Comprehensive Physiology Wiley Online Library

Working Memory: From Neural Activity to the Sentient Mind

Full Article on Wiley Online Library



Abstract

Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training‐induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:2547‐2587, 2021.

Figure 1. Figure 1. (A) Schematic diagram of (A) the Atkinson and Shiffrin model, (B) Baddeley model, and (C) the model we are putting forth here (Jaffe and Constantinidis model). Colored shapes in all schematic diagrams represent short‐term/working memory stages. The prefrontal cortex plays a central role in the maintenance of working memory through activity that reverberates in short‐ and long‐distance loops including the later stages of the sensory pathways that originally transmit sensory information to working memory.
Figure 2. Figure 2. From single neuron responses to the bump attractor. (A) Schematic illustration of responses of a single neuron to the ODR task for spatial working memory of a stimulus that appears at eight different locations. (B) The population of neurons represents the stimulus location by the bump of activity in the network. Drifts of this activity result in errors. Adapted, with permission, from Constantinidis C, 2016 80.
Figure 3. Figure 3. Schematic illustration of types of dynamic coding. Two different stimuli may not elicit an overall increase in firing rate during the delay period of working memory tasks (A). Their identity may still be decoded based on the pattern of spikes of individual neurons, which may be separable for different stimuli (B). Furthermore, the pattern of activity of individual neurons may evolve dynamically in time, that is, different neurons reach maximum activity at different time points during the trial, resulting in different trajectories in state space (C).
Figure 4. Figure 4. Activity silent mechanisms. (A,B) Schematic demonstration of the phenomenon of match suppression: a modulation of a stimulus firing rate depending on a previous stimulus, which does not depend on persistent spiking over the time interval between the two stimuli. (C) The synaptic model of working memory. Utilization and availability of synaptic resources (e.g., calcium concentration) modulate the magnitude of the postsynaptic potential generated by spikes elicited when a stimulus is presented for the first time, and when the same stimulus is presented for the second time. Adapted, with permission, from Mongillo G, et al., 2008 313. (D) Schematic illustration of serial bias in working memory. The location of the previous stimulus influences the memory of the current stimulus location. (E) During the inter‐trial interval (dotted line), firing rate no longer represents the previous stimulus and the neuron exhibits no selectivity for the location of the preceding stimulus. However, this information continues to be maintained by synaptic mechanisms and when the next trial begins, selectivity for the preceding stimulus re‐emerges. The interaction of this reactivated bump and the bump of activity caused by the cue appearance causes a slight deviation (bias) which is evident in the pattern of behavioral performance. Adapted, with permission, from Barbosa J, et al., 2020 23.
Figure 5. Figure 5. Division of labor model. Selectivity of pyramidal neurons (P) and three types of interneurons: parvalbumin (PV), VIP, and somatostatin (SST) are shown. Insets on top are meant to illustrate that red‐colored neurons on the left side of the figure are driven by a stimulus at the upper left of the screen, the 135° location, whereas blue‐colored neurons on the right side of the figure are maximally activated by a stimulus in the lower left, 225° location. Excitatory synapses connect pyramidal neurons with similar preferences in the delay period that follows a stimulus in the upper left. Heat maps representing the activity of different neurons are plotted by preference for stimulus location (y‐axis), as a function of time (x‐axis). Adapted, with permission, from Li S, et al., 2020 263.
Figure 6. Figure 6. Stimulus selectivity along the dorso‐ventral and anterior‐posterior axes of the PFC before and after training. (A) Firing rate and selectivity of dorsal prefrontal neurons at different positions along the anterior‐posterior axis, before and after training. Reused, with permission, from Riley MR, et al. 2018 395, Licensed Under CC BY‐4.0. (B) Schematic illustration of spatial and object selectivity across the PFC. Reused, with permission, from Constantinidis C, 2018 82. Licensed Under CC BY‐4.0.
Figure 7. Figure 7. Local organization of the prefrontal cortex. (A) No retinotopic map of visual space is present in dorsal posterior PFC, whose neurons display strong selectivity for space. Adapted, with permission, from Leavitt ML, et al., 2018 252. (B) Some local organization and orderly progression of receptive fields are revealed in tangential electrode penetrations in the principal sulcus. Adapted, with permission, from Arnsten AF, 2013 6. (C) Organization of activity across the depth of the PFC. Cue responses predominate in middle layers; delay period activity in upper layers; response activity in deeper layers of the PFC. Adapted, with permission, from Markowitz DA, et al., 2015 287.
Figure 8. Figure 8. Schematic illustration of a cross‐modal WM task. The monkey needs to remember the frequency of either a tactile or auditory stimulus and compare it with a stimulus of either modality. Right panels represent schematically the responses of a single neuron in the presupplementary motor area for an auditory stimulus (purple bar) followed by a tactile stimulus (blue bar), or vice versa (bottom). Responses of the neuron during the delay period were modulated monotonically depending on the frequency of the stimulus, adhering to the same monotonic code of firing rate as a function of frequency for both the remembered auditory and tactile stimuli. Adapted, with permission, from Constantinidis C, 2016 76; Vergara J, et al. 2016 489.
Figure 9. Figure 9. Properties of working memory capacity in human subjects. (A) Change detection paradigm. Subjects need to maintain in memory a set of colored squares and report if a second display was identical to the first or not. (B) Performance on the task declines as a function of set size. (C) Mean contralateral delay activity measured from posterior EEG electrodes as a function of elements in the array. Peak CDA amplitude predicts capacity (vertical) line. Adapted, with permission, from Fukuda K, et al., 2010 53.
Figure 10. Figure 10. Neural activity in capacity tasks. (A) Predicted model of working memory capacity in the context of the bump attractor. Multiple stimuli are encoded at the beginning of the trial. An item that decays, fails to be recalled at the end of the trial. (B) Capacity curves of monkeys. (C) WM capacity task. (D) Population firing rate for displays with different numbers of stimuli. (E) Average firing rate during the cue and delay period. Adapted, with permission, from Tang H, et al., 2019 475.
Figure 11. Figure 11. Drift and decay processes. Predictions of (A), the bump attractor model suggesting that drift is the main source of imprecision in working memory vs. (B), a model where the bump of activity decays. (C) For the bump attractor, but not the decaying bump model, the tuning curve bias computed from trials with clockwise versus counterclockwise deviations becomes increasingly positive through the delay. (D) Only for the bump attractor model, spike counts in response to flank stimuli correlated with behavioral deviations in the direction of the neuron's preferred cue as delay progressed. (E) For the bump attractor model, but not the decaying bump model, Fano factors computed separately for trials when a flank stimulus was presented are larger when considering inaccurate trials with large behavioral deviations (solid line) as compared to accurate trials (dashed line). (F) Only for the bump attractor model, neuron pair noise correlation is negative for those pairs with dissimilar tuning, when responding to a middle flank stimulus. Modified, with permission, from Wimmer K, et al., 2014 251.
Figure 12. Figure 12. Rodent WM. (A) Patterns of activation of mouse working memory, recorded from the medial prefrontal cortex (mPFC). (B) Individual neurons are typically active over a short period. (C) Mean z‐scored firing rate of delay‐elevated units identified after clustering into six groups based on temporal correlation in firing rates from dark red (earliest) to purple (latest). Approximately 30% of all mPFC neurons in the dataset exhibited significant delay‐elevated activity (inset). (D) Behavioral effects of inactivation of MD‐to‐mPFC terminals. (E) Behavioral effects of inactivation of mPFC‐to‐MD terminals. (A‐E) Reused, with permission, from Bolkan SS, et al., 2017 38. (F) Behavioral effects of inactivation of different mPFC interneuron populations during an auditory working memory task. Modified, with permission, from Kamigaki T, 2017 218.
Figure 13. Figure 13. WM Development. (A) Behavioral improvement of human working memory in adolescence. Adapted, with permission, from Simmonds DJ, et al., 2017 442. (B) Behavioral improvement of monkey WM in adolescence. (C) Persistent discharges in the adolescent and (D), adult PFC in the oculomotor delayed response task. (E,F). Activity in the adolescent and adult PFC in the distractor task. (B‐F) Reused, with permission, from Zhou X, et al., 2016 541.
Figure 14. Figure 14. Effects of training. (A) Anatomical MRI of the monkey lateral prefrontal cortex with anterior/posterior and dorsal/ventral subdivisions indicated relative to the principle and arcuate sulci. (B) Mean firing rate of neurons recorded in these subdivisions in monkeys both before and after they were trained to perform spatial WM tasks. Gray bars represent stimulus presentations. Data are shown separately for each prefrontal region. (A,B) Reused, with permission, from Riley MR, et al., 2018 395. (C) Receiver Operating Characteristic (ROC) analysis for recordings from low‐performance and high‐performance sessions, as monkeys were trained in a multi‐stimulus WM task. Reused, with permission, from Tang H, et al., 2019 475.


Figure 1. (A) Schematic diagram of (A) the Atkinson and Shiffrin model, (B) Baddeley model, and (C) the model we are putting forth here (Jaffe and Constantinidis model). Colored shapes in all schematic diagrams represent short‐term/working memory stages. The prefrontal cortex plays a central role in the maintenance of working memory through activity that reverberates in short‐ and long‐distance loops including the later stages of the sensory pathways that originally transmit sensory information to working memory.


Figure 2. From single neuron responses to the bump attractor. (A) Schematic illustration of responses of a single neuron to the ODR task for spatial working memory of a stimulus that appears at eight different locations. (B) The population of neurons represents the stimulus location by the bump of activity in the network. Drifts of this activity result in errors. Adapted, with permission, from Constantinidis C, 2016 80.


Figure 3. Schematic illustration of types of dynamic coding. Two different stimuli may not elicit an overall increase in firing rate during the delay period of working memory tasks (A). Their identity may still be decoded based on the pattern of spikes of individual neurons, which may be separable for different stimuli (B). Furthermore, the pattern of activity of individual neurons may evolve dynamically in time, that is, different neurons reach maximum activity at different time points during the trial, resulting in different trajectories in state space (C).


Figure 4. Activity silent mechanisms. (A,B) Schematic demonstration of the phenomenon of match suppression: a modulation of a stimulus firing rate depending on a previous stimulus, which does not depend on persistent spiking over the time interval between the two stimuli. (C) The synaptic model of working memory. Utilization and availability of synaptic resources (e.g., calcium concentration) modulate the magnitude of the postsynaptic potential generated by spikes elicited when a stimulus is presented for the first time, and when the same stimulus is presented for the second time. Adapted, with permission, from Mongillo G, et al., 2008 313. (D) Schematic illustration of serial bias in working memory. The location of the previous stimulus influences the memory of the current stimulus location. (E) During the inter‐trial interval (dotted line), firing rate no longer represents the previous stimulus and the neuron exhibits no selectivity for the location of the preceding stimulus. However, this information continues to be maintained by synaptic mechanisms and when the next trial begins, selectivity for the preceding stimulus re‐emerges. The interaction of this reactivated bump and the bump of activity caused by the cue appearance causes a slight deviation (bias) which is evident in the pattern of behavioral performance. Adapted, with permission, from Barbosa J, et al., 2020 23.


Figure 5. Division of labor model. Selectivity of pyramidal neurons (P) and three types of interneurons: parvalbumin (PV), VIP, and somatostatin (SST) are shown. Insets on top are meant to illustrate that red‐colored neurons on the left side of the figure are driven by a stimulus at the upper left of the screen, the 135° location, whereas blue‐colored neurons on the right side of the figure are maximally activated by a stimulus in the lower left, 225° location. Excitatory synapses connect pyramidal neurons with similar preferences in the delay period that follows a stimulus in the upper left. Heat maps representing the activity of different neurons are plotted by preference for stimulus location (y‐axis), as a function of time (x‐axis). Adapted, with permission, from Li S, et al., 2020 263.


Figure 6. Stimulus selectivity along the dorso‐ventral and anterior‐posterior axes of the PFC before and after training. (A) Firing rate and selectivity of dorsal prefrontal neurons at different positions along the anterior‐posterior axis, before and after training. Reused, with permission, from Riley MR, et al. 2018 395, Licensed Under CC BY‐4.0. (B) Schematic illustration of spatial and object selectivity across the PFC. Reused, with permission, from Constantinidis C, 2018 82. Licensed Under CC BY‐4.0.


Figure 7. Local organization of the prefrontal cortex. (A) No retinotopic map of visual space is present in dorsal posterior PFC, whose neurons display strong selectivity for space. Adapted, with permission, from Leavitt ML, et al., 2018 252. (B) Some local organization and orderly progression of receptive fields are revealed in tangential electrode penetrations in the principal sulcus. Adapted, with permission, from Arnsten AF, 2013 6. (C) Organization of activity across the depth of the PFC. Cue responses predominate in middle layers; delay period activity in upper layers; response activity in deeper layers of the PFC. Adapted, with permission, from Markowitz DA, et al., 2015 287.


Figure 8. Schematic illustration of a cross‐modal WM task. The monkey needs to remember the frequency of either a tactile or auditory stimulus and compare it with a stimulus of either modality. Right panels represent schematically the responses of a single neuron in the presupplementary motor area for an auditory stimulus (purple bar) followed by a tactile stimulus (blue bar), or vice versa (bottom). Responses of the neuron during the delay period were modulated monotonically depending on the frequency of the stimulus, adhering to the same monotonic code of firing rate as a function of frequency for both the remembered auditory and tactile stimuli. Adapted, with permission, from Constantinidis C, 2016 76; Vergara J, et al. 2016 489.


Figure 9. Properties of working memory capacity in human subjects. (A) Change detection paradigm. Subjects need to maintain in memory a set of colored squares and report if a second display was identical to the first or not. (B) Performance on the task declines as a function of set size. (C) Mean contralateral delay activity measured from posterior EEG electrodes as a function of elements in the array. Peak CDA amplitude predicts capacity (vertical) line. Adapted, with permission, from Fukuda K, et al., 2010 53.


Figure 10. Neural activity in capacity tasks. (A) Predicted model of working memory capacity in the context of the bump attractor. Multiple stimuli are encoded at the beginning of the trial. An item that decays, fails to be recalled at the end of the trial. (B) Capacity curves of monkeys. (C) WM capacity task. (D) Population firing rate for displays with different numbers of stimuli. (E) Average firing rate during the cue and delay period. Adapted, with permission, from Tang H, et al., 2019 475.


Figure 11. Drift and decay processes. Predictions of (A), the bump attractor model suggesting that drift is the main source of imprecision in working memory vs. (B), a model where the bump of activity decays. (C) For the bump attractor, but not the decaying bump model, the tuning curve bias computed from trials with clockwise versus counterclockwise deviations becomes increasingly positive through the delay. (D) Only for the bump attractor model, spike counts in response to flank stimuli correlated with behavioral deviations in the direction of the neuron's preferred cue as delay progressed. (E) For the bump attractor model, but not the decaying bump model, Fano factors computed separately for trials when a flank stimulus was presented are larger when considering inaccurate trials with large behavioral deviations (solid line) as compared to accurate trials (dashed line). (F) Only for the bump attractor model, neuron pair noise correlation is negative for those pairs with dissimilar tuning, when responding to a middle flank stimulus. Modified, with permission, from Wimmer K, et al., 2014 251.


Figure 12. Rodent WM. (A) Patterns of activation of mouse working memory, recorded from the medial prefrontal cortex (mPFC). (B) Individual neurons are typically active over a short period. (C) Mean z‐scored firing rate of delay‐elevated units identified after clustering into six groups based on temporal correlation in firing rates from dark red (earliest) to purple (latest). Approximately 30% of all mPFC neurons in the dataset exhibited significant delay‐elevated activity (inset). (D) Behavioral effects of inactivation of MD‐to‐mPFC terminals. (E) Behavioral effects of inactivation of mPFC‐to‐MD terminals. (A‐E) Reused, with permission, from Bolkan SS, et al., 2017 38. (F) Behavioral effects of inactivation of different mPFC interneuron populations during an auditory working memory task. Modified, with permission, from Kamigaki T, 2017 218.


Figure 13. WM Development. (A) Behavioral improvement of human working memory in adolescence. Adapted, with permission, from Simmonds DJ, et al., 2017 442. (B) Behavioral improvement of monkey WM in adolescence. (C) Persistent discharges in the adolescent and (D), adult PFC in the oculomotor delayed response task. (E,F). Activity in the adolescent and adult PFC in the distractor task. (B‐F) Reused, with permission, from Zhou X, et al., 2016 541.


Figure 14. Effects of training. (A) Anatomical MRI of the monkey lateral prefrontal cortex with anterior/posterior and dorsal/ventral subdivisions indicated relative to the principle and arcuate sulci. (B) Mean firing rate of neurons recorded in these subdivisions in monkeys both before and after they were trained to perform spatial WM tasks. Gray bars represent stimulus presentations. Data are shown separately for each prefrontal region. (A,B) Reused, with permission, from Riley MR, et al., 2018 395. (C) Receiver Operating Characteristic (ROC) analysis for recordings from low‐performance and high‐performance sessions, as monkeys were trained in a multi‐stimulus WM task. Reused, with permission, from Tang H, et al., 2019 475.
References
 1.Albers AM, Kok P, Toni I, Dijkerman HC, de Lange FP. Shared representations for working memory and mental imagery in early visual cortex. Curr Biol 23 (15): 1427‐1431, 2013.
 2.Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357‐381, 1986.
 3.Alloway TP, Gathercole SE, Pickering SJ. Verbal and visuospatial short‐term and working memory in children: Are they separable? Child Dev 77 (6): 1698‐1716, 2006.
 4.Anguera JA, Boccanfuso J, Rintoul JL, Al‐Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A. Video game training enhances cognitive control in older adults. Nature 501 (7465): 97‐101, 2013.
 5.Arce E, Balice‐Gordon R, Duvvuri S, Naylor M, Xie Z, Harel B, Kozak R, Gray DL, DeMartinis N. A novel approach to evaluate the pharmacodynamics of a selective dopamine D1/D5 receptor partial agonist (PF‐06412562) in patients with stable schizophrenia. J Psychopharmacol 33 (10): 1237‐1247, 2019.
 6.Arnsten AF. The neurobiology of thought: The groundbreaking discoveries of Patricia Goldman‐Rakic 1937‐2003. Cereb Cortex 23 (10): 2269‐2281, 2013.
 7.Asaad WF, Rainer G, Miller EK. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21 (6): 1399‐1407, 1998.
 8.Atkinson AL, Berry EDJ, Waterman AH, Baddeley AD, Hitch GJ, Allen RJ. Are there multiple ways to direct attention in working memory? Ann N Y Acad Sci 1424 (1): 115‐126, 2018.
 9.Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP. Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci U S A 99 (20): 13172‐13177, 2002.
 10.Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP. Neural activity in prefrontal cortex during copying geometrical shapesI. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150 (2): 127‐141, 2003.
 11.Awh E, Vogel EK, Oh SH. Interactions between attention and working memory. Neuroscience 139 (1): 201‐208, 2006.
 12.Backman L, Nyberg L, Soveri A, Johansson J, Andersson M, Dahlin E, Neely AS, Virta J, Laine M, Rinne JO. Effects of working‐memory training on striatal dopamine release. Science 333 (6043): 718, 2011.
 13.Baddeley A. Working memory. Science 255 (5044): 556‐559, 1992.
 14.Baddeley A. The episodic buffer: A new component of working memory? Trends Cogn Sci 4 (11): 417‐423, 2000.
 15.Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol 63: 1‐29, 2012.
 16.Baddeley AD, Andrade J. Working memory and the vividness of imagery. J Exp Psychol Gen 129 (1): 126‐145, 2000.
 17.Bae GY, Luck SJ. Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. J Neurosci 38 (2): 409‐422, 2018.
 18.Bae GY, Luck SJ. Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage 184: 242‐255, 2019.
 19.Baeg EH, Kim YB, Huh K, Mook‐Jung I, Kim HT, Jung MW. Dynamics of population code for working memory in the prefrontal cortex. Neuron 40 (1): 177‐188, 2003.
 20.Balakhonov D, Rose J. Crows rival monkeys in cognitive capacity. Sci Rep 7 (1): 8809, 2017.
 21.Balan PF, Ferrera VP. Effects of spontaneous eye movements on spatial memory in macaque periarcuate cortex. J Neurosci 23 (36): 11392‐11401, 2003.
 22.Barbas H. General cortical and special prefrontal connections: Principles from structure to function. Annu Rev Neurosci 38: 269‐289, 2015.
 23.Barbosa J, Stein H, Martinez RL, Galan‐Gadea A, Li S, Dalmau J, Adam KCS, Valls‐Solé J, Constantinidis C, Compte A. Interplay between persistent activity and activity‐silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 23 (8): 1016‐1024, 2020.
 24.Barraclough DJ, Conroy ML, Lee D. Prefrontal cortex and decision making in a mixed‐strategy game. Nat Neurosci 7 (4): 404‐410, 2004.
 25.Bartus RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163 (2): 495‐529, 2000.
 26.Bastos AM, Loonis R, Kornblith S, Lundqvist M, Miller EK. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proc Natl Acad Sci U S A 115 (5): 1117‐1122, 2018.
 27.Bathelt J, Gathercole SE, Johnson A, Astle DE. Differences in brain morphology and working memory capacity across childhood. Dev Sci 21 (3): e12579, 2018.
 28.Bauer M, Oostenveld R, Peeters M, Fries P. Tactile spatial attention enhances gamma‐band activity in somatosensory cortex and reduces low‐frequency activity in parieto‐occipital areas. J Neurosci 26 (2): 490‐501, 2006.
 29.Bays PM, Husain M. Dynamic shifts of limited working memory resources in human vision. Science 321 (5890): 851‐854, 2008.
 30.Berdyyeva TK, Olson CR. Rank signals in four areas of macaque frontal cortex during selection of actions and objects in serial order. J Neurophysiol 104 (1): 141‐159, 2010.
 31.Bergmann J, Genc E, Kohler A, Singer W, Pearson J. Neural anatomy of primary visual cortex limits visual working memory. Cereb Cortex 26 (1): 43‐50, 2014.
 32.Bichot NP, Heard MT, DeGennaro EM, Desimone R. A source for feature‐based attention in the prefrontal cortex. Neuron 88 (4): 832‐844, 2015.
 33.Bigelow J, Rossi B, Poremba A. Neural correlates of short‐term memory in primate auditory cortex. Front Neurosci 8: 250, 2014.
 34.Blake R, Cepeda NJ, Hiris E. Memory for visual motion. J Exp Psychol Hum Percept Perform 23 (2): 353‐369, 1997.
 35.Bliss DP, D'Esposito M. Synaptic augmentation in a cortical circuit model reproduces serial dependence in visual working memory. PLoS One 12 (12): e0188927, 2017.
 36.Bliss DP, Sun JJ, D'Esposito M. Serial dependence is absent at the time of perception but increases in visual working memory. Sci Rep 7 (1): 14739, 2017.
 37.Bodner M, Kroger J, Fuster JM. Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7 (12): 1905‐1908, 1996.
 38.Bolkan SS, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 20 (7): 987‐996, 2017.
 39.Borra E, Ferroni CG, Gerbella M, Giorgetti V, Mangiaracina C, Rozzi S, Luppino G. Rostro‐caudal connectional heterogeneity of the dorsal part of the macaque prefrontal area 46. Cereb Cortex 29 (2): 485‐504, 2017.
 40.Brincat SL, Miller EK. Frequency‐specific hippocampal‐prefrontal interactions during associative learning. Nat Neurosci 18 (4): 576‐581, 2015.
 41.Brody CD, Hernandez A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex 13 (11): 1196‐1207, 2003.
 42.Brooks DN. Long and short term memory in head injured patients. Cortex 11 (4): 329‐340, 1975.
 43.Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PGF, Kwok SC, Phillips A, Tanaka K. Dissociable components of rule‐guided behavior depend on distinct medial and prefrontal regions. Science 325 (5936): 52‐58, 2009.
 44.Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD. Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 33 (2): 301‐311, 2002.
 45.Bunge SA, Ochsner KN, Desmond JE, Glover GH, Gabrieli JD. Prefrontal regions involved in keeping information in and out of mind. Brain 124 (Pt 10): 2074‐2086, 2001.
 46.Burgess GC, Depue BE, Ruzic L, Willcutt EG, Du YP, Banich MT. Attentional control activation relates to working memory in attention‐deficit/hyperactivity disorder. Biol Psychiatry 67 (7): 632‐640, 2010.
 47.Burgund ED, Lugar HM, Miezin FM, Schlaggar BL, Petersen SE. The development of sustained and transient neural activity. NeuroImage 29 (3): 812‐821, 2006.
 48.Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, Bernacchia A, Anticevic A, Murray JD. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci 21 (9): 1251‐1259, 2018.
 49.Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76 (4): 838‐846, 2012.
 50.Buschman TJ, Siegel M, Roy JE, Miller EK. Neural substrates of cognitive capacity limitations. Proc Natl Acad Sci U S A 108 (27): 11252‐11255, 2011.
 51.Butler AB, Cotterill RM. Mammalian and avian neuroanatomy and the question of consciousness in birds. Biol Bull 211 (2): 106‐127, 2006.
 52.Buzsaki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68 (3): 362‐385, 2010.
 53.Buzsaki G. The brain‐cognitive behavior problem: A retrospective. eNeuro 7 (4), 2020.
 54.Calvert GA, Bullmore ET, Brammer MJ, Campbell R, Williams SC, McGuire PK, Woodruff PW, Iversen SD, David AS. Activation of auditory cortex during silent lipreading. Science 276 (5312): 593‐596, 1997.
 55.Carmichael ST, Clugnet MC, Price JL. Central olfactory connections in the macaque monkey. J Comp Neurol 346 (3): 403‐434, 1994.
 56.Cavada C, Company T, Tejedor J, Cruz‐Rizzolo RJ, Reinoso‐Suarez F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10 (3): 220‐242, 2000.
 57.Cavada C, Goldman‐Rakic PS. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287 (4): 422‐445, 1989.
 58.Chafee MV, Goldman‐Rakic PS. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79 (6): 2919‐2940, 1998.
 59.Chafee MV, Goldman‐Rakic PS. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory guided‐saccades. J Neurophysiol 83: 1550‐1566, 2000.
 60.Chafee MV, Goldman‐Rakic PS. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory‐guided saccades. J Neurophysiol 83 (3): 1550‐1566, 2000.
 61.Chang L, Bao P, Tsao DY. The representation of colored objects in macaque color patches. Nat Commun 8 (1): 2064, 2017.
 62.Chang MH, Armstrong KM, Moore T. Dissociation of response variability from firing rate effects in frontal eye field neurons during visual stimulation, working memory, and attention. J Neurosci 32 (6): 2204‐2216, 2012.
 63.Chase W, Erickson KA. Skill and working memory. Psychol Learn Modivat 16, 1982.
 64.Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature 363 (6427): 345‐347, 1993.
 65.Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci U S A 101 (8): 2596‐2600, 2004.
 66.Chen T, Naveh‐Benjamin M. Assessing the associative deficit of older adults in long‐term and short‐term/working memory. Psychol Aging 27 (3): 666‐682, 2012.
 67.Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. The distributed nature of working memory. Trends Cogn Sci 21 (2): 111‐124, 2017.
 68.Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 22 (4): 487‐497, 1987.
 69.Clark KL, Noudoost B, Moore T. Persistent spatial information in the frontal eye field during object‐based short‐term memory. J Neurosci 32 (32): 10907‐10914, 2012.
 70.Clark KL, Noudoost B, Moore T. Persistent spatial information in the FEF during object‐based short‐term memory does not contribute to task performance. J Cogn Neurosci 26 (6): 1292‐1299, 2014.
 71.Cohen MA, Dennett DC, Kanwisher N. What is the bandwidth of perceptual experience? Trends Cogn Sci 20 (5): 324‐335, 2016.
 72.Cohen YE, Hauser MD, Russ BE. Spontaneous processing of abstract categorical information in the ventrolateral prefrontal cortex. Biol Lett 2 (2): 261‐265, 2006.
 73.Colflesh GJ, Conway AR. Individual differences in working memory capacity and divided attention in dichotic listening. Psychon Bull Rev 14 (4): 699‐703, 2007.
 74.Compte A, Brunel N, Goldman‐Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10 (9): 910‐923, 2000.
 75.Compte A, Constantinidis C, Tegner J, Raghavachari S, Chafee MV, Goldman‐Rakic PS, Wang X‐J. Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J Neurophysiol 28: 3441‐3454, 2003.
 76.Constantinidis C. A code for cross‐modal working memory. Neuron 89 (1): 3‐5, 2016.
 77.Constantinidis C, Franowicz MN, Goldman‐Rakic PS. Coding specificity in cortical microcircuits: A multiple electrode analysis of primate prefrontal cortex. J Neurosci 21 (10): 3646‐3655, 2001.
 78.Constantinidis C, Franowicz MN, Goldman‐Rakic PS. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4 (3): 311‐316, 2001.
 79.Constantinidis C, Goldman‐Rakic PS. Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. J Neurophysiol 88: 3487‐3497, 2002.
 80.Constantinidis C, Klingberg T. The neuroscience of working memory capacity and training. Nat Rev Neurosci 17 (7): 438‐449, 2016.
 81.Constantinidis C, Procyk E. The primate working memory networks. Cogn Affect Behav Neurosci 4 (4): 444‐465, 2004.
 82.Constantinidis C, Qi XL. Representation of spatial and feature information in the monkey dorsal and ventral prefrontal cortex. Front Integr Neurosci 12: 31, 2018.
 83.Constantinidis C, Steinmetz MA. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J Neurophysiol 76 (2): 1352‐1355, 1996.
 84.Constantinidis C, Steinmetz MA. Neuronal responses in area 7a to multiple stimulus displays: I. Neurons encode the location of the salient stimulus. Cereb Cortex 11: 581‐591, 2001.
 85.Constantinidis C, Wang XJ. A neural circuit basis for spatial working memory. Neuroscientist 10 (6): 553‐565, 2004.
 86.Constantinidis C, Williams GV, Goldman‐Rakic PS. A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5 (2): 175‐180, 2002.
 87.Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, Holtmann M, Santosh P, Stevenson J, Stringaris A, Zuddas A, Sonuga‐Barke EJS, European ADHD Guide. Cognitive training for attention‐deficit/hyperactivity disorder: Meta‐analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry 54 (3): 164‐174, 2015.
 88.Courtney SM, Ungerleider LG, Keil K, Haxby JV. Transient and sustained activity in a distributed neural system for human working memory. Nature 386 (6625): 608‐611, 1997.
 89.Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychol Bull 104 (2): 163‐191, 1988.
 90.Cowan N. The magical number 4 in short‐term memory: A reconsideration of mental storage capacity. Behav Brain Sci 24 (1): 87‐114, 2001. discussion 114‐185.
 91.Cowan N. Working memory capacity. Psychol Press 260, 2005.
 92.Cowan N, AuBuchon AM. Short‐term memory loss over time without retroactive stimulus interference. Psychon Bull Rev 15 (1): 230‐235, 2008.
 93.Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA. Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci U S A 103 (24): 9315‐9320, 2006.
 94.Crowe DA, Averbeck BB, Chafee MV. Neural ensemble decoding reveals a correlate of viewer‐ to object‐centered spatial transformation in monkey parietal cortex. J Neurosci 28 (20): 5218‐5228, 2008.
 95.Crowe DA, Goodwin SJ, Blackman RK, Sakellaridi S, Sponheim SR, MacDonald AW 3rd, Chafee MV. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat Neurosci 16 (10): 1484‐1491, 2013.
 96.Curtis CE, D'Esposito M. The effects of prefrontal lesions on working memory performance and theory. Cogn Affect Behav Neurosci 4 (4): 528‐539, 2004.
 97.Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L. Transfer of learning after updating training mediated by the striatum. Science 320 (5882): 1510‐1512, 2008.
 98.Dang W, Jaffe RJ, Qi XL, and Constantinidis C Emergence of Non‐Linear Mixed Selectivity in Prefrontal Cortex after Training. BioRxiv doi.org/10.1101/2020.08.02.233247, 2020.
 99.Dash PK, Moore AN, Kobori N, Runyan JD. Molecular activity underlying working memory. Learn Mem 14 (8): 554‐563, 2007.
 100.Defelipe J, Gonzalez‐Albo MC, Del Rio MR, Elston GN. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412 (3): 515‐526, 1999.
 101.Desimone R, Albright TD, Gross CG, Bruce C. Stimulus‐selective properties of inferior temporal neurons in the macaque. J Neurosci 4 (8): 2051‐2062, 1984.
 102.Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci 18: 193‐222, 1995.
 103.D'Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond Ser B Biol Sci 362 (1481): 761‐772, 2007.
 104.D'Esposito M, Ballard D, Zarahn E, Aguirre GK. The role of prefrontal cortex in sensory memory and motor preparation: an event‐related fMRI study. NeuroImage 11 (5 Pt 1): 400‐408, 2000.
 105.D'Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol 66: 115‐142, 2015.
 106.Deubel H, Schneider WX. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vis Res 36 (12): 1827‐1837, 1996.
 107.di Pellegrino G, Wise SP. Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosens Mot Res 10 (3): 245‐262, 1993.
 108.Dias EC, Segraves MA. Muscimol‐induced inactivation of monkey frontal eye field: effects on visually and memory‐guided saccades. J Neurophysiol 81 (5): 2191‐2214, 1999.
 109.Diekamp B, Gagliardo A, Gunturkun O. Nonspatial and subdivision‐specific working memory deficits after selective lesions of the avian prefrontal cortex. J Neurosci 22 (21): 9573‐9580, 2002.
 110.Diekamp B, Kalt T, Gunturkun O. Working memory neurons in pigeons. J Neurosci 22 (4): RC210, 2002.
 111.Doherty JM, Logie RH. Resource‐sharing in multiple‐component working memory. Mem Cogn 44 (8): 1157‐1167, 2016.
 112.Donahue CH, Lee D. Dynamic routing of task‐relevant signals for decision making in dorsolateral prefrontal cortex. Nat Neurosci 18 (2): 295‐301, 2015.
 113.Druckmann S, Chklovskii DB. Neuronal circuits underlying persistent representations despite time varying activity. Curr Biol 22 (22): 2095‐2103, 2012.
 114.Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci 3 (Suppl): 1184‐1191, 2000.
 115.Edin F, Klingberg T, Johansson P, McNab F, Tegnér J, Compte A. Mechanism for top‐down control of working memory capacity. Proc Natl Acad Sci U S A 106 (16): 6802‐6807, 2009.
 116.Elliott LA, Strawhorn RJ. Interference in short‐term memory from vocalization: Aural versus visual modality differences. J Exp Psychol Hum Learn 2 (6): 705‐711, 1976.
 117.Elston GN. Pyramidal cells of the frontal lobe: All the more spinous to think with. J Neurosci 20 (18): RC95, 2000.
 118.Elston GN. The pyramidal neuron in occipital, temporal and prefrontal cortex of the owl monkey (Aotus trivirgatus): Regional specialization in cell structure. Eur J Neurosci 17 (6): 1313‐1318, 2003.
 119.Elston GN, Gonzalez‐Albo MC. Parvalbumin‐, calbindin‐, and calretinin‐immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): A standardized quantitative comparison with sensory and motor areas. Brain Behav Evol 62 (1): 19‐30, 2003.
 120.Emery NJ, Clayton NS. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science 306 (5703): 1903‐1907, 2004.
 121.Emery NJ, Clayton NS. Evolution of the avian brain and intelligence. Curr Biol 15 (23): R946‐R950, 2005.
 122.Eng HY, Chen D, Jiang Y. Visual working memory for simple and complex visual stimuli. Psychon Bull Rev 12 (6): 1127‐1133, 2005.
 123.Erlich JC, Bialek M, Brody CD. A cortical substrate for memory‐guided orienting in the rat. Neuron 72 (2): 330‐343, 2011.
 124.Esmaeili V, Diamond ME. Neuronal correlates of tactile working memory in prefrontal and vibrissal somatosensory cortex. Cell Rep 27 (11): 3167‐3181, 2019. e3165.
 125.Ester EF, Anderson DE, Serences JT, Awh E. A neural measure of precision in visual working memory. J Cogn Neurosci 25 (5): 754‐761, 2013.
 126.Ester EF, Sprague TC, Serences JT. Parietal and frontal cortex encode stimulus‐specific mnemonic representations during visual working memory. Neuron 87 (4): 893‐905, 2015.
 127.Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1 (1): 1‐47, 1991.
 128.Fiebig F, Lansner A. A spiking working memory model based on hebbian short‐term potentiation. J Neurosci 37 (1): 83‐96, 2017.
 129.Fischer J, Whitney D. Serial dependence in visual perception. Nat Neurosci 17 (5): 738‐743, 2014.
 130.Fish KN, Rocco BR, Lewis DA. Laminar distribution of subsets of GABAergic axon terminals in human prefrontal cortex. Front Neuroanat 12: 9, 2018.
 131.Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta‐analysis. Psychol Med 39 (6): 889‐905, 2009.
 132.Foster JJ, Bsales EM, Jaffe RJ, Awh E. Alpha‐band activity reveals spontaneous representations of spatial position in visual working memory. Curr Biol 27 (20): 3216‐3223, 2017. e3216.
 133.Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291 (5502): 312‐316, 2001.
 134.Freeman J, Simoncelli EP. Metamers of the ventral stream. Nat Neurosci 14 (9): 1195‐1201, 2011.
 135.Fry AF, Hale S. Relationships among processing speed, working memory, and fluid intelligence in children. Biol Psychol 54 (1‐3): 1‐34, 2000.
 136.Fujita I, Tanaka K, Ito M, Cheng K. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360 (6402): 343‐346, 1992.
 137.Fukuda K, Awh E, Vogel EK. Discrete capacity limits in visual working memory. Curr Opin Neurobiol 20 (2): 177‐182, 2010.
 138.Funahashi S. Functions of delay‐period activity in the prefrontal cortex and mnemonic scotomas revisited. Front Syst Neurosci 9: 2, 2015.
 139.Funahashi S, Bruce CJ, Goldman‐Rakic PS. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61 (2): 331‐349, 1989.
 140.Funahashi S, Bruce CJ, Goldman‐Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed‐response performance: Evidence for mnemonic “scotomas”. J Neurosci 13 (4): 1479‐1497, 1993.
 141.Funahashi S, Chafee MV, Goldman‐Rakic PS. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti‐saccade task. Nature 365 (6448): 753‐756, 1993.
 142.Fuster JM. Frontal lobe and cognitive development. J Neurocytol 31 (3‐5): 373‐385, 2002.
 143.Fuster JM, Alexander GE. Neuron activity related to short‐term memory. Science 173 (997): 652‐654, 1971.
 144.Fuster JM, Alexander GE. Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res 61: 79‐91, 1973.
 145.Fuster JM, Bodner M, Kroger JK. Cross‐modal and cross‐temporal association in neurons of frontal cortex. Nature 405 (6784): 347‐351, 2000.
 146.Fuster JM, Jervey JP. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212 (4497): 952‐955, 1981.
 147.Fuster JM, Jervey JP. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci 2 (3): 361‐375, 1982.
 148.Gabbott PL, Bacon SJ. Vasoactive intestinal polypeptide containing neurones in monkey medial prefrontal cortex (mPFC): Colocalisation with calretinin. Brain Res 744 (1): 179‐184, 1997.
 149.Gallace A, Spence C. The cognitive and neural correlates of tactile memory. Psychol Bull 135 (3): 380‐406, 2009.
 150.Garavan H, Kelley D, Rosen A, Rao SM, Stein EA. Practice‐related functional activation changes in a working memory task. Microsc Res Tech 51 (1): 54‐63, 2000.
 151.Garcia‐Cabezas MA, Joyce MKP, John YJ, Zikopoulos B, Barbas H. Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur J Neurosci 46 (8): 2392‐2405, 2017.
 152.Gardiner JM, Gawlik B, Richardson‐Klavehn A. Maintenance rehearsal affects knowing, not remembering; elaborative rehearsal affects remembering, not knowing. Psychon Bull Rev 1 (1): 107‐110, 1994.
 153.Gathercole SE, Pickering SJ, Ambridge B, Wearing H. The structure of working memory from 4 to 15 years of age. Dev Psychol 40 (2): 177‐190, 2004.
 154.Genovesio A, Tsujimoto S, Wise SP. Feature‐ and order‐based timing representations in the frontal cortex. Neuron 63 (2): 254‐266, 2009.
 155.Gerbella M, Borra E, Tonelli S, Rozzi S, Luppino G. Connectional heterogeneity of the ventral part of the macaque area 46. Cereb Cortex 23 (4): 967‐987, 2013.
 156.Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344 (6183): 1252304, 2014.
 157.Giguere M, Goldman‐Rakic PS. Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277: 195‐213, 1988.
 158.Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed by T1‐ and T2‐weighted MRI. J Neurosci 31 (32): 11597‐11616, 2011.
 159.Gnadt JW, Andersen RA. Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70 (1): 216‐220, 1988.
 160.Goelet P, Castellucci VF, Schacher S, Kandel ER. The long and the short of long‐term memory‐‐a molecular framework. Nature 322 (6078): 419‐422, 1986.
 161.Goldman‐Rakic PS. Modular organization of prefrontal cortex. Trends Neurosci 7 (11): 419‐424, 1984.
 162.Goldman‐Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242 (4): 535‐560, 1985.
 163.Gonzalez‐Burgos G, Miyamae T, Pafundo DE, Yoshino H, Rotaru DC, Hoftman G, Datta D, Zhang Y, Hammond M, Sampson AR, Fish KN, Ermentrout GB, Lewis DA. Functional maturation of GABA synapses during postnatal development of the monkey dorsolateral prefrontal cortex. Cereb Cortex 25 (11): 4076‐4093, 2015.
 164.Goodwin SJ, Blackman RK, Sakellaridi S, Chafee MV. Executive control over cognition: Stronger and earlier rule‐based modulation of spatial category signals in prefrontal cortex relative to parietal cortex. J Neurosci 32 (10): 3499‐3515, 2012.
 165.Gottlieb Y, Vaadia E, Abeles M. Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp Brain Res 74 (1): 139‐148, 1989.
 166.Goulas A, Stiers P, Hutchison RM, Everling S, Petrides M, Margulies DS. Intrinsic functional architecture of the macaque dorsal and ventral lateral frontal cortex. J Neurophysiol 117 (3): 1084‐1099, 2017.
 167.Granon S, Hardouin J, Courtier A, Poucet B. Evidence for the involvement of the rat prefrontal cortex in sustained attention. Q J Exp Psychol B 51 (3): 219‐233, 1998.
 168.Grill‐Spector K, Henson R, Martin A. Repetition and the brain: neural models of stimulus‐specific effects. Trends Cogn Sci 10 (1): 14‐23, 2006.
 169.Gross CG, Rocha‐Miranda CE, Bender DB. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35 (1): 96‐111, 1972.
 170.Gunturkun O. The avian 'prefrontal cortex' and cognition. Curr Opin Neurobiol 15 (6): 686‐693, 2005.
 171.Guo K, Yamawaki N, Svoboda K, Shepherd GMG. Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type‐specific circuits, forming an excitatory thalamo‐cortico‐thalamic loop via layer 1 apical tuft dendrites of layer 5B pyramidal tract type neurons. J Neurosci 38 (41): 8787‐8797, 2018.
 172.Haber SN, Kunishio K, Mizobuchi M, Lynd‐Balta E. The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15 (7 Pt 1): 4851‐4867, 1995.
 173.Hackett TA, Stepniewska I, Kaas JH. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817 (1‐2): 45‐58, 1999.
 174.Hadj‐Bouziane F, Meunier M, Boussaoud D. Conditional visuo‐motor learning in primates: a key role for the basal ganglia. J Physiol Paris 97 (4‐6): 567‐579, 2003.
 175.Hampson RE, Pons TP, Stanford TR, Deadwyler SA. Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. Proc Natl Acad Sci U S A 101 (9): 3184‐3189, 2004.
 176.Hampson RE, Simeral JD, Deadwyler SA. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402 (6762): 610‐614, 1999.
 177.Hannula H, Neuvonen T, Savolainen P, Hiltunen J, Ma Y‐Y, Antila H, Salonen O, Carlson S, Pertovaara A. Increasing top‐down suppression from prefrontal cortex facilitates tactile working memory. NeuroImage 49 (1): 1091‐1098, 2010.
 178.Hansel D, Mato G. Short‐term plasticity explains irregular persistent activity in working memory tasks. J Neurosci 33 (1): 133‐149, 2013.
 179.Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458 (7238): 632‐635, 2009.
 180.Hart E, Huk AC. Recurrent circuit dynamics underlie persistent activity in the macaque frontoparietal network. elife 9: e52460, 2020.
 181.Hazy TE, Frank MJ, O'Reilly RC. Banishing the homunculus: Making working memory work. Neuroscience 139 (1): 105‐118, 2006.
 182.Hempel A, Giesel FL, Garcia Caraballo NM, Amann M, Meyer H, Wüstenberg T, Essig M, Schröder J. Plasticity of cortical activation related to working memory during training. Am J Psychiatry 161 (4): 745‐747, 2004.
 183.Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB. Multiple forms of short‐term plasticity at excitatory synapses in rat medial prefrontal cortex. J Neurophysiol 83 (5): 3031‐3041, 2000.
 184.Herman RA, Zehr JL, Wallen K. Prenatal androgen blockade accelerates pubertal development in male rhesus monkeys. Psychoneuroendocrinology 31 (1): 118‐130, 2006.
 185.Hernandez A, Zainos A, Romo R. Temporal evolution of a decision‐making process in medial premotor cortex. Neuron 33 (6): 959‐972, 2002.
 186.Heyselaar E, Johnston K, Pare M. A change detection approach to study visual working memory of the macaque monkey. J Vis 11 (3), 2011.
 187.Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61 (4): 780‐798, 1989.
 188.Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61 (4): 814‐832, 1989.
 189.Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: Identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 37 (3): 493‐503, 2011.
 190.Holmes CD, Papadimitriou C, Snyder LH. Dissociation of LFP power and tuning in the frontal cortex during memory. J Neurosci 38 (38): 8177‐8186, 2018.
 191.Hoshi E, Shima K, Tanji J. Task‐dependent selectivity of movement‐related neuronal activity in the primate prefrontal cortex. J Neurophysiol 80 (6): 3392‐3397, 1998.
 192.Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cereb Cortex 5 (2): 95‐110, 1995.
 193.Hulme C, Maughan S, Brown G. Memory for familiar and unfamiliar words: Evidence for a long‐term memory contribution to short‐term memory span. J Mem Lang 30 (6): 685‐701, 1991.
 194.Huntenburg JM, Bazin P‐L, Goulas A, Tardif CL, Villringer A, Margulies DS. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb Cortex 27 (2): 981‐997, 2017.
 195.Hussar C, Pasternak T. Trial‐to‐trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task. Proc Natl Acad Sci U S A 107 (50): 21842‐21847, 2010.
 196.Hussar CR, Pasternak T. Memory‐guided sensory comparisons in the prefrontal cortex: Contribution of putative pyramidal cells and interneurons. J Neurosci 32 (8): 2747‐2761, 2012.
 197.Hussar CR, Pasternak T. Common rules guide comparisons of speed and direction of motion in the dorsolateral prefrontal cortex. J Neurosci 33 (3): 972‐986, 2013.
 198.Hwang J, Romanski LM. Prefrontal neuronal responses during audiovisual mnemonic processing. J Neurosci 35 (3): 960‐971, 2015.
 199.Ibos G, Duhamel JR, Ben Hamed S. A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J Neurosci 33 (19): 8359‐8369, 2013.
 200.Ifuku H, Hirata S, Nakamura T, Ogawa H. Neuronal activities in the monkey primary and higher‐order gustatory cortices during a taste discrimination delayed GO/NOGO task and after reversal. Neurosci Res 47 (2): 161‐175, 2003.
 201.Inoue M, Mikami A. Prefrontal activity during serial probe reproduction task: Encoding, mnemonic, and retrieval processes. J Neurophysiol 95 (2): 1008‐1041, 2006.
 202.Isbell E, Fukuda K, Neville HJ, Vogel EK. Visual working memory continues to develop through adolescence. Front Psychol 6: 696, 2015.
 203.Jacob SN, Nieder A. Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron 83 (1): 226‐237, 2014.
 204.Jacob SN, Stalter M, Nieder A. Cell‐type‐specific modulation of targets and distractors by dopamine D1 receptors in primate prefrontal cortex. Nat Commun 7: 13218, 2016.
 205.Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A 105 (19): 6829‐6833, 2008.
 206.Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A 105 (19): 6829‐6833, 2008.
 207.Janssen P, Srivastava S, Ombelet S, Orban GA. Coding of shape and position in macaque lateral intraparietal area. J Neurosci 28 (26): 6679‐6690, 2008.
 208.Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR. Cerebral structure on MRI, part I: Localization of age‐related changes. Biol Psychiatry 29 (1): 55‐67, 1991.
 209.Johnston M, Anderson C, Colombo M. Neural correlates of sample‐coding and reward‐coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behav Brain Res 317: 382‐392, 2017.
 210.Johnston M, Porter B, Colombo M. Delay activity in pigeon nidopallium caudolaterale during a variable‐delay memory task. Behav Neurosci 133 (6): 563‐568, 2019.
 211.Jolles DD, van Buchem MA, Crone EA, Rombouts SA. Functional brain connectivity at rest changes after working memory training. Hum Brain Mapp 34 (2): 396‐406, 2013.
 212.Jones EG, Dell'Anna ME, Molinari M, Rausell E, Hashikawa T. Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivity. J Comp Neurol 362 (2): 153‐170, 1995.
 213.Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. Spatial working memory in humans as revealed by PET. Nature 363 (6430): 623‐625, 1993.
 214.Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97 (22): 11793‐11799, 2000.
 215.Kadohisa M, Kusunoki M, Petrov P, Sigala N, Buckley MJ, Gaffan D, Duncan J. Spatial and temporal distribution of visual information coding in lateral prefrontal cortex. Eur J Neurosci 41 (1): 89‐96, 2015.
 216.Kahn JB, Ward RD, Kahn LW, Rudy NM, Kandel ER, Balsam PD, Simpson EH. Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learn Mem 19 (11): 513‐517, 2012.
 217.Kalt T, Diekamp B, Gunturkun O. Single unit activity during a Go/NoGo task in the "prefrontal cortex" of pigeons. Brain Res 839 (2): 263‐278, 1999.
 218.Kamigaki T, Dan Y. Delay activity of specific prefrontal interneuron subtypes modulates memory‐guided behavior. Nat Neurosci 20 (6): 854‐863, 2017.
 219.Kaminski J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat Neurosci 20 (4): 590‐601, 2017.
 220.Katsuki F, Constantinidis C. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 6: 17, 2012.
 221.Katsuki F, Qi X‐L, Meyer T, Kostelic PM, Salinas E, Constantinidis C. Differences in intrinsic functional organization between dorsolateral prefrontal and posterior parietal cortex. Cereb Cortex 24 (9): 2334‐2349, 2014.
 222.Kawagoe R, Takikawa Y, Hikosaka O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1 (5): 411‐416, 1998.
 223.Kermadi I, Joseph JP. Activity in the caudate nucleus of monkey during spatial sequencing. J Neurophysiol 74 (3): 911‐933, 1995.
 224.Kilpatrick ZP. Synaptic mechanisms of interference in working memory. Sci Rep 8 (1): 7879, 2018.
 225.Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci 2 (2): 176‐185, 1999.
 226.Kim R, Sejnowski TJ. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat Neurosci 24 (1): 129‐139, 2021.
 227.Kirsch JA, Gunturkun O, Rose J. Insight without cortex: lessons from the avian brain. Conscious Cogn 17 (2): 475‐483, 2008.
 228.Kliegl R, Smith J, Heckhausen J, Baltes PB. Mnemonic training for the acquisition of skilled digit memory. Cogn Instr 4 (4), 1987.
 229.Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlström K, Gillberg CG, Forssberg H, Westerberg H. Computerized training of working memory in children with ADHD‐‐a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry 44 (2): 177‐186, 2005.
 230.Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol 24 (6): 781‐791, 2002.
 231.Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol 24 (6): 781‐791, 2002.
 232.Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, Mainen ZF, Romo R, Qi X‐L, Uchida N, Machens CK. Demixed principal component analysis of population activity in higher cortical areas reveals independent representation of task parameters, arXiv:1410.6031, 2014.
 233.Koch C, Fuster JM. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76 (2): 292‐306, 1989.
 234.Konecky RO, Smith MA, Olson CR. Monkey prefrontal neurons during Sternberg task performance: full contents of working memory or most recent item? J Neurophysiol 117 (6): 2269‐2281, 2017.
 235.Kosaki H, Hashikawa T, He J, Jones EG. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386 (2): 304‐316, 1997.
 236.Kritzer MF, Goldman‐Rakic PS. Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359 (1): 131‐143, 1995.
 237.Kroner S, Gunturkun O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro‐ and anterograde pathway tracing study. J Comp Neurol 407 (2): 228‐260, 1999.
 238.Kuboshima‐Amemori S, Sawaguchi T. Plasticity of the primate prefrontal cortex. Neuroscientist 13 (3): 229‐240, 2007.
 239.Kubota K, Niki H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34 (3): 337‐347, 1971.
 240.Kuhn S, Schmiedek F, Noack H, Wenger E, Bodammer NC, Lindenberger U, Lövden M. The dynamics of change in striatal activity following updating training. Hum Brain Mapp 34 (7): 1530‐1541, 2013.
 241.Kumar S, Joseph S, Gander PE, Barascud N, Halpern AR, Griffiths TD. A brain system for auditory working memory. J Neurosci 36 (16): 4492‐4505, 2016.
 242.Kuo BC, Stokes MG, Murray AM, Nobre AC. Attention biases visual activity in visual short‐term memory. J Cogn Neurosci 26 (7): 1377‐1389, 2014.
 243.Kwon H, Reiss AL, Menon V. Neural basis of protracted developmental changes in visuo‐spatial working memory. Proc Natl Acad Sci U S A 99 (20): 13336‐13341, 2002.
 244.Lafer‐Sousa R, Conway BR. Parallel, multi‐stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16 (12): 1870‐1878, 2013.
 245.Lara AH, Kennerley SW, Wallis JD. Encoding of gustatory working memory by orbitofrontal neurons. J Neurosci 29 (3): 765‐774, 2009.
 246.Lara AH, Wallis JD. Capacity and precision in an animal model of visual short‐term memory. J Vis 12 (3), 2012.
 247.Lara AH, Wallis JD. Executive control processes underlying multi‐item working memory. Nat Neurosci 17 (6): 876‐883, 2014.
 248.Laroche S, Davis S, Jay TM. Plasticity at hippocampal to prefrontal cortex synapses: Dual roles in working memory and consolidation. Hippocampus 10 (4): 438‐446, 2000.
 249.Laubach M, Amarante LM, Swanson K, White SR. What, if anything, is rodent prefrontal cortex? eNeuro 5 (5), 2018.
 250.Lauwereyns J, Sakagami M, Tsutsui K, Kobayashi S, Koizumi M, Hikosaka O. Responses to task‐irrelevant visual features by primate prefrontal neurons. J Neurophysiol 86 (4): 2001‐2010, 2001.
 251.Leavitt ML, Mendoza‐Halliday D, Martinez‐Trujillo JC. Sustained activity encoding working memories: not fully distributed. Trends Neurosci 40 (6): 328‐346, 2017.
 252.Leavitt ML, Pieper F, Sachs AJ, Martinez‐Trujillo JC. A quadrantic bias in prefrontal representation of visual‐mnemonic space. Cereb Cortex: 1‐17, 2018.
 253.Lebedev MA, Messinger A, Kralik JD, Wise SP. Representation of attended versus remembered locations in prefrontal cortex. PLoS Biol 2, 2026 (11): e365. Epub 2004 Oct, 2004.
 254.LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521 (7553): 436‐444, 2015.
 255.Lee EY, Cowan N, Vogel EK, Rolan T, Valle‐Inclán F, Hackley SA. Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain 133 (9): 2677‐2689, 2010.
 256.Lemus L, Hernandez A, Romo R. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proc Natl Acad Sci U S A 106 (23): 9471‐9476, 2009.
 257.Leon MI, Shadlen MN. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24 (2): 415‐425, 1999.
 258.Levitt JB, Lewis DA, Yoshioka T, Lund JS. Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338 (3): 360‐376, 1993.
 259.Levitt P, Rakic P, Goldman‐Rakic P. Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis. J Comp Neurol 227 (1): 23‐36, 1984.
 260.Lewis DA. Development of the prefrontal cortex during adolescence: Insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16 (6): 385‐398, 1997.
 261.Li CS, Mazzoni P, Andersen RA. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. J Neurophysiol 81 (4): 1827‐1838, 1999.
 262.Li D, Constantinidis C, Murray JD. Trial‐to‐trial variability of spiking delay activity in prefrontal cortex constrains burst‐coding models of working memory. bioRxiv, 2020. DOI: 10.1101/2021.01.30.428962.
 263.Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of persistent activity and its constraints. Front Neural Circuits 14: 15, 2020.
 264.Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short‐term memory performance. Nat Neurosci 15 (3): 456‐462, 2012. S451‐452.
 265.Lisman JE, Grace AA. The hippocampal‐VTA loop: Controlling the entry of information into long‐term memory. Neuron 46 (5): 703‐713, 2005.
 266.Lisman JE, Idiart MA. Storage of 7 +/‐ 2 short‐term memories in oscillatory subcycles. Science 267 (5203): 1512‐1515, 1995.
 267.Liu R, Crawford J, Callahan PM, Terry AV Jr, Constantinidis C, Blake DT. Intermittent stimulation of the nucleus basalis of meynert improves working memory in adult monkeys. Curr Biol 7 (17): 2640‐2646, 2017.
 268.Liu Y, Yttri EA, Snyder LH. Intention and attention: different functional roles for LIPd and LIPv. Nat Neurosci 13 (4): 495‐500, 2010.
 269.Llinas R, Ribary U, Contreras D, Pedroarena C. The neuronal basis for consciousness. Philos Trans R Soc Lond Ser B Biol Sci 353 (1377): 1841‐1849, 1998.
 270.Llinas RR, Leznik E, Urbano FJ. Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: A voltage‐dependent dye‐imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99 (1): 449‐454, 2002.
 271.Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol 66: 735‐769, 2004.
 272.Lowet E, Gomes B, Srinivasan K, Zhou H, Schafer RJ, Desimone R. Enhanced neural processing by covert attention only during microsaccades directed toward the attended stimulus. Neuron 99 (1): 207‐214, 2018. e203.
 273.Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature 390 (6657): 279‐281, 1997.
 274.Luck SJ, Vogel EK. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn Sci 17 (8): 391‐400, 2013.
 275.Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA. Maturation of cognitive processes from late childhood to adulthood. Child Dev 75 (5): 1357‐1372, 2004.
 276.Lundqvist M, Herman P, Miller EK. Working memory: Delay activity, yes! persistent activity? Maybe not. J Neurosci 38 (32): 7013‐7019, 2018.
 277.Lundqvist M, Herman P, Warden MR, Brincat SL, Miller EK. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nat Commun 9 (1): 394, 2018.
 278.Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts underlie working memory. Neuron 90 (1): 152‐164, 2016.
 279.Luria R, Sessa P, Gotler A, Jolicoeur P, Dell'Acqua R. Visual short‐term memory capacity for simple and complex objects. J Cogn Neurosci 22 (3): 496‐512, 2010.
 280.Lyamzin D, Benucci A. The mouse posterior parietal cortex: Anatomy and functions. Neurosci Res 140: 14‐22, 2019.
 281.Machens CK, Romo R, Brody CD. Functional, but not anatomical, separation of "what" and "when" in prefrontal cortex. J Neurosci 30 (1): 350‐360, 2010.
 282.Magnussen S, Greenlee MW. Retention and disruption of motion information in visual short‐term memory. J Exp Psychol Learn Mem Cogn 18 (1): 151‐156, 1992.
 283.Magnussen S, Idas E, Myhre SH. Representation of orientation and spatial frequency in perception and memory: A choice reaction‐time analysis. J Exp Psychol Hum Percept Perform 24 (3): 707‐718, 1998.
 284.Malkova L, Heuer E, Saunders RC. Longitudinal magnetic resonance imaging study of rhesus monkey brain development. Eur J Neurosci 24 (11): 3204‐3212, 2006.
 285.Malmberg KJ, Raaijmakers JGW, Shiffrin RM. 50 Years of research sparked by Atkinson and Shiffrin (1968). Mem Cogn 47 (4): 561‐574, 2019.
 286.Mante V, Sussillo D, Shenoy KV, Newsome WT. Context‐dependent computation by recurrent dynamics in prefrontal cortex. Nature 503 (7474): 78‐84, 2013.
 287.Markowitz DA, Curtis CE, Pesaran B. Multiple component networks support working memory in prefrontal cortex. Proc Natl Acad Sci U S A 112 (35): 11084‐11089, 2015.
 288.Marshuetz C, Smith EE, Jonides J, DeGutis J, Chenevert TL. Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. J Cogn Neurosci 12 (Suppl 2): 130‐144, 2000.
 289.Martinussen R, Hayden J, Hogg‐Johnson S, Tannock R. A meta‐analysis of working memory impairments in children with attention‐deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 44 (4): 377‐384, 2005.
 290.Masse NY, Hodnefield JM, Freedman DJ. Mnemonic encoding and cortical organization in parietal and prefrontal cortices. J Neurosci 37 (25): 6098‐6112, 2017.
 291.Masse NY, Yang GR, Song HF, Wang XJ, Freedman DJ. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat Neurosci 22 (7): 1159‐1167, 2019.
 292.McEwen BS, Morrison JH. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79 (1): 16‐29, 2013.
 293.McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323 (5915): 800‐802, 2009.
 294.Mejias JF, Wang XJ. Mechanisms of distributed working memory in a large‐scale model of the macaque neocortex. BioRxiv: 760231, 2019.
 295.Melchitzky DS, Lewis DA. Dendritic‐targeting GABA neurons in monkey prefrontal cortex: comparison of somatostatin‐ and calretinin‐immunoreactive axon terminals. Synapse 62 (6): 456‐465, 2008.
 296.Mendoza‐Halliday D, Martinez‐Trujillo JC. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nat Commun 8: 15471, 2017.
 297.Mendoza‐Halliday D, Torres S, Martinez‐Trujillo JC. Sharp emergence of feature‐selective sustained activity along the dorsal visual pathway. Nat Neurosci 17 (9): 1255‐1262, 2014.
 298.Meskenaite V. Calretinin‐immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 379 (1): 113‐132, 1997.
 299.Meyer T, Qi XL, Constantinidis C. Persistent discharges in the prefrontal cortex of monkeys naive to working memory tasks. Cereb Cortex 17 (Suppl 1): i70‐i76, 2007.
 300.Meyer T, Qi XL, Stanford TR, Constantinidis C. Stimulus selectivity in dorsal and ventral prefrontal cortex after training in working memory tasks. J Neurosci 31 (17): 6266‐6276, 2011.
 301.Meyers EM, Qi XL, Constantinidis C. Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proc Natl Acad Sci U S A 109 (12): 4651‐4656, 2012.
 302.Michalareas G, Vezoli J, van Pelt S, Schoffelen J‐M, Kennedy H, Fries P. Alpha‐beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89 (2): 384‐397, 2016.
 303.Middleton FA, Strick PL. Basal‐ganglia 'projections' to the prefrontal cortex of the primate. Cereb Cortex 12 (9): 926‐935, 2002.
 304.Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167‐202, 2001.
 305.Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16 (16): 5154‐5167, 1996.
 306.Miller EK, Li L, Desimone R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254 (5036): 1377‐1379, 1991.
 307.Miller EK, Li L, Desimone R. Activity of neurons in anterior inferior temporal cortex during a short‐term memory task. J Neurosci 13 (4): 1460‐1478, 1993.
 308.Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron 100 (2): 463‐475, 2018.
 309.Miller GA. Plans and the Structure of Behavior. New York: Holt, 1960, p. 226.
 310.Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: Two cortical pathways. Trends Neurosci 6: 414‐417, 1983.
 311.Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn Psychol 41 (1): 49‐100, 2000.
 312.Miyashita Y, Chang HS. Neuronal correlate of pictorial short‐term memory in the primate temporal cortex. Nature 331 (6151): 68‐70, 1988.
 313.Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science 319 (5869): 1543‐1546, 2008.
 314.Montez D, Calabro F, Luna B. The expression of established cognitive brain states stabilizes with working memory development. elife 6: e25606, 2017.
 315.Montez DF, Calabro FJ, Luna B. Working memory improves developmentally as neural processes stabilize. PLoS One 14 (3): e0213010, 2019.
 316.Moreno‐Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information‐limiting correlations. Nat Neurosci 17 (10): 1410‐1417, 2014.
 317.Morris RG, Baddeley AD. Primary and working memory functioning in Alzheimer‐type dementia. J Clin Exp Neuropsychol 10 (2): 279‐296, 1988.
 318.Muir JL, Everitt BJ, Robbins TW. The cerebral cortex of the rat and visual attentional function: Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five‐choice serial reaction time task. Cereb Cortex 6 (3): 470‐481, 1996.
 319.Murray JD, Bernacchia A, Roy NA, Constantinidis C, Romo R, Wang X‐J. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc Natl Acad Sci U S A 114 (2): 394‐399, 2017.
 320.Nakamura K, Kubota K. Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J Neurophysiol 74 (1): 162‐178, 1995.
 321.Naya Y, Yoshida M, Miyashita Y. Backward spreading of memory‐retrieval signal in the primate temporal cortex. Science 291 (5504): 661‐664, 2001.
 322.Nieder A, Freedman DJ, Miller EK. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297 (5587): 1708‐1711, 2002.
 323.Niki H. Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res 68 (2): 185‐196, 1974.
 324.Norris D. Even an activated long‐term memory system still needs a separate short‐term store: A reply to Cowan (2019). Psychol Bull 145 (8): 848‐853, 2019.
 325.Noudoost B, Clark KL, Moore T. A distinct contribution of the frontal eye field to the visual representation of saccadic targets. J Neurosci 34 (10): 3687‐3698, 2014.
 326.Oberauer K. Working memory and attention – a conceptual analysis and review. J Cogn 2 (1): 36, 2019.
 327.Oberauer K. Is rehearsal an effective maintenance strategy for working memory? Trends Cogn Sci 23 (9): 798‐809, 2019.
 328.Offen S, Schluppeck D, Heeger DJ. The role of early visual cortex in visual short‐term memory and visual attention. Vis Res 49 (10): 1352‐1362, 2009.
 329.Olesen PJ, Macoveanu J, Tegner J, Klingberg T. Brain activity related to working memory and distraction in children and adults. Cereb Cortex 17 (5): 1047‐1054, 2007.
 330.Olesen PJ, Nagy Z, Westerberg H, Klingberg T. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto‐parietal network. Brain Res Cogn Brain Res 18 (1): 48‐57, 2003.
 331.Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7 (1): 75‐79, 2004.
 332.Ott T, Jacob SN, Nieder A. Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons. Neuron 84 (6): 1317‐1328, 2014.
 333.Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Howard RJ, Ballard CG. Putting brain training to the test. Nature 465 (7299): 775‐778, 2010.
 334.Owen AM, Stern CE, Look RB, Tracey I, Rosen BR, Petrides M. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci U S A 95 (13): 7721‐7726, 1998.
 335.Panichello MF, DePasquale B, Pillow JW, Buschman TJ. Error‐correcting dynamics in visual working memory. Nat Commun 10 (1): 3366, 2019.
 336.Pantelis C, Barnes TR, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW. Frontal‐striatal cognitive deficits in patients with chronic schizophrenia. Brain 120 (Pt 10): 1823‐1843, 1997.
 337.Papadimitriou C, Ferdoash A, Snyder LH. Ghosts in the machine: Memory interference from the previous trial. J Neurophysiol 113 (2): 567‐577, 2015.
 338.Papadimitriou C, Holmes CD, Snyder LH. Primate spatial memory cells become tuned early and lose tuning at cell‐specific times. Cereb Cortex, 2021.
 339.Park S, Holzman PS, Goldman‐Rakic PS. Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 52 (10): 821‐828, 1995.
 340.Parkin AJ. The central executive does not exist. J Int Neuropsychol Soc 4 (5): 518‐522, 1998.
 341.Parthasarathy A, Herikstad R, Bong JH, Medina FS, Libedinsky C, Yen S‐C. Mixed selectivity morphs population codes in prefrontal cortex. Nat Neurosci 20 (12): 1770‐1779, 2017.
 342.Parthasarathy A, Tang C, Herikstad R, Cheong LF, Yen S‐C, Libedinsky C. Time‐invariant working memory representations in the presence of code‐morphing in the lateral prefrontal cortex. Nat Commun 10 (1): 4995, 2019.
 343.Pashler H. Familiarity and visual change detection. Percept Psychophys 44 (4): 369‐378, 1988.
 344.Pasternak T, Greenlee MW. Working memory in primate sensory systems. Nat Rev Neurosci 6 (2): 97‐107, 2005.
 345.Peng X, Sereno ME, Silva AK, Lehky SR, Sereno AB. Shape selectivity in primate frontal eye field. J Neurophysiol 100 (2): 796‐814, 2008.
 346.Pertzov Y, Manohar S, Husain M. Rapid forgetting results from competition over time between items in visual working memory. J Exp Psychol Learn Mem Cogn 43 (4): 528‐536, 2017.
 347.Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5 (8): 805‐811, 2002.
 348.Petrides M. Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond ‐ Ser B: Biol Sci 351 (1346): 1455‐1461, 1996. discussion 1461‐1452.
 349.Petrides M. The role of the mid‐dorsolateral prefrontal cortex in working memory. Exp Brain Res 133 (1): 44‐54, 2000.
 350.Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond Ser B Biol Sci 360 (1456): 781‐795, 2005.
 351.Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228 (1): 105‐116, 1984.
 352.Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51 (9): 874‐887, 1994.
 353.Pinal D, Zurron M, Diaz F. Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: From perceptual analysis to post‐categorization processes. Front Hum Neurosci 8: 165, 2014.
 354.Plakke B, Hwang J, Romanski LM. Inactivation of primate prefrontal cortex impairs auditory and audiovisual working memory. J Neurosci 35 (26): 9666‐9675, 2015.
 355.Plakke B, Ng CW, Poremba A. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex. Neuroscience 244: 62‐76, 2013.
 356.Plancher G, Barrouillet P. On some of the main criticisms of the modal model: Reappraisal from a TBRS perspective. Mem Cogn 48 (3): 455‐468, 2020.
 357.Plant TM, Ramaswamy S, Simorangkir D, Marshall GR. Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann N Y Acad Sci 1061: 149‐162, 2005.
 358.Poeppel D, Adolfi F. Against the epistemological primacy of the hardware: The brain from inside out, turned upside down. eNeuro 7 (4), 2020.
 359.Popivanov ID, Jastorff J, Vanduffel W, Vogels R. Heterogeneous single‐unit selectivity in an fMRI‐defined body‐selective patch. J Neurosci 34 (1): 95‐111, 2014.
 360.Portrat S, Barrouillet P, Camos V. Time‐related decay or interference‐based forgetting in working memory? J Exp Psychol Learn Mem Cogn 34 (6): 1561‐1564, 2008.
 361.Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience 139 (1): 23‐38, 2006.
 362.Preuss TM. Do rats have prefrontal cortex? The rose‐woolsey‐akert program reconsidered. J Cogn Neurosci 7 (1): 1‐24, 1995.
 363.Preuss TM, Goldman‐Rakic PS. Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310 (4): 475‐506, 1991.
 364.Proctor R, Fagnani C. Effects of distractor‐stimulus modality in the Brown–Peterson distractor task. J Exp Psychol Hum Learn Mem 4 (6): 676‐684, 1978.
 365.Pucak ML, Levitt JB, Lund JS, Lewis DA. Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 376 (4): 614‐630, 1996.
 366.Puig MV, Miller EK. The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron 74 (5): 874‐886, 2012.
 367.Qi XL, Constantinidis C. Variability of prefrontal neuronal discharges before and after training in a working memory task. PLoS One 7 (7): e41053, 2012.
 368.Qi XL, Constantinidis C. Correlated discharges in the primate prefrontal cortex before and after working memory training. Eur J Neurosci 36 (11): 3538‐3548, 2012.
 369.Qi XL, Constantinidis C. Neural changes after training to perform cognitive tasks. Behav Brain Res 241: 235‐243, 2013.
 370.Qi XL, Elworthy AC, Lambert BC, Constantinidis C. Representation of remembered stimuli and task information in the monkey dorsolateral prefrontal and posterior parietal cortex. J Neurophysiol 113 (1): 44‐57, 2015.
 371.Qi XL, Katsuki F, Meyer T, Rawley JB, Zhou X, Douglas KL, Constantinidis C. Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Front Syst Neurosci 4: 12, 2010.
 372.Qi XL, Liu R, Vazdarjanova AI, Blake DT, Constantinidis C. Nucleus Basalis Stimulation Enhances Working Memory and Stabilizes Attractor Networks in Prefrontal Cortex. bioRxiv: 674465, 2019.
 373.Qi XL, Meyer T, Stanford TR, Constantinidis C. Changes in prefrontal neuronal activity after learning to perform a spatial working memory task. Cereb Cortex 21: 2722‐2732, 2011.
 374.Qi XL, Meyer T, Stanford TR, Constantinidis C. Neural correlates of a decision variable before learning to perform a Match/Nonmatch task. J Neurosci 32 (18): 6161‐6169, 2012.
 375.Qi XL, Meyer T, Stanford TR, Constantinidis C. Neural correlates of a decision variable before learning to perform a match/non‐match task. J Neurosci 32 (18): 6161‐6169, 2012.
 376.Qi XL, Zhou X, Constantinidis C. Neurophysiological Mechanisms of Working Memory: Cortical Specialization & Plasticity. In: Jolicoeur P, Lefebre C, Martinez‐Trujillo JC, editors. Attention and Performance XXV. London: Academic Press, 2015, p. 171‐186.
 377.Quintana J, Yajeya J, Fuster JM. Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross‐temporal integration of sensory and sensory‐motor information. Brain Res 474 (2): 211‐221, 1988.
 378.Raffone A, Wolters G. A cortical mechanism for binding in visual working memory. J Cogn Neurosci 13 (6): 766‐785, 2001.
 379.Rainer G, Asaad WF, Miller EK. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393 (6685): 577‐579, 1998.
 380.Rainer G, Asaad WF, Miller EK. Memory fields of neurons in the primate prefrontal cortex. Proc Natl Acad Sci U S A 95 (25): 15008‐15013, 1998.
 381.Rainer G, Miller EK. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27 (1): 179‐189, 2000.
 382.Rama P, Poremba A, Sala JB, Yee L, Malloy M, Mishkin M, Courtney SM. Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cereb Cortex 14 (7): 768‐780, 2004.
 383.Ranganath C, Cohen MX, Brozinsky CJ. Working memory maintenance contributes to long‐term memory formation: Neural and behavioral evidence. J Cogn Neurosci 17 (7): 994‐1010, 2005.
 384.Ranganath C, Johnson MK, D'Esposito M. Prefrontal activity associated with working memory and episodic long‐term memory. Neuropsychologia 41 (3): 378‐389, 2003.
 385.Rao SC, Rainer G, Miller EK. Integration of what and where in the primate prefrontal cortex. Science 276 (5313): 821‐824, 1997.
 386.Rao SG, Williams GV, Goldman‐Rakic PS. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: Evidence for microcolumnar organization in PFC. J Neurophysiol 81 (4): 1903‐1916, 1999.
 387.Rao SG, Williams GV, Goldman‐Rakic PS. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20 (1): 485‐494, 2000.
 388.Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268 (5207): 111‐114, 1995.
 389.Rawley JB, Constantinidis C. Neural correlates of learning and working memory in the primate posterior parietal cortex. Neurobiol Learn Mem 91: 129‐138, 2009.
 390.Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, Stephanie AW, Hough G, Kubikova L, Smulders TV, Wada K, Dugas‐Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Avian Brain Nomenclature Forum. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473 (3): 377‐414, 2004.
 391.Rigotti M, Barak O, Warden MR, Wang X‐J, Daw ND, Miller EK, Fusi S. The importance of mixed selectivity in complex cognitive tasks. Nature 497 (7451): 585‐590, 2013.
 392.Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front Syst Neurosci 9: 181, 2015.
 393.Riley MR, Constantinidis C. Role of prefrontal persistent activity in working memory. Front Syst Neurosci 9: 181, 2016.
 394.Riley MR, Qi XL, Constantinidis C. Functional specialization of areas along the anterior‐posterior axis of the primate prefrontal cortex. Cereb Cortex 27: 3683‐3697, 2017.
 395.Riley MR, Qi XL, Zhou X, Constantinidis C. Anterior‐posterior gradient of plasticity in primate prefrontal cortex. Nat Commun 9 (1): 3790, 2018.
 396.Rinnert P, Kirschhock ME, Nieder A. Neuronal correlates of spatial working memory in the endbrain of crows. Curr Biol 29 (16): 2616‐2624, 2019. e2614.
 397.Rodermund P, Westendorff S, Nieder A. Blockage of NMDA‐ and GABA(A) receptors improves working memory selectivity of primate prefrontal neurons. J Neurosci 40 (7): 1527‐1537, 2020.
 398.Roelfsema PR. The role of the different layers of primary visual cortex in working memory. J Vis 15 (12): 1406, 2015.
 399.Romanski LM, Bates JF, Goldman‐Rakic PS. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403 (2): 141‐157, 1999.
 400.Romanski LM, Giguere M, Bates JF, Goldman‐Rakic PS. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379 (3): 313‐332, 1997.
 401.Romanski LM, Goldman‐Rakic PS. An auditory domain in primate prefrontal cortex. Nat Neurosci 5 (1): 15‐16, 2002.
 402.Romanski LM, Tian B, Fritz J, Mishkin M, Goldman‐Rakic PS, Rauschecker JP. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2 (12): 1131‐1136, 1999.
 403.Romo R, Brody CD, Hernandez A, Lemus L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399 (6735): 470‐473, 1999.
 404.Romo R, Hernandez A, Zainos A, Lemus L, Brody CD. Neuronal correlates of decision‐making in secondary somatosensory cortex. Nat Neurosci 5 (11): 1217‐1225, 2002.
 405.Romo R, Salinas E. Flutter discrimination: Neural codes, perception, memory and decision making. Nat Rev Neurosci 4 (3): 203‐218, 2003.
 406.Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR. Reactivation of latent working memories with transcranial magnetic stimulation. Science 354 (6316): 1136‐1139, 2016.
 407.Rossi AF, Bichot NP, Desimone R, Ungerleider LG. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J Neurosci 27 (42): 11306‐11314, 2007.
 408.Rouder JN, Morey RD, Morey CC, Cowan N. How to measure working memory capacity in the change detection paradigm. Psychon Bull Rev 18 (2): 324‐330, 2011.
 409.Rouiller EM, Tanne J, Moret V, Boussaoud D. Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: A multiple retrograde tracing study. J Comp Neurol 409 (1): 131‐152, 1999.
 410.Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci 18 (1): 16‐25, 2014.
 411.Roy JE, Buschman TJ, Miller EK. PFC neurons reflect categorical decisions about ambiguous stimuli. J Cogn Neurosci 26 (6): 1283‐1291, 2014.
 412.Rubinstein JS, Meyer DE, Evans JE. Executive control of cognitive processes in task switching. J Exp Psychol Hum Percept Perform 27 (4): 763‐797, 2001.
 413.Ruchkin DS, Grafman J, Cameron K, Berndt RS. Working memory retention systems: A state of activated long‐term memory. Behav Brain Sci 26 (6): 709‐728, 2003. discussion 728‐777.
 414.Rushworth MF, Nixon PD, Eacott MJ, Passingham RE. Ventral prefrontal cortex is not essential for working memory. J Neurosci 17 (12): 4829‐4838, 1997.
 415.Rygula R, Walker SC, Clarke HF, Robbins TW, Roberts AC. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. J Neurosci 30 (43): 14552‐14559, 2010.
 416.Sakagami M, Ki T, Lauwereyns J, Koizumi M, Kobayashi S, Hikosaka O. A code for behavioral inhibition on the basis of color, but not motion, in ventrolateral prefrontal cortex of macaque monkey. J Neurosci 21 (13): 4801‐4808, 2001.
 417.Salazar RF, Dotson NM, Bressler SL, Gray CM. Content‐specific fronto‐parietal synchronization during visual working memory. Science 338 (6110): 1097‐1100, 2012.
 418.Sandhu R, Dyson BJ. Modality and task switching interactions using bi‐modal and bivalent stimuli. Brain Cogn 82 (1): 90‐99, 2013.
 419.Sarma A, Masse NY, Wang XJ, Freedman DJ. Task‐specific versus generalized mnemonic representations in parietal and prefrontal cortices. Nat Neurosci 19 (1): 143‐149, 2016.
 420.Sawaguchi T, Goldman‐Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251 (4996): 947‐950, 1991.
 421.Sawaguchi T, Goldman‐Rakic PS. The role of D1‐dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed‐response task. J Neurophysiol 71 (2): 515‐528, 1994.
 422.Sawaguchi T, Iba M. Prefrontal cortical representation of visuospatial working memory in monkeys examined by local inactivation with muscimol. J Neurophysiol 86 (4): 2041‐2053, 2001.
 423.Schneegans S, Bays PM. Drift in neural population activity causes working memory to deteriorate over time. J Neurosci 38 (21): 4859‐4869, 2018.
 424.Schneiders JA, Opitz B, Krick CM, Mecklinger A. Separating intra‐modal and across‐modal training effects in visual working memory: An fMRI investigation. Cereb Cortex 21 (11): 2555‐2564, 2011.
 425.Schurgin MW, Wixted JT, Brady TF. Psychophysical scaling reveals a unified theory of visual memory strength. Nat Hum Behav 4 (11): 1156‐1172, 2020.
 426.Schwaighofer M, Fischer F, Buhner M. Does working memory training transfer? A meta‐analysis including training conditions as moderators. Educ Psychol 50 (2): 138‐166, 2015.
 427.Schweizer S, Grahn J, Hampshire A, Mobbs D, Dalgleish T. Training the emotional brain: Improving affective control through emotional working memory training. J Neurosci 33 (12): 5301‐5311, 2013.
 428.Scott BB, Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. Fronto‐parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron 95 (2): 385‐398, 2017. e385.
 429.Scott BH, Mishkin M. Auditory short‐term memory in the primate auditory cortex. Brain Res 1640 (Pt B): 264‐277, 2016.
 430.Scott BH, Mishkin M, Yin P. Neural correlates of auditory short‐term memory in rostral superior temporal cortex. Curr Biol 24 (23): 2767‐2775, 2014.
 431.Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 98 (1): 301‐306, 2001.
 432.Selemon LD, Goldman‐Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5 (3): 776‐794, 1985.
 433.Selemon LD, Goldman‐Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8 (11): 4049‐4068, 1988.
 434.Selemon LD, Goldman‐Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8 (11): 4049‐4068, 1988.
 435.Sereno AB, Maunsell JH. Shape selectivity in primate lateral intraparietal cortex. Nature 395 (6701): 500‐503, 1998.
 436.Seung HS, Lee DD, Reis BY, Tank DW. Stability of the memory of eye position in a recurrent network of conductance‐based model neurons. Neuron 26 (1): 259‐271, 2000.
 437.Shanahan M, Bingman VP, Shimizu T, Wild M, Gunturkun O. Large‐scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front Comput Neurosci 7: 89, 2013.
 438.Shima K, Isoda M, Mushiake H, Tanji J. Categorization of behavioural sequences in the prefrontal cortex. Nature 445 (7125): 315‐318, 2007.
 439.Siegel M, Warden MR, Miller EK. Phase‐dependent neuronal coding of objects in short‐term memory. Proc Natl Acad Sci U S A 106 (50): 21341‐21346, 2009.
 440.Sigala N, Kusunoki M, Nimmo‐Smith I, Gaffan D, Duncan J. Hierarchical coding for sequential task events in the monkey prefrontal cortex. Proc Natl Acad Sci U S A 105 (33): 11969‐11974, 2008.
 441.Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415 (6869): 318‐320, 2002.
 442.Simmonds DJ, Hallquist MN, Luna B. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. NeuroImage, 2017.
 443.Simons DJ, Chabris CF. Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception 28 (9): 1059‐1074, 1999.
 444.Sinz FH, Pitkow X, Reimer J, Bethge M, Tolias AS. Engineering a less artificial intelligence. Neuron 103 (6): 967‐979, 2019.
 445.Sommer MA, Tehovnik EJ. Reversible inactivation of macaque frontal eye field. Exp Brain Res 116 (2): 229‐249, 1997.
 446.Soto D, Mantyla T, Silvanto J. Working memory without consciousness. Curr Biol 21 (22): R912‐R913, 2011.
 447.Soto D, Silvanto J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn Sci 18 (10): 520‐525, 2014.
 448.Sowell ER, Delis D, Stiles J, Jernigan TL. Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. J Int Neuropsychol Soc 7 (3): 312‐322, 2001.
 449.SP OS, Wilson FA, Goldman‐Rakic PS. Areal segregation of face‐processing neurons in prefrontal cortex. Science 278 (5340): 1135‐1138, 1997.
 450.SP OS, Wilson FA, Goldman‐Rakic PS. Face‐selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9 (5): 459‐475, 1999.
 451.Spaak E, Watanabe K, Funahashi S, Stokes MG. Stable and dynamic coding for working memory in primate prefrontal cortex. J Neurosci 37 (27): 6503‐6516, 2017.
 452.Sperling G. The Information Available in Brief Visual Presentations. Washington: American Psychological Association, 1960, p. 29.
 453.Sprague TC, Ester EF, Serences JT. Reconstructions of information in visual spatial working memory degrade with memory load. Curr Biol 24 (18): 2174‐2180, 2014.
 454.Sprague TC, Ester EF, Serences JT. Restoring latent visual working memory representations in human cortex. Neuron 91 (3): 694‐707, 2016.
 455.Spronk M, Vogel EK, Jonkman LM. Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. PLoS One 7 (8): e42262, 2012.
 456.Squire LR, Wixted JT. The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34: 259‐288, 2011.
 457.Sreenivasan KK, Vytlacil J, D'Esposito M. Distributed and dynamic storage of working memory stimulus information in extrastriate cortex. J Cogn Neurosci 26 (5): 1141‐1153, 2014.
 458.Stanley DA, Roy JE, Aoi MC, Kopell NJ, Miller EK. Low‐Beta Oscillations Turn Up the Gain During Category Judgments. Cereb Cortex 28 (1): 116‐130, 2018.
 459.Stein H, Barbosa J, Rosa‐Justicia M, Prades L, Morató A, Galan‐Gadea A, Ariño H, Martinez‐Hernandez E, Castro‐Fornieles J, Dalmau J, Compte A. Reduced serial dependence suggests deficits in synaptic potentiation in anti‐NMDAR encephalitis and schizophrenia. Nat Commun 11 (1): 4250, 2020.
 460.Steinmetz MA, Connor CE, Constantinidis C, McLaughlin JR. Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. J Neurophysiol 72 (2): 1020‐1023, 1994.
 461.Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 11 (4): 337‐346, 2001.
 462.Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78 (2): 364‐375, 2013.
 463.Subramaniam K, Luks TL, Fisher M, Simpson GV, Nagarajan S, Vinogradov S. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron 73 (4): 842‐853, 2012.
 464.Suchow JW, Fougnie D, Brady TF, Alvarez GA. Terms of the debate on the format and structure of visual memory. Atten Percept Psychophysiol 76 (7): 2071‐2079, 2014.
 465.Sugase‐Miyamoto Y, Liu Z, Wiener MC, Optican LM, Richmond BJ. Short‐term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput Biol 4 (5): e1000073, 2008.
 466.Sugihara T, Diltz MD, Averbeck BB, Romanski LM. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J Neurosci 26 (43): 11138‐11147, 2006.
 467.Super H, Spekreijse H, Lamme VA. A neural correlate of working memory in the monkey primary visual cortex. Science 293 (5527): 120‐124, 2001.
 468.Suzuki M, Gottlieb J. Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat Neurosci 16 (1): 98‐104, 2013.
 469.Swaminathan SK, Freedman DJ. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat Neurosci 15 (2): 315‐320, 2012.
 470.Sweller J. Working memory, long‐term memory, and instructional design. J Appl Res Mem Cogn 5 (4): 360‐367, 2016.
 471.Takeda K, Funahashi S. Prefrontal task‐related activity representing visual cue location or saccade direction in spatial working memory tasks. J Neurophysiol 87 (1): 567‐588, 2002.
 472.Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, Yamanouchi T, Suzuki S, Kawashima R. Training of working memory impacts structural connectivity. J Neurosci 30 (9): 3297‐3303, 2010.
 473.Takeuchi H, Taki Y, Nouchi R, Hashizume H, Sekiguchi A, Kotozaki Y, Nakagawa S, Miyauchi CM, Sassa Y, Kawashima R. Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex 49 (8): 2106‐2125, 2013.
 474.Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66 (1): 170‐189, 1991.
 475.Tang H, Qi XL, Riley MR, Constantinidis C. Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proc Natl Acad Sci U S A 116 (14): 7095‐7100, 2019.
 476.Tang H, Riley MR, Constantinidis C. Lateralization of executive function: Working memory advantage for same hemifield stimuli in the monkey. Front Neurosci 11: 532, 2017.
 477.Tanibuchi I, Goldman‐Rakic PS. Dissociation of spatial‐, object‐, and sound‐coding neurons in the mediodorsal nucleus of the primate thalamus. J Neurophysiol 89 (2): 1067‐1077, 2003.
 478.Thompson TW, Waskom ML, Gabrieli JD. Intensive working memory training produces functional changes in large‐scale frontoparietal networks. J Cogn Neurosci 28 (4): 575‐588, 2016.
 479.Todd JJ, Marois R. Capacity limit of visual short‐term memory in human posterior parietal cortex. Nature 428 (6984): 751‐754, 2004.
 480.Tong F, Pratte MS. Decoding patterns of human brain activity. Annu Rev Psychol 63: 483‐509, 2012.
 481.Torres‐Gomez S, Blonde JD, Mendoza‐Halliday D, Kuebler E, Everest M, Wang XJ, Inoue W, Poulter MO, Martinez‐Trujillo J. Changes in the proportion of inhibitory interneuron types from sensory to executive areas of the primate neocortex: Implications for the origins of working memory representations. Cereb Cortex 30 (8): 4544‐4562, 2020.
 482.Treue S, Maunsell JH. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382 (6591): 539‐541, 1996.
 483.Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. A cortical region consisting entirely of face‐selective cells. Science 311 (5761): 670‐674, 2006.
 484.Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci U S A 95 (3): 883‐890, 1998.
 485.Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, RJW M, editors. Analysis of Visual Behavior. Cambridge, MA: MIT Press, 1982, p. 549‐586.
 486.Unsworth N, Robison MK. Working memory capacity and sustained attention: A cognitive‐energetic perspective. J Exp Psychol Learn Mem Cogn 46 (1): 77‐103, 2020.
 487.Veit L, Hartmann K, Nieder A. Neuronal correlates of visual working memory in the corvid endbrain. J Neurosci 34 (23): 7778‐7786, 2014.
 488.Veit L, Nieder A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun 4: 2878, 2013.
 489.Vergara J, Rivera N, Rossi‐Pool R, Romo R. A neural parametric code for storing information of more than one sensory modality in working memory. Neuron, 2016.
 490.Verhaeghen P, Marcoen A. On the mechanisms of plasticity in young and older adults after instruction in the method of loci: Evidence for an amplification model. Psychol Aging 11 (1): 164‐178, 1996.
 491.Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. Inverted‐U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10 (3): 376‐384, 2007.
 492.Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capacity. Nature 428 (6984): 748‐751, 2004.
 493.Walker AE. A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59‐86, 1940.
 494.Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature 411 (6840): 953‐956, 2001.
 495.Wang L, Li X, Hsiao SS, Lenz FA, Bodner M, Zhou Y‐D, Fuster JM. Differential roles of delay‐period neural activity in the monkey dorsolateral prefrontal cortex in visual‐haptic crossmodal working memory. Proc Natl Acad Sci U S A 112 (2): E214‐E219, 2015.
 496.Wang M, Arnsten AF. Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates. Neurosci Bull 31 (2): 191‐197, 2015.
 497.Wang M, Gamo NJ, Yang Y, Jin LE, Wang X‐J, Laubach M, Mazer JA, Lee D, Arnsten AFT. Neuronal basis of age‐related working memory decline. Nature 476 (7359): 210‐213, 2011.
 498.Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AFT. Alpha2A‐adrenoceptors strengthen working memory networks by inhibiting cAMP‐HCN channel signaling in prefrontal cortex. Cell 129 (2): 397‐410, 2007.
 499.Wang M, Vijayraghavan S, Goldman‐Rakic PS. Selective D2 receptor actions on the functional circuitry of working memory. Science 303 (5659): 853‐856, 2004.
 500.Wang M, Wong AH, Liu F. Interactions between NMDA and dopamine receptors: A potential therapeutic target. Brain Res 1476: 154‐163, 2012.
 501.Wang M, Yang Y, Wang C‐J, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang X‐J, Arnsten AFT. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77 (4): 736‐749, 2013.
 502.Wang XJ. Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. J Neurosci 19 (21): 9587‐9603, 1999.
 503.Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24 (8): 455‐463, 2001.
 504.Wang XJ, Tegner J, Constantinidis C, Goldman‐Rakic PS. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A 101 (5): 1368‐1373, 2004.
 505.Wardak C, Olivier E, Duhamel JR. Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J Neurosci 22 (22): 9877‐9884, 2002.
 506.Wardak C, Olivier E, Duhamel JR. A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron 42 (3): 501‐508, 2004.
 507.Warden MR, Miller EK. The representation of multiple objects in prefrontal neuronal delay activity. Cereb Cortex 17 (Suppl 1): i41‐i50, 2007.
 508.Watanabe K, Funahashi S. Neural mechanisms of dual‐task interference and cognitive capacity limitation in the prefrontal cortex. Nat Neurosci 17 (4): 601‐611, 2014.
 509.Watanabe Y, Funahashi S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed‐responses. I. Cue‐, delay‐, and response‐period activity. J Neurophysiol 92 (3): 1738‐1755, 2004.
 510.Watanabe Y, Funahashi S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed‐responses. II. Activity encoding visual versus motor signal. Neurophysiology 92 (3): 1756‐1769, 2004.
 511.Westerberg H, Hirvikoski T, Forssberg H, Klingberg T. Visuo‐spatial working memory span: A sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychol 10 (3): 155‐161, 2004.
 512.Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson M‐L, Bartfai A, Klingberg T. Computerized working memory training after stroke‐‐a pilot study. Brain Inj 21 (1): 21‐29, 2007.
 513.White IM, Wise SP. Rule‐dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126 (3): 315‐335, 1999.
 514.White JM, Sparks DL, Stanford TR. Saccades to remembered target locations: An analysis of systematic and variable errors. Vis Res 34 (1): 79‐92, 1994.
 515.Whitney P, Arnett PA, Driver A, Budd D. Measuring central executive functioning: What's in a reading span? Brain Cogn 45 (1): 1‐14, 2001.
 516.Wickelgren WA. Acoustic similarity and intrusion errors in short‐term memory. J Exp Psychol 70: 102‐108, 1965.
 517.Wilke M, Kagan I, Andersen RA. Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys. Proc Natl Acad Sci U S A 109 (21): 8274‐8279, 2012.
 518.Williams GV, Goldman‐Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376 (6541): 572‐575, 1995.
 519.Wilson FA, O Scalaidhe SP, Goldman‐Rakic PS. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260 (5116): 1955‐1958, 1993.
 520.Wilson FA, Scalaidhe SP, Goldman‐Rakic PS. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260 (5116): 1955‐1958, 1993.
 521.Wimmer K, Nykamp DQ, Constantinidis C, Compte A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat Neurosci 17 (3): 431‐439, 2014.
 522.Wise SP, Murray EA, Gerfen CR. The frontal cortex‐basal ganglia system in primates. Crit Rev Neurobiol 10 (3&4): 317‐356, 1996.
 523.Wixted JT. Conditions and consequences of maintenance rehearsal. J Exp Psychol Learn Mem Cogn 17 (5): 963‐973, 1991.
 524.Woloszyn L, Sheinberg DL. Neural dynamics in inferior temporal cortex during a visual working memory task. J Neurosci 29 (17): 5494‐5507, 2009.
 525.Womelsdorf T, Fries P, Mitra PP, Desimone R. Gamma‐band synchronization in visual cortex predicts speed of change detection. Nature 439 (7077): 733‐736, 2006.
 526.Wutz A, Loonis R, Roy JE, Donoghue JA, Miller EK. Different Levels of Category Abstraction by Different Dynamics in Different Prefrontal Areas. Neuron 97 (3): 716‐726, 2018. e718.
 527.Xing Y, Ledgeway T, McGraw PV, Schluppeck D. Decoding working memory of stimulus contrast in early visual cortex. J Neurosci 33 (25): 10301‐10311, 2013.
 528.Yakovlev PI, Lecours AR, editors. The Myelogenetic Cycles of Regional Maturation of the Brain. Oxford: Blackwell, 1967, p. 3‐70.
 529.Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V‐VI rat prefrontal cortex neurons in vitro: Modulation of dendritic‐somatic signal integration. J Neurosci 16 (5): 1922‐1935, 1996.
 530.Yang GR, Joglekar MR, Song HF, Newsome WT, Wang XJ. Task representations in neural networks trained to perform many cognitive tasks. Nat Neurosci 22 (2): 297‐306, 2019.
 531.Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wanga M. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 110 (29): 12078‐12083, 2013.
 532.Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Brundin L, Druid H, Frisén J. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159 (4): 766‐774, 2014.
 533.Yokokura M, Takebasashi K, Takao A, Nakaizumi K, Yoshikawa E, Futatsubashi M, Suzuki K, Nakamura K, Yamasue H, Ouchi Y. In vivo imaging of dopamine D1 receptor and activated microglia in attention‐deficit/hyperactivity disorder: A positron emission tomography study. Mol Psychiatry, 2020.
 534.Zaksas D, Pasternak T. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J Neurosci 26 (45): 11726‐11742, 2006.
 535.Zhang WH, Williams ZM. Frontal neurons modulate memory retrieval across widely varying temporal scales. Learn Mem 22 (6): 299‐306, 2015.
 536.Zhao D, Zhou YD, Bodner M, Ku Y. The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory. Cereb Cortex 28 (10): 3468‐3477, 2018.
 537.Zhou X, Katsuki F, Qi XL, Constantinidis C. Neurons with inverted tuning during the delay periods of working memory tasks in the dorsal prefrontal and posterior parietal cortex. J Neurophysiol 108 (1): 31‐38, 2012.
 538.Zhou X, Qi X‐L, Douglas K, Palaninathan K, Kang HS, Buccafusco JJ, Blake DT, Constantinidis C. Cholinergic modulation of working memory activity in primate prefrontal cortex. J Neurophysiol 106 (5): 2180‐2188, 2011.
 539.Zhou X, Zhu D, Katsuki F, Qi X‐L, Lees CJ, Bennett AJ, Salinas E, Stanford TR, Constantinidis C. Age‐dependent changes in prefrontal intrinsic connectivity. Proc Natl Acad Sci U S A 111 (10): 3853‐3858, 2014.
 540.Zhou X, Zhu D, Qi X‐L, Lees CJ, Bennett AJ, Salinas E, Stanford TR, Constantinidis C. Working memory performance and neural activity in the prefrontal cortex of peri‐pubertal monkeys. J Neurophysiol 110: 2648‐2660, 2013.
 541.Zhou X, Zhu D, Qi X‐L, Li S, King SG, Salinas E, Terrence R, Stanford & Christos Constantinidis. Neural correlates of working memory development in adolescent primates. Nat Commun 7: 13423, 2016.
 542.Zhou YD, Fuster JM. Mnemonic neuronal activity in somatosensory cortex. Proc Natl Acad Sci U S A 93 (19): 10533‐10537, 1996.
 543.Zick JL, Blackman RK, Crowe DA, Amirikian B, DeNicola AL, Netoff TI, Chafee MV. Blocking NMDAR disrupts spike timing and decouples monkey prefrontal circuits: implications for activity‐dependent disconnection in schizophrenia. Neuron 98 (6): 1243‐1255, 2018. e1245.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Russell J. Jaffe, Christos Constantinidis. Working Memory: From Neural Activity to the Sentient Mind. Compr Physiol 2021, 11: 2547-2587. doi: 10.1002/cphy.c210005