Comprehensive Physiology Wiley Online Library

Modification of the Peripheral Olfactory System by Electronic Cigarettes

Full Article on Wiley Online Library



Abstract

Electronic cigarettes (e‐cigs) are used by millions of adolescents and adults worldwide. Commercial e‐liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e‐cig users. The flavorants in e‐liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e‐cigs. The vast majority of flavorants in e‐liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e‐cig aerosol contains a variety of by‐products generated through heating the e‐liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e‐cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e‐cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e‐cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621‐2644, 2021.

Figure 1. Figure 1. Chemical compounds in electronic cigarette (e‐cig) aerosol and routes to stimulate the main olfactory epithelium (MOE). Aerosol of e‐cig contains flavorants, nicotine, PG/VG, and thermal decomposition by‐products, such as formaldehyde and heavy metals (Cd, As, and Pb). These chemicals enter the nasal cavity and stimulate olfactory sensory epithelium through either the orthonasal (via the nostril, blue arrow) or the retronasal (through the mouse and back of the throat, pink arrow) route. The olfactory sensory epithelium houses olfactory sensory neurons. They detect flavorants and odorous irritants and toxicants in the aerosol and send sensory signals to the olfactory bulb which is the first brain station processing olfactory information. The output signals from the olfactory bulb are sent to other brain regions for further processing that gives rise to sensory perceptions of smell and flavor, and other cognitive functions including memory, reward, fear, and anxiety.
Figure 2. Figure 2. Peripheral olfactory sensory organs and OSN axonal targeting. (A) Internal structure of a mouse heminose, showing peripheral olfactory sensory organs and tissues: MOE, main olfactory epithelium (light blue area); GG, Grüeneberg ganglion; SO, the septal organ of Masera; and VNO, vomeronasal organ. MOB, main olfactory bulb. A, anterior; P, posterior; D, dorsal; V, ventral. (B) OSNs in the MOE project their axons to the MOB. Axon terminals of mature OSNs make synapses to the dendrites of output neuron mitral/tufted cells and interneurons (not shown) in the glomerulus. Individual OSNs in the drawing are color coded, indicating that they express only one type of OR. Axons of OSNs expressing the same OR converge and terminate at the same glomerulus. Modified, with permission, from Ogura T, et al., 2011 187 and drawing of Dr. Aaron Sathyanesan.
Figure 3. Figure 3. The main olfactory epithelium. (A) Image of a coronal section of a mouse olfactory turbinate, where main olfactory epithelium (MOE) lines on the surface of the nasal turbinate. Modified, with permission, from Dunston D, et al., 2013 56 . The cell layer structure of the MOE (blue box) is shown as an illustration in (B). (B) Illustration of cell types present in the main olfactory epithelium (MOE). The MOE is a pseudostratified structure made up primarily of OSNs, including both mature and immature OSNs, supporting cells (or sustentacular cells), basal cells, microvillous cells (MCs), and Bowman's glands (not shown). The schematic shows only the apically located transient receptor potential M5 (TRPM5)‐expressing MCs (TRPM5‐MCs). Courtesy of Dr. Aaron Sathyanesan.
Figure 4. Figure 4. Morphology of mature OSNs and the canonical olfactory signal transduction pathway. (A) Illustration of a mature OSN. The bipolar OSN has its apical dendrite reaching the MOE surface and its basal axon projecting to the olfactory bulb. The apical end of the dendrite forms a knob, from which 10 to 15 cilia emanate and extend into the mucus layer. Odor detection takes place at the cilia membrane where odor receptors (ORs) and the components of the signaling pathway are located. The olfactory signal transduction mechanism at the cilia membrane (blue box) is illustrated in (B). (B) The canonical olfactory signal transduction pathway. Odorants bind to an OR, which is coupled to a G‐protein which consists of G αolf , G β , and G γ subunits. Activated Gα olf then stimulates adenylate cyclase III (ACIII) to generate cAMP, which opens cyclic nucleotide‐gated (CNG) channel, resulting in membrane depolarization by Ca 2+ and Na + influx. Increased Ca 2+ opens Ca 2+ ‐activated Cl channel (ANO2), resulting in further depolarization and generation of action potentials. In some ONSs, Ca 2+ also activates TRPM5 channel (not shown in the drawing). Modified from Dr. Aaron Sathyanesan.
Figure 5. Figure 5. Cholinergic TRPM5‐expressing microvillous cells and cholinergic regulation in response to xenobiotics in the MOE. (A) GFP‐expressing microvillous cells imaged from a strip of MOE from a ChAT (BAC) ‐eGFP mouse. (B) Confocal image from a MOE section of a ChAT (BAC) ‐eGFP mouse labeled with an antibody against the neuronal marker PGP 9.5 to visualize olfactory sensory neurons (OSNs) (red). Note that the ChAT (GFP)‐expressing microvillous cells are not labeled by the PGP 9.5 antibody and are located in the superficial layer, which consists primarily of cell bodies of supporting cells. (C, D): Individual GFP‐expressing microvillous cells from ChAT (BAC) ‐eGFP and TRPM5‐GFP mice, respectively. An antibody against GFP was used to enhance the GFP signal at the apical microvilli. (E) Confocal image of TRPM5‐GFP‐expressing microvillous cell is overlaid with the image of immunoreactivity against vesicular ACh transporter (VAChT) antibody (red). The GFP fluorescence and VAChT immunoreactivity (red) are colocalized as shown in yellow. (F) Image of TRPM5 (GFP)‐expressing microvillous cell immunoreacted to an antibody against espin for labeling microvilli (red). Scales: A = 50 μm, B = 20 μm, C–F = 5 μm. Modified, with permission, from Ogura T, et al., 2011 187 . (G) Schematic illustration of a potential network of cholinergic regulation in the MOE. TRPM5‐MCs respond to xenobiotic stimulation and release ACh, which activates the surrounding supporting cells via M3‐ACh receptor and also suppresses OSN responsivity via M2/M4‐ACh receptors. Activated supporting cells metabolize or biotransform xenobiotics via enzymatic reactions. Suppressed OSN responsivity protects the cells from excess Ca 2+ load due to overreaction to high levels of odorous irritants. Panel G is a schematic model based on the data from Ogura T, et al., 2011 187 ; Lemons K, et al., 2020, 134,135 ; Fu Z, et al., 2018 72 ; AlMatrouk et al., 2018 3 .
Figure 6. Figure 6. Modification of the olfactory sensitivity by e‐cig exposure and potential behavior and health consequences. The olfactory sensory neurons detect both flavorants and nicotine. Flavorants in e‐cig induce satisfactory sensation which makes e‐cig products appealing. The olfactory sensitivity is quickly reduced by aerosol exposure during vaping and after repetitive stimulation due to sensory adaptation. To compensate for the reduced satisfaction or enjoyment associated with the decrease in olfactory sensitivity, users may seek more vaping exposure and/or select e‐liquids with strong flavors or switch to other products for compensation. The excess vaping and strong flavorants may over stimulate the olfactory sensory neurons and be toxic to the MOE which further reduces olfactory sensitivity due to additional toxic effects, which may also lead to olfactory dysfunction. To mask the harsh or irritating sensation, users may prefer e‐liquids containing soothing flavors such as menthol and mint.


Figure 1. Chemical compounds in electronic cigarette (e‐cig) aerosol and routes to stimulate the main olfactory epithelium (MOE). Aerosol of e‐cig contains flavorants, nicotine, PG/VG, and thermal decomposition by‐products, such as formaldehyde and heavy metals (Cd, As, and Pb). These chemicals enter the nasal cavity and stimulate olfactory sensory epithelium through either the orthonasal (via the nostril, blue arrow) or the retronasal (through the mouse and back of the throat, pink arrow) route. The olfactory sensory epithelium houses olfactory sensory neurons. They detect flavorants and odorous irritants and toxicants in the aerosol and send sensory signals to the olfactory bulb which is the first brain station processing olfactory information. The output signals from the olfactory bulb are sent to other brain regions for further processing that gives rise to sensory perceptions of smell and flavor, and other cognitive functions including memory, reward, fear, and anxiety.


Figure 2. Peripheral olfactory sensory organs and OSN axonal targeting. (A) Internal structure of a mouse heminose, showing peripheral olfactory sensory organs and tissues: MOE, main olfactory epithelium (light blue area); GG, Grüeneberg ganglion; SO, the septal organ of Masera; and VNO, vomeronasal organ. MOB, main olfactory bulb. A, anterior; P, posterior; D, dorsal; V, ventral. (B) OSNs in the MOE project their axons to the MOB. Axon terminals of mature OSNs make synapses to the dendrites of output neuron mitral/tufted cells and interneurons (not shown) in the glomerulus. Individual OSNs in the drawing are color coded, indicating that they express only one type of OR. Axons of OSNs expressing the same OR converge and terminate at the same glomerulus. Modified, with permission, from Ogura T, et al., 2011 187 and drawing of Dr. Aaron Sathyanesan.


Figure 3. The main olfactory epithelium. (A) Image of a coronal section of a mouse olfactory turbinate, where main olfactory epithelium (MOE) lines on the surface of the nasal turbinate. Modified, with permission, from Dunston D, et al., 2013 56 . The cell layer structure of the MOE (blue box) is shown as an illustration in (B). (B) Illustration of cell types present in the main olfactory epithelium (MOE). The MOE is a pseudostratified structure made up primarily of OSNs, including both mature and immature OSNs, supporting cells (or sustentacular cells), basal cells, microvillous cells (MCs), and Bowman's glands (not shown). The schematic shows only the apically located transient receptor potential M5 (TRPM5)‐expressing MCs (TRPM5‐MCs). Courtesy of Dr. Aaron Sathyanesan.


Figure 4. Morphology of mature OSNs and the canonical olfactory signal transduction pathway. (A) Illustration of a mature OSN. The bipolar OSN has its apical dendrite reaching the MOE surface and its basal axon projecting to the olfactory bulb. The apical end of the dendrite forms a knob, from which 10 to 15 cilia emanate and extend into the mucus layer. Odor detection takes place at the cilia membrane where odor receptors (ORs) and the components of the signaling pathway are located. The olfactory signal transduction mechanism at the cilia membrane (blue box) is illustrated in (B). (B) The canonical olfactory signal transduction pathway. Odorants bind to an OR, which is coupled to a G‐protein which consists of G αolf , G β , and G γ subunits. Activated Gα olf then stimulates adenylate cyclase III (ACIII) to generate cAMP, which opens cyclic nucleotide‐gated (CNG) channel, resulting in membrane depolarization by Ca 2+ and Na + influx. Increased Ca 2+ opens Ca 2+ ‐activated Cl channel (ANO2), resulting in further depolarization and generation of action potentials. In some ONSs, Ca 2+ also activates TRPM5 channel (not shown in the drawing). Modified from Dr. Aaron Sathyanesan.


Figure 5. Cholinergic TRPM5‐expressing microvillous cells and cholinergic regulation in response to xenobiotics in the MOE. (A) GFP‐expressing microvillous cells imaged from a strip of MOE from a ChAT (BAC) ‐eGFP mouse. (B) Confocal image from a MOE section of a ChAT (BAC) ‐eGFP mouse labeled with an antibody against the neuronal marker PGP 9.5 to visualize olfactory sensory neurons (OSNs) (red). Note that the ChAT (GFP)‐expressing microvillous cells are not labeled by the PGP 9.5 antibody and are located in the superficial layer, which consists primarily of cell bodies of supporting cells. (C, D): Individual GFP‐expressing microvillous cells from ChAT (BAC) ‐eGFP and TRPM5‐GFP mice, respectively. An antibody against GFP was used to enhance the GFP signal at the apical microvilli. (E) Confocal image of TRPM5‐GFP‐expressing microvillous cell is overlaid with the image of immunoreactivity against vesicular ACh transporter (VAChT) antibody (red). The GFP fluorescence and VAChT immunoreactivity (red) are colocalized as shown in yellow. (F) Image of TRPM5 (GFP)‐expressing microvillous cell immunoreacted to an antibody against espin for labeling microvilli (red). Scales: A = 50 μm, B = 20 μm, C–F = 5 μm. Modified, with permission, from Ogura T, et al., 2011 187 . (G) Schematic illustration of a potential network of cholinergic regulation in the MOE. TRPM5‐MCs respond to xenobiotic stimulation and release ACh, which activates the surrounding supporting cells via M3‐ACh receptor and also suppresses OSN responsivity via M2/M4‐ACh receptors. Activated supporting cells metabolize or biotransform xenobiotics via enzymatic reactions. Suppressed OSN responsivity protects the cells from excess Ca 2+ load due to overreaction to high levels of odorous irritants. Panel G is a schematic model based on the data from Ogura T, et al., 2011 187 ; Lemons K, et al., 2020, 134,135 ; Fu Z, et al., 2018 72 ; AlMatrouk et al., 2018 3 .


Figure 6. Modification of the olfactory sensitivity by e‐cig exposure and potential behavior and health consequences. The olfactory sensory neurons detect both flavorants and nicotine. Flavorants in e‐cig induce satisfactory sensation which makes e‐cig products appealing. The olfactory sensitivity is quickly reduced by aerosol exposure during vaping and after repetitive stimulation due to sensory adaptation. To compensate for the reduced satisfaction or enjoyment associated with the decrease in olfactory sensitivity, users may seek more vaping exposure and/or select e‐liquids with strong flavors or switch to other products for compensation. The excess vaping and strong flavorants may over stimulate the olfactory sensory neurons and be toxic to the MOE which further reduces olfactory sensitivity due to additional toxic effects, which may also lead to olfactory dysfunction. To mask the harsh or irritating sensation, users may prefer e‐liquids containing soothing flavors such as menthol and mint.
References
 1. Ache BW , Young JM . Olfaction: Diverse species, conserved principles . Neuron 48 : 417 ‐ 430 , 2005 . DOI: 10.1016/j.neuron.2005.10.022 .
 2. Al Mamun A , O'Callaghan FV , Alati R , O'Callaghan M , Najman JM , Williams GM , Bor W . Does maternal smoking during pregnancy predict the smoking patterns of young adult offspring? A birth cohort study . Tob Control 15 : 452 ‐ 457 , 2006 . DOI: 10.1136/tc.2006.016790 .
 3. AlMatrouk A , Lemons K , Ogura T , Luo W , Wilson C , Lin W . Chemical exposure‐induced changes in the expression of neurotrophins and their receptors in the main olfactory system of mice lacking TRPM5‐expressing microvillous cells . Int J Mol Sci 19 : 2939 , 2018 . DOI: 10.3390/ijms19102939 .
 4. Anic GM , Sawdey MD , Jamal A , Trivers KF . Frequency of use among middle and high school student tobacco product users ‐ United States, 2015‐2017 . MMWR Morb Mortal Wkly Rep 67 : 1353 ‐ 1357 , 2018 . DOI: 10.15585/mmwr.mm6749a1 .
 5. Arakawa H , Cruz S , Deak T . From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness‐associated states . Neurosci Biobehav Rev 35 : 1916 ‐ 1928 , 2011 . DOI: 10.1016/j.neubiorev.2011.03.007 .
 6. Armelin‐Correa LM , Malnic B . Combining in vivo and in vitro approaches to identify human odorant receptors responsive to food odorants . J Agric Food Chem 66 : 2214 ‐ 2218 , 2018 . DOI: 10.1021/acs.jafc.6b04998 .
 7. Arts JH , Rennen MA , de Heer C . Inhaled formaldehyde: Evaluation of sensory irritation in relation to carcinogenicity . Regul Toxicol Pharmacol 44 : 144 ‐ 160 , 2006 . DOI: 10.1016/j.yrtph.2005.11.006 .
 8. Bahl V , Lin S , Xu N , Davis B , Wang YH , Talbot P . Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models . Reprod Toxicol 34 : 529 ‐ 537 , 2012 . DOI: 10.1016/j.reprotox.2012.08.001 .
 9. Baker H , Farbman AI . Olfactory afferent regulation of the dopamine phenotype in the fetal rat olfactory system . Neuroscience 52 : 115 ‐ 134 , 1993 . DOI: 10.1016/0306‐4522(93)90187‐k .
 10. Bakulski KM , Seo YA , Hickman RC , Brandt D , Vadari HS , Hu H , Park SK . Heavy metals exposure and Alzheimer's disease and related dementias . J Alzheimers Dis 76 : 1215 ‐ 1242 , 2020 . DOI: 10.3233/JAD‐200282 .
 11. Behar RZ , Hua M , Talbot P . Puffing topography and nicotine intake of electronic cigarette users . PLoS One 10 : e0117222 , 2015 . DOI: 10.1371/journal.pone.0117222 .
 12. Behar RZ , Luo W , McWhirter KJ , Pankow JF , Talbot P . Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids . Sci Rep 8 : 8288 , 2018 . DOI: 10.1038/s41598‐018‐25575‐6 .
 13. Belluscio L , Gold GH , Nemes A , Axel R . Mice deficient in G(olf) are anosmic . Neuron 20 : 69 ‐ 81 , 1998 . DOI: 10.1016/s0896‐6273(00)80435‐3 .
 14. Bhatta DN , Glantz SA . Association of e‐cigarette use with respiratory disease among adults: A longitudinal analysis . Am J Prev Med 58 : 182 ‐ 190 , 2020 . DOI: 10.1016/j.amepre.2019.07.028 .
 15. Blount A , Coppola DM . The effect of odor enrichment on olfactory acuity: Olfactometric testing in mice using two mirror‐molecular pairs . PLoS One 15 : e0233250 , 2020 . DOI: 10.1371/journal.pone.0233250 .
 16. Bolt HM . Experimental toxicology of formaldehyde . J Cancer Res Clin Oncol 113 : 305 ‐ 309 , 1987 . DOI: 10.1007/BF00397713 .
 17. Bondier JR , Michel G , Propper A , Badot PM . Harmful effects of cadmium on olfactory system in mice . Inhal Toxicol 20 : 1169 ‐ 1177 , 2008 . DOI: 10.1080/08958370802207292 .
 18. Boylstein R , Piacitelli C , Grote A , Kanwal R , Kullman G , Kreiss K . Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production . J Occup Environ Hyg 3 : 530 ‐ 535 , 2006 . DOI: 10.1080/15459620600909708 .
 19. Bozza T , Feinstein P , Zheng C , Mombaerts P . Odorant receptor expression defines functional units in the mouse olfactory system . J Neurosci 22 : 3033 ‐ 3043 , 2002 .
 20. Brennan PA , Zufall F . Pheromonal communication in vertebrates . Nature 444 : 308 ‐ 315 , 2006 .
 21. Breunig E , Manzini I , Piscitelli F , Gutermann B , Di Marzo V , Schild D , Czesnik D . The endocannabinoid 2‐arachidonoyl‐glycerol controls odor sensitivity in larvae of Xenopus laevis . J Neurosci 30 : 8965 ‐ 8973 , 2010 . DOI: 10.1523/JNEUROSCI.4030‐09.2010 .
 22. Brunet LJ , Gold GH , Ngai J . General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide‐gated cation channel . Neuron 17 : 681 ‐ 693 , 1996 .
 23. Bryant B , Xu J , Audige V , Lischka FW , Rawson NE . Cellular basis for the olfactory response to nicotine . ACS Chem Neurosci 1 : 246 ‐ 256 , 2010 . DOI: 10.1021/cn900042c .
 24. Buck LB . Olfactory receptors and odor coding in mammals . Nutr Rev 62 : S184 ‐ S188 ; discussion S224–S141, 2004 .
 25. Buck LB . The search for odorant receptors . Cell 116 : S117 ‐ S119 , 111 p following S119, 2004 . DOI: 10.1016/s0092‐8674(04)00051‐0 .
 26. Buck LB . Unraveling the sense of smell (Nobel lecture) . Angew Chem Int Ed Engl 44 : 6128 ‐ 6140 , 2005 . DOI: 10.1002/anie.200501120 .
 27. Buka SL , Shenassa ED , Niaura R . Elevated risk of tobacco dependence among offspring of mothers who smoked during pregnancy: A 30‐year prospective study . Am J Psychiatry 160 : 1978 ‐ 1984 , 2003 . DOI: 10.1176/appi.ajp.160.11.1978 .
 28. Cadiou H , Aoude I , Tazir B , Molinas A , Fenech C , Meunier N , Grosmaitre X . Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level . J Neurosci 34 : 4857 ‐ 4870 , 2014 . DOI: 10.1523/JNEUROSCI.0688‐13.2014 .
 29. Caggiano M , Kauer JS , Hunter DD . Globose basal cells are neuronal progenitors in the olfactory epithelium: A lineage analysis using a replication‐incompetent retrovirus . Neuron 13 : 339 ‐ 352 , 1994 . DOI: 0896‐6273(94)90351‐4.
 30. Cain WS , Schmidt R , Wolkoff P . Olfactory detection of ozone and D‐limonene: Reactants in indoor spaces . Indoor Air 17 : 337 ‐ 347 , 2007 . DOI: 10.1111/j.1600‐0668.2007.00476.x .
 31. Carter LA , Roskams AJ . Neurotrophins and their receptors in the primary olfactory neuraxis . Microsc Res Tech 58 : 189 ‐ 196 , 2002 . DOI: 10.1002/jemt.10148 .
 32. CDC . Smoking & tabacco use, fast facts . 2021 . https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm#cigarette‐smoking .
 33. Ceni C , Unsain N , Zeinieh MP , Barker PA . Neurotrophins in the regulation of cellular survival and death . Handb Exp Pharmacol 220 : 193 ‐ 221 , 2014 . DOI: 10.1007/978‐3‐642‐45106‐5_8 .
 34. Cerf‐Ducastel B , Murphy C . fMRI activation in response to odorants orally delivered in aqueous solutions . Chem Senses 26 : 625 ‐ 637 , 2001 . DOI: 10.1093/chemse/26.6.625 .
 35. Cerf‐Ducastel B , Van de Moortele PF , MacLeod P , Le Bihan D , Faurion A . Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: A functional magnetic resonance imaging study . Chem Senses 26 : 371 ‐ 383 , 2001 . DOI: 10.1093/chemse/26.4.371 .
 36. Challis RC , Tian H , Wang J , He J , Jiang J , Chen X , Yin W , Connelly T , Ma L , Yu CR , Pluznick JL , Storm DR , Huang L , Zhao K , Ma M . An olfactory cilia pattern in the mammalian nose ensures high sensitivity to odors . Curr Biol 25 : 2503 ‐ 2512 , 2015 . DOI: 10.1016/j.cub.2015.07.065 .
 37. Chen M , Tian S , Yang X , Lane AP , Reed RR , Liu H . Wnt‐responsive Lgr5(+) globose basal cells function as multipotent olfactory epithelium progenitor cells . J Neurosci 34 : 8268 ‐ 8276 , 2014 . DOI: 10.1523/JNEUROSCI.0240‐14.2014 .
 38. Chen X , Fang H , Schwob JE . Multipotency of purified, transplanted globose basal cells in olfactory epithelium . J Comp Neurol 469 : 457 ‐ 474 , 2004 . DOI: 10.1002/cne.11031 .
 39. Chen Y , Getchell ML , Ding X , Getchell TV . Immunolocalization of two cytochrome P450 isozymes in rat nasal chemosensory tissue . Neuroreport 3 : 749 ‐ 752 , 1992 .
 40. Cheng T . Chemical evaluation of electronic cigarettes . Tob Control 23 ( Suppl 2 ): ii11 ‐ ii17 , 2014 . DOI: 10.1136/tobaccocontrol‐2013‐051482 .
 41. Choi H , Schmidbauer N , Spengler J , Bornehag CG . Sources of propylene glycol and glycol ethers in air at home . Int J Environ Res Public Health 7 : 4213 ‐ 4237 , 2010 . DOI: 10.3390/ijerph7124213 .
 42. Choi JM , Kim SS , Choi CI , Cha HL , Oh HH , Ghil S , Lee YD , Birnbaumer L , Suh‐Kim H . Development of the main olfactory system and main olfactory epithelium‐dependent male mating behavior are altered in Go‐deficient mice . Proc Natl Acad Sci U S A 113 : 10974 ‐ 10979 , 2016 . DOI: 10.1073/pnas.1613026113 .
 43. Clapp PW , Pawlak EA , Lackey JT , Keating JE , Reeber SL , Glish GL , Jaspers I . Flavored e‐cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function . Am J Physiol Lung Cell Mol Physiol 313 : L278 ‐ L292 , 2017 . DOI: 10.1152/ajplung.00452.2016 .
 44. Cometto‐Muniz JE , Cain WS . Thresholds for odor and nasal pungency . Physiol Behav 48 : 719 ‐ 725 , 1990 .
 45. Cooper KW , Brann DH , Farruggia MC , Bhutani S , Pellegrino R , Tsukahara T , Weinreb C , Joseph PV , Larson ED , Parma V , Albers MW , Barlow LA , Datta SR , Di Pizio A . COVID‐19 and the chemical senses: Supporting players take center stage . Neuron 107 : 219 ‐ 233 , 2020 . DOI: 10.1016/j.neuron.2020.06.032 .
 46. Correia‐Alvarez E , Keating JE , Glish G , Tarran R , Sassano MF . Reactive oxygen species, mitochondrial membrane potential, and cellular membrane potential are predictors of e‐liquid induced cellular toxicity . Nicotine Tob Res 22 : S4 ‐ S13 , 2020 . DOI: 10.1093/ntr/ntaa177 .
 47. Costanzo RM , Morrison EE . Three‐dimensional scanning electron microscopic study of the normal hamster olfactory epithelium . J Neurocytol 18 : 381 ‐ 391 , 1989 . DOI: 10.1007/BF01190841 .
 48. Critchley HD , Rolls ET . Olfactory neuronal responses in the primate orbitofrontal cortex: Analysis in an olfactory discrimination task . J Neurophysiol 75 : 1659 ‐ 1672 , 1996 . DOI: 10.1152/jn.1996.75.4.1659 .
 49. Cygnar KD , Collins SE , Ferguson CH , Bodkin‐Clarke C , Zhao H . Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice . J Neurosci 32 : 14557 ‐ 14562 , 2012 . DOI: 10.1523/JNEUROSCI.0559‐12.2012 .
 50. Dawson TM , Arriza JL , Jaworsky DE , Borisy FF , Attramadal H , Lefkowitz RJ , Ronnett GV . Beta‐adrenergic receptor kinase‐2 and beta‐arrestin‐2 as mediators of odorant‐induced desensitization . Science 259 : 825 ‐ 829 , 1993 . DOI: 10.1126/science.8381559 .
 51. Di Pede C , Viegi G , Taddeucci R , Landuccie C , Settmi L , Paggiaro PO . Biological monitoring of work exposure to furfural . Arch Environ Health 46 : 125 ‐ 126 , 1991 .
 52. Dias BG , Ressler KJ . Parental olfactory experience influences behavior and neural structure in subsequent generations . Nat Neurosci 17 : 89 ‐ 96 , 2014 . DOI: 10.1038/nn.3594 .
 53. Dorman DC , Struve MF , Wong BA , Gross EA , Parkinson C , Willson GA , Tan YM , Campbell JL , Teeguarden JG , Clewell HJ 3rd , Andersen ME . Derivation of an inhalation reference concentration based upon olfactory neuronal loss in male rats following subchronic acetaldehyde inhalation . Inhal Toxicol 20 : 245 ‐ 256 , 2008 . DOI: 10.1080/08958370701864250 .
 54. Doty RL , Brugger WE , Jurs PC , Orndorff MA , Snyder PJ , Lowry LD . Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans . Physiol Behav 20 : 175 ‐ 185 , 1978 .
 55. Doyle KL , Khan M , Cunningham AM . Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium . J Comp Neurol 437 : 186 ‐ 195 , 2001 . DOI: 10.1002/cne.1278 .
 56. Dunston D , Ashby S , Krosnowski K , Ogura T , Lin W . An effective manual deboning method to prepare intact mouse nasal tissue with preserved anatomical organization . J Vis Exp 78 : e50538 , 2013 . DOI: 10.3791/50538 .
 57. Dutra LM , Grana R , Glantz SA . Philip Morris research on precursors to the modern e‐cigarette since 1990 . Tob Control 26 : e97 ‐ e105 , 2017 . DOI: 10.1136/tobaccocontrol‐2016‐053406 .
 58. Dzeja C , Hagen V , Kaupp UB , Frings S . Ca 2+ permeation in cyclic nucleotide‐gated channels . EMBO J 18 : 131 ‐ 144 , 1999 . DOI: 10.1093/emboj/18.1.131 .
 59. El‐Hellani A , Salman R , El‐Hage R , Talih S , Malek N , Baalbaki R , Karaoghlanian N , Nakkash R , Shihadeh A , Saliba NA . Nicotine and carbonyl emissions from popular electronic cigarette products: Correlation to liquid composition and design characteristics . Nicotine Tob Res 20 : 215 ‐ 223 , 2018 . DOI: 10.1093/ntr/ntw280 .
 60. Elsaesser R , Montani G , Tirindelli R , Paysan J . Phosphatidyl‐inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium . Eur J Neurosci 21 : 2692 ‐ 2700 , 2005 .
 61. Elsner RJ . Environment and medication use influence olfactory abilities of older adults . J Nutr Health Aging 5 : 5 ‐ 10 , 2001 .
 62. Erythropel HC , Jabba SV , DeWinter TM , Mendizabal M , Anastas PT , Jordt SE , Zimmerman JB . Formation of flavorant‐propylene glycol adducts with novel toxicological properties in chemically unstable e‐cigarette liquids . Nicotine Tob Res 21 : 1248 ‐ 1258 , 2019 . DOI: 10.1093/ntr/nty192 .
 63. Farbman AI . Cell Biology of Olfaction . Cambridge : Cambridge University Press , 1992 .
 64. Farsalinos K . Electronic cigarettes: An aid in smoking cessation, or a new health hazard? Ther Adv Respir Dis 12 : 1753465817744960 , 2018 . DOI: 10.1177/1753465817744960 .
 65. Farsalinos KE , Kistler KA , Gillman G , Voudris V . Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins . Nicotine Tob Res 17 : 168 ‐ 174 , 2015 . DOI: 10.1093/ntr/ntu176 .
 66. Farsalinos KE , Romagna G , Tsiapras D , Kyrzopoulos S , Spyrou A , Voudris V . Impact of flavour variability on electronic cigarette use experience: An internet survey . Int J Environ Res Public Health 10 : 7272 ‐ 7282 , 2013 . DOI: 10.3390/ijerph10127272 .
 67. Farsalinos KE , Romagna G , Tsiapras D , Kyrzopoulos S , Voudris V . Characteristics, perceived side effects and benefits of electronic cigarette use: A worldwide survey of more than 19,000 consumers . Int J Environ Res Public Health 11 : 4356 ‐ 4373 , 2014 . DOI: 10.3390/ijerph110404356 .
 68. FEMA . Safety assessment and regulatory authority to use flavors– focus on electronic nicotine delivery systems and flavored tobacco products . wwwFEMAorg (revised 2016). 2013 . https://www.femaflavor.org/sites/default/files/FEMAGRAS%20Ecig%20092616.pdf
 69. Feron VJ , Arts JH , Kuper CF , Slootweg PJ , Woutersen RA . Health risks associated with inhaled nasal toxicants . Crit Rev Toxicol 31 : 313 ‐ 347 , 2001 . DOI: 10.1080/20014091111712 .
 70. Finger TE , Bottger B , Hansen A , Anderson KT , Alimohammadi H , Silver WL . Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration . Proc Natl Acad Sci U S A 100 : 8981 ‐ 8986 , 2003 . DOI: 10.1073/pnas.1531172100 .
 71. Firestein S . How the olfactory system makes sense of scents . Nature 413 : 211 ‐ 218 , 2001 . DOI: 10.1038/35093026 .
 72. Fu Z , Ogura T , Luo W , Lin W . ATP and odor mixture activate TRPM5‐expressing microvillous cells and potentially induce acetylcholine release to enhance supporting cell endocytosis in mouse main olfactory epithelium . Front Cell Neurosci 12 : 71 , 2018 . DOI: 10.3389/fncel.2018.00071 .
 73. Genovese F , Tizzano M . Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade . PLoS One 13 : e0202754 , 2018 . DOI: 10.1371/journal.pone.0202754 .
 74. Genter MB , Doty RL . Toxic exposures and the senses of taste and smell . Handb Clin Neurol 164 : 389 ‐ 408 , 2019 . DOI: 10.1016/B978‐0‐444‐63855‐7.00022‐8 .
 75. Gerloff J , Sundar IK , Freter R , Sekera ER , Friedman AE , Robinson R , Pagano T , Rahman I . Inflammatory response and barrier dysfunction by different e‐cigarette flavoring chemicals identified by gas chromatography‐mass spectrometry in e‐liquids and e‐vapors on human lung epithelial cells and fibroblasts . Appl In Vitro Toxicol 3 : 28 ‐ 40 , 2017 . DOI: 10.1089/aivt.2016.0030 .
 76. Gesteland RC , Yancey RA , Farbman AI . Development of olfactory receptor neuron selectivity in the rat fetus . Neuroscience 7 : 3127 ‐ 3136 , 1982 . DOI: 10.1016/0306‐4522(82)90235‐4 .
 77. Gilbert HA . Smokeless non‐tabacco cigarette . United States Patent US3200819A , 1963 . https://patents.google.com/patent/US3200819A/en
 78. Gillman IG , Pennington ASC , Humphries KE , Oldham MJ . Determining the impact of flavored e‐liquids on aldehyde production during vaping . Regul Toxicol Pharmacol 112 : 104588 , 2020 . DOI: 10.1016/j.yrtph.2020.104588 .
 79. Goldstein BJ , Schwob JE . Analysis of the globose basal cell compartment in rat olfactory epithelium using GBC‐1, a new monoclonal antibody against globose basal cells . J Neurosci 16 : 4005 ‐ 4016 , 1996 .
 80. Gozen ED , Aliyeva C , Tevetoglu F , Karaali R , Balkan II , Yener HM , Ozdogan HA . Evaluation of olfactory function with objective tests in COVID‐19‐positive patients: A cross‐sectional study . Ear Nose Throat J 100 : 169S ‐ 173S , 2021 . DOI: 10.1177/0145561320975510 .
 81. Gravely S , Cummings KM , Hammond D , Lindblom E , Smith DM , Martin N , Loewen R , Borland R , Hyland A , Thompson ME , Boudreau C , Kasza K , Ouimet J , Quah ACK , O'Connor RJ , Fong GT . The association of e‐cigarette flavors with satisfaction, enjoyment, and trying to quit or stay abstinent from smoking among regular adult vapers from Canada and the United States: Findings from the 2018 ITC four country smoking and vaping survey . Nicotine Tob Res 22 : 1831 ‐ 1841 , 2020 . DOI: 10.1093/ntr/ntaa095 .
 82. Graziadei GA , Graziadei PP . Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy . J Neurocytol 8 : 197 ‐ 213 , 1979 . DOI: 10.1007/BF01175561 .
 83. Green LW , Fielding JE , Brownson RC . The debate about electronic cigarettes: Harm minimization or the precautionary principle . Annu Rev Public Health 39 : 189 ‐ 191 , 2018 . DOI: 10.1146/annurev‐publhealth‐102417‐124810 .
 84. Gucht DV , Adriaens K , Baeyens F . Online vape shop customers who use e‐cigarettes report abstinence from smoking and improved quality of life, but a substantial minority still have vaping‐related health concerns . Int J Environ Res Public Health 14 , 2017 . DOI: 10.3390/ijerph14070798 .
 85. Hannum ME , Ramirez VA , Lipson SJ , Herriman RD , Toskala AK , Lin C , Joseph PV , Reed DR . Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID‐19‐positive patients compared to subjective methods: A systematic review and meta‐analysis . Chem Senses 45 : 865 ‐ 874 , 2020 . DOI: 10.1093/chemse/bjaa064 .
 86. Hansen A , Finger TE . Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice . BMC Neurosci 9 : 115 , 2008 .
 87. Harvanko AM , Havel CM , Jacob P , Benowitz NL . Characterization of nicotine salts in 23 electronic cigarette refill liquids . Nicotine Tob Res 22 : 1239 ‐ 1243 , 2019 . DOI: 10.1093/ntr/ntz232 .
 88. Harvey RR , Blackley BH , Korbach EJ , Rawal AX , Roggli VL , Bailey RL , Cox‐Ganser JM , Cummings KJ . Case report: Flavoring‐related lung disease in a coffee roasting and packaging facility worker with unique lung histopathology compared with previously described cases of obliterative bronchiolitis . Front Public Health 9 : 657987 , 2021 . DOI: 10.3389/fpubh.2021.657987 .
 89. Hastings L , Miller ML . Influence of environmental toxicants on olfactory function . In: Doty RL , editor. Handbook of Olfaction and Gustation ( 2nd ed). New York : Marcel Dekker , 2003 , p. 951 ‐ 980 .
 90. Havermans A , Krusemann EJZ , Pennings J , de Graaf K , Boesveldt S , Talhout R . Nearly 20 000 e‐liquids and 250 unique flavour descriptions: an overview of the Dutch market based on information from manufacturers . Tob Control , 2019 . DOI: 10.1136/tobaccocontrol‐2019‐055303 .
 91. Hayashi H , Kunugita N , Arashidani K , Fujimaki H , Ichikawa M . Long‐term exposure to low levels of formaldehyde increases the number of tyrosine hydroxylase‐immunopositive periglomerular cells in mouse main olfactory bulb . Brain Res 1007 : 192 ‐ 197 , 2004 . DOI: 10.1016/j.brainres.2003.12.052 .
 92. Herrick DB , Lin B , Peterson J , Schnittke N , Schwob JE . Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell . Proc Natl Acad Sci U S A 114 : E5589 ‐ E5598 , 2017 . DOI: 10.1073/pnas.1701333114 .
 93. Herrington JS , Myers C . Electronic cigarette solutions and resultant aerosol profiles . J Chromatogr A 1418 : 192 ‐ 199 , 2015 . DOI: 10.1016/j.chroma.2015.09.034 .
 94. Herz RS . The role of odor‐evoked memory in psychological and physiological health . Brain Sci 6 : 22 , 2016 . DOI: 10.3390/brainsci6030022 .
 95. Hickman E , Jaspers I . Current e‐cigarette research in the context of asthma . Curr Allergy Asthma Rep 20 : 62 , 2020 . DOI: 10.1007/s11882‐020‐00952‐2 .
 96. Holbrook EH , Szumowski KE , Schwob JE . An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium . J Comp Neurol 363 : 129 ‐ 146 , 1995 . DOI: 10.1002/cne.903630111 .
 97. Holl AM . Survival of mature mouse olfactory sensory neurons labeled genetically perinatally . Mol Cell Neurosci 88 : 258 ‐ 269 , 2018 . DOI: 10.1016/j.mcn.2018.02.005 .
 98. Hon L. Flameless electronic atomizing cigarette . China Patent CN100381083C , 2003 . https://patents.google.com/patent/CN100381083C/en
 99. Hsu G , Sun JY , Zhu SH . Evolution of electronic cigarette brands from 2013‐2014 to 2016‐2017: analysis of brand websites . J Med Internet Res 20 : e80 , 2018 . DOI: 10.2196/jmir.8550 .
 100. Huard JM , Youngentob SL , Goldstein BJ , Luskin MB , Schwob JE . Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non‐neural cells . J Comp Neurol 400 : 469 ‐ 486 , 1998 . DOI: 10.1002/(SICI)1096‐9861(19981102)400:4<469::AID‐CNE3>3.0.CO;2‐8 .
 101. Hubbs AF , Battelli LA , Goldsmith WT , Porter DW , Frazer D , Friend S , Schwegler‐Berry D , Mercer RR , Reynolds JS , Grote A , Castranova V , Kullman G , Fedan JS , Dowdy J , Jones WG . Necrosis of nasal and airway epithelium in rats inhaling vapors of artificial butter flavoring . Toxicol Appl Pharmacol 185 : 128 ‐ 135 , 2002 . DOI: 10.1006/taap.2002.9525 .
 102. Hutch CR , Hegg CC . Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium . Neurogenesis (Austin) 3 : e1118177 , 2016 . DOI: 10.1080/23262133.2015.1118177 .
 103. Islam Z , Harkema JR , Pestka JJ . Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain . Environ Health Perspect 114 : 1099 ‐ 1107 , 2006 . DOI: 10.1289/ehp.8854 .
 104. Jabba SV , Diaz AN , Erythropel HC , Zimmerman JB , Jordt SE . Chemical adducts of reactive flavor aldehydes formed in e‐cigarette liquids are cytotoxic and inhibit mitochondrial function in respiratory epithelial cells . Nicotine Tob Res 22 : S25 ‐ S34 , 2020 . DOI: 10.1093/ntr/ntaa185 .
 105. Jabba SV , Jordt SE . Estimating fluid consumption volumes in electronic cigarette use‐reply . JAMA Intern Med 180 : 468 ‐ 469 , 2020 . DOI: 10.1001/jamainternmed.2019.6630 .
 106. Jang W , Chen X , Flis D , Harris M , Schwob JE . Label‐retaining, quiescent globose basal cells are found in the olfactory epithelium . J Comp Neurol 522 : 731 ‐ 749 , 2014 . DOI: 10.1002/cne.23470 .
 107. Javelle E . Electronic cigarette and vaping should be discouraged during the new coronavirus SARS‐CoV‐2 pandemic . Arch Toxicol 94 : 2261 ‐ 2262 , 2020 . DOI: 10.1007/s00204‐020‐02744‐z .
 108. Jensen RP , Strongin RM , Peyton DH . Solvent chemistry in the electronic cigarette reaction vessel . Sci Rep 7 : 42549 , 2017 . DOI: 10.1038/srep42549 .
 109. Jia C , Hayoz S , Hutch CR , Iqbal TR , Pooley AE , Hegg CC . An IP3R3‐ and NPY‐expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium . PLoS One 8 : e58668 , 2013 . DOI: 10.1371/journal.pone.0058668 .
 110. Jia C , Hegg CC . NPY mediates ATP‐induced neuroproliferation in adult mouse olfactory epithelium . Neurobiol Dis 38 : 405 ‐ 413 , 2010 . DOI: 10.1016/j.nbd.2010.02.013 .
 111. Jia C , Roman C , Hegg CC . Nickel sulfate induces location‐dependent atrophy of mouse olfactory epithelium: Protective and proliferative role of purinergic receptor activation . Toxicol Sci 115 : 547 ‐ 556 , 2010 . DOI: 10.1093/toxsci/kfq071 .
 112. Jia C , Sangsiri S , Belock B , Iqbal TR , Pestka JJ , Hegg CC . ATP mediates neuroprotective and neuroproliferative effects in mouse olfactory epithelium following exposure to satratoxin G in vitro and in vivo . Toxicol Sci 124 : 169 ‐ 178 , 2011 . DOI: 10.1093/toxsci/kfr213 .
 113. Jiang Y , Gong NN , Hu XS , Ni MJ , Pasi R , Matsunami H . Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo . Nat Neurosci 18 : 1446 ‐ 1454 , 2015 . DOI: 10.1038/nn.4104 .
 114. Jiang Y , Li YR , Tian H , Ma M , Matsunami H . Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of beta‐arrestin‐2 recruitment . Nat Commun 6 : 6448 , 2015 . DOI: 10.1038/ncomms7448 .
 115. Joiner AM , Green WW , McIntyre JC , Allen BL , Schwob JE , Martens JR . Primary cilia on horizontal basal cells regulate regeneration of the olfactory epithelium . J Neurosci 35 : 13761 ‐ 13772 , 2015 . DOI: 10.1523/JNEUROSCI.1708‐15.2015 .
 116. Kanwal R , Kullman G , Piacitelli C , Boylstein R , Sahakian N , Martin S , Fedan K , Kreiss K . Evaluation of flavorings‐related lung disease risk at six microwave popcorn plants . J Occup Environ Med 48 : 149 ‐ 157 , 2006 . DOI: 10.1097/01.jom.0000194152.48728.fb .
 117. Kato HK , Chu MW , Isaacson JS , Komiyama T . Dynamic sensory representations in the olfactory bulb: Modulation by wakefulness and experience . Neuron 76 : 962 ‐ 975 , 2012 . DOI: 10.1016/j.neuron.2012.09.037 .
 118. Kawagishi K , Ando M , Yokouchi K , Sumitomo N , Karasawa M , Fukushima N , Moriizumi T . Stereological quantification of olfactory receptor neurons in mice . Neuroscience 272 : 29 ‐ 33 , 2014 . DOI: 10.1016/j.neuroscience.2014.04.050 .
 119. Kelliher KR , Ziesmann J , Munger SD , Reed RR , Zufall F . Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice . Proc Natl Acad Sci U S A 100 : 4299 ‐ 4304 , 2003 . DOI: 10.1073/pnas.0736071100 .
 120. Kobayakawa K , Kobayakawa R , Matsumoto H , Oka Y , Imai T , Ikawa M , Okabe M , Ikeda T , Itohara S , Kikusui T , Mori K , Sakano H . Innate versus learned odour processing in the mouse olfactory bulb . Nature 450 : 503 ‐ 508 , 2007 . DOI: 10.1038/nature06281 .
 121. Kontaris I , East BS , Wilson DA . Behavioral and neurobiological convergence of odor, mood and emotion: A review . Front Behav Neurosci 14 : 35 , 2020 . DOI: 10.3389/fnbeh.2020.00035 .
 122. Kosmider L , Sobczak A , Fik M , Knysak J , Zaciera M , Kurek J , Goniewicz ML . Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage . Nicotine Tob Res 16 : 1319 ‐ 1326 , 2014 . DOI: 10.1093/ntr/ntu078 .
 123. Kostygina G , Glantz SA , Ling PM . Tobacco industry use of flavours to recruit new users of little cigars and cigarillos . Tob Control 25 : 66 ‐ 74 , 2016 . DOI: 10.1136/tobaccocontrol‐2014‐051830 .
 124. Kowalewski J , Ray A . Predicting human olfactory perception from activities of odorant receptors . iScience 23 : 101361 , 2020 . DOI: 10.1016/j.isci.2020.101361 .
 125. Kramer RH , Siegelbaum SA . Intracellular Ca 2+ regulates the sensitivity of cyclic nucleotide‐gated channels in olfactory receptor neurons . Neuron 9 : 897 ‐ 906 , 1992 . DOI: 10.1016/0896‐6273(92)90242‐6 .
 126. Kroner C , Boekhoff I , Lohmann SM , Genieser HG , Breer H . Regulation of olfactory signalling via cGMP‐dependent protein kinase . Eur J Biochem 236 : 632 ‐ 637 , 1996 . DOI: 10.1111/j.1432‐1033.1996.00632.x .
 127. Krusemann EJZ , Pennings JLA , Cremers J , Bakker F , Boesveldt S , Talhout R . GC‐MS analysis of e‐cigarette refill solutions: A comparison of flavoring composition between flavor categories . J Pharm Biomed Anal 188 : 113364 , 2020 . DOI: 10.1016/j.jpba.2020.113364 .
 128. Krusemann EJZ , Wenng FM , Pennings JLA , de Graaf K , Talhout R , Boesveldt S . Sensory evaluation of e‐liquid flavors by smelling and vaping yields similar results . Nicotine Tob Res , 2019 . DOI: 10.1093/ntr/ntz155 .
 129. Kucharska M , Wesolowski W , Czerczak S , Socko R . Testing of the composition of e‐cigarette liquids ‐ manufacturer‐declared vs. true contents in a selected series of products . Med Pr 67 : 239 ‐ 253 , 2016 . DOI: 10.13075/mp.5893.00365 .
 130. Lam CW , Casanova M , Heck HD . Decreased extractability of DNA from proteins in the rat nasal mucosa after acetaldehyde exposure . Fundam Appl Toxicol 6 : 541 ‐ 550 , 1986 . DOI: 10.1016/0272‐0590(86)90228‐9 .
 131. Lee AC , Chakladar J , Li WT , Chen C , Chang EY , Wang‐Rodriguez J , Ongkeko WM . Tobacco, but not nicotine and flavor‐less electronic cigarettes, induces ACE2 and immune dysregulation . Int J Mol Sci 21 : 5513 , 2020 . DOI: 10.3390/ijms21155513 .
 132. Lee YO , Nonnemaker JM , Bradfield B , Hensel EC , Robinson RJ . Examining daily electronic cigarette puff topography among established and nonestablished cigarette smokers in their natural environment . Nicotine Tob Res 20 : 1283 ‐ 1288 , 2018 . DOI: 10.1093/ntr/ntx222 .
 133. Leinders‐Zufall T , Shepherd GM , Zufall F . Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells . Proc Biol Sci 263 : 803 ‐ 811 , 1996 . DOI: 10.1098/rspb.1996.0120 .
 134. Lemons K , Fu Z , Aoude I , Ogura T , Sun J , Chang J , Mbonu K , Matsumoto I , Arakawa H , Lin W . Lack of TRPM5‐expressing microvillous cells in mouse main olfactory epithelium leads to impaired odor‐evoked responses and olfactory‐guided behavior in a challenging chemical environment . eNeuro 4 : ENEURO.0135‐0117.2017 , 2017 . DOI: 10.1523/ENEURO.0135‐17.2017 .
 135. Lemons K , Fu Z , Ogura T , Lin W . TRPM5‐expressing microvillous cells regulate region‐specific cell proliferation and apoptosis during chemical exposure . Neuroscience 434 : 171 ‐ 190 , 2020 . DOI: 10.1016/j.neuroscience.2020.03.029 .
 136. Leung CT , Coulombe PA , Reed RR . Contribution of olfactory neural stem cells to tissue maintenance and regeneration . Nat Neurosci 10 : 720 ‐ 726 , 2007 . DOI: 10.1038/nn1882 .
 137. Li RC , Ben‐Chaim Y , Yau KW , Lin CC . Cyclic‐nucleotide‐gated cation current and Ca 2+ ‐activated Cl current elicited by odorant in vertebrate olfactory receptor neurons . Proc Natl Acad Sci U S A 113 : 11078 ‐ 11087 , 2016 . DOI: 10.1073/pnas.1613891113 .
 138. Li YR , Matsunami H . Activation state of the m3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling . Sci Signal 4 : ra1 , 2011 .
 139. Liang F . Olfactory receptor neuronal dendrites become mostly intra‐sustentacularly enwrapped upon maturity . J Anat 232 : 674 ‐ 685 , 2018 . DOI: 10.1111/joa.12777 .
 140. Liberia T , Martin‐Lopez E , Meller SJ , Greer CA . Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium . eNeuro 6 : ENEURO.0266‐19.2019 , 2019 . DOI: 10.1523/ENEURO.0266‐19.2019 .
 141. Lin W , Arellano J , Slotnick B , Restrepo D . Odors detected by mice deficient in cyclic nucleotide‐gated channel subunit A2 stimulate the main olfactory system . J Neurosci 24 : 3703 ‐ 3710 , 2004 . DOI: 10.1523/JNEUROSCI.0188‐04.2004 .
 142. Lin W , Ezekwe EA Jr , Zhao Z , Liman ER , Restrepo D . TRPM5‐expressing microvillous cells in the main olfactory epithelium . BMC Neurosci 9 : 114 , 2008 . DOI: 10.1186/1471‐2202‐9‐114 .
 143. Lin W , Ogura T , Margolskee RF , Finger TE , Restrepo D . TRPM5‐expressing solitary chemosensory cells respond to odorous irritants . J Neurophysiol 99 : 1451 ‐ 1460 , 2008 . DOI: 10.1152/jn.01195.2007 .
 144. Litt MD , Duffy V , Oncken C . Cigarette smoking and electronic cigarette vaping patterns as a function of e‐cigarette flavourings . Tob Control 25 : ii67 ‐ ii72 , 2016 . DOI: 10.1136/tobaccocontrol‐2016‐053223 .
 145. Liu A , Urban NN . Prenatal and early postnatal odorant exposure heightens odor‐evoked mitral cell responses in the mouse olfactory bulb . eNeuro 4 : ENEURO.0129‐17.2017 , 2017 . DOI: 10.1523/ENEURO.0129‐17.2017 .
 146. Liu X , Lugo A , Davoli E , Gorini G , Pacifici R , Fernandez E , Gallus S . Electronic cigarettes in Italy: A tool for harm reduction or a gateway to smoking tobacco? Tob Control 29 : 148 ‐ 152 , 2020 . DOI: 10.1136/tobaccocontrol‐2018‐054726 .
 147. Lopez F , Delgado R , Lopez R , Bacigalupo J , Restrepo D . Transduction for pheromones in the main olfactory epithelium is mediated by the Ca 2+ ‐activated channel TRPM5 . J Neurosci 34 : 3268 ‐ 3278 , 2014 . DOI: 10.1523/JNEUROSCI.4903‐13.2014 .
 148. Ma M , Grosmaitre X , Iwema CL , Baker H , Greer CA , Shepherd GM . Olfactory signal transduction in the mouse septal organ . J Neurosci 23 : 317 ‐ 324 , 2003 .
 149. Mackay‐Sim A , Kittel P . Cell dynamics in the adult mouse olfactory epithelium: A quantitative autoradiographic study . J Neurosci 11 : 979 ‐ 984 , 1991 .
 150. Mainland JD , Li YR , Zhou T , Liu WL , Matsunami H . Human olfactory receptor responses to odorants . Sci Data 2 : 150002 , 2015 . DOI: 10.1038/sdata.2015.2 .
 151. Mandiyan VS , Coats JK , Shah NM . Deficits in sexual and aggressive behaviors in Cnga2 mutant mice . Nat Neurosci 8 : 1660 ‐ 1662 , 2005 . DOI: 10.1038/nn1589 .
 152. Mantella NM , Kent PF , Youngentob SL . Fetal nicotine exposure increases preference for nicotine odor in early postnatal and adolescent, but not adult, rats . PLoS One 8 : e84989 , 2013 . DOI: 10.1371/journal.pone.0084989 .
 153. Marcucci F , Zou DJ , Firestein S . Sequential onset of presynaptic molecules during olfactory sensory neuron maturation . J Comp Neurol 516 : 187 ‐ 198 , 2009 . DOI: 10.1002/cne.22094 .
 154. Matsui A , Go Y , Niimura Y . Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision . Mol Biol Evol 27 : 1192 ‐ 1200 , 2010 . DOI: 10.1093/molbev/msq003 .
 155. Matsuo T , Hattori T , Asaba A , Inoue N , Kanomata N , Kikusui T , Kobayakawa R , Kobayakawa K . Genetic dissection of pheromone processing reveals main olfactory system‐mediated social behaviors in mice . Proc Natl Acad Sci U S A 112 : E311 ‐ E320 , 2015 . DOI: 10.1073/pnas.1416723112 .
 156. McAlinden KD , Eapen MS , Lu W , Chia C , Haug G , Sohal SS . COVID‐19 and vaping: Risk for increased susceptibility to SARS‐CoV‐2 infection? Eur Respir J 56 : 2001645 , 2020 . DOI: 10.1183/13993003.01645‐2020 .
 157. McAlinden KD , Eapen MS , Lu W , Sharma P , Sohal SS . The rise of electronic nicotine delivery systems and the emergence of electronic‐cigarette‐driven disease . Am J Physiol Lung Cell Mol Physiol 319 : L585 ‐ L595 , 2020 . DOI: 10.1152/ajplung.00160.2020 .
 158. McClintock TS , Adipietro K , Titlow WB , Breheny P , Walz A , Mombaerts P , Matsunami H . In vivo identification of eugenol‐responsive and muscone‐responsive mouse odorant receptors . J Neurosci 34 : 15669 ‐ 15678 , 2014 . DOI: 10.1523/JNEUROSCI.3625‐14.2014 .
 159. McClintock TS , Khan N , Alimova Y , Aulisio M , Han DY , Breheny P . Encoding the odor of cigarette smoke . J Neurosci 40 : 7043 ‐ 7053 , 2020 . DOI: 10.1523/JNEUROSCI.1144‐20.2020 .
 160. Menco BP , Farbman AI . Genesis of cilia and microvilli of rat nasal epithelia during pre‐natal development. II. Olfactory epithelium, a morphometric analysis . J Cell Sci 78 : 311 ‐ 336 , 1985 .
 161. Menco BP , Morrison EE . Morphology of the mammalian olfactory epithelium: Form, fine structure, function, and pathology . In: Doty RL , editor. Handbook of Olfaction and Gustation ( 2nd ed). New York : Marcel Dekker, Inc , 2003 , p. 17 ‐ 50 .
 162. Michalakis S , Reisert J , Geiger H , Wetzel C , Zong X , Bradley J , Spehr M , Huttl S , Gerstner A , Pfeifer A , Hatt H , Yau KW , Biel M . Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide‐gated channel trapping . J Biol Chem 281 : 35156 ‐ 35166 , 2006 . DOI: 10.1074/jbc.M606409200 .
 163. Miyawaki A , Homma H , Tamura H , Matsui M , Mikoshiba K . Zonal distribution of sulfotransferase for phenol in olfactory sustentacular cells . EMBO J 15 : 2050 ‐ 2055 , 1996 .
 164. Mombaerts P , Wang F , Dulac C , Chao SK , Nemes A , Mendelsohn M , Edmondson J , Axel R . Visualizing an olfactory sensory map . Cell 87 : 675 ‐ 686 , 1996 . DOI: 10.1016/s0092‐8674(00)81387‐2 .
 165. Montani G , Tonelli S , Elsaesser R , Paysan J , Tirindelli R . Neuropeptide Y in the olfactory microvillar cells . Eur J Neurosci 24 : 20 ‐ 24 , 2006 . DOI: 10.1111/j.1460‐9568.2006.04878.x .
 166. Moran DT , Rowley JC 3rd , Jafek BW , Lovell MA . The fine structure of the olfactory mucosa in man . J Neurocytol 11 : 721 ‐ 746 , 1982 .
 167. Morgan J , Jones AL . Estimating fluid consumption volumes in electronic cigarette use . JAMA Intern Med 180 : 468 , 2020 . DOI: 10.1001/jamainternmed.2019.6633 .
 168. Morgan KT . A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment . Toxicol Pathol 25 : 291 ‐ 307 , 1997 . DOI: 10.1177/019262339702500307 .
 169. Mori K , Sakano H . How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34 : 467 ‐ 499 , 2011 . DOI: 10.1146/annurev‐neuro‐112210‐112917 .
 170. Morrison EE , Costanzo RM . Scanning electron microscopic study of degeneration and regeneration in the olfactory epithelium after axotomy . J Neurocytol 18 : 393 ‐ 405 , 1989 . DOI: 10.1007/BF01190842 .
 171. Morrison EE , Costanzo RM . Morphology of olfactory epithelium in humans and other vertebrates . Microsc Res Tech 23 : 49 ‐ 61 , 1992 . DOI: 10.1002/jemt.1070230105 .
 172. Munger SD , Leinders‐Zufall T , McDougall LM , Cockerham RE , Schmid A , Wandernoth P , Wennemuth G , Biel M , Zufall F , Kelliher KR . An olfactory subsystem that detects carbon disulfide and mediates food‐related social learning . Curr Biol 20 : 1438 ‐ 1444 , 2010 . DOI: 10.1016/j.cub.2010.06.021 .
 173. Munger SD , Leinders‐Zufall T , Zufall F . Subsystem organization of the mammalian sense of smell . Annu Rev Physiol 71 : 115 ‐ 140 , 2009 . DOI: 10.1146/annurev.physiol.70.113006.100608 .
 174. Muthumalage T , Prinz M , Ansah KO , Gerloff J , Sundar IK , Rahman I . Inflammatory and oxidative responses induced by exposure to commonly used e‐cigarette flavoring chemicals and flavored e‐liquids without nicotine . Front Physiol 8 : 1130 , 2017 . DOI: 10.3389/fphys.2017.01130 .
 175. Myers KP , Sclafani A . Development of learned flavor preferences . Dev Psychobiol 48 : 380 ‐ 388 , 2006 . DOI: 10.1002/dev.20147 .
 176. Nagao H , Yoshihara Y , Mitsui S , Fujisawa H , Mori K . Two mirror‐image sensory maps with domain organization in the mouse main olfactory bulb . Neuroreport 11 : 3023 ‐ 3027 , 2000 . DOI: 10.1097/00001756‐200009110‐00039 .
 177. National Academies of Sciences E, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems . Toxicology of e‐cigarette constituents . In: Eaton DL , Kwan LY , Stratton KR , editors. Public Health Consequences of E‐Cigarettes . Washington, DC : National Academies Press (US) , 2018 .
 178. Ni F , Ogura T , Lin W . Electronic cigarette liquid constituents induce nasal and tracheal sensory irritation in mice in regionally dependent fashion . Nicotine Tob Res 22 : S35 ‐ S44 , 2020 . DOI: 10.1093/ntr/ntaa174 .
 179. Niimura Y , Nei M . Extensive gains and losses of olfactory receptor genes in mammalian evolution . PLoS One 2 : e708 , 2007 . DOI: 10.1371/journal.pone.0000708 .
 180. Noel A , Hossain E , Perveen Z , Zaman H , Penn AL . Sub‐ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air‐liquid interface . Respir Res 21 : 305 , 2020 . DOI: 10.1186/s12931‐020‐01571‐1 .
 181. Noel JC , Rainer D , Gstir R , Rainer M , Bonn G . Quantification of selected aroma compounds in e‐cigarette products and toxicity evaluation in HUVEC/Tert2 cells . Biomed Chromatogr 34 : e4761 , 2019 . DOI: 10.1002/bmc.4761 .
 182. Noel JC , Ruzsanyi V , Rainer M , Bonn G . Investigation of the evaporation behavior of aroma compounds in e‐cigarettes . Anal Bioanal Chem 411 : 3029 ‐ 3035 , 2019 . DOI: 10.1007/s00216‐019‐01749‐7 .
 183. Nomura T , Takahashi S , Ushiki T . Cytoarchitecture of the normal rat olfactory epithelium: Light and scanning electron microscopic studies . Arch Histol Cytol 67 : 159 ‐ 170 , 2004 . DOI: 10.1679/aohc.67.159 .
 184. Oboti L , Perez‐Gomez A , Keller M , Jacobi E , Birnbaumer L , Leinders‐Zufall T , Zufall F , Chamero P . A wide range of pheromone‐stimulated sexual and reproductive behaviors in female mice depend on G protein Galphao . BMC Biol 12 : 31 , 2014 . DOI: 10.1186/1741‐7007‐12‐31 .
 185. Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion . E‐cigarette use among youth and young adults . 2016 .
 186. Ogura T , Krosnowski K , Zhang L , Bekkerman M , Lin W . Chemoreception regulates chemical access to mouse vomeronasal organ: Role of solitary chemosensory cells . PLoS One 5 : e11924 , 2010 . DOI: 10.1371/journal.pone.0011924 .
 187. Ogura T , Szebenyi SA , Krosnowski K , Sathyanesan A , Jackson J , Lin W . Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells . J Neurophysiol 106 : 1274 ‐ 1287 , 2011 . DOI: 10.1152/jn.00186.2011 .
 188. Omaiye EE , McWhirter KJ , Luo W , Tierney PA , Pankow JF , Talbot P . High concentrations of flavor chemicals are present in electronic cigarette refill fluids . Sci Rep 9 : 2468 , 2019 . DOI: 10.1038/s41598‐019‐39550‐2 .
 189. Onyije FM , Avwioro OG . Excruciating effect of formaldehyde exposure to students in gross anatomy dissection laboratory . Int J Occup Environ Med 3 : 92 ‐ 95 , 2012 .
 190. Owotomo O , Stritzel H , McCabe SE , Boyd CJ , Maslowsky J . Smoking intention and progression from e‐cigarette use to cigarette smoking . Pediatrics 146 : e2020002881 , 2020 . DOI: 10.1542/peds.2020‐002881 .
 191. Pankow JF , Kim K , McWhirter KJ , Luo W , Escobedo JO , Strongin RM , Duell AK , Peyton DH . Benzene formation in electronic cigarettes . PLoS One 12 : e0173055 , 2017 . DOI: 10.1371/journal.pone.0173055 .
 192. Peterlin Z , Firestein S , Rogers ME . The state of the art of odorant receptor deorphanization: A report from the orphanage . J Gen Physiol 143 : 527 ‐ 542 , 2014 . DOI: 10.1085/jgp.201311151 .
 193. Pfister S , Weber T , Hartig W , Schwerdel C , Elsaesser R , Knuesel I , Fritschy JM . Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis . J Comp Neurol 523 : 406 ‐ 430 , 2015 . DOI: 10.1002/cne.23686 .
 194. Ponissery Saidu S , Stephan AB , Talaga AK , Zhao H , Reisert J . Channel properties of the splicing isoforms of the olfactory calcium‐activated chloride channel Anoctamin 2 . J Gen Physiol 141 : 691 ‐ 703 , 2013 . DOI: 10.1085/jgp.201210937 .
 195. Reisert J , Bauer PJ , Yau KW , Frings S . The Ca‐activated Cl channel and its control in rat olfactory receptor neurons . J Gen Physiol 122 : 349 ‐ 363 , 2003 . DOI: 10.1085/jgp.200308888 .
 196. Ressler KJ , Sullivan SL , Buck LB . Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb . Cell 79 : 1245 ‐ 1255 , 1994 . DOI: 10.1016/0092‐8674(94)90015‐9 .
 197. Restrepo D , Arellano J , Oliva AM , Schaefer ML , Lin W . Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice . Horm Behav 46 : 247 ‐ 256 , 2004 . DOI: 10.1016/j.yhbeh.2004.02.009 .
 198. Rice SJ , Hyland V , Behera M , Ramalingam SS , Bunn P , Belani CP . Guidance on the clinical management of electronic cigarette or vaping‐associated lung injury . J Thorac Oncol 15 : 1727 ‐ 1737 , 2020 . DOI: 10.1016/j.jtho.2020.08.012 .
 199. Rodriguez JA , Roa AA , Lemos‐Ramirez JC . E‐cigarette or vaping product use‐associated lung injury (EVALI) mimicking COVID‐19 disease . Case Rep Pulmonol 2020 : 8821289 , 2020 . DOI: 10.1155/2020/8821289 .
 200. Rodriguez‐Gil DJ , Bartel DL , Jaspers AW , Mobley AS , Imamura F , Greer CA . Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons . Proc Natl Acad Sci U S A 112 : 5821 ‐ 5826 , 2015 . DOI: 10.1073/pnas.1417955112 .
 201. Rolls ET . Taste, olfactory, and food reward value processing in the brain . Prog Neurobiol 127–128 : 64 ‐ 90 , 2015 . DOI: 10.1016/j.pneurobio.2015.03.002 .
 202. Rolls ET , Critchley HD , Mason R , Wakeman EA . Orbitofrontal cortex neurons: Role in olfactory and visual association learning . J Neurophysiol 75 : 1970 ‐ 1981 , 1996 . DOI: 10.1152/jn.1996.75.5.1970 .
 203. Rolls ET , Critchley HD , Verhagen JV , Kadohisa M . The representation of information about taste and odor in the orbitofrontal cortex . Chem Percept 3 : 16 ‐ 33 , 2010 . DOI: 10.1007/s12078‐009‐9054‐4 .
 204. Romijnders K , van Osch L , de Vries H , Talhout R . Perceptions and reasons regarding e‐cigarette use among users and non‐users: A narrative literature review . Int J Environ Res Public Health 15 : 1190 , 2018 . DOI: 10.3390/ijerph15061190 .
 205. Romijnders KA , Krusemann EJ , Boesveldt S , Graaf K , Vries H , Talhout R . E‐liquid flavor preferences and individual factors related to vaping: A survey among dutch never‐users, smokers, dual users, and exclusive vapers . Int J Environ Res Public Health 16 : 4661 , 2019 . DOI: 10.3390/ijerph16234661 .
 206. Russo P , Bonassi S , Giacconi R , Malavolta M , Tomino C , Maggi F . COVID‐19 and smoking: Is nicotine the hidden link? Eur Respir J 55 , 2020 . DOI: 10.1183/13993003.01116‐2020 .
 207. Ryba NJ , Tirindelli R . A novel GTP‐binding protein gamma‐subunit, G gamma 8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia . J Biol Chem 270 : 6757 ‐ 6767 , 1995 . DOI: 10.1074/jbc.270.12.6757 .
 208. Saito H , Chi Q , Zhuang H , Matsunami H , Mainland JD . Odor coding by a Mammalian receptor repertoire . Sci Signal 2 : ra9 , 2009 . DOI: 10.1126/scisignal.2000016 .
 209. Sarrafchi A , Odhammer AM , Hernandez Salazar LT , Laska M . Olfactory sensitivity for six predator odorants in CD‐1 mice, human subjects, and spider monkeys . PLoS One 8 : e80621 , 2013 . DOI: 10.1371/journal.pone.0080621 .
 210. Sathyanesan A , Feijoo AA , Mehta ST , Nimarko AF , Lin W . Expression profile of G‐protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia . Front Cell Neurosci 7 : 84 , 2013 . DOI: 10.3389/fncel.2013.00084 .
 211. Savic I , Gulyas B , Larsson M , Roland P . Olfactory functions are mediated by parallel and hierarchical processing . Neuron 26 : 735 ‐ 745 , 2000 . DOI: 10.1016/s0896‐6273(00)81209‐x .
 212. Schiffman SS , Williams CM . Science of odor as a potential health issue . J Environ Qual 34 : 129 ‐ 138 , 2005 .
 213. Schild D , Restrepo D . Transduction mechanisms in vertebrate olfactory receptor cells . Physiol Rev 78 : 429 ‐ 466 , 1998 . DOI: 10.1152/physrev.1998.78.2.429 .
 214. Schnittke N , Herrick DB , Lin B , Peterson J , Coleman JH , Packard AI , Jang W , Schwob JE . Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium . Proc Natl Acad Sci U S A 112 : E5068 ‐ E5077 , 2015 . DOI: 10.1073/pnas.1512272112 .
 215. Schubert CR , Pinto AA , Paulsen AJ , Cruickshanks KJ . Exposure to cadmium, lead, and tobacco smoke and the 10‐year cumulative incidence of olfactory impairment: The beaver dam offspring study . JAMA Otolaryngol Head Neck Surg 147 : 510 ‐ 517 , 2021 . DOI: 10.1001/jamaoto.2021.0079 .
 216. Schwartz Levey M , Chikaraishi DM , Kauer JS . Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography . J Neurosci 11 : 3556 ‐ 3564 , 1991 .
 217. Schwarzenbacher K , Fleischer J , Breer H . Formation and maturation of olfactory cilia monitored by odorant receptor‐specific antibodies . Histochem Cell Biol 123 : 419 ‐ 428 , 2005 . DOI: 10.1007/s00418‐005‐0790‐5 .
 218. Schwob JE , Jang W , Holbrook EH , Lin B , Herrick DB , Peterson JN , Hewitt Coleman J . Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license . J Comp Neurol 525 : 1034 ‐ 1054 , 2017 . DOI: 10.1002/cne.24105 .
 219. Scott JW , Davis LM , Shannon D , Kaplan C . Relation of chemical structure to spatial distribution of sensory responses in rat olfactory epithelium . J Neurophysiol 75 : 2036 ‐ 2049 , 1996 .
 220. Shang J , Wan Y , Luo C , Ye G , Geng Q , Auerbach A , Li F . Cell entry mechanisms of SARS‐CoV‐2 . Proc Natl Acad Sci U S A 117 : 11727 ‐ 11734 , 2020 . DOI: 10.1073/pnas.2003138117 .
 221. Shao Z , Liu S , Zhou F , Puche AC , Shipley MT . Reciprocal inhibitory glomerular circuits contribute to excitation‐inhibition balance in the mouse olfactory bulb . eNeuro 6 : ENEURO.0048‐19.2019 , 2019 . DOI: 10.1523/ENEURO.0048‐19.2019 .
 222. Sherwood CL , Boitano S . Airway epithelial cell exposure to distinct e‐cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5‐dimethypyrazine . Respir Res 17 : 57 , 2016 . DOI: 10.1186/s12931‐016‐0369‐9 .
 223. Shetty RS , Bose SC , Nickell MD , McIntyre JC , Hardin DH , Harris AM , McClintock TS . Transcriptional changes during neuronal death and replacement in the olfactory epithelium . Mol Cell Neurosci 30 : 583 ‐ 600 , 2005 .
 224. Silva Teixeira CS , Cerqueira NM , Silva Ferreira AC . Unravelling the olfactory sense: From the gene to odor perception . Chem Senses 41 : 105 ‐ 121 , 2016 . DOI: 10.1093/chemse/bjv075 .
 225. Silver WL , Moulton DG . Chemosensitivity of rat nasal trigeminal receptors . Physiol Behav 28 : 927 ‐ 931 , 1982 .
 226. Simpson PJ , Wang E , Moon C , Matarazzo V , Cohen DR , Liebl DJ , Ronnett GV . Neurotrophin‐3 signaling maintains maturational homeostasis between neuronal populations in the olfactory epithelium . Mol Cell Neurosci 24 : 858 ‐ 874 , 2003 . DOI: 10.1016/j.mcn.2003.08.001 .
 227. Small DM . Flavor is in the brain . Physiol Behav 107 : 540 ‐ 552 , 2012 . DOI: 10.1016/j.physbeh.2012.04.011 .
 228. Small DM , Gregory MD , Mak YE , Gitelman D , Mesulam MM , Parrish T . Dissociation of neural representation of intensity and affective valuation in human gustation . Neuron 39 : 701 ‐ 711 , 2003 . DOI: 10.1016/s0896‐6273(03)00467‐7 .
 229. Small DM , Prescott J . Odor/taste integration and the perception of flavor . Exp Brain Res 166 : 345 ‐ 357 , 2005 . DOI: 10.1007/s00221‐005‐2376‐9 .
 230. Small DM , Zald DH , Jones‐Gotman M , Zatorre RJ , Pardo JV , Frey S , Petrides M . Human cortical gustatory areas: A review of functional neuroimaging data . Neuroreport 10 : 7 ‐ 14 , 1999 . DOI: 10.1097/00001756‐199901180‐00002 .
 231. Smets J , Baeyens F , Chaumont M , Adriaens K , Van Gucht D . When less is more: Vaping low‐nicotine vs. high‐nicotine e‐liquid is compensated by increased wattage and higher liquid consumption . Int J Environ Res Public Health 16 : 723 , 2019 . DOI: 10.3390/ijerph16050723 .
 232. Sobel N , Prabhakaran V , Desmond JE , Glover GH , Goode RL , Sullivan EV , Gabrieli JD . Sniffing and smelling: Separate subsystems in the human olfactory cortex . Nature 392 : 282 ‐ 286 , 1998 . DOI: 10.1038/32654 .
 233. Sobel N , Prabhakaran V , Zhao Z , Desmond JE , Glover GH , Sullivan EV , Gabrieli JD . Time course of odorant‐induced activation in the human primary olfactory cortex . J Neurophysiol 83 : 537 ‐ 551 , 2000 . DOI: 10.1152/jn.2000.83.1.537 .
 234. Solleti SK , Bhattacharya S , Ahmad A , Wang Q , Mereness J , Rangasamy T , Mariani TJ . MicroRNA expression profiling defines the impact of electronic cigarettes on human airway epithelial cells . Sci Rep 7 : 1081 , 2017 . DOI: 10.1038/s41598‐017‐01167‐8 .
 235. Sorg BA , Hochstatter T . Behavioral sensitization after repeated formaldehyde exposure in rats . Toxicol Ind Health 15 : 346 ‐ 355 , 1999 . DOI: 10.1177/074823379901500309 .
 236. Sorg BA , Swindell S , Tschirgi ML . Repeated low level formaldehyde exposure produces enhanced fear conditioning to odor in male, but not female, rats . Brain Res 1008 : 11 ‐ 19 , 2004 . DOI: 10.1016/j.brainres.2004.02.015 .
 237. Sosulski DL , Bloom ML , Cutforth T , Axel R , Datta SR . Distinct representations of olfactory information in different cortical centres . Nature 472 : 213 ‐ 216 , 2011 . DOI: 10.1038/nature09868 .
 238. Soussy S , El‐Hellani A , Baalbaki R , Salman R , Shihadeh A , Saliba NA . Detection of 5‐hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes . Tob Control 25 : ii88 ‐ ii93 , 2016 . DOI: 10.1136/tobaccocontrol‐2016‐053220 .
 239. Steinke A , Meier‐Stiegen S , Drenckhahn D , Asan E . Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila . Histochem Cell Biol 130 : 339 ‐ 361 , 2008 . DOI: 10.1007/s00418‐008‐0441‐8 .
 240. Stephan AB , Shum EY , Hirsh S , Cygnar KD , Reisert J , Zhao H . ANO2 is the cilial calcium‐activated chloride channel that may mediate olfactory amplification . Proc Natl Acad Sci U S A 106 : 11776 ‐ 11781 , 2009 . DOI: 10.1073/pnas.0903304106 .
 241. Stephan AB , Tobochnik S , Dibattista M , Wall CM , Reisert J , Zhao H . The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response . Nat Neurosci 15 : 131 ‐ 137 , 2012 . DOI: 10.1038/nn.2943 .
 242. Stevenson RJ , Boakes RA , Wilson JP . Resistance to extinction of conditioned odor perceptions: Evaluative conditioning is not unique . J Exp Psychol Learn Mem Cogn 26 : 423 ‐ 440 , 2000 . DOI: 10.1037//0278‐7393.26.2.423 .
 243. Stoyanov GS , Matev BK , Valchanov P , Sapundzhiev N , Young JR . The human vomeronasal (Jacobson's) organ: A short review of current conceptions, with an english translation of potiquet's original text . Cureus 10 : e2643 , 2018 . DOI: 10.7759/cureus.2643 .
 244. Sun TJ , Miller ML , Hastings L . Effects of inhalation of cadmium on the rat olfactory system: Behavior and morphology . Neurotoxicol Teratol 18 : 89 ‐ 98 , 1996 . DOI: 10.1016/0892‐0362(95)02013‐6 .
 245. Sussan TE , Gajghate S , Thimmulappa RK , Ma J , Kim JH , Sudini K , Consolini N , Cormier SA , Lomnicki S , Hasan F , Pekosz A , Biswal S . Exposure to electronic cigarettes impairs pulmonary anti‐bacterial and anti‐viral defenses in a mouse model . PLoS One 10 : e0116861 , 2015 . DOI: 10.1371/journal.pone.0116861 .
 246. Suzuki J , Sakurai K , Yamazaki M , Abe M , Inada H , Sakimura K , Katori Y , Osumi N . Horizontal basal cell‐specific deletion of Pax6 impedes recovery of the olfactory neuroepithelium following severe injury . Stem Cells Dev 24 : 1923 ‐ 1933 , 2015 . DOI: 10.1089/scd.2015.0011 .
 247. Suzuki Y , Takeda M , Farbman AI . Supporting cells as phagocytes in the olfactory epithelium after bulbectomy . J Comp Neurol 376 : 509 ‐ 517 , 1996 . DOI: 10.1002/(SICI)1096‐9861(19961223)376:4<509::AID‐CNE1>3.0.CO;2‐5 .
 248. Thiebaud N , Menetrier F , Belloir C , Minn AL , Neiers F , Artur Y , Le Bon AM , Heydel JM . Expression and differential localization of xenobiotic transporters in the rat olfactory neuro‐epithelium . Neurosci Lett 505 : 180 ‐ 185 , 2011 . DOI: 10.1016/j.neulet.2011.10.018 .
 249. Thiebaud N , Veloso Da Silva S , Jakob I , Sicard G , Chevalier J , Menetrier F , Berdeaux O , Artur Y , Heydel JM , Le Bon AM . Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats . PLoS One 8 : e59547 , 2013 . DOI: 10.1371/journal.pone.0059547 .
 250. Tierney PA , Karpinski CD , Brown JE , Luo W , Pankow JF . Flavour chemicals in electronic cigarette fluids . Tob Control 25 : e10 ‐ e15 , 2016 . DOI: 10.1136/tobaccocontrol‐2014‐052175 .
 251. Tirindelli R , Dibattista M , Pifferi S , Menini A . From pheromones to behavior . Physiol Rev 89 : 921 ‐ 956 , 2009 . DOI: 10.1152/physrev.00037.2008 .
 252. Tjalve H , Henriksson J . Uptake of metals in the brain via olfactory pathways . Neurotoxicology 20 : 181 ‐ 195 , 1999 .
 253. Tjalve H , Henriksson J , Tallkvist J , Larsson BS , Lindquist NG . Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats . Pharmacol Toxicol 79 : 347 ‐ 356 , 1996 . DOI: 10.1111/j.1600‐0773.1996.tb00021.x .
 254. Todrank J , Heth G , Restrepo D . Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences . Proc Biol Sci 278 : 1949 ‐ 1955 , 2011 . DOI: 10.1098/rspb.2010.2314 .
 255. Uchiyama S , Noguchi M , Sato A , Ishitsuka M , Inaba Y , Kunugita N . Determination of thermal decomposition products generated from e‐cigarettes . Chem Res Toxicol 33 : 576 ‐ 583 , 2020 . DOI: 10.1021/acs.chemrestox.9b00410 .
 256. Vassar R , Chao SK , Sitcheran R , Nunez JM , Vosshall LB , Axel R . Topographic organization of sensory projections to the olfactory bulb . Cell 79 : 981 ‐ 991 , 1994 . DOI: 10.1016/0092‐8674(94)90029‐9 .
 257. Vassar R , Ngai J , Axel R . Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium . Cell 74 : 309 ‐ 318 , 1993 .
 258. Vedin V , Molander M , Bohm S , Berghard A . Regional differences in olfactory epithelial homeostasis in the adult mouse . J Comp Neurol 513 : 375 ‐ 384 , 2009 . DOI: 10.1002/cne.21973 .
 259. Verhaagen J , Oestreicher AB , Gispen WH , Margolis FL . The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats . J Neurosci Off J Soc Neurosci 9 : 683 ‐ 691 , 1989 .
 260. von der Weid B , Rossier D , Lindup M , Tuberosa J , Widmer A , Col JD , Kan C , Carleton A , Rodriguez I . Large‐scale transcriptional profiling of chemosensory neurons identifies receptor‐ligand pairs in vivo . Nat Neurosci 18 : 1455 ‐ 1463 , 2015 . DOI: 10.1038/nn.4100 .
 261. Wachowiak M , Economo MN , Diaz‐Quesada M , Brunert D , Wesson DW , White JA , Rothermel M . Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb . J Neurosci Off J Soc Neurosci 33 : 5285 ‐ 5300 , 2013 . DOI: 10.1523/JNEUROSCI.4824‐12.2013 .
 262. Wang G , Wu L . Healthy people 2020: Social determinants of cigarette smoking and electronic cigarette smoking among youth in the United States 2010‐2018 . Int J Environ Res Public Health 17 : E7503 , 2020 . DOI: 10.3390/ijerph17207503 .
 263. Wang TW , Neff LJ , Park‐Lee E , Ren C , Cullen KA , King BA . E‐cigarette use among middle and high school students ‐ United States, 2020 . MMWR Morb Mortal Wkly Rep 69 : 1310 ‐ 1312 , 2020 . DOI: 10.15585/mmwr.mm6937e1 .
 264. Wartew GA . The health hazards of formaldehyde . J Appl Toxicol 3 : 121 ‐ 126 , 1983 . DOI: 10.1002/jat.2550030303 .
 265. Wei J , Zhao AZ , Chan GC , Baker LP , Impey S , Beavo JA , Storm DR . Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: A mechanism for attenuation of olfactory signals . Neuron 21 : 495 ‐ 504 , 1998 . DOI: 10.1016/s0896‐6273(00)80561‐9 .
 266. Weiler E , Farbman AI . Supporting cell proliferation in the olfactory epithelium decreases postnatally . Glia 22 : 315 ‐ 328 , 1998 . DOI: 10.1002/(sici)1098‐1136(199804)22:4<315::aid‐glia1>3.0.co;2‐2 .
 267. Werner S , Nies E . Olfactory dysfunction revisited: A reappraisal of work‐related olfactory dysfunction caused by chemicals . J Occup Med Toxicol 13 : 28 , 2018 . DOI: 10.1186/s12995‐018‐0209‐6 .
 268. Westenberger BJ . Evaluation of e‐cigarettes . Food and Drug Administration, USA , 2009 . https://casaa.org/wp‐content/uploads/Evalution‐of‐electronic‐cigarettes.pdf .
 269. Whitby‐Logan GK , Weech M , Walters E . Zonal expression and activity of glutathione S‐transferase enzymes in the mouse olfactory mucosa . Brain Res 995 : 151 ‐ 157 , 2004 . DOI: 10.1016/j.brainres.2003.09.012 .
 270. Wiener RC , Bhandari R . Association of electronic cigarette use with lead, cadmium, barium, and antimony body burden: NHANES 2015‐2016 . J Trace Elem Med Biol 62 : 126602 , 2020 . DOI: 10.1016/j.jtemb.2020.126602 .
 271. Williams M , Bozhilov K , Ghai S , Talbot P . Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs . PLoS One 12 : e0175430 , 2017 . DOI: 10.1371/journal.pone.0175430 .
 272. Williams M , Bozhilov KN , Talbot P . Analysis of the elements and metals in multiple generations of electronic cigarette atomizers . Environ Res 175 : 156 ‐ 166 , 2019 . DOI: 10.1016/j.envres.2019.05.014 .
 273. Williams M , Villarreal A , Bozhilov K , Lin S , Talbot P . Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol . PLoS One 8 : e57987 , 2013 . DOI: 10.1371/journal.pone.0057987 .
 274. Wills TA , Soneji SS , Choi K , Jaspers I , Tam EK . E‐cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies . Eur Respir J 57 : 1901815 , 2021 . DOI: 10.1183/13993003.01815‐2019 .
 275. Winters BR , Kochar TK , Clapp PW , Jaspers I , Madden MC . Impact of e‐cigarette liquid flavoring agents on activity of microsomal recombinant CYP2A6, the primary nicotine‐metabolizing enzyme . Chem Res Toxicol 33 : 1689 ‐ 1697 , 2020 . DOI: 10.1021/acs.chemrestox.9b00514 .
 276. Wong ST , Trinh K , Hacker B , Chan GC , Lowe G , Gaggar A , Xia Z , Gold GH , Storm DR . Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice . Neuron 27 : 487 ‐ 497 , 2000 . DOI: 10.1016/s0896‐6273(00)00060‐x .
 277. Wu Q , Jiang D , Minor M , Chu HW . Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells . PLoS One 9 : e108342 , 2014 . DOI: 10.1371/journal.pone.0108342 .
 278. Yamaguchi T , Yamashita J , Ohmoto M , Aoudé I , Ogura T , Luo W , Bachmanov AA , Lin W , Matsumoto I , Hirota J . Skn‐1a/Pou2f3 is required for the generation of Trpm5‐expressing microvillous cells in the mouse main olfactory epithelium . BMC Neurosci 15 : 13 , 2014 . DOI: 10.1186/1471-2202-15-13 .
 279. Yu V , Rahimy M , Korrapati A , Xuan Y , Zou AE , Krishnan AR , Tsui T , Aguilera JA , Advani S , Crotty Alexander LE , Brumund KT , Wang‐Rodriguez J , Ongkeko WM . Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines . Oral Oncol 52 : 58 ‐ 65 , 2016 . DOI: 10.1016/j.oraloncology.2015.10.018 .
 280. Zare S , Nemati M , Zheng Y . A systematic review of consumer preference for e‐cigarette attributes: Flavor, nicotine strength, and type . PLoS One 13 : e0194145 , 2018 . DOI: 10.1371/journal.pone.0194145 .
 281. Zatorre RJ , Jones‐Gotman M , Evans AC , Meyer E . Functional localization and lateralization of human olfactory cortex . Nature 360 : 339 ‐ 340 , 1992 . DOI: 10.1038/360339a0 .
 282. Zheng J , Wong LR , Li K , Verma AK , Ortiz ME , Wohlford‐Lenane C , Leidinger MR , Knudson CM , Meyerholz DK , McCray PB Jr , Perlman S . COVID‐19 treatments and pathogenesis including anosmia in K18‐hACE2 mice . Nature 589 : 603 ‐ 607 , 2021 . DOI: 10.1038/s41586‐020‐2943‐z .
 283. Zhou FW , Shao ZY , Shipley MT , Puche AC . Short‐term plasticity in glomerular inhibitory circuits shapes olfactory bulb output . J Neurophysiol 123 : 1120 ‐ 1132 , 2020 . DOI: 10.1152/jn.00628.2019 .
 284. Zhu SH , Sun JY , Bonnevie E , Cummins SE , Gamst A , Yin L , Lee M . Four hundred and sixty brands of e‐cigarettes and counting: implications for product regulation . Tob Control 23 ( Suppl 3 ): iii3 ‐ iii9 , 2014 . DOI: 10.1136/tobaccocontrol‐2014‐051670 .
 285. Zozulya S , Echeverri F , Nguyen T . The human olfactory receptor repertoire . Genome Biol 2 : RESEARCH0018 , 2001 . DOI: 10.1186/gb‐2001‐2‐6‐research0018 .
 286. Zufall F , Leinders‐Zufall T . The cellular and molecular basis of odor adaptation . Chem Senses 25 : 473 ‐ 481 , 2000 .
 287. Zufall F , Munger SD . From odor and pheromone transduction to the organization of the sense of smell . Trends Neurosci 24 : 191 ‐ 193 , 2001 . DOI: 10.1016/s0166‐2236(00)01765‐3 .
 288. Zufall F , Shepherd GM , Firestein S . Inhibition of the olfactory cyclic nucleotide gated ion channel by intracellular calcium . Proc Biol Sci 246 : 225 ‐ 230 , 1991 . DOI: 10.1098/rspb.1991.0148 .

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Abdullah AlMatrouk, Kayla Lemons, Tatsuya Ogura, Weihong Lin. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021, 11: 2621-2644. doi: 10.1002/cphy.c210007