Comprehensive Physiology Wiley Online Library

Multi‐Omic Approaches to Identify Genetic Factors in Metabolic Syndrome

Full Article on Wiley Online Library



Abstract

Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS.

As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome‐wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi‐omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1‐40, 2022.

Figure 1. Figure 1. Common diseases are most often caused by common variants. The “common disease, common variant” hypothesis is used to explain the prevalence of both disease and the causal genetic variants. Mendelian diseases are caused by rare or ultra‐rare single variants. Alternatively, common diseases such as Metabolic Syndrome (or its component features) are typically caused by common variants that may be found at frequencies higher than 1% in the population. Common variants usually have minimal effects on a phenotype and are insufficient to cause disease without other genetic or environmental interactions. Rare variants that cause rare diseases have high effects and are usually sufficient to cause disease alone. Worth mentioning is that the same common disease, such as obesity, can result from numerous mutations, both rare and common. Though most obese individuals have numerous individual risk alleles, where each may only contribute a few grams of excess body weight, rarer variants may also cause the same diseases. For example, individuals with complete loss of the leptin receptor always exhibit profound obesity, but these alleles are rare, as is this form of obesity. Variants in the MC4R and FTO loci exhibit modest effects on body weight and can be found at frequencies higher than 1% in most populations.
Figure 2. Figure 2. Statistical associations between genotypes and phenotypes on a genome‐wide scale. Genetic tests of association begin with a population comprised of a selection of cases with a trait, such as obesity, and a selection of controls that are ideally identical to the cases, apart from the trait that is being tested. In this example of outbred rats, a group of obese cases and lean controls are genotyped at some position for the alleles A and a, where the allele frequencies of each are shown. While allele a is present in both subgroups, it is significantly enriched among the obese cases. Compiling this individual test and other like it across the genome produces a genome‐wide plot, where each point represents an individual test. The P‐values of each association test are −log10 transformed and plotted with respect to their genomic position, with individual chromosome positions shown here in alternating colors. Most GWAS datasets contain tests of association for hundreds of thousands to millions of independent SNPs, and at that density of points, the plots begin to resemble city skylines and are called Manhattan plots. When multiple independent tests are conducted, it is important to adjust the threshold for P‐values significance to lower the chances of detecting a false association. By convention, a Bonferroni correction is applied. If you test 100 independent loci, the threshold for genome‐wide significance is equal to 0.05/100, or 5 × 10−4, to account for the 100 independent tests. The negative log‐transformation of this threshold puts the cutoff for significance roughly at 3.3, indicated with a solid red line. The hypothetical example shown here is the only SNP that exceeds the threshold, so allele a is significantly associated with obesity, although that does not necessarily mean it is causing obesity.
Figure 3. Figure 3. Backcrosses, intercrosses, and outbreeding with two parent genomes. When two distinct parental genomes (blue and red) are combined, the resulting progeny in the F1, or first filial generation are identical to each other and an equal mixture of both Parent A and Parent B. In a backcross scheme, the F1 progeny are subsequently crossed back to either parent, with successive phenotyping and/or genotyping at each stage. This type of approach is useful when the trait one is attempting to map has an autosomal dominant inheritance pattern, and after 10 generations, an inbred animal is achieved that has been selected to have the minimum portion of the donor genome necessary to produce a phenotype, while the rest of the genome is homozygous for the recipient parental genome. For traits where the inheritance pattern is unknown or recessive, an intercross breeding scheme must be used, where F1 progeny are sibling mated to produce F2s, the genomes of which are random mosaics, containing portions of chromosomes that are heterozygous (purple) or homozygous for one genome or the other (blue or red). Each additional intercross produces new recombinations, which increases genetic complexity and leads to finer mapping resolution, and this process can be theoretically continued indefinitely. Twenty intercrosses are required to produce a fully inbred animal for follow‐up functional studies with brother‐sister mating.
Figure 4. Figure 4. Multi‐parental rodent populations for QTL mapping. Eight founder genomes are represented in the collaborative cross (CC) mouse, diversity outbred (DO) mouse, and heterogeneous stock (HS) rat. In contrast to the other two, the CC mice are inbred and were developed as highly diverse series of lineages in a RI panel. From the CC resource populations, a subset of animals was outbred to reestablish genetic variation using at least 20 generations of circular or semi‐random mating designed to maximize outbreeding by ensuring close relatives were never bred together. This became the DO mouse. The founder genomes of the CC/DO populations are: C57BL/6J, 129S1/SvlmJ, A/J, NOD/ShiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, WSB/EiJ, and the inclusion of wild strains of Mus musculus generates the most diverse rodent population and is the closest to matching the spectrum of human genetic diversity. Aside from species differences, a major factor affecting the genetic diversity of the HS rat is that the HS rat was established using a one‐way breeding funnel, which allows alleles to become fixed within the population more easily, rather than retaining a high degree of variance. With balanced, reciprocal crosses, allele fixation or loss is less likely. Although the introduction of wild alleles increases the breadth of diversity in the CC/DO genomes; these alleles have proven somewhat deleterious as they have undergone negative selection in the unfavorable laboratory environment.
Figure 5. Figure 5. The abundance of an mRNA transcript is genetically regulated by eQTL and sQTL. Transcription factors recruit RNA polymerases when bound to transcription factor binding sites (TFBS). The strength of the TFBS is dependent on the sequence, and variation in sequences can alter the abundance of the transcribed gene. When the sequence variant is located near the gene‐often in a TFBS, it is said to be cis regulated or a cis‐eQTL. If the transcription factor itself has a variant that hinders its ability to bind to its TFBS, then the gene is trans‐regulated and the SNP is a trans‐eQTL, as the coding region for the transcription factor need not be near the regulated gene. When the nascent mRNA is transcribed, introns are spliced out to form the mature mRNA. Each exon is bounded by GT‐‐‐‐AC nucleotides that signal the boundaries of the intron to be removed. When these sites vary, the proportions of certain exons might change, or exons that are normally included in the transcript might be skipped entirely.
Figure 6. Figure 6. Genetic variants contribute to gene expression changes by altering chromatin organization. Stretched end to end, each cell contains nearly 2 m of DNA. The only way DNA can fit within the confines of the nucleus is by extensive compaction into chromosomes; however, DNA is not uniformly compacted. Areas containing genes that are undergoing active transcription (heterochromatin) are more loosely organized to allow access to various DNA‐binding proteins and RNA polymerases. These open areas are not protected by any histone proteins and are vulnerable to enzymatic digestion by DNases. As with most proteins, histones contain posttranslational modifications, which change their function to indicate a promotor or enhancer site, or to mark areas of closed chromatin. Long‐range chromatin interactions, such as topologically associated domains (TADs) are indicated by specific patterns of histone marks, allowing them to form a cluster of chromatin loops that bring linearly distant loci to close together in three‐dimensional space. All of these features display heterogeneity at the sequence level, causing quantitative changes to the transcriptome.


Figure 1. Common diseases are most often caused by common variants. The “common disease, common variant” hypothesis is used to explain the prevalence of both disease and the causal genetic variants. Mendelian diseases are caused by rare or ultra‐rare single variants. Alternatively, common diseases such as Metabolic Syndrome (or its component features) are typically caused by common variants that may be found at frequencies higher than 1% in the population. Common variants usually have minimal effects on a phenotype and are insufficient to cause disease without other genetic or environmental interactions. Rare variants that cause rare diseases have high effects and are usually sufficient to cause disease alone. Worth mentioning is that the same common disease, such as obesity, can result from numerous mutations, both rare and common. Though most obese individuals have numerous individual risk alleles, where each may only contribute a few grams of excess body weight, rarer variants may also cause the same diseases. For example, individuals with complete loss of the leptin receptor always exhibit profound obesity, but these alleles are rare, as is this form of obesity. Variants in the MC4R and FTO loci exhibit modest effects on body weight and can be found at frequencies higher than 1% in most populations.


Figure 2. Statistical associations between genotypes and phenotypes on a genome‐wide scale. Genetic tests of association begin with a population comprised of a selection of cases with a trait, such as obesity, and a selection of controls that are ideally identical to the cases, apart from the trait that is being tested. In this example of outbred rats, a group of obese cases and lean controls are genotyped at some position for the alleles A and a, where the allele frequencies of each are shown. While allele a is present in both subgroups, it is significantly enriched among the obese cases. Compiling this individual test and other like it across the genome produces a genome‐wide plot, where each point represents an individual test. The P‐values of each association test are −log10 transformed and plotted with respect to their genomic position, with individual chromosome positions shown here in alternating colors. Most GWAS datasets contain tests of association for hundreds of thousands to millions of independent SNPs, and at that density of points, the plots begin to resemble city skylines and are called Manhattan plots. When multiple independent tests are conducted, it is important to adjust the threshold for P‐values significance to lower the chances of detecting a false association. By convention, a Bonferroni correction is applied. If you test 100 independent loci, the threshold for genome‐wide significance is equal to 0.05/100, or 5 × 10−4, to account for the 100 independent tests. The negative log‐transformation of this threshold puts the cutoff for significance roughly at 3.3, indicated with a solid red line. The hypothetical example shown here is the only SNP that exceeds the threshold, so allele a is significantly associated with obesity, although that does not necessarily mean it is causing obesity.


Figure 3. Backcrosses, intercrosses, and outbreeding with two parent genomes. When two distinct parental genomes (blue and red) are combined, the resulting progeny in the F1, or first filial generation are identical to each other and an equal mixture of both Parent A and Parent B. In a backcross scheme, the F1 progeny are subsequently crossed back to either parent, with successive phenotyping and/or genotyping at each stage. This type of approach is useful when the trait one is attempting to map has an autosomal dominant inheritance pattern, and after 10 generations, an inbred animal is achieved that has been selected to have the minimum portion of the donor genome necessary to produce a phenotype, while the rest of the genome is homozygous for the recipient parental genome. For traits where the inheritance pattern is unknown or recessive, an intercross breeding scheme must be used, where F1 progeny are sibling mated to produce F2s, the genomes of which are random mosaics, containing portions of chromosomes that are heterozygous (purple) or homozygous for one genome or the other (blue or red). Each additional intercross produces new recombinations, which increases genetic complexity and leads to finer mapping resolution, and this process can be theoretically continued indefinitely. Twenty intercrosses are required to produce a fully inbred animal for follow‐up functional studies with brother‐sister mating.


Figure 4. Multi‐parental rodent populations for QTL mapping. Eight founder genomes are represented in the collaborative cross (CC) mouse, diversity outbred (DO) mouse, and heterogeneous stock (HS) rat. In contrast to the other two, the CC mice are inbred and were developed as highly diverse series of lineages in a RI panel. From the CC resource populations, a subset of animals was outbred to reestablish genetic variation using at least 20 generations of circular or semi‐random mating designed to maximize outbreeding by ensuring close relatives were never bred together. This became the DO mouse. The founder genomes of the CC/DO populations are: C57BL/6J, 129S1/SvlmJ, A/J, NOD/ShiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, WSB/EiJ, and the inclusion of wild strains of Mus musculus generates the most diverse rodent population and is the closest to matching the spectrum of human genetic diversity. Aside from species differences, a major factor affecting the genetic diversity of the HS rat is that the HS rat was established using a one‐way breeding funnel, which allows alleles to become fixed within the population more easily, rather than retaining a high degree of variance. With balanced, reciprocal crosses, allele fixation or loss is less likely. Although the introduction of wild alleles increases the breadth of diversity in the CC/DO genomes; these alleles have proven somewhat deleterious as they have undergone negative selection in the unfavorable laboratory environment.


Figure 5. The abundance of an mRNA transcript is genetically regulated by eQTL and sQTL. Transcription factors recruit RNA polymerases when bound to transcription factor binding sites (TFBS). The strength of the TFBS is dependent on the sequence, and variation in sequences can alter the abundance of the transcribed gene. When the sequence variant is located near the gene‐often in a TFBS, it is said to be cis regulated or a cis‐eQTL. If the transcription factor itself has a variant that hinders its ability to bind to its TFBS, then the gene is trans‐regulated and the SNP is a trans‐eQTL, as the coding region for the transcription factor need not be near the regulated gene. When the nascent mRNA is transcribed, introns are spliced out to form the mature mRNA. Each exon is bounded by GT‐‐‐‐AC nucleotides that signal the boundaries of the intron to be removed. When these sites vary, the proportions of certain exons might change, or exons that are normally included in the transcript might be skipped entirely.


Figure 6. Genetic variants contribute to gene expression changes by altering chromatin organization. Stretched end to end, each cell contains nearly 2 m of DNA. The only way DNA can fit within the confines of the nucleus is by extensive compaction into chromosomes; however, DNA is not uniformly compacted. Areas containing genes that are undergoing active transcription (heterochromatin) are more loosely organized to allow access to various DNA‐binding proteins and RNA polymerases. These open areas are not protected by any histone proteins and are vulnerable to enzymatic digestion by DNases. As with most proteins, histones contain posttranslational modifications, which change their function to indicate a promotor or enhancer site, or to mark areas of closed chromatin. Long‐range chromatin interactions, such as topologically associated domains (TADs) are indicated by specific patterns of histone marks, allowing them to form a cluster of chromatin loops that bring linearly distant loci to close together in three‐dimensional space. All of these features display heterogeneity at the sequence level, causing quantitative changes to the transcriptome.
References
 1.Abu‐Toamih Atamni HJ, Ziner Y, Mott R, Wolf L, Iraqi FA. Glucose tolerance female‐specific QTL mapped in collaborative cross mice. Mamm Genome 28: 20‐30, 2017.
 2.Aguilar‐Salinas CA, Viveros‐Ruiz T. Recent advances in managing/understanding the metabolic syndrome. F1000Res 8: F1000 Faculty Rev‐370, 2019.
 3.Aitman T, Dhillon P, Geurts AM. A RATional choice for translational research? Dis Model Mech 9: 1069‐1072, 2016.
 4.Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet 16: 197‐212, 2015.
 5.All of Us Research Program Investigators, Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, Jenkins G, Dishman E. The “All of Us” Research Program. N Engl J Med 381: 668‐676, 2019.
 6.Allen NE, Sudlow C, Peakman T, Collins R, UK Biobank. UK Biobank data: Come and get it. Sci Transl Med 6: 224ed224, 2014.
 7.Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, Keck M. NMR and MS methods for metabolomics. Methods Mol Biol 1641: 229‐258, 2017.
 8.Amberger JS, Hamosh A. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics 58: 1 2 1‐1 2 12, 2017.
 9.Aten JE, Fuller TF, Lusis AJ, Horvath S. Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Syst Biol 2: 34, 2008.
 10.Baker CL, Walker M, Arat S, Ananda G, Petkova P, Powers NR, Tian H, Spruce C, Ji B, Rausch D, Choi K, Petkov PM, Carter GW, Paigen K. Tissue‐specific trans regulation of the mouse epigenome. Genetics 211: 831‐845, 2019.
 11.Barajas‐Olmos F, Centeno‐Cruz F, Zerrweck C, Imaz‐Rosshandler I, Martinez‐Hernandez A, Cordova EJ, Rangel‐Escareno C, Galvez F, Castillo A, Maydon H, Campos F, Maldonado‐Pintado DG, Orozco L. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC Med Genet 19: 28, 2018.
 12.Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: Archive for functional genomics data sets‐‐update. Nucleic Acids Res 41: D991‐D995, 2013.
 13.Battram T, Yousefi P, Crawford G, Prince C, Babei MS, Sharp G, Hatcher C. The EWAS catalog: A database of epigenome‐wide association studies. OSF Preprints, 2021.
 14.Becirovic‐Agic M, Jonsson S, Hultstrom M. Quantitative trait loci associated with angiotensin II and high‐salt diet induced acute decompensated heart failure in Balb/CJ mice. Physiol Genomics 51: 279‐289, 2019.
 15.Bennett B, Saba LM, Hornbaker CK, Kechris KJ, Hoffman P, Tabakoff B. Genetical genomic analysis of complex phenotypes using the PhenoGen website. Behav Genet 41: 625‐628, 2011.
 16.Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RR, Eskin E, Yan M, Kirchgessner T, Wang Z, Li X, Gregory JC, Hazen SL, Gargalovic PS, Lusis AJ. Genetic architecture of atherosclerosis in mice: A systems genetics analysis of common inbred strains. PLoS Genet 11: e1005711, 2015.
 17.Benson MD, Yang Q, Ngo D, Zhu Y, Shen D, Farrell LA, Sinha S, Keyes MJ, Vasan RS, Larson MG, Smith JG, Wang TJ, Gerszten RE. Genetic architecture of the cardiovascular risk proteome. Circulation 137: 1158‐1172, 2018.
 18.Bien SA, Pankow JS, Haessler J, Lu Y, Pankratz N, Rohde RR, Tamuno A, Carlson CS, Schumacher FR, Buzkova P, Daviglus ML, Lim U, Fornage M, Fernandez‐Rhodes L, Aviles‐Santa L, Buyske S, Gross MD, Graff M, Isasi CR, Kuller LH, Manson JE, Matise TC, Prentice RL, Wilkens LR, Yoneyama S, RJF L, Hindorff LA, Le Marchand L, North KE, Haiman CA, Peters U, Kooperberg C. Transethnic insight into the genetics of glycaemic traits: Fine‐mapping results from the Population Architecture using Genomics and Epidemiology (PAGE) consortium. Diabetologia 60: 2384‐2398, 2017.
 19.Bien SA, Wojcik GL, Hodonsky CJ, Gignoux CR, Cheng I, Matise TC, Peters U, Kenny EE, North KE. The future of genomic studies must be globally representative: Perspectives from PAGE. Annu Rev Genomics Hum Genet 20: 181‐200, 2019.
 20.Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M, Wang T, Jacob HJ, Sassard J, Kwitek AE. Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the lyon hypertensive rat. Hypertension 44: 695‐701, 2004.
 21.Bimber BN, Raboin MJ, Letaw J, Nevonen KA, Spindel JE, McCouch SR, Cervera‐Juanes R, Spindel E, Carbone L, Ferguson B, Vinson A. Whole‐genome characterization in pedigreed non‐human primates using genotyping‐by‐sequencing (GBS) and imputation. BMC Genomics 17: 676, 2016.
 22.Binenbaum I, Atamni HA, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA. Container‐aided integrative QTL and RNA‐seq analysis of collaborative cross mice supports distinct sex‐oriented molecular modes of response in obesity. BMC Genomics 21: 761, 2020.
 23.Bogue MA, Philip VM, Walton DO, Grubb SC, Dunn MH, Kolishovski G, Emerson J, Mukherjee G, Stearns T, He H, Sinha V, Kadakkuzha B, Kunde‐Ramamoorthy G, Chesler EJ. Mouse Phenome Database: A data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res 48: D716‐D723, 2020.
 24.Bomba L, Walter K, Soranzo N. The impact of rare and low‐frequency genetic variants in common disease. Genome Biol 18: 77, 2017.
 25.Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: From polygenic to omnigenic. Cell 169: 1177‐1186, 2017.
 26.Brandt MM, Meddens CA, Louzao‐Martinez L, van den Dungen NAM, Lansu NR, Nieuwenhuis EES, Duncker DJ, Verhaar MC, Joles JA, Mokry M, Cheng C. Chromatin conformation links distal target genes to CKD loci. J Am Soc Nephrol 29: 462‐476, 2018.
 27.Brinster R, Kottgen A, Tayo BO, Schumacher M, Sekula P, Consortium CK. Control procedures and estimators of the false discovery rate and their application in low‐dimensional settings: An empirical investigation. BMC Bioinformatics 19: 78, 2018.
 28.Bryant CD, Smith DJ, Kantak KM, Nowak TS Jr, Williams RW, Damaj MI, Redei EE, Chen H, Mulligan MK. Facilitating complex trait analysis via reduced complexity crosses. Trends Genet 36: 549‐562, 2020.
 29.Bujold D, Morais DAL, Gauthier C, Cote C, Caron M, Kwan T, Chen KC, Laperle J, Markovits AN, Pastinen T, Caron B, Veilleux A, Jacques PE, Bourque G. The International Human Epigenome Consortium Data Portal. Cell Syst 3: 496‐499 e492, 2016.
 30.Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. The UK Biobank resource with deep phenotyping and genomic data. Nature 562: 203‐209, 2018.
 31.Cabrera CP, Ng FL, Nicholls HL, Gupta A, Barnes MR, Munroe PB, Caulfield MJ. Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Hum Mol Genet 28: R151‐R161, 2019.
 32.Caliskan M, Manduchi E, Rao HS, Segert JA, Beltrame MH, Trizzino M, Park Y, Baker SW, Chesi A, Johnson ME, Hodge KM, Leonard ME, Loza B, Xin D, Berrido AM, Hand NJ, Bauer RC, Wells AD, Olthoff KM, Shaked A, Rader DJ, Grant SFA, Brown CD. Genetic and epigenetic fine mapping of complex trait associated loci in the human liver. Am J Hum Genet 105: 89‐107, 2019.
 33.Cannon ME, Mohlke KL. Deciphering the emerging complexities of molecular mechanisms at GWAS loci. Am J Hum Genet 103: 637‐653, 2018.
 34.Cano‐Gamez E, Trynka G. From GWAS to function: Using functional genomics to identify the mechanisms underlying complex diseases. Front Genet 11: 424, 2020.
 35.Cao‐Lei L, Elgbeili G, Szyf M, Laplante DP, King S. Differential genome‐wide DNA methylation patterns in childhood obesity. BMC Res Notes 12: 174, 2019.
 36.Carayol J, Chabert C, Di Cara A, Armenise C, Lefebvre G, Langin D, Viguerie N, Metairon S, Saris WHM, Astrup A, Descombes P, Valsesia A, Hager J. Protein quantitative trait locus study in obesity during weight‐loss identifies a leptin regulator. Nat Commun 8: 2084, 2017.
 37.Carcamo‐Orive I, Henrion MYR, Zhu K, Beckmann ND, Cundiff P, Moein S, Zhang Z, Alamprese M, D'Souza SL, Wabitsch M, Schadt EE, Quertermous T, Knowles JW, Chang R. Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness. PLoS Comput Biol 16: e1008491, 2020.
 38.Carneiro G, Radcenco AL, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: A guide to applied metabolomics. Horm Mol Biol Clin Investig 38, 2019.
 39.Cecelja M, Keehn L, Ye L, Spector TD, Hughes AD, Chowienczyk P. Genetic aetiology of blood pressure relates to aortic stiffness with bi‐directional causality: Evidence from heritability, blood pressure polymorphisms, and Mendelian randomization. Eur Heart J 41 (35): 3314‐3322, 2020.
 40.Chen D, Zhao X, Sui Z, Niu H, Chen L, Hu C, Xuan Q, Hou X, Zhang R, Zhou L, Li Y, Yuan H, Zhang Y, Wu J, Zhang L, Wu R, Piao HL, Xu G, Jia W. A multi‐omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranostics 10: 2029‐2046, 2020.
 41.Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F, Li L, China Kadoorie Biobank Collaborative Group. China Kadoorie Biobank of 0.5 million people: Survey methods, baseline characteristics and long‐term follow‐up. Int J Epidemiol 40: 1652‐1666, 2011.
 42.Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD, Palmer AA. Genome‐wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics 185: 1033‐1044, 2010.
 43.Cherny SS, Freidin MB, Williams FMK, Livshits G. The analysis of causal relationships between blood lipid levels and BMD. PLoS One 14: e0212464, 2019.
 44.Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, Raghupathy N, Svenson KL, Churchill GA, Gygi SP. Defining the consequences of genetic variation on a proteome‐wide scale. Nature 534: 500‐505, 2016.
 45.Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, Garcia Martinez A, George T, Gileta AF, Han W, Horvath A, Hughson A, Ishiwari K, King CP, Lamparelli A, Versaggi CL, Martin C, St Pierre CL, Tripi JA, Wang T, Chen H, Flagel SB, Meyer P, Richards J, Robinson TE, Palmer AA, Solberg Woods LC. Genome‐wide association study in 3,173 outbred rats identifies multiple loci for body weight, adiposity, and fasting glucose. Obesity (Silver Spring) 28: 1964‐1973, 2020.
 46.Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A, Tilford C, Saleem NK, Stancakova A, Scott LJ, Fuchsberger C, Stringham HM, Jackson AU, Narisu N, Chines PS, Small KS, Kuusisto J, Parks BW, Pajukanta P, Kirchgessner T, Collins FS, Gargalovic PS, Boehnke M, Laakso M, Mohlke KL, Lusis AJ. Genetic regulation of adipose gene expression and cardio‐metabolic traits. Am J Hum Genet 100: 428‐443, 2017.
 47.Coffey AR, Kanke M, Smallwood TL, Albright J, Pitman W, Gharaibeh RZ, Hua K, Gertz E, Biddinger SB, Temel RE, Pomp D, Sethupathy P, Bennett BJ. microRNA‐146a‐5p association with the cardiometabolic disease risk factor TMAO. Physiol Genomics 51: 59‐71, 2019.
 48.Corcuff JB, Ducint D, Brossaud J. What do you need to know about mass spectrometry? A brief guide for endocrinologists. Ann Endocrinol (Paris) 81: 118‐123, 2020.
 49.Cowley AW Jr, Dwinell MR. Chromosomal substitution strategies to localize genomic regions related to complex traits. Compr Physiol 10: 365‐388, 2020.
 50.Cowley AW Jr, Moreno C, Jacob HJ, Peterson CB, Stingo FC, Ahn KW, Liu P, Vannucci M, Laud PW, Reddy P, Lazar J, Evans L, Yang C, Kurth T, Liang M. Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats. Physiol Genomics 46: 398‐410, 2014.
 51.Cowley AW Jr, Yang C, Kumar V, Lazar J, Jacob H, Geurts AM, Liu P, Dayton A, Kurth T, Liang M. Pappa2 is linked to salt‐sensitive hypertension in Dahl S rats. Physiol Genomics 48: 62‐72, 2016.
 52.Crespo K, Menard A, Deng AY. Hypertension suppression, not a cumulative thrust of quantitative trait loci, predisposes blood pressure homeostasis to normotension. Circ Cardiovasc Genet 8: 610‐617, 2015.
 53.Crouch DJM, Bodmer WF. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc Natl Acad Sci U S A 117: 18924‐18933, 2020.
 54.Crujeiras AB, Diaz‐Lagares A, Moreno‐Navarrete JM, Sandoval J, Hervas D, Gomez A, Ricart W, Casanueva FF, Esteller M, Fernandez‐Real JM. Genome‐wide DNA methylation pattern in visceral adipose tissue differentiates insulin‐resistant from insulin‐sensitive obese subjects. Transl Res 178: 13‐24 e15, 2016.
 55.Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC‐MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev 37: 772‐792, 2018.
 56.Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141: 1199‐1207, 1995.
 57.Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K, Baymuradov UK, Narayanan AK, Onate KC, Graham K, Miyasato SR, Dreszer TR, Strattan JS, Jolanki O, Tanaka FY, Cherry JM. The Encyclopedia of DNA elements (ENCODE): Data portal update. Nucleic Acids Res 46: D794‐D801, 2018.
 58.Davis JP, Huyghe JR, Locke AE, Jackson AU, Sim X, Stringham HM, Teslovich TM, Welch RP, Fuchsberger C, Narisu N, Chines PS, Kangas AJ, Soininen P, Ala‐Korpela M, Kuusisto J, Collins FS, Laakso M, Boehnke M, Mohlke KL. Common, low‐frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet 13: e1007079, 2017.
 59.de Toro‐Martin J, Guenard F, Tchernof A, Deshaies Y, Perusse L, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl MC. A CpG‐SNP located within the ARPC3 gene promoter is associated with hypertriglyceridemia in severely obese patients. Ann Nutr Metab 68: 203‐212, 2016.
 60.de Toro‐Martin J, Guenard F, Tchernof A, Deshaies Y, Perusse L, Hould FS, Lebel S, Marceau P, Vohl MC. Methylation quantitative trait loci within the TOMM20 gene are associated with metabolic syndrome‐related lipid alterations in severely obese subjects. Diabetol Metab Syndr 8: 55, 2016.
 61.Demirdjian L, Xu Y, Bahrami‐Samani E, Pan Y, Stein S, Xie Z, Park E, Wu YN, Xing Y. Detecting allele‐specific alternative splicing from population‐scale RNA‐seq data. Am J Hum Genet 107: 461‐472, 2020.
 62.Denker A, de Laat W. A long‐distance chromatin affair. Cell 162: 942‐943, 2015.
 63.Derry JM, Zhong H, Molony C, MacNeil D, Guhathakurta D, Zhang B, Mudgett J, Small K, El Fertak L, Guimond A, Selloum M, Zhao W, Champy MF, Monassier L, Vogt T, Cully D, Kasarskis A, Schadt EE. Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. PLoS One 5: e14319, 2010.
 64.Deutsch EW, Bandeira N, Sharma V, Perez‐Riverol Y, Carver JJ, Kundu DJ, Garcia‐Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, Hermjakob H, MacLean B, MacCoss MJ, Zhu Y, Ishihama Y, Vizcaino JA. The ProteomeXchange consortium in 2020: Enabling 'big data' approaches in proteomics. Nucleic Acids Res 48: D1145‐D1152, 2020.
 65.Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity‐induced hypertension. Diabetes Metab Syndr Obes 12: 1597‐1615, 2019.
 66.Do AN, Lynch AI, Claas SA, Boerwinkle E, Davis BR, Ford CE, Eckfeldt JH, Tiwari HK, Arnett DK, Irvin MR. The effects of genes implicated in cardiovascular disease on blood pressure response to treatment among treatment‐naive hypertensive African Americans in the GenHAT study. J Hum Hypertens 30: 549‐554, 2016.
 67.Doaei S, Kalantari N, Izadi P, Salonurmi T, Mosavi Jarrahi A, Rafieifar S, Azizi Tabesh G, Rahimzadeh G, Gholamalizadeh M, Goodarzi MO. Changes in FTO and IRX3 gene expression in obese and overweight male adolescents undergoing an intensive lifestyle intervention and the role of FTO genotype in this interaction. J Transl Med 17: 176, 2019.
 68.Dodoo SN, Benjamin IJ. Genomic approaches to hypertension. Cardiol Clin 35: 185‐196, 2017.
 69.Dong SS, Yao S, Chen YX, Guo Y, Zhang YJ, Niu HM, Hao RH, Shen H, Tian Q, Deng HW, Yang TL. Detecting epistasis within chromatin regulatory circuitry reveals CAND2 as a novel susceptibility gene for obesity. Int J Obes (Lond) 43: 450‐456, 2019.
 70.Dube MP, de Denus S, Tardif JC. Pharmacogenomics to revive drug development in cardiovascular disease. Cardiovasc Drugs Ther 30: 59‐64, 2016.
 71.Dumas ME, Domange C, Calderari S, Martinez AR, Ayala R, Wilder SP, Suarez‐Zamorano N, Collins SC, Wallis RH, Gu Q, Wang Y, Hue C, Otto GW, Argoud K, Navratil V, Mitchell SC, Lindon JC, Holmes E, Cazier JB, Nicholson JK, Gauguier D. Topological analysis of metabolic networks integrating co‐segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Med 8: 101, 2016.
 72.Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis 61: 142‐150, 2018.
 73.Ellegren H, Galtier N. Determinants of genetic diversity. Nat Rev Genet 17: 422‐433, 2016.
 74.Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, Kathiresan S. Genetic association of waist‐to‐hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317: 626‐634, 2017.
 75.eMERGE Consortium. Harmonizing clinical sequencing and interpretation for the eMERGE III network. Am J Hum Genet 105: 588‐605, 2019.
 76.Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, Hoover H, Gudmundsdottir V, Horman SR, Aspelund T, Shu L, Trifonov V, Sigurdsson S, Manolescu A, Zhu J, Olafsson O, Jakobsdottir J, Lesley SA, To J, Zhang J, Harris TB, Launer LJ, Zhang B, Eiriksdottir G, Yang X, Orth AP, Jennings LL, Gudnason V. Co‐regulatory networks of human serum proteins link genetics to disease. Science 361: 769‐773, 2018.
 77.Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR spectroscopy for metabolomics research. Metabolites 9: 123, 2019.
 78.ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, Kaul R, Halow J, Van Nostrand EL, Freese P, Gorkin DU, Shen Y, He Y, Mackiewicz M, Pauli‐Behn F, Williams BA, Mortazavi A, Keller CA, Zhang XO, Elhajjajy SI, Huey J, Dickel DE, Snetkova V, Wei X, Wang X, Rivera‐Mulia JC, Rozowsky J, Zhang J, Chhetri SB, Zhang J, Victorsen A, White KP, Visel A, Yeo GW, Burge CB, Lecuyer E, Gilbert DM, Dekker J, Rinn J, Mendenhall EM, Ecker JR, Kellis M, Klein RJ, Noble WS, Kundaje A, Guigo R, Farnham PJ, Cherry JM, Myers RM, Ren B, Graveley BR, Gerstein MB, Pennacchio LA, Snyder MP, Bernstein BE, Wold B, Hardison RC, Gingeras TR, Stamatoyannopoulos JA, Weng Z. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583: 699‐710, 2020.
 79.Eppig JT. Mouse Genome Informatics (MGI) resource: Genetic, genomic, and biological knowledgebase for the laboratory mouse. ILAR J 58: 17‐41, 2017.
 80.Evangelou E, Warren HR, Mosen‐Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Magi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li‐Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Theriault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Pare G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco MF, Demirkale CY, Dorr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Franberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga JJ, Huffman JE, Hwang SJ, Ingelsson E, James A, Jansen R, Jarvelin MR, Joehanes R, Johansson A, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kahonen M, Kathiresan S, Keavney BD, Khaw KT, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimaki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikainen LP, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx B, Perola M, Peters A, Polasek O, Pramstaller PP, Nguyen QT, Raitakari OT, Ren M, Rettig R, Rice K, Ridker PM, Ried JS, Riese H, Ripatti S, Robino A, Rose LM, Rotter JI, Rudan I, Ruggiero D, Saba Y, Sala CF, Salomaa V, Samani NJ, Sarin AP, Schmidt R, Schmidt H, Shrine N, Siscovick D, Smith AV, Snieder H, Sober S, Sorice R, Starr JM, Stott DJ, Strachan DP, Strawbridge RJ, Sundstrom J, Swertz MA, Taylor KD, Teumer A, Tobin MD, Tomaszewski M, Toniolo D, Traglia M, Trompet S, Tuomilehto J, Tzourio C, Uitterlinden AG, Vaez A, van der Most PJ, van Duijn CM, Vergnaud AC, Verwoert GC, Vitart V, Volker U, Vollenweider P, Vuckovic D, Watkins H, Wild SH, Willemsen G, Wilson JF, Wright AF, Yao J, Zemunik T, Zhang W, Attia JR, Butterworth AS, Chasman DI, Conen D, Cucca F, Danesh J, Hayward C, Howson JMM, Laakso M, Lakatta EG, Langenberg C, Melander O, Mook‐Kanamori DO, Palmer CNA, Risch L, Scott RA, Scott RJ, Sever P, Spector TD, van der Harst P, Wareham NJ, Zeggini E, Levy D, Munroe PB, Newton‐Cheh C, Brown MJ, Metspalu A, Hung AM, O'Donnell CJ, Edwards TL, Psaty BM, Tzoulaki I, Barnes MR, Wain LV, Elliott P, Caulfield MJ, Million Veteran P. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50: 1412‐1425, 2018.
 81.Fadason T, Ekblad C, Ingram JR, Schierding WS, O'Sullivan JM. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs. Front Genet 8: 150, 2017.
 82.Fadason T, Schierding W, Lumley T, O'Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun 9: 5198, 2018.
 83.Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, Storm P, Osmark P, Ladenvall C, Prasad RB, Hansson KB, Finotello F, Uvebrant K, Ofori JK, Di Camillo B, Krus U, Cilio CM, Hansson O, Eliasson L, Rosengren AH, Renstrom E, Wollheim CB, Groop L. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111: 13924‐13929, 2014.
 84.Fang G, Wang W, Paunic V, Heydari H, Costanzo M, Liu X, Liu X, VanderSluis B, Oately B, Steinbach M, Van Ness B, Schadt EE, Pankratz ND, Boone C, Kumar V, Myers CL. Discovering genetic interactions bridging pathways in genome‐wide association studies. Nat Commun 10: 4274, 2019.
 85.Faulkner JL, Belin de Chantemele EJ. Sex hormones, aging and cardiometabolic syndrome. Biol Sex Differ 10: 30, 2019.
 86.Fernandez‐Rhodes L, Gong J, Haessler J, Franceschini N, Graff M, Nishimura KK, Wang Y, Highland HM, Yoneyama S, Bush WS, Goodloe R, Ritchie MD, Crawford D, Gross M, Fornage M, Buzkova P, Tao R, Isasi C, Aviles‐Santa L, Daviglus M, Mackey RH, Houston D, Gu CC, Ehret G, Nguyen KH, Lewis CE, Leppert M, Irvin MR, Lim U, Haiman CA, Le Marchand L, Schumacher F, Wilkens L, Lu Y, Bottinger EP, RJL L, Sheu WH, Guo X, Lee WJ, Hai Y, Hung YJ, Absher D, Wu IC, Taylor KD, Lee IT, Liu Y, Wang TD, Quertermous T, Juang JJ, Rotter JI, Assimes T, Hsiung CA, Chen YI, Prentice R, Kuller LH, Manson JE, Kooperberg C, Smokowski P, Robinson WR, Gordon‐Larsen P, Li R, Hindorff L, Buyske S, Matise TC, Peters U, North KE. Trans‐ethnic fine‐mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) Study reveals evidence for multiple signals at established loci. Hum Genet 136: 771‐800, 2017.
 87.Fert‐Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision profiling of the cardiovascular post‐translationally modified proteome: Where there is a will, there is a way. Circ Res 122: 1221‐1237, 2018.
 88.Finlay C, Argoud K, Wilder SP, Ouali F, Ktorza A, Kaisaki PJ, Gauguier D. Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto‐Kakizaki rat. Mamm Genome 21: 499‐508, 2010.
 89.Flister MJ, Tsaih SW, O'Meara CC, Endres B, Hoffman MJ, Geurts AM, Dwinell MR, Lazar J, Jacob HJ, Moreno C. Identifying multiple causative genes at a single GWAS locus. Genome Res 23: 1996‐2002, 2013.
 90.Florez JC. The pharmacogenetics of metformin. Diabetologia 60: 1648‐1655, 2017.
 91.Fontaine DA, Davis DB. Attention to background strain is essential for metabolic research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65: 25‐33, 2016.
 92.Gallagher MD, Chen‐Plotkin AS. The post‐GWAS era: From association to function. Am J Hum Genet 102: 717‐730, 2018.
 93.Gallois A, Mefford J, Ko A, Vaysse A, Julienne H, Ala‐Korpela M, Laakso M, Zaitlen N, Pajukanta P, Aschard H. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat Commun 10: 4788, 2019.
 94.Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino‐Michaels K, Carroll RJ, Eyler AE, Denny JC, Consortium GT, Nicolae DL, Cox NJ, Im HK. A gene‐based association method for mapping traits using reference transcriptome data. Nat Genet 47: 1091‐1098, 2015.
 95.Garrett MR, Joe B, Dene H, Rapp JP. Identification of blood pressure quantitative trait loci that differentiate two hypertensive strains. J Hypertens 20: 2399‐2406, 2002.
 96.Garrett MR, Saad Y, Dene H, Rapp JP. Blood pressure QTL that differentiate Dahl salt‐sensitive and spontaneously hypertensive rats. Physiol Genomics 3: 33‐38, 2000.
 97.Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, Whitbourne S, Deen J, Shannon C, Humphries D, Guarino P, Aslan M, Anderson D, LaFleur R, Hammond T, Schaa K, Moser J, Huang G, Muralidhar S, Przygodzki R, O'Leary TJ. Million Veteran Program: A mega‐biobank to study genetic influences on health and disease. J Clin Epidemiol 70: 214‐223, 2016.
 98.Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature 526: 68‐74, 2015.
 99.George G, Gan S, Huang Y, Appleby P, Nar AS, Venkatesan R, Mohan V, Palmer CNA, Doney ASF. PheGWAS: A new dimension to visualize GWAS across multiple phenotypes. Bioinformatics 36: 2500‐2505, 2020.
 100.Ghazalpour A, Bennett BJ, Shih D, Che N, Orozco L, Pan C, Hagopian R, He A, Kayne P, Yang WP, Kirchgessner T, Lusis AJ. Genetic regulation of mouse liver metabolite levels. Mol Syst Biol 10: 730, 2014.
 101.Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, Robinson‐Cohen C, Roumie CL, Chung CP, Birdwell KA, Damrauer SM, SL DV, Klarin D, Cho K, Wang Y, Evangelou E, Cabrera CP, Wain LV, Shrestha R, Mautz BS, Akwo EA, Sargurupremraj M, Debette S, Boehnke M, Scott LJ, Luan J, Zhao JH, Willems SM, Theriault S, Shah N, Oldmeadow C, Almgren P, Li‐Gao R, Verweij N, Boutin TS, Mangino M, Ntalla I, Feofanova E, Surendran P, Cook JP, Karthikeyan S, Lahrouchi N, Liu C, Sepulveda N, Richardson TG, Kraja A, Amouyel P, Farrall M, Poulter NR, Understanding Society Scientific Group, International Consortium for Blood Pressure, Blood Pressure‐International Consortium of Exome Chip Studies, Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, Conen D, Palmer CNA, Attia J, Chasman DI, Ridker PM, Melander O, Mook‐Kanamori DO, Harst PV, Cucca F, Schlessinger D, Hayward C, Spector TD, Jarvelin MR, Hennig BJ, Timpson NJ, Wei WQ, Smith JC, Xu Y, Matheny ME, Siew EE, Lindgren C, Herzig KH, Dedoussis G, Denny JC, Psaty BM, Howson JMM, Munroe PB, Newton‐Cheh C, Caulfield MJ, Elliott P, Gaziano JM, Concato J, Wilson PWF, Tsao PS, Velez Edwards DR, Susztak K, Million Veteran P, O'Donnell CJ, Hung AM, Edwards TL. Trans‐ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 51: 51‐62, 2019.
 102.Glastonbury CA, Couto Alves A, El‐Sayed Moustafa JS, Small KS. Cell‐type heterogeneity in adipose tissue is associated with complex traits and reveals disease‐relevant cell‐specific eQTLs. Am J Hum Genet 104: 1013‐1024, 2019.
 103.Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS One 12: e0177675, 2017.
 104.Golov AK, Abashkin DA, Kondratyev NV, Razin SV, Gavrilov AA, Golimbet VE. A modified protocol of Capture‐C allows affordable and flexible high‐resolution promoter interactome analysis. Sci Rep 10: 15491, 2020.
 105.Gong J, Nishimura KK, Fernandez‐Rhodes L, Haessler J, Bien S, Graff M, Lim U, Lu Y, Gross M, Fornage M, Yoneyama S, Isasi CR, Buzkova P, Daviglus M, Lin DY, Tao R, Goodloe R, Bush WS, Farber‐Eger E, Boston J, Dilks HH, Ehret G, Gu CC, Lewis CE, Nguyen KH, Cooper R, Leppert M, Irvin MR, Bottinger EP, Wilkens LR, Haiman CA, Park L, Monroe KR, Cheng I, Stram DO, Carlson CS, Jackson R, Kuller L, Houston D, Kooperberg C, Buyske S, Hindorff LA, Crawford DC, RJF L, Le Marchand L, Matise TC, North KE, Peters U. Trans‐ethnic analysis of metabochip data identifies two new loci associated with BMI. Int J Obes (Lond) 42: 384‐390, 2018.
 106.Gonzales NM, Palmer AA. Fine‐mapping QTLs in advanced intercross lines and other outbred populations. Mamm Genome 25: 271‐292, 2014.
 107.Gonzales NM, Seo J, Hernandez Cordero AI, St Pierre CL, Gregory JS, Distler MG, Abney M, Canzar S, Lionikas A, Palmer AA. Genome wide association analysis in a mouse advanced intercross line. Nat Commun 9: 5162, 2018.
 108.Gopalan S, Carja O, Fagny M, Patin E, Myrick JW, McEwen LM, Mah SM, Kobor MS, Froment A, Feldman MW, Quintana‐Murci L, Henn BM. Trends in DNA methylation with age replicate across diverse human populations. Genetics 206: 1659‐1674, 2017.
 109.Grabowski K, Koplin G, Aliu B, Schulte L, Schulz A, Kreutz R. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats. Physiol Genomics 45: 827‐833, 2013.
 110.Grainger AT, Jones MB, Chen MH, Shi W. Polygenic control of carotid atherosclerosis in a BALB/cJ x SM/J intercross and a combined cross involving multiple mouse strains. G3 (Bethesda) 7: 731‐739, 2017.
 111.Grasby KL, Verweij KJH, Mosing MA, Zietsch BP, Medland SE. Estimating heritability from twin studies. Methods Mol Biol 1666: 171‐194, 2017.
 112.Greenwald WW, Chiou J, Yan J, Qiu Y, Dai N, Wang A, Nariai N, Aylward A, Han JY, Kadakia N, Regue L, Okino ML, Drees F, Kramer D, Vinckier N, Minichiello L, Gorkin D, Avruch J, Frazer KA, Sander M, Ren B, Gaulton KJ. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat Commun 10: 2078, 2019.
 113.Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, Greenside P, Srivas R, Phanstiel DH, Pekowska A, Heidari N, Euskirchen G, Huber W, Pritchard JK, Bustamante CD, Steinmetz LM, Kundaje A, Snyder M. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162: 1051‐1065, 2015.
 114.GTEx Consortium. The Genotype‐Tissue Expression (GTEx) project. Nat Genet 45: 580‐585, 2013.
 115.GTEx Consortium. Human genomics. The Genotype‐Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 348: 648‐660, 2015.
 116.GTEx Consortium, Laboratory, Data Analysis & Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods Groups—Analysis Working Group, Enhancing GTEx (eGTEx) Groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, Biospecimen Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, Biospecimen Core Resource—VARI, Brain Bank Repository—University of Miami Brain Endowment Bank, Leidos Biomedical—Project Management, ELSI Study, Genome Browser Data Integration & Visualization—EBI, Genome Browser Data Integration & Visualization—UCSC Genomics Institute, University of California Santa Cruz, Lead Analysts, Laboratory, Data Analysis & Coordinating Center (LDACC), NIH Program Management, Biospecimen Collection, Pathology, eQTL Manuscript Working Group, Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature 550: 204‐213, 2017.
 117.Guenard F, Tchernof A, Deshaies Y, Biron S, Lescelleur O, Biertho L, Marceau S, Perusse L, Vohl MC. Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome. Transl Res 184: 1‐11 e12, 2017.
 118.Guo Y, Chung W, Zhu Z, Shan Z, Li J, Liu S, Liang L. Genome‐wide assessment for resting heart rate and shared genetics with cardiometabolic traits and type 2 diabetes. J Am Coll Cardiol 74: 2162‐2174, 2019.
 119.Han J, Robinet P, Ritchey B, Andro H, Smith JD. Confirmation of Ath26 locus on chromosome 17 and identification of Cyp4f13 as an atherosclerosis modifying gene. Atherosclerosis 286: 71‐78, 2019.
 120.Hasin Y, Seldin M, Lusis A. Multi‐omics approaches to disease. Genome Biol 18: 83, 2017.
 121.Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, O'Donovan C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48: D440‐D444, 2020.
 122.Heifetz EM, Soller M. Targeted Recombinant Progeny: A design for ultra‐high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines. BMC Genet 16: 76, 2015.
 123.Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet 95: 1 22 21‐21 22 23, 2017.
 124.Hodge SE, Greenberg DA. How can we explain very low odds ratios in GWAS? I. Polygenic models. Hum Hered 81: 173‐180, 2016.
 125.Hoffmann TJ, Choquet H, Yin J, Banda Y, Kvale MN, Glymour M, Schaefer C, Risch N, Jorgenson E. A large multiethnic genome‐wide association study of adult body mass index identifies novel loci. Genetics 210: 499‐515, 2018.
 126.Hu Y, Graff M, Haessler J, Buyske S, Bien SA, Tao R, Highland HM, Nishimura KK, Zubair N, Lu Y, Verbanck M, Hilliard AT, Klarin D, Damrauer SM, Ho YL, VA Million Veteran Program, Wilson PWF, Chang KM, Tsao PS, Cho K, O'Donnell CJ, Assimes TL, Petty LE, Below JE, Dikilitas O, Schaid DJ, Kosel ML, Kullo IJ, Rasmussen‐Torvik LJ, Jarvik GP, Feng Q, Wei WQ, Larson EB, Mentch FD, Almoguera B, Sleiman PM, Raffield LM, Correa A, Martin LW, Daviglus M, Matise TC, Ambite JL, Carlson CS, Do R, RJF L, Wilkens LR, Le Marchand L, Haiman C, Stram DO, Hindorff LA, North KE, Kooperberg C, Cheng I, Peters U. Minority‐centric meta‐analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet 16: e1008684, 2020.
 127.Hu Z, Liang MC, Soong TW. Alternative splicing of L‐type CaV1.2 calcium channels: Implications in cardiovascular diseases. Genes (Basel) 8: 344, 2017.
 128.Huan T, Joehanes R, Song C, Peng F, Guo Y, Mendelson M, Yao C, Liu C, Ma J, Richard M, Agha G, Guan W, Almli LM, Conneely KN, Keefe J, Hwang SJ, Johnson AD, Fornage M, Liang L, Levy D. Genome‐wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat Commun 10: 4267, 2019.
 129.Huang L, Tepaamorndech S, Kirschke CP, Cai Y, Zhao J, Cao X, Rao A. Subcongenic analysis of a quantitative trait locus affecting body weight and glucose metabolism in zinc transporter 7 (znt7)‐knockout mice. BMC Genet 20: 19, 2019.
 130.Huang QQ, Ritchie SC, Brozynska M, Inouye M. Power, false discovery rate and Winner's Curse in eQTL studies. Nucleic Acids Res 46: e133, 2018.
 131.Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37: 243‐253, 2005.
 132.Hui ST, Parks BW, Org E, Norheim F, Che N, Pan C, Castellani LW, Charugundla S, Dirks DL, Psychogios N, Neuhaus I, Gerszten RE, Kirchgessner T, Gargalovic PS, Lusis AJ. The genetic architecture of NAFLD among inbred strains of mice. Elife 4: e05607, 2015.
 133.Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S. High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233: 53‐64, 2017.
 134.Huvenne H, Dubern B, Clement K, Poitou C. Rare genetic forms of obesity: Clinical approach and current treatments in 2016. Obes Facts 9: 158‐173, 2016.
 135.Ingelsson E, McCarthy MI. Human genetics of obesity and type 2 diabetes mellitus: Past, present, and future. Circ Genom Precis Med 11: e002090, 2018.
 136.Ji X, Li P, Fuscoe JC, Chen G, Xiao W, Shi L, Ning B, Liu Z, Hong H, Wu J, Liu J, Guo L, Kreil DP, Labaj PP, Zhong L, Bao W, Huang Y, He J, Zhao Y, Tong W, Shi T. A comprehensive rat transcriptome built from large scale RNA‐seq‐based annotation. Nucleic Acids Res 48: 8320‐8331, 2020.
 137.Jia X, Lin H, Nie Q, Zhang X, Lamont SJ. A short insertion mutation disrupts genesis of miR‐16 and causes increased body weight in domesticated chicken. Sci Rep 6: 36433, 2016.
 138.Jiao M, Li J, Zhang Q, Xu X, Li R, Dong P, Meng C, Li Y, Wang L, Qi W, Kang K, Wang H, Wang T. Identification of four potential biomarkers associated with coronary artery disease in non‐diabetic patients by gene co‐expression network analysis. Front Genet 11: 542, 2020.
 139.Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis 5: 1‐8, 2018.
 140.Jones PD, Kaiser MA, Ghaderi Najafabadi M, Koplev S, Zhao Y, Douglas G, Kyriakou T, Andrews S, Rajmohan R, Watkins H, Channon KM, Ye S, Yang X, Bjorkegren JLM, Samani NJ, Webb TR. JCAD, a gene at the 10p11 coronary artery disease locus, regulates Hippo signaling in endothelial cells. Arterioscler Thromb Vasc Biol 38: 1711‐1722, 2018.
 141.Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, Barata L, Deng X, Czajkowski J, Hadley D, Ngwa JS, Ahluwalia TS, Chu AY, Heard‐Costa NL, Lim E, Perez J, Eicher JD, Kutalik Z, Xue L, Mahajan A, Renstrom F, Wu J, Qi Q, Ahmad S, Alfred T, Amin N, Bielak LF, Bonnefond A, Bragg J, Cadby G, Chittani M, Coggeshall S, Corre T, Direk N, Eriksson J, Fischer K, Gorski M, Neergaard Harder M, Horikoshi M, Huang T, Huffman JE, Jackson AU, Justesen JM, Kanoni S, Kinnunen L, Kleber ME, Komulainen P, Kumari M, Lim U, Luan J, Lyytikainen LP, Mangino M, Manichaikul A, Marten J, Middelberg RPS, Muller‐Nurasyid M, Navarro P, Perusse L, Pervjakova N, Sarti C, Smith AV, Smith JA, Stancakova A, Strawbridge RJ, Stringham HM, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van der Most PJ, Van Vliet‐Ostaptchouk JV, Vedantam SL, Verweij N, Vink JM, Vitart V, Wu Y, Yengo L, Zhang W, Hua Zhao J, Zimmermann ME, Zubair N, Abecasis GR, Adair LS, Afaq S, Afzal U, Bakker SJL, Bartz TM, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Braga D, Buckley BM, Buyske S, Campbell H, Chambers JC, Collins FS, Curran JE, de Borst GJ, de Craen AJM, de Geus EJC, Dedoussis G, Delgado GE, den Ruijter HM, Eiriksdottir G, Eriksson AL, Esko T, Faul JD, Ford I, Forrester T, Gertow K, Gigante B, Glorioso N, Gong J, Grallert H, Grammer TB, Grarup N, Haitjema S, Hallmans G, Hamsten A, Hansen T, Harris TB, Hartman CA, Hassinen M, Hastie ND, Heath AC, Hernandez D, Hindorff L, Hocking LJ, Hollensted M, Holmen OL, Homuth G, Jan Hottenga J, Huang J, Hung J, Hutri‐Kahonen N, Ingelsson E, James AL, Jansson JO, Jarvelin MR, Jhun MA, Jorgensen ME, Juonala M, Kahonen M, Karlsson M, Koistinen HA, Kolcic I, Kolovou G, Kooperberg C, Kramer BK, Kuusisto J, Kvaloy K, Lakka TA, Langenberg C, Launer LJ, Leander K, Lee NR, Lind L, Lindgren CM, Linneberg A, Lobbens S, Loh M, Lorentzon M, Luben R, Lubke G, Ludolph‐Donislawski A, Lupoli S, Madden PAF, Mannikko R, Marques‐Vidal P, Martin NG, McKenzie CA, McKnight B, Mellstrom D, Menni C, Montgomery GW, Musk AB, Narisu N, Nauck M, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Peyser PA, Pisinger C, Porteous DJ, Raitakari OT, Rankinen T, Rao DC, Rasmussen‐Torvik LJ, Rawal R, Rice T, Ridker PM, Rose LM, Bien SA, Rudan I, Sanna S, Sarzynski MA, Sattar N, Savonen K, Schlessinger D, Scholtens S, Schurmann C, Scott RA, Sennblad B, Siemelink MA, Silbernagel G, Slagboom PE, Snieder H, Staessen JA, Stott DJ, Swertz MA, Swift AJ, Taylor KD, Tayo BO, Thorand B, Thuillier D, Tuomilehto J, Uitterlinden AG, Vandenput L, Vohl MC, Volzke H, Vonk JM, Waeber G, Waldenberger M, Westendorp RGJ, Wild S, Willemsen G, Wolffenbuttel BHR, Wong A, Wright AF, Zhao W, Zillikens MC, Baldassarre D, Balkau B, Bandinelli S, Boger CA, Boomsma DI, Bouchard C, Bruinenberg M, Chasman DI, Chen YD, Chines PS, Cooper RS, Cucca F, Cusi D, Faire U, Ferrucci L, Franks PW, Froguel P, Gordon‐Larsen P, Grabe HJ, Gudnason V, Haiman CA, Hayward C, Hveem K, Johnson AD, Wouter Jukema J, Kardia SLR, Kivimaki M, Kooner JS, Kuh D, Laakso M, Lehtimaki T, Marchand LL, Marz W, McCarthy MI, Metspalu A, Morris AP, Ohlsson C, Palmer LJ, Pasterkamp G, Pedersen O, Peters A, Peters U, Polasek O, Psaty BM, Qi L, Rauramaa R, Smith BH, Sorensen TIA, Strauch K, Tiemeier H, Tremoli E, van der Harst P, Vestergaard H, Vollenweider P, Wareham NJ, Weir DR, Whitfield JB, Wilson JF, Tyrrell J, Frayling TM, Barroso I, Boehnke M, Deloukas P, Fox CS, Hirschhorn JN, Hunter DJ, Spector TD, Strachan DP, van Duijn CM, Heid IM, Mohlke KL, Marchini J, RJF L, Kilpelainen TO, Liu CT, Borecki IB, North KE, Cupples LA. Genome‐wide meta‐analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun 8: 14977, 2017.
 142.Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS One 8: e77679, 2013.
 143.Karlsson T, Rask‐Andersen M, Pan G, Hoglund J, Wadelius C, Ek WE, Johansson A. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 25: 1390‐1395, 2019.
 144.Kato N, Tamada T, Nabika T, Ueno K, Gotoda T, Matsumoto C, Mashimo T, Sawamura M, Ikeda K, Nara Y, Yamori Y. Identification of quantitative trait loci for serum cholesterol levels in stroke‐prone spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 20: 223‐229, 2000.
 145.Kaur Y, Wang DX, Liu HY, Meyre D. Comprehensive identification of pleiotropic loci for body fat distribution using the NHGRI‐EBI Catalog of published genome‐wide association studies. Obes Rev 20: 385‐406, 2019.
 146.Kayashima Y, Tomita H, Zhilicheva S, Kim S, Kim HS, Bennett BJ, Maeda N. Quantitative trait loci affecting atherosclerosis at the aortic root identified in an intercross between DBA2J and 129S6 apolipoprotein E‐null mice. PLoS One 9: e88274, 2014.
 147.Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Bohm M, Laufs U. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 113: 42, 2018.
 148.Keaton JM, Hellwege JN, Ng MC, Palmer ND, Pankow JS, Fornage M, Wilson JG, Correa A, Rasmussen‐Torvik LJ, Rotter JI, Chen YD, Taylor KD, Rich SS, Wagenknecht LE, Freedman BI, Bowden DW. Genome‐wide interaction with insulin secretion loci reveals novel loci for type 2 diabetes in African Americans. PLoS One 11: e0159977, 2016.
 149.Keele GR, Crouse WL, Kelada SNP, Valdar W. Determinants of QTL mapping power in the realized collaborative cross. G3 (Bethesda) 9: 1707‐1727, 2019.
 150.Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal A, Francic S, Cui L, Gatti DM, Broman KW, Tschannen M, Tsaih SW, Zagloul M, Kim Y, Baur B, Fox J, Robinson M, Levy S, Flister MJ, Mott R, Valdar W, Solberg Woods LC. Genetic fine‐mapping and identification of candidate genes and variants for adiposity traits in outbred rats. Obesity (Silver Spring) 26: 213‐222, 2018.
 151.Keele GR, Quach BC, Israel JW, Chappell GA, Lewis L, Safi A, Simon JM, Cotney P, Crawford GE, Valdar W, Rusyn I, Furey TS. Integrative QTL analysis of gene expression and chromatin accessibility identifies multi‐tissue patterns of genetic regulation. PLoS Genet 16: e1008537, 2020.
 152.Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Vincent M, Mitok KA, Wang Z, Ishimura T, Simonett SP, Emfinger CH, Das R, Beck T, Kendziorski C, Broman KW, Yandell BS, Churchill GA, Attie AD. Gene loci associated with insulin secretion in islets from non‐diabetic mice. J Clin Invest 129: 4419‐4432, 2019.
 153.Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, Chaffin M, Small AM, Huang J, Tang H, Lynch JA, Ho YL, Liu DJ, Emdin CA, Li AH, Huffman JE, Lee JS, Natarajan P, Chowdhury R, Saleheen D, Vujkovic M, Baras A, Pyarajan S, Di Angelantonio E, Neale BM, Naheed A, Khera AV, Danesh J, Chang KM, Abecasis G, Willer C, Dewey FE, Carey DJ, Global Lipids Genetics Consortium, Myocardial Infarction Genetics Consortium, Geisinger‐Regeneron DiscovER Collaboration, VA Million Veteran Program, Concato J, Gaziano JM, O'Donnell CJ, Tsao PS, Kathiresan S, Rader DJ, Wilson PWF, Assimes TL. Genetics of blood lipids among ∼300,000 multi‐ethnic participants of the Million Veteran Program. Nat Genet 50: 1514‐1523, 2018.
 154.Klarin D, Lynch J, Aragam K, Chaffin M, Assimes TL, Huang J, Lee KM, Shao Q, Huffman JE, Natarajan P, Arya S, Small A, Sun YV, Vujkovic M, Freiberg MS, Wang L, Chen J, Saleheen D, Lee JS, Miller DR, Reaven P, Alba PR, Patterson OV, DuVall SL, Boden WE, Beckman JA, Gaziano JM, Concato J, Rader DJ, Cho K, Chang KM, Wilson PWF, O'Donnell CJ, Kathiresan S, VA Million Veteran Program, Tsao PS, Damrauer SM. Genome‐wide association study of peripheral artery disease in the Million Veteran Program. Nat Med 25: 1274‐1279, 2019.
 155.Koh IU, Lee HJ, Hwang JY, Choi NH, Lee S. Obesity‐related CpG methylation (cg07814318) of Kruppel‐like Factor‐13 (KLF13) gene with childhood obesity and its cis‐methylation quantitative loci. Sci Rep 7: 45368, 2017.
 156.Kottgen A, Raffler J, Sekula P, Kastenmuller G. Genome‐wide association studies of metabolite concentrations (mGWAS): Relevance for nephrology. Semin Nephrol 38: 151‐174, 2018.
 157.Kraus WE, Granger CB, Sketch MH Jr, Donahue MP, Ginsburg GS, Hauser ER, Haynes C, Newby LK, Hurdle M, Dowdy ZE, Shah SH. A guide for a cardiovascular genomics biorepository: The CATHGEN experience. J Cardiovasc Transl Res 8: 449‐457, 2015.
 158.Kraus WE, Muoio DM, Stevens R, Craig D, Bain JR, Grass E, Haynes C, Kwee L, Qin X, Slentz DH, Krupp D, Muehlbauer M, Hauser ER, Gregory SG, Newgard CB, Shah SH. Metabolomic quantitative trait loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. PLoS Genet 11: e1005553, 2015.
 159.Krijger PH, de Laat W. Regulation of disease‐associated gene expression in the 3D genome. Nat Rev Mol Cell Biol 17: 771‐782, 2016.
 160.Kumazawa M, Kobayashi M, Io F, Kawai T, Nishimura M, Ohno T, Horio F. Searching for genetic factors of fatty liver in SMXA‐5 mice by quantitative trait loci analysis under a high‐fat diet. J Lipid Res 48: 2039‐2046, 2007.
 161.Kupers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M, Perron P, Wright RO, Hertz‐Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergstrom A, Ortqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Haberg SE, Sorensen TIA, Taylor JA, Raikkonen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hamalainen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melen E, Prentice AM, Kajantie E, Almqvist C, Oken E, Dabelea D, Boezen HM, Melton PE, Wright RJ, Koppelman GH, Trevisi L, Hivert MF, Sunyer J, Munthe‐Kaas MC, Murphy SK, Corpeleijn E, Wiemels J, Holland N, Herceg Z, Binder EB, Davey Smith G, Jaddoe VWV, Lie RT, Nystad W, London SJ, Lawlor DA, Relton CL, Snieder H, Felix JF. Meta‐analysis of epigenome‐wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun 10: 1893, 2019.
 162.Kwitek‐Black AE, Jacob HJ. The use of designer rats in the genetic dissection of hypertension. Curr Hypertens Rep 3: 12‐18, 2001.
 163.Kyono Y, Kitzman JO, Parker SCJ. Genomic annotation of disease‐associated variants reveals shared functional contexts. Diabetologia 62: 735‐743, 2019.
 164.Laakso M, Kuusisto J, Stancakova A, Kuulasmaa T, Pajukanta P, Lusis AJ, Collins FS, Mohlke KL, Boehnke M. The Metabolic Syndrome in Men study: A resource for studies of metabolic and cardiovascular diseases. J Lipid Res 58: 481‐493, 2017.
 165.Ladha FA, Stitzel ML, Hinson JT. From GWAS Association to function: Candidate gene screening within insulin resistance‐associated genomic loci using a preadipocyte differentiation model. Circ Res 126: 347‐349, 2020.
 166.Lam SM, Wang Y, Li B, Du J, Shui G. Metabolomics through the lens of precision cardiovascular medicine. J Genet Genomics 44: 127‐138, 2017.
 167.Landgraf K, Scholz M, Kovacs P, Kiess W, Korner A. FTO obesity risk variants are linked to adipocyte IRX3 expression and BMI of children ‐ Relevance of FTO variants to defend body weight in lean children? PLoS One 11: e0161739, 2016.
 168.Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559, 2008.
 169.Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic analysis in the age of human genome sequencing. Cell 177: 70‐84, 2019.
 170.Larson NB, Decker PA, Wassel CL, Pankow JS, Tang W, Hanson NQ, Tsai MY, Bielinski SJ. Blood group antigen loci demonstrate multivariate genetic associations with circulating cellular adhesion protein levels in the Multi‐Ethnic Study of Atherosclerosis. Hum Genet 135: 415‐423, 2016.
 171.Lau E, Paik DT, Wu JC. Systems‐wide approaches in induced pluripotent stem cell models. Annu Rev Pathol 14: 395‐419, 2019.
 172.Law M, Shaw DR. Mouse Genome Informatics (MGI) is the international resource for information on the laboratory mouse. Methods Mol Biol 1757: 141‐161, 2018.
 173.Leal‐Gutierrez JD, Elzo MA, Mateescu RG. Identification of eQTLs and sQTLs associated with meat quality in beef. BMC Genomics 21: 104, 2020.
 174.Lewis CM, Vassos E. Polygenic risk scores: From research tools to clinical instruments. Genome Med 12: 44, 2020.
 175.Li H, Khor CC, Fan J, Lv J, Yu C, Guo Y, Bian Z, Yang L, Millwood IY, Walters RG, Chen Y, Yuan JM, Yang Y, Hu C, Chen J, Chen Z, Koh WP, Huang T, Li L. Genetic risk, adherence to a healthy lifestyle, and type 2 diabetes risk among 550,000 Chinese adults: Results from 2 independent Asian cohorts. Am J Clin Nutr 111: 698‐707, 2020.
 176.Li Y, Hu M, Shen Y. Gene regulation in the 3D genome. Hum Mol Genet 27: R228‐R233, 2018.
 177.Li Y, Sekula P, Wuttke M, Wahrheit J, Hausknecht B, Schultheiss UT, Gronwald W, Schlosser P, Tucci S, Ekici AB, Spiekerkoetter U, Kronenberg F, Eckardt KU, Oefner PJ, Kottgen A, Investigators G. Genome‐wide association studies of metabolites in patients with CKD identify multiple loci and illuminate tubular transport mechanisms. J Am Soc Nephrol 29: 1513‐1524, 2018.
 178.Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, Gilad Y, Pritchard JK. RNA splicing is a primary link between genetic variation and disease. Science 352: 600‐604, 2016.
 179.Li Z, Votava JA, Zajac GJM, Nguyen JN, Leyva Jaimes FB, Ly SM, Brinkman JA, De Giorgi M, Kaul S, Green CL, St Clair SL, Belisle SL, Rios JM, Nelson DW, Sorci‐Thomas MG, Lagor WR, Lamming DW, Eric Yen CL, Parks BW. Integrating mouse and human genetic data to move beyond GWAS and identify causal genes in cholesterol metabolism. Cell Metab 31: 741‐754 e745, 2020.
 180.Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR. Burly1 is a mouse QTL for lean body mass that maps to a 0.8‐Mb region of chromosome 2. Mamm Genome 29: 325‐343, 2018.
 181.Lin H, Mueller‐Nurasyid M, Smith AV, Arking DE, Barnard J, Bartz TM, Lunetta KL, Lohman K, Kleber ME, Lubitz SA, Geelhoed B, Trompet S, Niemeijer MN, Kacprowski T, Chasman DI, Klarin D, Sinner MF, Waldenberger M, Meitinger T, Harris TB, Launer LJ, Soliman EZ, Chen LY, Smith JD, Van Wagoner DR, Rotter JI, Psaty BM, Xie Z, Hendricks AE, Ding J, Delgado GE, Verweij N, van der Harst P, Macfarlane PW, Ford I, Hofman A, Uitterlinden A, Heeringa J, Franco OH, Kors JA, Weiss S, Volzke H, Rose LM, Natarajan P, Kathiresan S, Kaab S, Gudnason V, Alonso A, Chung MK, Heckbert SR, Benjamin EJ, Liu Y, Marz W, Rienstra M, Jukema JW, Stricker BH, Dorr M, Albert CM, Ellinor PT. Gene‐gene interaction analyses for atrial fibrillation. Sci Rep 6: 35371, 2016.
 182.Lin J, Musunuru K. From genotype to phenotype: A primer on the functional follow‐up of genome‐wide association studies in cardiovascular disease. Circ Genom Precis Med 11: e001946, 2018.
 183.Lind L. Genome‐wide association study of the metabolic syndrome in UK Biobank. Metab Syndr Relat Disord 17: 505‐511, 2019.
 184.Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, Di Angelantonio E, Arveiler D, Assimes TL, Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork‐Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen YI, Chowdhury R, Christensen C, Chu AY, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dube MP, Ebeling T, Eiriksdottir G, Esko T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke‐Schmidt R, Fritsche LG, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MR, Jensen GB, Jorgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, Langenberg C, Langsted A, Launer LJ, Lauritzen T, Liewald DCM, Lin LA, Linneberg A, Loos RJF, Lu Y, Lu X, Magi R, Malarstig A, Manichaikul A, Manning AK, Mantyselka P, Marouli E, Masca NGD, Maschio A, Meigs JB, Melander O, Metspalu A, Morris AP, Morrison AC, Mulas A, Muller‐Nurasyid M, Munroe PB, Neville MJ, Nielsen JB, Nielsen SF, Nordestgaard BG, Ordovas JM, Mehran R, O'Donnell CJ, Orho‐Melander M, Molony CM, Muntendam P, Padmanabhan S, Palmer CNA, Pasko D, Patel AP, Pedersen O, Perola M, Peters A, Pisinger C, Pistis G, Polasek O, Poulter N, Psaty BM, Rader DJ, Rasheed A, Rauramaa R, Reilly DF, Reiner AP, Renstrom F, Rich SS, Ridker PM, Rioux JD, Robertson NR, Roden DM, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sanna S, Sattar N, Schmidt EM, Scott RA, Sever P, Sevilla RS, Shaffer CM, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith BH, Somayajula S, Southam L, Spector TD, Speliotes EK, Starr JM, Stirrups KE, Stitziel N, Strauch K, Stringham HM, Surendran P, Tada H, Tall AR, Tang H, Tardif JC, Taylor KD, Trompet S, Tsao PS, Tuomilehto J, Tybjaerg‐Hansen A, van Zuydam NR, Varbo A, Varga TV, Virtamo J, Waldenberger M, Wang N, Wareham NJ, Warren HR, Weeke PE, Weinstock J, Wessel J, Wilson JG, Wilson PWF, Xu M, Yaghootkar H, Young R, Zeggini E, Zhang H, Zheng NS, Zhang W, Zhang Y, Zhou W, Zhou Y, Zoledziewska M, Charge Diabetes Working Group, EPIC‐InterAct Consortium, EPIC‐CVD Consortium, GOLD Consortium, VA Million Veteran Program, Howson JMM, Danesh J, McCarthy MI, Cowan CA, Abecasis G, Deloukas P, Musunuru K, Willer CJ, Kathiresan S. Exome‐wide association study of plasma lipids in >300,000 individuals. Nat Genet 49: 1758‐1766, 2017.
 185.Liu X, Klein PS. Glycogen synthase kinase‐3 and alternative splicing. Wiley Interdiscip Rev RNA 9: e1501, 2018.
 186.Liu Y, Huang J, Urbanowicz RJ, Chen K, Manduchi E, Greene CS, Moore JH, Scheet P, Chen Y. Embracing study heterogeneity for finding genetic interactions in large‐scale research consortia. Genet Epidemiol 44: 52‐66, 2020.
 187.Locke AE, Steinberg KM, CWK C, Service SK, Havulinna AS, Stell L, Pirinen M, Abel HJ, Chiang CC, Fulton RS, Jackson AU, Kang CJ, Kanchi KL, Koboldt DC, Larson DE, Nelson J, Nicholas TJ, Pietila A, Ramensky V, Ray D, Scott LJ, Stringham HM, Vangipurapu J, Welch R, Yajnik P, Yin X, Eriksson JG, Ala‐Korpela M, Jarvelin MR, Mannikko M, Laivuori H, FinnGen P, Dutcher SK, Stitziel NO, Wilson RK, Hall IM, Sabatti C, Palotie A, Salomaa V, Laakso M, Ripatti S, Boehnke M, Freimer NB. Exome sequencing of Finnish isolates enhances rare‐variant association power. Nature 572: 323‐328, 2019.
 188.Lopez‐Cortegano E, Caballero A. Inferring the nature of missing heritability in human traits using data from the GWAS catalog. Genetics 212: 891‐904, 2019.
 189.Lu Y, Quan C, Chen H, Bo X, Zhang C. 3DSNP: A database for linking human noncoding SNPs to their three‐dimensional interacting genes. Nucleic Acids Res 45: D643‐D649, 2017.
 190.Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, Baymuradov UK, Graham K, Litton C, Miyasato SR, Strattan JS, Jolanki O, Lee JW, Tanaka FY, Adenekan P, O'Neill E, Cherry JM. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res 48: D882‐D889, 2020.
 191.Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, Davis RC, Eskin E, Farber CR, Hui S, Mehrabian M, Norheim F, Pan C, Parks B, Rau CD, Smith DJ, Vallim T, Wang Y, Wang J. The Hybrid Mouse Diversity Panel: A resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res 57: 925‐942, 2016.
 192.Luzum JA, Lanfear DE. Pharmacogenetic risk scores for perindopril clinical and cost effectiveness in stable coronary artery disease: When are we ready to implement? J Am Heart Assoc 5: e003440, 2016.
 193.Ma L, Jia P, Zhao Z. Splicing QTL of human adipose‐related traits. Sci Rep 8: 318, 2018.
 194.Ma X, Ezer D, Adryan B, Stevens TJ. Canonical and single‐cell Hi‐C reveal distinct chromatin interaction sub‐networks of mammalian transcription factors. Genome Biol 19: 174, 2018.
 195.MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J, Pendlington ZM, Welter D, Burdett T, Hindorff L, Flicek P, Cunningham F, Parkinson H. The new NHGRI‐EBI Catalog of published genome‐wide association studies (GWAS Catalog). Nucleic Acids Res 45: D896‐D901, 2017.
 196.Malinowski J, Goodloe R, Brown‐Gentry K, Crawford DC. Cryptic relatedness in epidemiologic collections accessed for genetic association studies: Experiences from the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study and the National Health and Nutrition Examination Surveys (NHANES). Front Genet 6: 317, 2015.
 197.Mani A. Local ancestry association, admixture mapping, and ongoing challenges. Circ Cardiovasc Genet 10: e001747, 2017.
 198.Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform 19: 286‐302, 2018.
 199.Marigorta UM, Rodriguez JA, Gibson G, Navarro A. Replicability and Prediction: Lessons and Challenges from GWAS. Trends Genet 34: 504‐517, 2018.
 200.Marnetto D, Parna K, Lall K, Molinaro L, Montinaro F, Haller T, Metspalu M, Magi R, Fischer K, Pagani L. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nat Commun 11: 1628, 2020.
 201.Marston NA, Patel PN, Kamanu FK, Nordio F, Melloni GM, Roselli C, Gurmu Y, Weng LC, Bonaca MP, Giugliano RP, Scirica BM, O'Donoghue ML, Cannon CP, Anderson CD, Bhatt DL, Gabriel Steg P, Cohen M, Storey RF, Sever P, Keech AC, Raz I, Mosenzon O, Antman EM, Braunwald E, Ellinor PT, Lubitz SA, Sabatine MS, Ruff CT. Clinical application of a novel genetic risk score for ischemic stroke in patients with cardiometabolic disease. Circulation 143: 470‐478, 2021.
 202.Mashimo T, Ogawa H, Cui ZH, Harada Y, Kawakami K, Masuda J, Yamori Y, Nabika T. Comprehensive QTL analysis of serum cholesterol levels before and after a high‐cholesterol diet in SHRSP. Physiol Genomics 30: 95‐101, 2007.
 203.Matise TC, Ambite JL, Buyske S, Carlson CS, Cole SA, Crawford DC, Haiman CA, Heiss G, Kooperberg C, Marchand LL, Manolio TA, North KE, Peters U, Ritchie MD, Hindorff LA, Haines JL, Study P. The Next PAGE in understanding complex traits: Design for the analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study. Am J Epidemiol 174: 849‐859, 2011.
 204.Meek S, Mashimo T, Burdon T. From engineering to editing the rat genome. Mamm Genome 28: 302‐314, 2017.
 205.Mehra P, Kalani A. What's in the "fold"? Life Sci 211: 118‐125, 2018.
 206.Menni C, Hernandez MM, Vital M, Mohney RP, Spector TD, Valdes AM. Circulating levels of the anti‐oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes 10: 688‐695, 2019.
 207.Menni C, Zhu J, Le Roy CI, Mompeo O, Young K, Rebholz CM, Selvin E, North KE, Mohney RP, Bell JT, Boerwinkle E, Spector TD, Mangino M, Yu B, Valdes AM. Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes 11: 1632‐1642, 2020.
 208.Messas N, Dube MP, Tardif JC. Pharmacogenetics of lipid‐lowering agents: An update review on genotype‐dependent effects of HDL‐targetingand statin therapies. Curr Atheroscler Rep 19: 43, 2017.
 209.Miguel‐Escalada I, Bonas‐Guarch S, Cebola I, Ponsa‐Cobas J, Mendieta‐Esteban J, Atla G, Javierre BM, Rolando DMY, Farabella I, Morgan CC, Garcia‐Hurtado J, Beucher A, Moran I, Pasquali L, Ramos‐Rodriguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de Koning EJP, Kerr‐Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti‐Renom MA, Fraser P, Ferrer J. Human pancreatic islet three‐dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51: 1137‐1148, 2019.
 210.Mikhaylova AV, Thornton TA. Accuracy of gene expression prediction from genotype data with PrediXcan varies across and within continental populations. Front Genet 10: 261, 2019.
 211.Miller AK, Chen A, Bartlett J, Wang L, Williams SM, Buchner DA. A novel mapping strategy utilizing mouse chromosome substitution strains identifies multiple epistatic interactions that regulate complex traits. G3 (Bethesda) 10: 4553‐4563, 2020.
 212.Mittelstrass K, Waldenberger M. DNA methylation in human lipid metabolism and related diseases. Curr Opin Lipidol 29: 116‐124, 2018.
 213.Moayyeri A, Hammond CJ, Hart DJ, Spector TD. The UK Adult Twin Registry (TwinsUK Resource). Twin Res Hum Genet 16: 144‐149, 2013.
 214.Monlong J, Calvo M, Ferreira PG, Guigo R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat Commun 5: 4698, 2014.
 215.Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz IP, McNally EM, Nobrega MA. A promoter interaction map for cardiovascular disease genetics. Elife 7: e35788, 2018.
 216.Montenegro‐Burke JR, Guijas C, Siuzdak G. METLIN: A tandem mass spectral library of standards. Methods Mol Biol 2104: 149‐163, 2020.
 217.Moreno C, Dumas P, Kaldunski ML, Tonellato PJ, Greene AS, Roman RJ, Cheng Q, Wang Z, Jacob HJ, Cowley AW Jr. Genomic map of cardiovascular phenotypes of hypertension in female Dahl S rats. Physiol Genomics 15: 243‐257, 2003.
 218.Moreno‐Moral A, Petretto E. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. Dis Model Mech 9: 1097‐1110, 2016.
 219.Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP, Yadgary L, Hyacinth L, Ferris MT, Bell TA, Miller DR, Giusti‐Rodriguez P, Nonneman RJ, Cook KD, Whitmire JK, Gralinski LE, Keller M, Attie AD, Churchill GA, Petkov P, Sullivan PF, Brennan JR, McMillan L, Pardo‐Manuel de Villena F. The mouse universal genotyping array: From substrains to subspecies. G3 (Bethesda) 6: 263‐279, 2015.
 220.Mouresan EF, Gonzalez‐Rodriguez A, Canas‐Alvarez JJ, Munilla S, Altarriba J, Diaz C, Baro JA, Molina A, Lopez‐Buesa P, Piedrafita J, Varona L. Mapping recombination rate on the autosomal chromosomes based on the persistency of linkage disequilibrium phase among autochthonous beef cattle populations in Spain. Front Genet 10: 1170, 2019.
 221.Mulligan MK, Mozhui K, Prins P, Williams RW. GeneNetwork: A toolbox for systems genetics. Methods Mol Biol 1488: 75‐120, 2017.
 222.Musunuru K, Arora P, Cooke JP, Ferguson JF, Hershberger RE, Hickey KT, Lee JM, Lima JAC, Loscalzo J, Pereira NL, Russell MW, Shah SH, Sheikh F, Wang TJ, MacRae CA, American Heart Association Council on Genomic and Precision Medicine, Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Radiology and Intervention, Council on Peripheral Vascular Disease, Council on Quality of Care and Outcomes Research, Stroke Council. Interdisciplinary models for research and clinical endeavors in genomic medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med 11: e000046, 2018.
 223.Musunuru K, Strong A, Frank‐Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM, Pirruccello JP, Muchmore B, Prokunina‐Olsson L, Hall JL, Schadt EE, Morales CR, Lund‐Katz S, Phillips MC, Wong J, Cantley W, Racie T, Ejebe KG, Orho‐Melander M, Melander O, Koteliansky V, Fitzgerald K, Krauss RM, Cowan CA, Kathiresan S, Rader DJ. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466: 714‐719, 2010.
 224.Nag A, Kurushima Y, Bowyer RCE, Wells PM, Weiss S, Pietzner M, Kocher T, Raffler J, Volker U, Mangino M, Spector TD, Milburn MV, Kastenmuller G, Mohney RP, Suhre K, Menni C, Steves CJ. Genome‐wide scan identifies novel genetic loci regulating salivary metabolite levels. Hum Mol Genet 29: 864‐875, 2020.
 225.National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services. The NHLBI BioData catalyst. Zenodo, 2020.
 226.Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla I, Lai FY, Hopewell JC, Giannakopoulou O, Jiang T, Hamby SE, Di Angelantonio E, Assimes TL, Bottinger EP, Chambers JC, Clarke R, Palmer CNA, Cubbon RM, Ellinor P, Ermel R, Evangelou E, Franks PW, Grace C, Gu D, Hingorani AD, Howson JMM, Ingelsson E, Kastrati A, Kessler T, Kyriakou T, Lehtimaki T, Lu X, Lu Y, Marz W, McPherson R, Metspalu A, Pujades‐Rodriguez M, Ruusalepp A, Schadt EE, Schmidt AF, Sweeting MJ, Zalloua PA, AlGhalayini K, Keavney BD, Kooner JS, Loos RJF, Patel RS, Rutter MK, Tomaszewski M, Tzoulaki I, Zeggini E, Erdmann J, Dedoussis G, Bjorkegren JLM, EPIC‐CVD Consortium, CARDIoGRAMplusC4D, UK Biobank CardioMetabolic Consortium CHD Working Group, Schunkert H, Farrall M, Danesh J, Samani NJ, Watkins H, Deloukas P. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet 49: 1385‐1391, 2017.
 227.Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, Wojczynski MK, Voortman T, Lemaitre RN, Kristiansson K, Nuotio ML, Houston DK, Perala MM, Qi Q, Sonestedt E, Manichaikul A, Kanoni S, Ganna A, Mikkila V, North KE, Siscovick DS, Harald K, McKeown NM, Johansson I, Rissanen H, Liu Y, Lahti J, Hu FB, Bandinelli S, Rukh G, Rich S, Booij L, Dmitriou M, Ax E, Raitakari O, Mukamal K, Mannisto S, Hallmans G, Jula A, Ericson U, Jacobs DR Jr, Van Rooij FJ, Deloukas P, Sjogren P, Kahonen M, Djousse L, Perola M, Barroso I, Hofman A, Stirrups K, Viikari J, Uitterlinden AG, Kalafati IP, Franco OH, Mozaffarian D, Salomaa V, Borecki IB, Knekt P, Kritchevsky SB, Eriksson JG, Dedoussis GV, Qi L, Ferrucci L, Orho‐Melander M, Zillikens MC, Ingelsson E, Lehtimaki T, Renstrom F, Cupples LA, Loos RJ, Franks PW. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum Mol Genet 24: 4728‐4738, 2015.
 228.Nishi A, Alexander M, Fowler JH, Christakis NA. Assortative mating at loci under recent natural selection in humans. Biosystems 187: 104040, 2020.
 229.Nishihara E, Tsaih SW, Tsukahara C, Langley S, Sheehan S, DiPetrillo K, Kunita S, Yagami K, Churchill GA, Paigen B, Sugiyama F. Quantitative trait loci associated with blood pressure of metabolic syndrome in the progeny of NZO/HILtJxC3H/HeJ intercrosses. Mamm Genome 18: 573‐583, 2007.
 230.Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, Bai M, Zhang Z. Weighted gene co‐expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction. Front Genet 10: 1214, 2019.
 231.Noll KE, Ferris MT, Heise MT. The collaborative cross: A systems genetics resource for studying host‐pathogen interactions. Cell Host Microbe 25: 484‐498, 2019.
 232.Norheim F, Chella Krishnan K, Bjellaas T, Vergnes L, Pan C, Parks BW, Meng Y, Lang J, Ward JA, Reue K, Mehrabian M, Gundersen TE, Peterfy M, Dalen KT, Drevon CA, Hui ST, Lusis AJ, Seldin MM. Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Mol Syst Biol 17: e9684, 2021.
 233.Nowak TS Jr, Mulligan MK. Impact of C57BL/6 substrain on sex‐dependent differences in mouse stroke models. Neurochem Int 127: 12‐21, 2019.
 234.Nsengimana J, Bishop DT. Design considerations for genetic linkage and association studies. Methods Mol Biol 1666: 257‐281, 2017.
 235.Oh SS, Galanter J, Thakur N, Pino‐Yanes M, Barcelo NE, White MJ, de Bruin DM, Greenblatt RM, Bibbins‐Domingo K, Wu AH, Borrell LN, Gunter C, Powe NR, Burchard EG. Diversity in clinical and biomedical research: A promise yet to be fulfilled. PLoS Med 12: e1001918, 2015.
 236.Oishi Y, Manabe I. Organ system crosstalk in cardiometabolic disease in the age of multimorbidity. Front Cardiovasc Med 7: 64, 2020.
 237.Ongen H, Dermitzakis ET. Alternative splicing QTLs in European and African populations. Am J Hum Genet 97: 567‐575, 2015.
 238.Orozco LD, Farrell C, Hale C, Rubbi L, Rinaldi A, Civelek M, Pan C, Lam L, Montoya D, Edillor C, Seldin M, Boehnke M, Mohlke KL, Jacobsen S, Kuusisto J, Laakso M, Lusis AJ, Pellegrini M. Epigenome‐wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 27: 2586, 2018.
 239.Ott J, Wang J, Leal SM. Genetic linkage analysis in the age of whole‐genome sequencing. Nat Rev Genet 16: 275‐284, 2015.
 240.Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe‐Huntington J, Chatr‐Aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res 47: D529‐D541, 2019.
 241.Pai AA, Pritchard JK, Gilad Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet 11: e1004857, 2015.
 242.Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQA, Heinecke JW, Lusis AJ. Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 60: 594‐608, 2019.
 243.Pan DZ, Garske KM, Alvarez M, Bhagat YV, Boocock J, Nikkola E, Miao Z, Raulerson CK, Cantor RM, Civelek M, Glastonbury CA, Small KS, Boehnke M, Lusis AJ, Sinsheimer JS, Mohlke KL, Laakso M, Pajukanta P, Ko A. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity‐related genes from GWAS. Nat Commun 9: 1512, 2018.
 244.Panoutsopoulou K, Wheeler E. Key concepts in genetic epidemiology. Methods Mol Biol 1793: 7‐24, 2018.
 245.Papatheodorou I, Moreno P, Manning J, Fuentes AM, George N, Fexova S, Fonseca NA, Fullgrabe A, Green M, Huang N, Huerta L, Iqbal H, Jianu M, Mohammed S, Zhao L, Jarnuczak AF, Jupp S, Marioni J, Meyer K, Petryszak R, Prada Medina CA, Talavera‐Lopez C, Teichmann S, Vizcaino JA, Brazma A. Expression Atlas update: From tissues to single cells. Nucleic Acids Res 48: D77‐D83, 2020.
 246.Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet 102: 11‐26, 2018.
 247.Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N. Estimation of effect size distribution from genome‐wide association studies and implications for future discoveries. Nat Genet 42: 570‐575, 2010.
 248.Parker BM, Rogers SL, Lymperopoulos A. Clinical pharmacogenomics of carvedilol: The stereo‐selective metabolism angle. Pharmacogenomics 19: 1089‐1093, 2018.
 249.Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C, Civelek M, Rau CD, Bennett BJ, Mehrabian M, Ursell LK, He A, Castellani LW, Zinker B, Kirby M, Drake TA, Drevon CA, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis AJ. Genetic control of obesity and gut microbiota composition in response to high‐fat, high‐sucrose diet in mice. Cell Metab 17: 141‐152, 2013.
 250.Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, Castellani LW, Rau CD, Pan C, Phun J, Zhou Z, Yang WP, Neuhaus I, Gargalovic PS, Kirchgessner TG, Graham M, Lee R, Tontonoz P, Gerszten RE, Hevener AL, Lusis AJ. Genetic architecture of insulin resistance in the mouse. Cell Metab 21: 334‐347, 2015.
 251.Pelikan RC, Kelly JA, Fu Y, Lareau CA, Tessneer KL, Wiley GB, Wiley MM, Glenn SB, Harley JB, Guthridge JM, James JA, Aryee MJ, Montgomery C, Gaffney PM. Enhancer histone‐QTLs are enriched on autoimmune risk haplotypes and influence gene expression within chromatin networks. Nat Commun 9: 2905, 2018.
 252.Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature 538: 161‐164, 2016.
 253.Putku M, Kals M, Inno R, Kasela S, Org E, Kozich V, Milani L, Laan M. CDH13 promoter SNPs with pleiotropic effect on cardiometabolic parameters represent methylation QTLs. Hum Genet 134: 291‐303, 2015.
 254.Raina R, Krishnappa V, Das A, Amin H, Radhakrishnan Y, Nair NR, Kusumi K. Overview of monogenic or Mendelian forms of hypertension. Front Pediatr 7: 263, 2019.
 255.Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome‐wide association studies for common human diseases. Nat Rev Genet 12: 529‐541, 2011.
 256.Rapp JP, Joe B. Use of contiguous congenic strains in analyzing compound QTLs. Physiol Genomics 44: 117‐120, 2012.
 257.Rapp JP, Joe B. Dissecting epistatic QTL for blood pressure in rats: Congenic strains versus heterogeneous stocks, a reality check. Compr Physiol 9: 1305‐1337, 2019.
 258.Rask‐Andersen M, Karlsson T, Ek WE, Johansson A. Genome‐wide association study of body fat distribution identifies adiposity loci and sex‐specific genetic effects. Nat Commun 10: 339, 2019.
 259.Rau CD, Romay MC, Tuteryan M, Wang JJ, Santolini M, Ren S, Karma A, Weiss JN, Wang Y, Lusis AJ. Systems genetics approach identifies gene pathways and Adamts2 as drivers of isoproterenol‐induced cardiac hypertrophy and cardiomyopathy in mice. Cell Syst 4: 121‐128 e124, 2017.
 260.Rau CD, Wang J, Avetisyan R, Romay MC, Martin L, Ren S, Wang Y, Lusis AJ. Mapping genetic contributions to cardiac pathology induced by Beta‐adrenergic stimulation in mice. Circ Cardiovasc Genet 8: 40‐49, 2015.
 261.Raulerson CK, Ko A, Kidd JC, Currin KW, Brotman SM, Cannon ME, Wu Y, Spracklen CN, Jackson AU, Stringham HM, Welch RP, Fuchsberger C, Locke AE, Narisu N, Lusis AJ, Civelek M, Furey TS, Kuusisto J, Collins FS, Boehnke M, Scott LJ, Lin DY, Love MI, Laakso M, Pajukanta P, Mohlke KL. Adipose tissue gene expression associations reveal hundreds of candidate genes for cardiometabolic traits. Am J Hum Genet 105: 773‐787, 2019.
 262.Ren YY, Overmyer KA, Qi NR, Treutelaar MK, Heckenkamp L, Kalahar M, Koch LG, Britton SL, Burant CF, Li JZ. Genetic analysis of a rat model of aerobic capacity and metabolic fitness. PLoS One 8: e77588, 2013.
 263.Richardson TG, Sanderson E, Palmer TM, Ala‐Korpela M, Ference BA, Davey Smith G, Holmes MV. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med 17: e1003062, 2020.
 264.Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, Colome‐Tatche M, Johannes F, Jansen RC, Neil H, Werner M, Pravenec M, Vingron M, Hubner N. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res 24: 942‐953, 2014.
 265.Robinson N, Brown H, Antoun E, Godfrey KM, Hanson MA, Lillycrop KA, Crozier SR, Murray R, Pearce MS, Relton CL, Albani V, McKay JA. Childhood DNA methylation as a marker of early life rapid weight gain and subsequent overweight. Clin Epigenetics 13: 8, 2021.
 266.Rohde K, Keller M, la Cour PL, Ronningen T, Stumvoll M, Tonjes A, Kovacs P, Horstmann A, Villringer A, Bluher M, Bottcher Y. (Epi)genetic regulation of CRTC1 in human eating behaviour and fat distribution. EBioMedicine 44: 476‐488, 2019.
 267.Roman RJ, Cowley AW Jr, Greene A, Kwitek AE, Tonellato PJ, Jacob HJ. Consomic rats for the identification of genes and pathways underlying cardiovascular disease. Cold Spring Harb Symp Quant Biol 67: 309‐315, 2002.
 268.Rowlan JS, Li Q, Manichaikul A, Wang Q, Matsumoto AH, Shi W. Atherosclerosis susceptibility Loci identified in an extremely atherosclerosis‐resistant mouse strain. J Am Heart Assoc 2: e000260, 2013.
 269.Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Consortium GT, Engelhardt BE, Battle A. Co‐expression networks reveal the tissue‐specific regulation of transcription and splicing. Genome Res 27: 1843‐1858, 2017.
 270.Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20: 12, 2018.
 271.Salzberg SL. Open questions: How many genes do we have? BMC Biol 16: 94, 2018.
 272.Sanchez‐Pozos K, Menjivar M. Genetic component of type 2 diabetes in a Mexican population. Arch Med Res 47: 496‐505, 2016.
 273.Santolini M, Romay MC, Yukhtman CL, Rau CD, Ren S, Saucerman JJ, Wang JJ, Weiss JN, Wang Y, Lusis AJ, Karma A. A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. NPJ Syst Biol Appl 4: 12, 2018.
 274.Saul MC, Philip VM, Reinholdt LG, Center for Systems Neurogenetics of Addiction, Chesler EJ. High‐diversity mouse populations for complex traits. Trends Genet 35: 501‐514, 2019.
 275.Scally A. Global clues to the nature of genomic mutations in humans. Elife 6: e27605, 2017.
 276.Schaid DJ, Chen W, Larson NB. From genome‐wide associations to candidate causal variants by statistical fine‐mapping. Nat Rev Genet 19: 491‐504, 2018.
 277.Schallschmidt T, Lebek S, Altenhofen D, Damen M, Schulte Y, Knebel B, Herwig R, Rasche A, Stermann T, Kamitz A, Hallahan N, Jahnert M, Vogel H, Schurmann A, Chadt A, Al‐Hasani H. Two novel candidate genes for insulin secretion identified by comparative genomics of multiple backcross mouse populations. Genetics 210: 1527‐1542, 2018.
 278.Schlosser P, Li Y, Sekula P, Raffler J, Grundner‐Culemann F, Pietzner M, Cheng Y, Wuttke M, Steinbrenner I, Schultheiss UT, Kotsis F, Kacprowski T, Forer L, Hausknecht B, Ekici AB, Nauck M, Volker U, Investigators G, Walz G, Oefner PJ, Kronenberg F, Mohney RP, Kottgen M, Suhre K, Eckardt KU, Kastenmuller G, Kottgen A. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat Genet 52: 167‐176, 2020.
 279.Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y, Lin S, Lin Y, Barr CL, Ren B. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep 17: 2042‐2059, 2016.
 280.Schmitt AD, Hu M, Ren B. Genome‐wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17: 743‐755, 2016.
 281.Scotti MM, Swanson MS. RNA mis‐splicing in disease. Nat Rev Genet 17: 19‐32, 2016.
 282.Seldin M, Yang X, Lusis AJ. Systems genetics applications in metabolism research. Nat Metab 1: 1038‐1050, 2019.
 283.Seldin MM, Kim ED, Romay MC, Li S, Rau CD, Wang JJ, Krishnan KC, Wang Y, Deb A, Lusis AJ. A systems genetics approach identifies Trp53inp2 as a link between cardiomyocyte glucose utilization and hypertrophic response. Am J Physiol Heart Circ Physiol 312: H728‐H741, 2017.
 284.Shi W, Wang Q, Choi W, Li J. Mapping and congenic dissection of genetic loci contributing to hyperglycemia and dyslipidemia in mice. PLoS One 11: e0148462, 2016.
 285.Shi XM, editor. eQTL Analysis. New York: Springer US, 2020.
 286.Shimoyama M, Smith JR, Bryda E, Kuramoto T, Saba L, Dwinell M. Rat genome and model resources. ILAR J 58: 42‐58, 2017.
 287.Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell 177: 1080, 2019.
 288.Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC, Zhao L, Hua K, Pomp D, Bennett BJ. High‐resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3 (Bethesda) 4: 2353‐2363, 2014.
 289.Smith JG, Gerszten RE. Emerging affinity‐based proteomic technologies for large‐scale plasma profiling in cardiovascular disease. Circulation 135: 1651‐1664, 2017.
 290.Smith JR, Hayman GT, Wang SJ, Laulederkind SJF, Hoffman MJ, Kaldunski ML, Tutaj M, Thota J, Nalabolu HS, Ellanki SLR, Tutaj MA, De Pons JL, Kwitek AE, Dwinell MR, Shimoyama ME. The Year of the Rat: The Rat Genome Database at 20: A multi‐species knowledgebase and analysis platform. Nucleic Acids Res 48: D731‐D742, 2020.
 291.Sofer T, Baier LJ, Browning SR, Thornton TA, Talavera GA, Wassertheil‐Smoller S, Daviglus ML, Hanson R, Kobes S, Cooper RS, Cai J, Levy D, Reiner AP, Franceschini N. Admixture mapping in the Hispanic Community Health Study/Study of Latinos reveals regions of genetic associations with blood pressure traits. PLoS One 12: e0188400, 2017.
 292.Soko ND, Masimirembwa C, Dandara C. Rosuvastatin pharmacogenetics in African populations. Pharmacogenomics 19: 1373‐1375, 2018.
 293.Solberg Woods LC. QTL mapping in outbred populations: Successes and challenges. Physiol Genomics 46: 81‐90, 2014.
 294.Solberg Woods LC, Holl K, Tschannen M, Valdar W. Fine‐mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol Genomics 41: 102‐108, 2010.
 295.Solberg Woods LC, Holl KL, Oreper D, Xie Y, Tsaih SW, Valdar W. Fine‐mapping diabetes‐related traits, including insulin resistance, in heterogeneous stock rats. Physiol Genomics 44: 1013‐1026, 2012.
 296.Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, Kashfeen A, McMullan RC, Williams LH, Giusti‐Rodriguez P, Ferris MT, Sullivan P, Hock P, Miller DR, Bell TA, McMillan L, Churchill GA, de Villena FP. Genomes of the mouse collaborative cross. Genetics 206: 537‐556, 2017.
 297.Stewart TP, Kim HY, Saxton AM, Kim JH. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J x TALLYHO/JngJ) F2 mice. BMC Genomics 11: 713, 2010.
 298.Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA. Large‐scale investigation of the reasons why potentially important genes are ignored. PLoS Biol 16: e2006643, 2018.
 299.Sun YV, Damrauer SM, Hui Q, Assimes TL, Ho YL, Natarajan P, Klarin D, Huang J, Lynch J, DuVall SL, Pyarajan S, Honerlaw JP, Gaziano JM, Cho K, Rader DJ, O'Donnell CJ, Tsao PS, Wilson PWF. Effects of genetic variants associated with familial hypercholesterolemia on low‐density lipoprotein‐cholesterol levels and cardiovascular outcomes in the Million Veteran Program. Circ Genom Precis Med 11: e002192, 2018.
 300.Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT, Schwander K, Ntalla I, Guo X, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Li C, Feitosa MF, Kilpelainen TO, Richard MA, Noordam R, Aslibekyan S, Aschard H, Bartz TM, Dorajoo R, Liu Y, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Warren HR, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, Horimoto A, Hsu FC, Jackson AU, Kahonen M, Kasturiratne A, Kuhnel B, Leander K, Lee WJ, Lin KH, an Luan J, McKenzie CA, Meian H, Nelson CP, Rauramaa R, Schupf N, Scott RA, WHH S, Stancakova A, Takeuchi F, van der Most PJ, Varga TV, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking D, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cabrera CP, Cade B, Caizheng Y, Campbell A, Canouil M, Chakravarti A, Group CNW, Chauhan G, Christensen K, Cocca M, Consortium CO‐K, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Debette S, Dorr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Fisher VA, Forouhi NG, Franco OH, Friedlander Y, Gao H, Consortium G, Gigante B, Graff M, Gu CC, Gu D, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng CK, Hirata M, Hofman A, Howard BV, Hunt S, Irvin MR, Jia Y, Joehanes R, Justice AE, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh WP, Koistinen HA, Komulainen P, Kooperberg C, Krieger JE, Kubo M, Kuusisto J, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lewis CE, Li Y, Lifelines Cohort S, Lim SH, Lin S, Liu CT, Liu J, Liu J, Liu K, Liu Y, Loh M, Lohman KK, Long J, Louie T, Magi R, Mahajan A, Meitinger T, Metspalu A, Milani L, Momozawa Y, Morris AP, Mosley TH Jr, Munson P, Murray AD, Nalls MA, Nasri U, Norris JM, North K, Ogunniyi A, Padmanabhan S, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Raitakari OT, Renstrom F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Seshadri S, Sever P, Sitlani CM, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei WB, Williams C, Wilson G, Wojczynski MK, Yao J, Yuan JM, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen YI, de Faire U, Deary IJ, Esko T, Farrall M, Forrester T, Franks PW, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung YJ, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimaki T, Liang KW, Magnusson PKE, Newman AB, Oldehinkel AJ, Pereira AC, Redline S, Rettig R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wareham NJ, Watkins H, Weir DR, Wickremasinghe AR, Wu T, Zheng W, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Kardia SLR, Kritchevsky SB, Levy D, O'Connell JR, Psaty BM, van Dam RM, Sims M, Arnett DK, Mook‐Kanamori DO, Kelly TN, Fox ER, Hayward C, Fornage M, Rotimi CN, Province MA, van Duijn CM, Tai ES, Wong TY, RJF L, Reiner AP, Rotter JI, Zhu X, Bierut LJ, Gauderman WJ, Caulfield MJ, Elliott P, Rice K, Munroe PB, Morrison AC, Cupples LA, Rao DC, Chasman DI. A large‐scale multi‐ancestry genome‐wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am J Hum Genet 102: 375‐400, 2018.
 301.Suto J, Sekikawa K. Quantitative trait locus analysis of plasma cholesterol and triglyceride levels in KK x RR F2 mice. Biochem Genet 41: 325‐341, 2003.
 302.Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: Customizable protein‐protein networks, and functional characterization of user‐uploaded gene/measurement sets. Nucleic Acids Res 49 (D1): D605‐D612, 2021.
 303.Szklarczyk D, Jensen LJ. Protein‐protein interaction databases. Methods Mol Biol 1278: 39‐56, 2015.
 304.Tabakoff B, Smith H, Vanderlinden LA, Hoffman PL, Saba LM. Networking in biology: The Hybrid Rat Diversity Panel. Methods Mol Biol 2018: 213‐231, 2019.
 305.Tada H, Kawashiri MA, Yamagishi M. Clinical perspectives of genetic analyses on dyslipidemia and coronary artery disease. J Atheroscler Thromb 24: 452‐461, 2017.
 306.Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, Gogarten SM, Kang HM, Pitsillides AN, LeFaive J, Lee SB, Tian X, Browning BL, Das S, Emde AK, Clarke WE, Loesch DP, Shetty AC, Blackwell TW, Smith AV, Wong Q, Liu X, Conomos MP, Bobo DM, Aguet F, Albert C, Alonso A, Ardlie KG, Arking DE, Aslibekyan S, Auer PL, Barnard J, Barr RG, Barwick L, Becker LC, Beer RL, Benjamin EJ, Bielak LF, Blangero J, Boehnke M, Bowden DW, Brody JA, Burchard EG, Cade BE, Casella JF, Chalazan B, Chasman DI, Chen YI, Cho MH, Choi SH, Chung MK, Clish CB, Correa A, Curran JE, Custer B, Darbar D, Daya M, de Andrade M, DeMeo DL, Dutcher SK, Ellinor PT, Emery LS, Eng C, Fatkin D, Fingerlin T, Forer L, Fornage M, Franceschini N, Fuchsberger C, Fullerton SM, Germer S, Gladwin MT, Gottlieb DJ, Guo X, Hall ME, He J, Heard‐Costa NL, Heckbert SR, Irvin MR, Johnsen JM, Johnson AD, Kaplan R, Kardia SLR, Kelly T, Kelly S, Kenny EE, Kiel DP, Klemmer R, Konkle BA, Kooperberg C, Kottgen A, Lange LA, Lasky‐Su J, Levy D, Lin X, Lin KH, Liu C, Loos RJF, Garman L, Gerszten R, Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning AK, Mathias RA, McManus DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear MA, Mitchell BD, Mohanty S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, Natale A, Natarajan P, Nelson SC, North KE, O'Connell JR, Palmer ND, Pankratz N, Peloso GM, Peyser PA, Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner AP, Roden D, Rotter JI, Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo JS, Seshadri S, Sheehan VA, Sheu WH, Shoemaker MB, Smith NL, Smith JA, Sotoodehnia N, Stilp AM, Tang W, Taylor KD, Telen M, Thornton TA, Tracy RP, Van Den Berg DJ, Vasan RS, Viaud‐Martinez KA, Vrieze S, Weeks DE, Weir BS, Weiss ST, Weng LC, Willer CJ, Zhang Y, Zhao X, Arnett DK, Ashley‐Koch AE, Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, Silverman EK, Qasba P, Gan W, NHLBI Trans‐Omics for Precision Medicine (TOPMed) Consortium, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, Zollner S, Wilson JG, Cupples LA, Laurie CC, Jaquish CE, Hernandez RD, O'Connor TD, Abecasis GR. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590: 290‐299, 2021.
 307.Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome‐wide association studies. Nat Rev Genet 20: 467‐484, 2019.
 308.Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 20: 212‐240, 2019.
 309.Tan WLW, Anene‐Nzelu CG, Wong E, Lee CJM, Tan HS, Tang SJ, Perrin A, Wu KX, Zheng W, Ashburn RJ, Pan B, Lee MY, Autio MI, Morley MP, Tam WL, Cheung C, Margulies KB, Chen L, Cappola TP, Loh M, Chambers J, Prabhakar S, Foo RSY, CHARGE‐Heart Failure Working Group, CHARGE‐EchoGen Consortium. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ Res 127: 761‐777, 2020.
 310.Tang Y, Jin B, Zhou L, Lu W. MeQTL analysis of childhood obesity links epigenetics with a risk SNP rs17782313 near MC4R from meta‐analysis. Oncotarget 8: 2800‐2806, 2017.
 311.Telenti A. Integrating metabolomics with genomics. Pharmacogenomics 19: 1377‐1381, 2018.
 312.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res 45: D158‐D169, 2017.
 313.Thomson R, McWhirter R. Adjusting for familial relatedness in the analysis of GWAS data. Methods Mol Biol 1526: 175‐190, 2017.
 314.Torres JM, Abdalla M, Payne A, Fernandez‐Tajes J, Thurner M, Nylander V, Gloyn AL, Mahajan A, McCarthy MI. A multi‐omic integrative scheme characterizes tissues of action at loci associated with type 2 diabetes. Am J Hum Genet 107: 1011‐1028, 2020.
 315.Tsaih SW, Holl K, Jia S, Kaldunski M, Tschannen M, He H, Andrae JW, Li SH, Stoddard A, Wiederhold A, Parrington J, Ruas da Silva M, Galione A, Meigs J, Meta‐Analyses of Glucose and Insulin‐Related Traits Consortium (MAGIC) Investigators, Hoffmann RG, Simpson P, Jacob H, Hessner M, Solberg Woods LC. Identification of a novel gene for diabetic traits in rats, mice, and humans. Genetics 198: 17‐29, 2014.
 316.Ueno T, Tremblay J, Kunes J, Zicha J, Dobesova Z, Pausova Z, Deng AY, Sun YL, Jacob HJ, Hamet P. Resolving the composite trait of hypertension into its pharmacogenetic determinants by acute pharmacological modulation of blood pressure regulatory systems. J Mol Med (Berl) 81: 51‐60, 2003.
 317.Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JN, Mott R, Flint J. Genome‐wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38: 879‐887, 2006.
 318.van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 122: 433‐443, 2018.
 319.Vargas‐Landin DB, Pfluger J, Lister R. Generation of whole genome bisulfite sequencing libraries for comprehensive DNA methylome analysis. Methods Mol Biol 1767: 291‐298, 2018.
 320.Vaura F, Kauko A, Suvila K, Havulinna AS, Mars N, Salomaa V, FinnGen, Cheng S, Niiranen T. Polygenic risk scores predict hypertension onset and cardiovascular risk. Hypertension 77: 1119‐1127, 2021.
 321.Vehmeijer FOL, Kupers LK, Sharp GC, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramis G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergstrom A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Haberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Raikkonen K, Rifas‐Shiman S, Ruiz‐Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B, Vrijheid M, Sorensen TIA, Huang RC, Arshad SH, Nystad W, Melen E, Koppelman GH, London SJ, Holland N, Bustamante M, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF. DNA methylation and body mass index from birth to adolescence: Meta‐analyses of epigenome‐wide association studies. Genome Med 12: 105, 2020.
 322.Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, Belden B, Pramatarova A, Biertho L, Gibson M, Simon MM, Djambazian H, Multiple Tissue Human Expression Resource Consortium, Staffa A, Bourque G, Laitinen A, Nystedt J, Vohl MC, Fraser JD, Pastinen T, Tchernof A, Grundberg E. Single‐cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2: 97‐109, 2020.
 323.Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS discovery: Biology, function, and translation. Am J Hum Genet 101: 5‐22, 2017.
 324.Vogel H, Kamitz A, Hallahan N, Lebek S, Schallschmidt T, Jonas W, Jahnert M, Gottmann P, Zellner L, Kanzleiter T, Damen M, Altenhofen D, Burkhardt R, Renner S, Dahlhoff M, Wolf E, Muller TD, Bluher M, Joost HG, Chadt A, Al‐Hasani H, Schurmann A. A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes. Hum Mol Genet 27: 3099‐3112, 2018.
 325.Vogel H, Nestler M, Ruschendorf F, Block MD, Tischer S, Kluge R, Schurmann A, Joost HG, Scherneck S. Characterization of Nob3, a major quantitative trait locus for obesity and hyperglycemia on mouse chromosome 1. Physiol Genomics 38: 226‐232, 2009.
 326.Volkov P, Olsson AH, Gillberg L, Jorgensen SW, Brons C, Eriksson KF, Groop L, Jansson PA, Nilsson E, Ronn T, Vaag A, Ling C. A genome‐wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS One 11: e0157776, 2016.
 327.Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, Huffman JE, Assimes TL, Lorenz K, Zhu X, Hilliard AT, Judy RL, Huang J, Lee KM, Klarin D, Pyarajan S, Danesh J, Melander O, Rasheed A, Mallick NH, Hameed S, Qureshi IH, Afzal MN, Malik U, Jalal A, Abbas S, Sheng X, Gao L, Kaestner KH, Susztak K, Sun YV, SL DV, Cho K, Lee JS, Gaziano JM, Phillips LS, Meigs JB, Reaven PD, Wilson PW, Edwards TL, Rader DJ, Damrauer SM, O'Donnell CJ, Tsao PS, The HPAP Consortium, Regeneron Genetics Center, VA Million Veteran Program, Chang KM, Voight BF, Saleheen D. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi‐ancestry meta‐analysis. Nat Genet 52: 680‐691, 2020.
 328.Wand H, Knowles JW, Clarke SL. The need for polygenic score reporting standards in evidence‐based practice: Lipid genetics use case. Curr Opin Lipidol 32: 89‐95, 2021.
 329.Wang HH, Lee DK, Liu M, Portincasa P, Wang DQ. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr 23: 189‐230, 2020.
 330.Wang J, Ma MC, Mennie AK, Pettus JM, Xu Y, Lin L, Traxler MG, Jakoubek J, Atanur SS, Aitman TJ, Xing Y, Kwitek AE. Systems biology with high‐throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. Circ Cardiovasc Genet 8: 316‐326, 2015.
 331.Wang J, Ye Z, Huang TH, Shi H, Jin VX. Computational methods and correlation of exon‐skipping events with splicing, transcription, and epigenetic factors. Methods Mol Biol 1513: 163‐170, 2017.
 332.Wang M, Xu S. Statistical power in genome‐wide association studies and quantitative trait locus mapping. Heredity (Edinb) 123: 287‐306, 2019.
 333.Wang X, Raghavan A, Peters DT, Pashos EE, Rader DJ, Musunuru K. Interrogation of the atherosclerosis‐associated SORT1 (Sortilin 1) locus with primary human hepatocytes, induced pluripotent stem cell‐hepatocytes, and locus‐humanized mice. Arterioscler Thromb Vasc Biol 38: 76‐82, 2018.
 334.Wang Z, Qiu C, Lin X, Zhao LJ, Liu Y, Wu X, Wang Q, Liu W, Li K, Deng HW, Tang SY, Shen H. Identification of novel functional CpG‐SNPs associated with type 2 diabetes and coronary artery disease. Mol Genet Genomics 295: 607‐619, 2020.
 335.Warren CR, O'Sullivan JF, Friesen M, Becker CE, Zhang X, Liu P, Wakabayashi Y, Morningstar JE, Shi X, Choi J, Xia F, Peters DT, Florido MHC, Tsankov AM, Duberow E, Comisar L, Shay J, Jiang X, Meissner A, Musunuru K, Kathiresan S, Daheron L, Zhu J, Gerszten RE, Deo RC, Vasan RS, O'Donnell CJ, Cowan CA. Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell 20: 547‐557 e547, 2017.
 336.Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Lepe MP, O'Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Magi R, Stanton A, Connell J, Bakker SJ, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton‐Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JM, Tobin MD, Munroe PB, Ehret GB, Wain LV, International Consortium of Blood Pressure (ICBP) 1000G Analyses, BIOS Consortium, Lifelines Cohort Study, Understanding Society Scientific Group, CHD Exome+ Consortium, ExomeBP Consortium, T2D‐GENES Consortium, GoT2DGenes Consortium, Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, International Genomics of Blood Pressure (iGEN‐BP) Consortium, UK Biobank CardioMetabolic Consortium BP Working Group. Genome‐wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49: 403‐415, 2017.
 337.Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8: 1826, 2017.
 338.Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS catalog, a curated resource of SNP‐trait associations. Nucleic Acids Res 42: D1001‐D1006, 2014.
 339.Weng LC, Lunetta KL, Muller‐Nurasyid M, Smith AV, Theriault S, Weeke PE, Barnard J, Bis JC, Lyytikainen LP, Kleber ME, Martinsson A, Lin HJ, Rienstra M, Trompet S, Krijthe BP, Dorr M, Klarin D, Chasman DI, Sinner MF, Waldenberger M, Launer LJ, Harris TB, Soliman EZ, Alonso A, Pare G, Teixeira PL, Denny JC, Shoemaker MB, Van Wagoner DR, Smith JD, Psaty BM, Sotoodehnia N, Taylor KD, Kahonen M, Nikus K, Delgado GE, Melander O, Engstrom G, Yao J, Guo X, Christophersen IE, Ellinor PT, Geelhoed B, Verweij N, Macfarlane P, Ford I, Heeringa J, Franco OH, Uitterlinden AG, Volker U, Teumer A, Rose LM, Kaab S, Gudnason V, Arking DE, Conen D, Roden DM, Chung MK, Heckbert SR, Benjamin EJ, Lehtimaki T, Marz W, Smith JG, Rotter JI, van der Harst P, Jukema JW, Stricker BH, Felix SB, Albert CM, Lubitz SA. Genetic interactions with age, sex, body mass index, and hypertension in relation to atrial fibrillation: The AFGen Consortium. Sci Rep 7: 11303, 2017.
 340.Wiesner GL, Kulchak Rahm A, Appelbaum P, Aufox S, Bland ST, Blout CL, Christensen KD, Chung WK, Clayton EW, Green RC, Harr MH, Henrikson N, Hoell C, Holm IA, Jarvik GP, Kullo IJ, Lammers PE, Larson EB, Lindor NM, Marasa M, Myers MF, Peterson JF, Prows CA, Ralston JD, Milo Rasouly H, Sharp RR, Smith ME, Van Driest SL, Williams JL, Williams MS, Wynn J, Leppig KA. Returning results in the genomic era: Initial experiences of the eMERGE Network. J Pers Med 10: 30, 2020.
 341.Williams RW, Williams EG. Resources for systems genetics. Methods Mol Biol 1488: 3‐29, 2017.
 342.Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez‐Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra‐Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res 46: D608‐D617, 2018.
 343.Wojcik GL, Fuchsberger C, Taliun D, Welch R, Martin AR, Shringarpure S, Carlson CS, Abecasis G, Kang HM, Boehnke M, Bustamante CD, Gignoux CR, Kenny EE. Imputation‐aware tag SNP selection to improve power for large‐scale, multi‐ethnic association studies. G3 (Bethesda) 8: 3255‐3267, 2018.
 344.Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM, Patel YM, Sorokin EP, Avery CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM, Lim U, Lin BM, Lu Y, Nelson SC, Park SL, Poisner H, Preuss MH, Richard MA, Schurmann C, Setiawan VW, Sockell A, Vahi K, Verbanck M, Vishnu A, Walker RW, Young KL, Zubair N, Acuna‐Alonso V, Ambite JL, Barnes KC, Boerwinkle E, Bottinger EP, Bustamante CD, Caberto C, Canizales‐Quinteros S, Conomos MP, Deelman E, Do R, Doheny K, Fernandez‐Rhodes L, Fornage M, Hailu B, Heiss G, Henn BM, Hindorff LA, Jackson RD, Laurie CA, Laurie CC, Li Y, Lin DY, Moreno‐Estrada A, Nadkarni G, Norman PJ, Pooler LC, Reiner AP, Romm J, Sabatti C, Sandoval K, Sheng X, Stahl EA, Stram DO, Thornton TA, Wassel CL, Wilkens LR, Winkler CA, Yoneyama S, Buyske S, Haiman CA, Kooperberg C, Le Marchand L, RJF L, Matise TC, North KE, Peters U, Kenny EE, Carlson CS. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570: 514‐518, 2019.
 345.Wong CM, Xu L, Yau MY. Alternative mRNA splicing in the pathogenesis of obesity. Int J Mol Sci 19: 632, 2018.
 346.Wong KM, Langlais K, Tobias GS, Fletcher‐Hoppe C, Krasnewich D, Leeds HS, Rodriguez LL, Godynskiy G, Schneider VA, Ramos EM, Sherry ST. The dbGaP data browser: A new tool for browsing dbGaP controlled‐access genomic data. Nucleic Acids Res 45: D819‐D826, 2017.
 347.Woods LC, Mott R. Heterogeneous stock populations for analysis of complex traits. Methods Mol Biol 1488: 31‐44, 2017.
 348.Wreczycka K, Gosdschan A, Yusuf D, Gruning B, Assenov Y, Akalin A. Strategies for analyzing bisulfite sequencing data. J Biotechnol 261: 105‐115, 2017.
 349.Wu Y, Broadaway KA, Raulerson CK, Scott LJ, Pan C, Ko A, He A, Tilford C, Fuchsberger C, Locke AE, Stringham HM, Jackson AU, Narisu N, Kuusisto J, Pajukanta P, Collins FS, Boehnke M, Laakso M, Lusis AJ, Civelek M, Mohlke KL. Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Hum Mol Genet 28: 4161‐4172, 2019.
 350.Yang CH, Mangiafico SP, Waibel M, Loudovaris T, Loh K, Thomas HE, Morahan G, Andrikopoulos S. E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia 63: 1333‐1348, 2020.
 351.Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR, Perry JR, Nolte IM, van Vliet‐Ostaptchouk JV, Snieder H, LifeLines Cohort S, Esko T, Milani L, Magi R, Metspalu A, Hamsten A, Magnusson PK, Pedersen NL, Ingelsson E, Soranzo N, Keller MC, Wray NR, Goddard ME, Visscher PM. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet 47: 1114‐1120, 2015.
 352.Yang Q, Civelek M. Transcription factor KLF14 and metabolic syndrome. Front Cardiovasc Med 7: 91, 2020.
 353.Yang X, Lee WP, Ye K, Lee C. One reference genome is not enough. Genome Biol 20: 104, 2019.
 354.Yang Y, Chan L. Monogenic diabetes: What it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 37: 190‐222, 2016.
 355.Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, Ho JE, Courchesne P, Lyass A, Larson MG, Gieger C, Graumann J, Johnson AD, Danesh J, Runz H, Hwang SJ, Liu C, Butterworth AS, Suhre K, Levy D. Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 9: 3268, 2018.
 356.Yazdani A, Yazdani A, Elsea SH, Schaid DJ, Kosorok MR, Dangol G, Samiei A. Genome analysis and pleiotropy assessment using causal networks with loss of function mutation and metabolomics. BMC Genomics 20: 395, 2019.
 357.Yoneyama S, Yao J, Guo X, Fernandez‐Rhodes L, Lim U, Boston J, Buzkova P, Carlson CS, Cheng I, Cochran B, Cooper R, Ehret G, Fornage M, Gong J, Gross M, Gu CC, Haessler J, Haiman CA, Henderson B, Hindorff LA, Houston D, Irvin MR, Jackson R, Kuller L, Leppert M, Lewis CE, Li R, Le Marchand L, Matise TC, Nguyen KD, Chakravarti A, Pankow JS, Pankratz N, Pooler L, Ritchie MD, Bien SA, Wassel CL, Chen YI, Taylor KD, Allison M, Rotter JI, Schreiner PJ, Schumacher F, Wilkens L, Boerwinkle E, Kooperberg C, Peters U, Buyske S, Graff M, North KE. Generalization and fine mapping of European ancestry‐based central adiposity variants in African ancestry populations. Int J Obes (Lond) 41: 324‐331, 2017.
 358.Yu H, Wang F, Lin L, Cao W, Liu Y, Qin L, Lu H, He F, Shen H, Yang P. Mapping and analyzing the human liver proteome: Progress and potential. Expert Rev Proteomics 13: 833‐843, 2016.
 359.Zaghlool SB, Mook‐Kanamori DO, Kader S, Stephan N, Halama A, Engelke R, Sarwath H, Al‐Dous EK, Mohamoud YA, Roemisch‐Margl W, Adamski J, Kastenmuller G, Friedrich N, Visconti A, Tsai PC, Spector T, Bell JT, Falchi M, Wahl A, Waldenberger M, Peters A, Gieger C, Pezer M, Lauc G, Graumann J, Malek JA, Suhre K. Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation. Hum Mol Genet 27: 1106‐1121, 2018.
 360.Zaitlen N, Huntsman S, Hu D, Spear M, Eng C, Oh SS, White MJ, Mak A, Davis A, Meade K, Brigino‐Buenaventura E, LeNoir MA, Bibbins‐Domingo K, Burchard EG, Halperin E. The effects of migration and assortative mating on admixture linkage disequilibrium. Genetics 205: 375‐383, 2017.
 361.Zhang H, De T, Zhong Y, Perera MA. The advantages and challenges of diversity in pharmacogenomics: Can minority populations bring us closer to implementation? Clin Pharmacol Ther 106: 338‐349, 2019.
 362.Zhao G, Yang W, Wu J, Chen B, Yang X, Chen J, McVey DG, Andreadi C, Gong P, Webb TR, Samani NJ, Ye S. Influence of a coronary artery disease‐associated genetic variant on FURIN expression and effect of furin on macrophage behavior. Arterioscler Thromb Vasc Biol 38: 1837‐1844, 2018.
 363.Zhao L, Mulligan MK, Nowak TS Jr. Substrain‐ and sex‐dependent differences in stroke vulnerability in C57BL/6 mice. J Cereb Blood Flow Metab 39: 426‐438, 2019.
 364.Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7: a025064, 2015.
 365.Zheng Z, Huang D, Wang J, Zhao K, Zhou Y, Guo Z, Zhai S, Xu H, Cui H, Yao H, Wang Z, Yi X, Zhang S, Sham PC, Li MJ. QTLbase: An integrative resource for quantitative trait loci across multiple human molecular phenotypes. Nucleic Acids Res 48: D983‐D991, 2020.
 366.Zhong W, Gummesson A, Tebani A, Karlsson MJ, Hong MG, Schwenk JM, Edfors F, Bergstrom G, Fagerberg L, Uhlen M. Whole‐genome sequence association analysis of blood proteins in a longitudinal wellness cohort. Genome Med 12: 53, 2020.
 367.Zhou J, Ma S, Wang D, Zeng J, Jiang T. FreePSI: An alignment‐free approach to estimating exon‐inclusion ratios without a reference transcriptome. Nucleic Acids Res 46: e11, 2018.
 368.Zhou X, St Pierre CL, Gonzales NM, Zou J, Cheng R, Chitre AS, Sokoloff G, Palmer AA. Genome‐wide association study in two cohorts from a multi‐generational mouse advanced intercross line highlights the difficulty of replication due to study‐specific heterogeneity. G3 (Bethesda) 10: 951‐965, 2020.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Karen C. Clark, Anne E. Kwitek. Multi‐Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021, 12: 3045-3084. doi: 10.1002/cphy.c210010