli A. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry 18: 1315‐1323, 2013. DOI: 10.1038/mp.2013.102.
 36.Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. Biochim Biophys Acta Biomembr 1862: 183408, 2020. DOI: 10.1016/j.bbamem.2020.183408.
 37.Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC. The concentrations and distributions of three C‐terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162: 1055‐1071, 2009. DOI: 10.1016/j.neuroscience.2009.03.048.
 38.Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, Grouzmann E, Liechti ME. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 17: 371‐381, 2014. DOI: 10.1017/S1461145713001132.
 39.Iurescia S, Seripa D, Rinaldi M. Looking beyond the 5‐HTTLPR polymorphism: Genetic and epigenetic layers of regulation affecting the serotonin transporter gene expression. Mol Neurobiol 54: 8386‐8403, 2017. DOI: 10.1007/s12035‐016‐0304‐6.
 40.Jellali A, Stussi‐Garaud C, Gasnier B, Rendon A, Sahel JA, Dreyfus H, Picaud S. Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina. J Comp Neurol 449: 76‐87, 2002. DOI: 10.1002/cne.10272.
 41.Joseph D, Pidathala S, Mallela AK, Penmatsa A. Structure and gating dynamics of Na(+)/Cl(‐) coupled neurotransmitter transporters. Front Mol Biosci 6: 80, 2019. DOI: 10.3389/fmolb.2019.00080.
 42.Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S. Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 28: 568‐578, 2007. DOI: 10.1016/j.neurobiolaging.2006.02.010.
 43.Khelashvili G, Weinstein H. Functional mechanisms of neurotransmitter transporters regulated by lipid‐protein interactions of their terminal loops. Biochim Biophys Acta Biomembr 1848: 1765‐1774, 2015. DOI: 10.1016/j.bbamem.2015.03.025.
 44.Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev 72: 253‐319, 2020. DOI: 10.1124/pr.118.015578.
 45.Koldso H, Christiansen AB, Sinning S, Schiott B. Comparative modeling of the human monoamine transporters: Similarities in substrate binding. ACS Chem Neurosci 4: 295‐309, 2013. DOI: 10.1021/cn300148r.
 46.Konig J, Muller F, Fromm MF. Transporters and drug‐drug interactions: Important determinants of drug disposition and effects. Pharmacol Rev 65: 944‐966, 2013. DOI: 10.1124/pr.113.007518.
 47.Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U. SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol Rev 63: 585‐640, 2011. DOI: 10.1124/pr.108.000869.
 48.Lambert E, Eikelis N, Esler M, Dawood T, Schlaich M, Bayles R, Socratous F, Agrotis A, Jennings G, Lambert G, Vaddadi G. Altered sympathetic nervous reactivity and norepinephrine transporter expression in patients with postural tachycardia syndrome. Circ Arrhythm Electrophysiol 1: 103‐109, 2008. DOI: 10.1161/CIRCEP.107.750471.
 49.Lawal HO, Krantz DE. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Asp Med 34: 360‐372, 2013. DOI: 10.1016/j.mam.2012.07.005.
 50.Lazar A, Walitza S, Jetter A, Gerlach M, Warnke A, Herpertz‐Dahlmann B, Gründemann D, Grimberg G, Schulz E, Remschmidt H, Wewetzer C, Schömig E. Novel mutations of the extraneuronal monoamine transporter gene in children and adolescents with obsessive‐compulsive disorder. Int J Neuropsychopharmacol 11: 35‐48, 2008. DOI: 10.1017/S1461145707007742.
 51.Liguz‐Lecznar M, Skangiel‐Kramska J. Vesicular glutamate transporters (VGLUTs): The three musketeers of glutamatergic system. Acta Neurobiol Exp 67: 207‐218, 2007.
 52.Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: Emerging opportunities. Nat Rev Drug Discov 14: 543‐560, 2015. DOI: 10.1038/nrd4626.
 53.Liu XD, Pan GY. Drug Transporters in Drug Disposition, Effects and Toxicity. Springer, 2019.
 54.Lohr KM, Masoud ST, Salahpour A, Miller GW. Membrane transporters as mediators of synaptic dopamine dynamics: Implications for disease. Eur J Neurosci 45: 20‐33, 2017. DOI: 10.1111/ejn.13357.
 55.Malik AR, Willnow TE. Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int J Mol Sci 20: 5671, 2019. DOI: 10.3390/ijms20225671.
 56.Martineau M, Guzman RE, Fahlke C, Klingauf J. VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses. Nat Commun 8: 2279, 2017. DOI: 10.1038/s41467‐017‐02367‐6.
 57.Mazei‐Robison MS, Couch RS, Shelton RC, Stein MA, Blakely RD. Sequence variation in the human dopamine transporter gene in children with attention deficit hyperactivity disorder. Neuropharmacology 49: 724‐736, 2005. DOI: 10.1016/j.neuropharm.2005.08.003.
 58.McHugh PC, Buckley DA. The structure and function of the dopamine transporter and its role in CNS diseases. Vitam Horm 98: 339‐369, 2015. DOI: 10.1016/bs.vh.2014.12.009.
 59.Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels. Mol Interv 10: 231‐241, 2010. DOI: 10.1124/mi.10.4.6.
 60.Miller GW, Kirby ML, Levey AI, Bloomquist JR. Heptachlor alters expression and function of dopamine transporters. Neurotoxicology 4: 631‐637, 1999.
 61.Miras‐Portugal MT, Menendez‐Mendez A, Gomez‐Villafuertes R, Ortega F, Delicado EG, Perez‐Sen R, Gualix J. Physiopathological role of the vesicular nucleotide transporter (VNUT) in the central nervous system: Relevance of the vesicular nucleotide release as a potential therapeutic target. Front Cell Neurosci 13: 224, 2019. DOI: 10.3389/fncel.2019.00224.
 62.Moriyama Y, Hiasa M, Sakamoto S, Omote H, Nomura M. Vesicular nucleotide transporter (VNUT): Appearance of an actress on the stage of purinergic signaling. Purinergic Signal 13: 387‐404, 2017. DOI: 10.1007/s11302‐017‐9568‐1.
 63.Moriyama Y, Nomura M. Clodronate: A vesicular ATP release blocker. Trends Pharmacol Sci 39: 13‐23, 2018. DOI: 10.1016/j.tips.2017.10.007.
 64.Munster‐Wandowski A, Zander JF, Richter K, Ahnert‐Hilger G. Co‐existence of functionally different vesicular neurotransmitter transporters. Front Synaptic Neurosci 8: 4, 2016. DOI: 10.3389/fnsyn.2016.00004.
 65.O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3: 32, 2017. DOI: 10.1038/s41537‐017‐0037‐1.
 66.Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y. Structure, function, and drug interactions of neurotransmitter transporters in the postgenomic era. Annu Rev Pharmacol Toxicol 56: 385‐402, 2016. DOI: 10.1146/annurev‐pharmtox‐010814‐124816.
 67.Oni‐Orisan A, Kristiansen LV, Haroutunian V, Meador‐Woodruff JH, McCullumsmith RE. Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63: 766‐775, 2008. DOI: 10.1016/j.biopsych.2007.10.020.
 68.Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters‐organic anion and cation transporters: Molecular and cellular properties. Curr Top Membr 73: 233‐261, 2014. DOI: 10.1016/B978‐0‐12‐800223‐0.00006‐2.
 69.Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, structural, functional, and pharmacological sites for vesicular glutamate transporter regulation. Mol Neurobiol 57: 3118‐3142, 2020. DOI: 10.1007/s12035‐020‐01912‐7.
 70.Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J 450: 265‐274, 2013. DOI: 10.1042/BJ20121662.
 71.Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol Asp Med 34: 197‐219, 2013. DOI: 10.1016/j.mam.2012.07.002.
 72.Ramamoorthy S, Shippenberg TS, Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther 129: 220‐238, 2011. DOI: 10.1016/j.pharmthera.2010.09.009.
 73.Rauen T, Tanui R, Grewer C. Structural and functional dynamics of excitatory amino acid transporters (EAAT). AIMS Mol Sci 1: 99‐125, 2014. DOI: 10.3934/molsci.2014.3.99.
 74.Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JBP, Owen MJ, Tijssen MAJ, Van Den Maagdenberg AMJM, Smart TG, Supplisson S, Harvey RJ. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38: 801‐806, 2006. DOI: 10.1038/ng1814.
 75.Rives ML, Javitch JA, Wickenden AD. Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem Pharmacol 135: 1‐11, 2017. DOI: 10.1016/j.bcp.2017.02.010.
 76.Robertson D, Biaggioni I. Primer on the Autonomic Nervous System (3rd ed). Amsterdam; Boston, MA: Elsevier/AP, 2012.
 77.Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium‐dependent glutamate transporters. Brain Res Bull 136: 3‐16, 2018. DOI: 10.1016/j.brainresbull.2016.12.013.
 78.Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165: 1260‐1287, 2012. DOI: 10.1111/j.1476‐5381.2011.01724.x.
 79.Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters: Perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch 466: 25‐42, 2014. DOI: 10.1007/s00424‐013‐1410‐1.
 80.Rudnick G, Sandtner W. Serotonin transport in the 21st century. J Gen Physiol 151: 1248‐1264, 2019. DOI: 10.1085/jgp.201812066.
 81.Ryan RM, Vandenberg RJ. A channel in a transporter. Clin Exp Pharmacol Physiol 32: 1‐6, 2005. DOI: 10.1111/j.1440‐1681.2005.04164.x.
 82.Sattler R, Rothstein JD. Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol 175: 277‐303, 2006. DOI: 10.1007/3‐540‐29784‐7_14.
 83.Saw EL, Kakinuma Y, Fronius M, Katare R. The non‐neuronal cholinergic system in the heart: A comprehensive review. J Mol Cell Cardiol 125: 129‐139, 2018. DOI: 10.1016/j.yjmcc.2018.10.013.
 84.Schroeder C, Jordan J. Norepinephrine transporter function and human cardiovascular disease. Am J Physiol Heart Circ Physiol 303: H1273‐H1282, 2012. DOI: 10.1152/ajpheart.00492.2012.
 85.Scimemi A. Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8: 161, 2014. DOI: 10.3389/fncel.2014.00161.
 86.Shafqat S, Velaz‐Faircloth M, Guadano‐Ferraz A, Fremeau RT Jr. Molecular characterization of neurotransmitter transporters. Mol Endocrinol 7: 1517‐1529, 1993. DOI: 10.1210/mend.7.12.7908408.
 87.Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117: 1422‐1431, 2007. DOI: 10.1172/JCI30558.
 88.Thompson C, Davis E, Carrigan C, Cox H, Bridges R, Gerdes J. Inhibitors of the glutamate vesicular transporter (VGLUT). Curr Med Chem 12: 2041‐2056, 2005. DOI: 10.2174/0929867054637635.
 89.Thwaites DT, Anderson CMH. The SLC36 family of proton‐coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 164: 1802‐1816, 2011. DOI: 10.1111/j.1476‐5381.2011.01438.x.
 90.van der Hel WS, Verlinde SA, Meijer DH, de Wit M, Rensen MG, van Gassen KL, van Rijen PC, van Veelen CW, de Graan PN. Hippocampal distribution of vesicular glutamate transporter 1 in patients with temporal lobe epilepsy. Epilepsia 50: 1717‐1728, 2009. DOI: 10.1111/j.1528‐1167.2009.02054.x.
 91.Vandenberg RJ, Shaddick K, Ju P. Molecular basis for substrate discrimination by glycine transporters. J Biol Chem 282: 14447‐14453, 2007. DOI: 10.1074/jbc.M609158200.
 92.Wagner DJ, Hu T, Wang J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 111: 237‐246, 2016. DOI: 10.1016/j.phrs.2016.06.002.
 93.Wang ZT, Yu G, Wang HS, Yi SP, Su RB, Gong ZH. Changes in VGLUT2 expression and function in pain‐related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res 1624: 515‐524, 2015. DOI: 10.1016/j.brainres.2015.08.010.
 94.Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 64: 359‐388, 2012. DOI: 10.1124/pr.111.004697.
 95.Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50: 575‐587, 2006. DOI: 10.1016/j.neuron.2006.04.016.
 96.Yaffe D, Forrest LR, Schuldiner S. The ins and outs of vesicular monoamine transporters. J Gen Physiol 150: 671‐682, 2018. DOI: 10.1085/jgp.201711980.
 97.Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48: 394‐403, 2006. DOI: 10.1016/j.neuint.2005.12.001.
 98.Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 171: 72‐89, 2018. DOI: 10.1016/j.pneurobio.2018.09.006.
 99.Zhu J, Klein‐Fedyshin M, Stevenson JM. Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: Review of pharmacogenetic evidence. Pharmacotherapy 37: 1089‐1104, 2017. DOI: 10.1002/phar.1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Nadia Ayala‐Lopez, Stephanie W. Watts. Physiology and Pharmacology of Neurotransmitter Transporters. Compr Physiol 2021, 11: 2279-2295. doi: 10.1002/cphy.c200035