Comprehensive Physiology Wiley Online Library

Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems

Full Article on Wiley Online Library



Abstract

Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1‐30, 2021.

Figure 1. Figure 1. Transcription‐translation feedback loops of the circadian clock mechanism. In the positive loop, BMAL1 and CLOCK heterodimerize to activate transcription of the genes encoding proteins that function in the feedback loops as well as tissue‐specific target genes. In the negative loop, PER and CRY act to inhibit BMAL1/CLOCK transcriptional activity thereby decreasing their own expression. In an ancillary loop, ROR and REV‐ERB mediate opposing action on the expression of the Bmal1 gene.
Figure 2. Figure 2. The mammalian circadian system and its crosstalk with physiology. (A) The circadian system includes the hierarchical multi‐oscillator network, the input pathways for entrainment, and rhythmic outputs in genes, metabolism, physiology, and behavior. The SCN directly receives photic cues for entrainment to the light/dark cycle. In turn, the SCN functions to synchronize extra‐SCN and peripheral clocks. While the SCN is responsive to photic cues, the peripheral oscillators are more responsive to nonphotic cues such as feeding. (B) Several major organs and pathways that provide inputs to the circadian clock. The molecular clock is based on a transcriptional/translational negative feedback mechanism. The core loop consists of positive (BMAL1, CLOCK) and negative (PER, CRY) factors, which act on the E‐box cis‐element. In particular, the Per genes contain other regulatory elements including cAMP response element (CRE) and glucocorticoid response element (GRE). Melanopsin in the retina mediates photic transmission through cAMP production and the CRE‐binding protein (CREB) pathway. The hypothalamus (SCN to CRH neurons)‐pituitary‐adrenal axis regulates glucocorticoid secretion. Glucagon, insulin, and IGF‐1 provide metabolic and growth signal inputs to the clock via the master nutrient/energy sensors AMPK and mTOR. In the case of insulin and IGF‐1, the pathways lead to the upregulation of PER2 and CRY1, thereby affecting the clock function.
Figure 3. Figure 3. Definitions for genomic tools.
Figure 4. Figure 4. Transcriptional repressors and activators in the mouse liver. Correlating data from ChIP‐seq using antibodies against the proteins depicted in this figure, Takahashi and colleagues developed a model demonstrating how clock target gene promoter occupancy of the activator complex (in shades of green) peaks during the light phase (day) whereas occupancy of the repressor complex (shades of red) peaks during the dark phase (night). Occupancy of the activators coincides with H3K9ac (histone 3 lysine 9 acetylation), a marker of open chromatin, in contrast to the presence of H3K4me3 (histone 3 lysine 4 trimethylation), a marker of closed chromatin, which coincides with occupancy of the repressor complex. Reused, with permission, from Cox KH and Takahashi JS, 2019 54.
Figure 5. Figure 5. Model of neuro‐immune axis signaling contributing to cardiovascular disease through clock‐mediated signaling pathways. Soluble factors and cellular mediators contribute to the inflammatory milieu leading to pro‐fibrotic signaling in the heart. Together with arrhythmogenesis due to sympathetic activity, these conditions may contribute to cardiovascular disease. Diagram was created using Biorender.com.
Figure 6. Figure 6. Skeletal muscle circadian clock signaling. (A) The transcription‐translation feedback loop in muscle regulates muscle‐specific genes including MyoD1. (B) Despite differences in diurnality in humans and nocturnality in mice, the expression patterns of Bmal1 and Per2 are quite similar between these two species.
Figure 7. Figure 7. Circadian clock effects on physiological function. Circadian proteins in parentheses represent the known proteins that are implicated in the regulation of the process examined. Additional proteins not listed may not have been tested and could also be involved. Diagram was created using Biorender.com.


Figure 1. Transcription‐translation feedback loops of the circadian clock mechanism. In the positive loop, BMAL1 and CLOCK heterodimerize to activate transcription of the genes encoding proteins that function in the feedback loops as well as tissue‐specific target genes. In the negative loop, PER and CRY act to inhibit BMAL1/CLOCK transcriptional activity thereby decreasing their own expression. In an ancillary loop, ROR and REV‐ERB mediate opposing action on the expression of the Bmal1 gene.


Figure 2. The mammalian circadian system and its crosstalk with physiology. (A) The circadian system includes the hierarchical multi‐oscillator network, the input pathways for entrainment, and rhythmic outputs in genes, metabolism, physiology, and behavior. The SCN directly receives photic cues for entrainment to the light/dark cycle. In turn, the SCN functions to synchronize extra‐SCN and peripheral clocks. While the SCN is responsive to photic cues, the peripheral oscillators are more responsive to nonphotic cues such as feeding. (B) Several major organs and pathways that provide inputs to the circadian clock. The molecular clock is based on a transcriptional/translational negative feedback mechanism. The core loop consists of positive (BMAL1, CLOCK) and negative (PER, CRY) factors, which act on the E‐box cis‐element. In particular, the Per genes contain other regulatory elements including cAMP response element (CRE) and glucocorticoid response element (GRE). Melanopsin in the retina mediates photic transmission through cAMP production and the CRE‐binding protein (CREB) pathway. The hypothalamus (SCN to CRH neurons)‐pituitary‐adrenal axis regulates glucocorticoid secretion. Glucagon, insulin, and IGF‐1 provide metabolic and growth signal inputs to the clock via the master nutrient/energy sensors AMPK and mTOR. In the case of insulin and IGF‐1, the pathways lead to the upregulation of PER2 and CRY1, thereby affecting the clock function.


Figure 3. Definitions for genomic tools.


Figure 4. Transcriptional repressors and activators in the mouse liver. Correlating data from ChIP‐seq using antibodies against the proteins depicted in this figure, Takahashi and colleagues developed a model demonstrating how clock target gene promoter occupancy of the activator complex (in shades of green) peaks during the light phase (day) whereas occupancy of the repressor complex (shades of red) peaks during the dark phase (night). Occupancy of the activators coincides with H3K9ac (histone 3 lysine 9 acetylation), a marker of open chromatin, in contrast to the presence of H3K4me3 (histone 3 lysine 4 trimethylation), a marker of closed chromatin, which coincides with occupancy of the repressor complex. Reused, with permission, from Cox KH and Takahashi JS, 2019 54.


Figure 5. Model of neuro‐immune axis signaling contributing to cardiovascular disease through clock‐mediated signaling pathways. Soluble factors and cellular mediators contribute to the inflammatory milieu leading to pro‐fibrotic signaling in the heart. Together with arrhythmogenesis due to sympathetic activity, these conditions may contribute to cardiovascular disease. Diagram was created using Biorender.com.


Figure 6. Skeletal muscle circadian clock signaling. (A) The transcription‐translation feedback loop in muscle regulates muscle‐specific genes including MyoD1. (B) Despite differences in diurnality in humans and nocturnality in mice, the expression patterns of Bmal1 and Per2 are quite similar between these two species.


Figure 7. Circadian clock effects on physiological function. Circadian proteins in parentheses represent the known proteins that are implicated in the regulation of the process examined. Additional proteins not listed may not have been tested and could also be involved. Diagram was created using Biorender.com.
References
 1.Acuna‐Castroviejo D, Escames G, Figueira JC, de la Oliva P, Borobia AM, Acuna‐Fernandez C. Clinical trial to test the efficacy of melatonin in COVID‐19. J Pineal Res 69: e12683, 2020.
 2.Adan A, Natale V. Gender differences in morningness‐eveningness preference. Chronobiol Int 19: 709‐720, 2002.
 3.Adler P, Chiang CK, Mayne J, Ning Z, Zhang X, Xu B, Cheng HM, Figeys D. Aging disrupts the circadian patterns of protein expression in the murine hippocampus. Front Aging Neurosci 11: 368, 2019.
 4.Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova‐Acebes M, Weiss LA, Huerga‐Encabo H, Silvestre‐Roig C, Rossaint J, Cossio I, Lechuga‐Vieco AV, Garcia‐Prieto J, Gomez‐Parrizas M, Quintana JA, Ballesteros I, Martin‐Salamanca S, Aroca‐Crevillen A, Chong SZ, Evrard M, Balabanian K, Lopez J, Bidzhekov K, Bachelerie F, Abad‐Santos F, Munoz‐Calleja C, Zarbock A, Soehnlein O, Weber C, Ng LG, Lopez‐Rodriguez C, Sancho D, Moro MA, Ibanez B, Hidalgo A. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50: 390‐402 e310, 2019.
 5.Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova‐Acebes M, Weiss LA, Huerga‐Encabo H, Silvestre‐Roig C, Rossaint J, Cossio I, Lechuga‐Vieco AV, Garcia‐Prieto J, Gomez‐Parrizas M, Quintana JA, Ballesteros I, Martin‐Salamanca S, Aroca‐Crevillen A, Chong SZ, Evrard M, Balabanian K, Lopez J, Bidzhekov K, Bachelerie F, Abad‐Santos F, Munoz‐Calleja C, Zarbock A, Soehnlein O, Weber C, Ng LG, Lopez‐Rodriguez C, Sancho D, Moro MA, Ibanez B, Hidalgo A. A neutrophil timer coordinates immune defense and vascular protection. Immunity 51: 966‐967, 2019.
 6.Akbaş T, Deyneli O, Sönmez FT, Akalın S. The pituitary‐gonadal‐thyroid and lactotroph axes in critically ill patients. Endokrynol Pol 67: 305‐312, 2016.
 7.Al Mheid I, Corrigan F, Shirazi F, Veledar E, Li Q, Alexander WR, Taylor WR, Waller EK, Quyyumi AA. Circadian variation in vascular function and regenerative capacity in healthy humans. J Am Heart Assoc 3: e000845, 2014.
 8.Allan JS, Czeisler CA. Persistence of the circadian thyrotropin rhythm under constant conditions and after light‐induced shifts of circadian phase. J Clin Endocrinol Metab 79: 508‐512, 1994.
 9.Allen NC, Philip NH, Hui L, Zhou X, Franklin RA, Kong Y, Medzhitov R. Desynchronization of the molecular clock contributes to the heterogeneity of the inflammatory response. Sci Signal 12: eaau1851, 2019.
 10.Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms 23: 26‐36, 2008.
 11.Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV‐ERBalpha regulates TH17 cell development and autoimmunity. Cell Rep 25: 3733‐3749 e3738, 2018.
 12.Anafi RC, Pellegrino R, Shockley KR, Romer M, Tufik S, Pack AI. Sleep is not just for the brain: Transcriptional responses to sleep in peripheral tissues. BMC Genomics 14: 362, 2013.
 13.Anderson ST, FitzGerald GA. Sexual dimorphism in body clocks. Science 369: 1164‐1165, 2020.
 14.Ando H, Ushijima K, Shimba S, Fujimura A. Daily fasting blood glucose rhythm in male mice: A role of the circadian clock in the liver. Endocrinology 157: 463‐469, 2016.
 15.Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS, Esser KA. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A 107: 19090‐19095, 2010.
 16.Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW, Yao L, Ali MI, Merloiu AM, Stepp DW, Black SM, Fulton DJ, Rudic RD. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1‐knockout mice. Circ Res 111: 1157‐1165, 2012.
 17.Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by Rev‐Erbα (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem 289: 17070‐17077, 2014.
 18.Ansermet C, Centeno G, Nikolaeva S, Maillard MP, Pradervand S, Firsov D. The intrinsic circadian clock in podocytes controls glomerular filtration rate. Sci Rep 9: 16089, 2019.
 19.Atwood A, DeConde R, Wang SS, Mockler TC, Sabir JS, Ideker T, Kay SA. Cell‐autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc Natl Acad Sci U S A 108: 18560‐18565, 2011.
 20.Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell's clock and is crucial for rhythm robustness of testosterone production†. Biol Reprod 100: 1406‐1415, 2019.
 21.Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, Hogenesch JB. Network features of the mammalian circadian clock. PLoS Biol 7: e52, 2009.
 22.Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344‐2347, 2000.
 23.Bargi‐Souza P, Peliciari‐Garcia RA, Nunes MT. Disruption of the pituitary circadian clock induced by hypothyroidism and hyperthyroidism: Consequences on daily pituitary hormone expression profiles. Thyroid 29: 502‐512, 2019.
 24.Bertani S, Carboni L, Criado A, Michielin F, Mangiarini L, Vicentini E. Circadian profile of peripheral hormone levels in Sprague‐Dawley rats and in common marmosets (Callithrix jacchus). In Vivo 24: 827‐836, 2010.
 25.Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H, Spence J, Yoo SH, Chen Z, Takahashi JS, Ghaffari N, Menet JS. Tissue‐specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer‐enhancer interactions. Genes Dev 33: 294‐309, 2019.
 26.Bittman EL. Timing in the testis. J Biol Rhythms 31: 12‐36, 2016.
 27.Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One 6: e29801, 2011.
 28.Bouchard M, Souabni A, Busslinger M. Tissue‐specific expression of cre recombinase from the Pax8 locus. Genesis 38: 105‐109, 2004.
 29.Brabant G, Brabant A, Ranft U, Ocran K, Köhrle J, Hesch RD, von zur Mühlen A. Circadian and pulsatile thyrotropin secretion in euthyroid man under the influence of thyroid hormone and glucocorticoid administration. J Clin Endocrinol Metab 65: 83‐88, 1987.
 30.Brambilla DJ, Matsumoto AM, Araujo AB, McKinlay JB. The effect of diurnal variation on clinical measurement of serum testosterone and other sex hormone levels in men. J Clin Endocrinol Metab 94: 907‐913, 2009.
 31.Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, Young ME. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294: H1036‐H1047, 2008.
 32.Buijs FN, Leon‐Mercado L, Guzman‐Ruiz M, Guerrero‐Vargas NN, Romo‐Nava F, Buijs RM. The circadian system: A regulatory feedback network of periphery and brain. Physiology (Bethesda) 31: 170‐181, 2016.
 33.Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2: 521‐526, 2001.
 34.Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009‐1017, 2000.
 35.Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221: 177‐190, 1994.
 36.Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SB, Santhi N, Schoen MW, Czeisler CA, Duffy JF. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythms 25: 288‐296, 2010.
 37.Cao Q, Zhao X, Bai J, Gery S, Sun H, Lin DC, Chen Q, Chen Z, Mack L, Yang H, Deng R, Shi X, Chong LW, Cho H, Xie J, Li QZ, Muschen M, Atkins AR, Liddle C, Yu RT, Alkan S, Said JW, Zheng Y, Downes M, Evans RM, Koeffler HP. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A 114: 12548‐12553, 2017.
 38.Cao R, Obrietan K. mTOR signaling and entrainment of the mammalian circadian clock. Mol Cell Pharmacol 2: 125‐130, 2010.
 39.Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, Yanagiya A, Nevarko T, Liu AC, Amir S, Sonenberg N. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E‐BP1 signaling. Neuron 79: 712‐724, 2013.
 40.Caratti G, Iqbal M, Hunter L, Kim D, Wang P, Vonslow RM, Begley N, Tetley AJ, Woodburn JL, Pariollaud M, Maidstone R, Donaldson IJ, Zhang Z, Ince LM, Kitchen G, Baxter M, Poolman TM, Daniels DA, Stirling DR, Brocker C, Gonzalez F, Loudon AS, Bechtold DA, Rattray M, Matthews LC, Ray DW. REVERBa couples the circadian clock to hepatic glucocorticoid action. J Clin Invest 128: 4454‐4471, 2018.
 41.Carriazo S, Ramos AM, Sanz AB, Sanchez‐Nino MD, Kanbay M, Ortiz A. Chronodisruption: A poorly recognized feature of CKD. Toxins (Basel) 12: 151, 2020.
 42.Casanova‐Acebes M, Nicolas‐Avila JA, Li JL, Garcia‐Silva S, Balachander A, Rubio‐Ponce A, Weiss LA, Adrover JM, Burrows K, Noelia AG, Ballesteros I, Devi S, Quintana JA, Crainiciuc G, Leiva M, Gunzer M, Weber C, Nagasawa T, Soehnlein O, Merad M, Mortha A, Ng LG, Peinado H, Hidalgo A. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med 215: 2778‐2795, 2018.
 43.Cedernaes J, Waldeck N, Bass J. Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev 33: 1136‐1158, 2019.
 44.Chaix A, Lin T, Le HD, Chang MW, Panda S. Time‐restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29: 303‐319 e304, 2019.
 45.Chakraborty S, Mandal J, Cheng X, Galla S, Hindupur A, Saha P, Yeoh BS, Mell B, Yeo JY, Vijay‐Kumar M, Yang T, Joe B. Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt‐sensitive hypertension and renal damage. Hypertension 76: 59‐72, 2020.
 46.Chalmers JA, Martino TA, Tata N, Ralph MR, Sole MJ, Belsham DD. Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas‐1). Am J Physiol Regul Integr Comp Physiol 295: R1529‐R1538, 2008.
 47.Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, McClung CA. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A 113: 206‐211, 2016.
 48.Chen L, Yang G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res 2014: 653017, 2014.
 49.Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Regulation of circadian behaviour and metabolism by REV‐ERB‐α and REV‐ERB‐β. Nature 485: 123‐127, 2012.
 50.Cirelli C. The genetic and molecular regulation of sleep: From fruit flies to humans. Nat Rev Neurosci 10: 549‐560, 2009.
 51.Cisse YM, Russart KL, Nelson RJ. Parental exposure to dim light at night prior to mating alters offspring adaptive immunity. Sci Rep 7: 45497, 2017.
 52.Coiffard B, Diallo AB, Culver A, Mezouar S, Hammad E, Vigne C, Nicolino‐Brunet C, Dignat‐George F, Baumstarck K, Boucekine M, Leone M, Mege JL. Circadian rhythm disruption and sepsis in severe trauma patients. Shock 52: 29‐36, 2019.
 53.Cornu M, Oppliger W, Albert V, Robitaille AM, Trapani F, Quagliata L, Fuhrer T, Sauer U, Terracciano L, Hall MN. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 111: 11592‐11599, 2014.
 54.Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 63: R93‐R102, 2019.
 55.Crawford AA, Bankier S, Altmaier E, Barnes CLK, Clark DW, Ermel R, Friedrich N, van der Harst P, Joshi PK, Karhunen V, Lahti J, Mahajan A, Mangino M, Nethander M, Neumann A, Pietzner M, Sukhavasi K, Wang CA, Bakker SJL, Bjorkegren JLM, Campbell H, Eriksson J, Gieger C, Hayward C, Jarvelin MR, McLachlan S, Morris AP, Ohlsson C, Pennell CE, Price J, Rudan I, Ruusalepp A, Spector T, Tiemeier H, Völzke H, Wilson JF, Michoel T, Timpson NJ, Smith GD, Walker BR, CORtisol NETwork (CORNET) Consortium. Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. J Hum Genet 66: 625‐636, 2021.
 56.Crislip GR, Douma LG, Masten SH, Cheng KY, Lynch IJ, Johnston JG, Barral D, Glasford KB, Holzworth MR, Verlander JW, Wingo CS, Gumz ML. Differences in renal BMAL1 contribution to Na(+) homeostasis and blood pressure control in male and female mice. Am J Physiol Renal Physiol 318: F1463‐F1477, 2020.
 57.Cugini P, Letizia C, Cerci S, Di Palma L, Battisti P, Coppola A, Scavo D. A chronobiological approach to circulating levels of renin, angiotensin‐converting enzyme, aldosterone, ACTH, and cortisol in Addison's disease. Chronobiol Int 10: 119‐122, 1993.
 58.Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA, Bagnall J, Kitchen GB, Lodyga M, Begley N, Venkateswaran RV, Shah R, Mercer PF, Durrington HJ, Henderson NC, Piper‐Hanley K, Fisher AJ, Chambers RC, Bechtold DA, Gibbs JE, Loudon AS, Rutter MK, Hinz B, Ray DW, Blaikley JF. The circadian clock protein REVERBalpha inhibits pulmonary fibrosis development. Proc Natl Acad Sci U S A 117: 1139‐1147, 2020.
 59.Curtis AM, Bellet MM, Sassone‐Corsi P, O'Neill LA. Circadian clock proteins and immunity. Immunity 40: 178‐186, 2014.
 60.Czeisler CA, Johnson MP, Duffy JF, Brown EN, Ronda JM, Kronauer RE. Exposure to bright light and darkness to treat physiologic maladaptation to night work. N Engl J Med 322: 1253‐1259, 1990.
 61.Davoudi A, Corbett DB, Ozrazgat‐Baslanti T, Bihorac A, Brakenridge SC, Manini TM, Rashidi P. Activity and circadian rhythm of sepsis patients in the intensive care unit. IEEE EMBS Int Conf Biomed Health Inform 2018: 17‐20, 2018.
 62.Deboer T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning? Neurobiol Sleep Circadian Rhythms 5: 68‐77, 2018.
 63.Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, Xie M, Tang D. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep 24: 366‐378, 2018.
 64.Dijk DJ, Duffy JF, Silva EJ, Shanahan TL, Boivin DB, Czeisler CA. Amplitude reduction and phase shifts of melatonin, cortisol and other circadian rhythms after a gradual advance of sleep and light exposure in humans. PLoS One 7: e30037, 2012.
 65.Ding H, Zhao J, Liu H, Wang J, Lu W. BMAL1 knockdown promoted apoptosis and reduced testosterone secretion in TM3 Leydig cell line. Gene 747: 144672, 2020.
 66.Donate Puertas R, Jalabert A, Meugnier E, Euthine V, Chevalier P, Rome S. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation. PLoS One 13: e0196666, 2018.
 67.Dooner MS, Stewart C, Deng Y, Papa E, Pereira M, Del Tatto M, Johnson S, Wen S, Amaral A, Aliotta J, Quesenberry PJ, Goldberg LR. Daily rhythms influence the ability of lung‐derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS One 13: e0207444, 2018.
 68.Douma LG, Barral D, Gumz ML. Interplay of the circadian clock and endothelin system. Physiology (Bethesda) 36: 35‐43, 2021.
 69.Douma LG, Crislip GR, Cheng KY, Barral D, Masten S, Holzworth M, Roig E, Glasford K, Beguiristain K, Li W, Bratanatawira P, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Knockout of the circadian clock protein PER1 results in sex‐dependent alterations of ET‐1 production in mice in response to a high‐salt diet plus mineralocorticoid treatment. Can J Physiol Pharmacol 98: 579‐586, 2020.
 70.Douma LG, Solocinski K, Masten SH, Barral DH, Barilovits SJ, Jeffers LA, Alder KD, Patel R, Wingo CS, Brown KD, Cain BD, Gumz ML. EDN1‐AS, A novel long non‐coding RNA regulating endothelin‐1 in human proximal tubule cells. Front Physiol 11: 209, 2020.
 71.Downton P, Early JO, Gibbs JE. Circadian rhythms in adaptive immunity. Immunology 161: 268‐277, 2020.
 72.Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C, Herzel H, Tsang AH, Kawakami N, Leliavski A, Uhl O, Yao L, Sander LE, Chen CS, Kraus K, de Juan A, Hergenhan SM, Ehlers M, Koletzko B, Haas R, Solbach W, Oster H, Scheiermann C. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46: 120‐132, 2017.
 73.Duffy JF, Cain SW, Chang AM, Phillips AJ, Munch MY, Gronfier C, Wyatt JK, Dijk DJ, Wright KP Jr, Czeisler CA. Sex difference in the near‐24‐hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108 Suppl 3: 15602‐15608, 2011.
 74.Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, Forcato M, Paz MI, Gudiksen A, Solagna F, Albiero M, Moretti I, Eckel‐Mahan KL, Baldi P, Sassone‐Corsi P, Rizzuto R, Bicciato S, Pilegaard H, Blaauw B, Schiaffino S. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3: 29‐41, 2014.
 75.Early JO, Menon D, Wyse CA, Cervantes‐Silva MP, Zaslona Z, Carroll RG, Palsson‐McDermott EM, Angiari S, Ryan DG, Corcoran SE, Timmons G, Geiger SS, Fitzpatrick DJ, O'Connell D, Xavier RJ, Hokamp K, O'Neill LAJ, Curtis AM. Circadian clock protein BMAL1 regulates IL‐1beta in macrophages via NRF2. Proc Natl Acad Sci U S A 115: E8460‐E8468, 2018.
 76.Ehlers A, Xie W, Agapov E, Brown S, Steinberg D, Tidwell R, Sajol G, Schutz R, Weaver R, Yu H, Castro M, Bacharier LB, Wang X, Holtzman MJ, Haspel JA. BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal Immunol 11: 97‐111, 2018.
 77.Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S. Circadian and circannual rhythms in thyroid hormones: Determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 25: 954‐961, 2015.
 78.Elmadjian F, Pincus G. A study of the diurnal variations in circulating lymphocytes in normal and psychotic subjects. J Clin Endocrinol Metab 6: 287‐294, 1946.
 79.Fahrenkrug J, Georg B, Hannibal J, Jørgensen HL. Hypophysectomy abolishes rhythms in rat thyroid hormones but not in the thyroid clock. J Endocrinol 233: 209‐216, 2017.
 80.Fallo F, Fanelli G, Cipolla A, Betterle C, Boscaro M, Sonino N. 24‐hour blood pressure profile in Addison's disease. Am J Hypertens 7: 1105‐1109, 1994.
 81.Fan Z, Zhao M, Joshi PD, Li P, Zhang Y, Guo W, Xu Y, Wang H, Zhao Z, Yan J. A class of circadian long non‐coding RNAs mark enhancers modulating long‐range circadian gene regulation. Nucleic Acids Res 45: 5720‐5738, 2017.
 82.Feeney KA, Hansen LL, Putker M, Olivares‐Yanez C, Day J, Eades LJ, Larrondo LF, Hoyle NP, O'Neill JS, van Ooijen G. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 532: 375‐379, 2016.
 83.Gagnidze K, Hajdarovic KH, Moskalenko M, Karatsoreos IN, McEwen BS, Bulloch K. Nuclear receptor REV‐ERBalpha mediates circadian sensitivity to mortality in murine vesicular stomatitis virus‐induced encephalitis. Proc Natl Acad Sci U S A 113: 5730‐5735, 2016.
 84.Gebel S, Gerstmayer B, Kuhl P, Borlak J, Meurrens K, Muller T. The kinetics of transcriptomic changes induced by cigarette smoke in rat lungs reveals a specific program of defense, inflammation, and circadian clock gene expression. Toxicol Sci 93: 422‐431, 2006.
 85.Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, Farrow S, DeMayo F, Hussell T, Worthen GS, Ray D, Loudon A. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20: 919‐926, 2014.
 86.Gibson EM, Williams WP 3rd, Kriegsfeld LJ. Aging in the circadian system: Considerations for health, disease prevention and longevity. Exp Gerontol 44: 51‐56, 2009.
 87.Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, Beach E, Finegan P, Hernandez C, Menet JS. Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27: 649‐657 e645, 2019.
 88.Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, Cedeno MR, Nadarajah CJ, Ezerskiy LA, Colonna M, Zhang J, Bauer AQ, Burris TP, Musiek ES. Circadian clock protein Rev‐erbalpha regulates neuroinflammation. Proc Natl Acad Sci U S A 116: 5102‐5107, 2019.
 89.Guan D, Xiong Y, Borck PC, Jang C, Doulias PT, Papazyan R, Fang B, Jiang C, Zhang Y, Briggs ER, Hu W, Steger D, Ischiropoulos H, Rabinowitz JD, Lazar MA. Diet‐induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174: 831‐842 e812, 2018.
 90.Gumz ML, Cheng KY, Lynch IJ, Stow LR, Greenlee MM, Cain BD, Wingo CS. Regulation of alphaENaC expression by the circadian clock protein Period 1 in mpkCCD(c14) cells. Biochim Biophys Acta 1799: 622‐629, 2010.
 91.Gumz ML, Popp MP, Wingo CS, Cain BD. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 285: F664‐F673, 2003.
 92.Gumz ML, Rabinowitz L, Wingo CS. An integrated view of potassium homeostasis. N Engl J Med 373: 1787‐1788, 2015.
 93.Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR, Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119: 2423‐2434, 2009.
 94.Hadden H, Soldin SJ, Massaro D. Circadian disruption alters mouse lung clock gene expression and lung mechanics. J Appl Physiol 113: 385‐392, 2012.
 95.Halabi CM, Beyer AM, de Lange WJ, Keen HL, Baumbach GL, Faraci FM, Sigmund CD. Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 7: 215‐226, 2008.
 96.Hardie DG, Ross FA, Hawley SA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: 251‐262, 2012.
 97.Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. Muscle‐specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6: 12, 2016.
 98.Haspel JA, Chettimada S, Shaik RS, Chu JH, Raby BA, Cernadas M, Carey V, Process V, Hunninghake GM, Ifedigbo E, Lederer JA, Englert J, Pelton A, Coronata A, Fredenburgh LE, Choi AM. Circadian rhythm reprogramming during lung inflammation. Nat Commun 5: 4753, 2014.
 99.He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z, Garcia JM, Koike N, Lee CC, Takahashi JS, Yoo SH, Chen Z. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23: 610‐621, 2016.
 100.He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A, Weber J, Bradfield P, Grenier JMP, Pelletier J, Druzd D, Chen CS, Ince LM, Bierschenk S, Pick R, Sperandio M, Aurrand‐Lions M, Scheiermann C. Circadian expression of migratory factors establishes lineage‐specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49: 1175‐1190 e1177, 2018.
 101.Hemmers S, Rudensky AY. The cell‐intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep 11: 1339‐1349, 2015.
 102.Henriksson E, Huber AL, Soto EK, Kriebs A, Vaughan ME, Duglan D, Chan AB, Papp SJ, Nguyen M, Afetian ME, Lamia KA. The liver circadian clock modulates biochemical and physiological responses to metformin. J Biol Rhythms 32: 345‐358, 2017.
 103.Hodge BA, Wen Y, Riley LA, Zhang X, England JH, Harfmann BD, Schroder EA, Esser KA. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 5: 17, 2015.
 104.Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. Harmonics of circadian gene transcription in mammals. PLoS Genet 5: e1000442, 2009.
 105.Illi B, Gaetano C, Capogrossi MC. How senescent vascular cells lose their Clock age‐dependent impairment of circadian rhythmicity in smooth muscle cells. Circ Res 98: 450‐452, 2006.
 106.Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381‐400, 2012.
 107.Irwin MR. Why sleep is important for health: A psychoneuroimmunology perspective. Annu Rev Psychol 66: 143‐172, 2015.
 108.Irwin MR, Opp MR. Sleep health: Reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 42: 129‐155, 2017.
 109.Ivy JR, Jones NK, Costello HM, Mansley MK, Peltz TS, Flatman PW, Bailey MA. Glucocorticoid receptor activation stimulates the sodium‐chloride cotransporter and influences the diurnal rhythm of its phosphorylation. Am J Physiol Renal Physiol 317: F1536‐F1548, 2019.
 110.Ivy JR, Oosthuyzen W, Peltz TS, Howarth AR, Hunter RW, Dhaun N, Al‐Dujaili EA, Webb DJ, Dear JW, Flatman PW, Bailey MA. Glucocorticoids induce nondipping blood pressure by activating the thiazide‐sensitive cotransporter. Hypertension 67: 1029‐1037, 2016.
 111.Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag AR, de Leeuw CA, Benjamins JS, Munoz‐Manchado AB, Nagel M, Savage JE, Tiemeier H, White T, 23andMe Research Team, Tung JY, Hinds DA, Vacic V, Wang X, Sullivan PF, van der Sluis S, Polderman TJC, Smit AB, Hjerling‐Leffler J, Van Someren EJW, Posthuma D. Genome‐wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51: 394‐403, 2019.
 112.Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48: e245, 2016.
 113.Jewett ME, Kronauer RE, Czeisler CA. Light‐induced suppression of endogenous circadian amplitude in humans. Nature 350: 59‐62, 1991.
 114.Johnson CH, Zhao C, Xu Y, Mori T. Timing the day: What makes bacterial clocks tick? Nat Rev Microbiol 15: 232‐242, 2017.
 115.Johnston JG, Pollock DM. Circadian regulation of renal function. Free Radic Biol Med 119: 93‐107, 2018.
 116.Johnston JG, Speed JS, Becker BK, Kasztan M, Soliman RH, Rhoads MK, Tao B, Jin C, Geurts AM, Hyndman KA, Pollock JS, Pollock DM. Diurnal control of blood pressure is uncoupled from sodium excretion. Hypertension 75: 1624‐1634, 2020.
 117.Johnston JG, Speed JS, Jin C, Pollock DM. Loss of endothelin B receptor function impairs sodium excretion in a time‐ and sex‐dependent manner. Am J Physiol Renal Physiol 311: F991‐F998, 2016.
 118.Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 366: 163‐169, 2013.
 119.Jouffe C, Cretenet G, Symul L, Martin E, Atger F, Naef F, Gachon F. The circadian clock coordinates ribosome biogenesis. PLoS Biol 11: e1001455, 2013.
 120.Kalsbeek A, Buijs RM, van Schaik R, Kaptein E, Visser TJ, Doulabi BZ, Fliers E. Daily variations in type II iodothyronine deiodinase activity in the rat brain as controlled by the biological clock. Endocrinology 146: 1418‐1427, 2005.
 121.Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141: 3832‐3841, 2000.
 122.Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 22: 362‐372, 2010.
 123.Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106: 21407‐21412, 2009.
 124.Kervezee L, Cuesta M, Cermakian N, Boivin DB. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc Natl Acad Sci U S A 115: 5540‐5545, 2018.
 125.Kervezee L, Cuesta M, Cermakian N, Boivin DB. The phase‐shifting effect of bright light exposure on circadian rhythmicity in the human transcriptome. J Biol Rhythms 34: 84‐97, 2019.
 126.Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD, Fu L. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30: 909‐924, 2016.
 127.Kim YH, Marhon SA, Zhang Y, Steger DJ, Won KJ, Lazar MA. Rev‐erbalpha dynamically modulates chromatin looping to control circadian gene transcription. Science 359: 1274‐1277, 2018.
 128.Kirsch S, Thijssen S, Alarcon Salvador S, Heine GH, van Bentum K, Fliser D, Sester M, Sester U. T‐cell numbers and antigen‐specific T‐cell function follow different circadian rhythms. J Clin Immunol 32: 1381‐1389, 2012.
 129.Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338: 349‐354, 2012.
 130.Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77: 105‐111, 1989.
 131.Koopman MG, Koomen GC, van Acker BA, Arisz L. Urinary sodium excretion in patients with nephrotic syndrome, and its circadian variation. Q J Med 87: 109‐117, 1994.
 132.Koopman MG, Koomen GC, van Acker BA, Arisz L. Circadian rhythm in glomerular transport of macromolecules through large pores and shunt pathway. Kidney Int 49: 1242‐1249, 1996.
 133.Koronowski KB, Kinouchi K, Welz PS, Smith JG, Zinna VM, Shi J, Samad M, Chen S, Magnan CN, Kinchen JM, Li W, Baldi P, Benitah SA, Sassone‐Corsi P. Defining the independence of the liver circadian clock. Cell 177: 1448‐1462 e1414, 2019.
 134.Ku K, Park I, Kim D, Kim J, Jang S, Choi M, Choe HK, Kim K. Gut microbial metabolites induce changes in circadian oscillation of clock gene expression in the mouse embryonic fibroblasts. Mol Cells 43: 276‐285, 2020.
 135.Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365: 1428‐1434, 2019.
 136.Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, Arnold AP, Colwell CS. Gonadal‐ and sex‐chromosome‐dependent sex differences in the circadian system. Endocrinology 154: 1501‐1512, 2013.
 137.Kunieda T, Minamino T, Katsuno T, Tateno K, Nishi J, Miyauchi H, Orimo M, Okada S, Komuro I. Cellular senescence impairs circadian expression of clock genes in vitro and in vivo. Circ Res 98: 532‐539, 2006.
 138.Laing EE, Moller‐Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. Blood transcriptome based biomarkers for human circadian phase. Elife 6: e20214, 2017.
 139.Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437‐440, 2009.
 140.Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG, van Hees VT, Strand LB, Winsvold BS, Wang H, Bowden J, Song Y, Patel K, Anderson SG, Beaumont RN, Bechtold DA, Cade BE, Haas M, Kathiresan S, Little MA, Luik AI, Loudon AS, Purcell S, Richmond RC, Scheer F, Schormair B, Tyrrell J, Winkelman JW, Winkelmann J, Sleep HAI, Hveem K, Zhao C, Nielsen JB, Willer CJ, Redline S, Spiegelhalder K, Kyle SD, Ray DW, Zwart JA, Brumpton B, Frayling TM, Lawlor DA, Rutter MK, Weedon MN, Saxena R. Biological and clinical insights from genetics of insomnia symptoms. Nat Genet 51: 387‐393, 2019.
 141.Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28: 395‐409, 2005.
 142.Laugsand LE, Vatten LJ, Platou C, Janszky I. Insomnia and the risk of acute myocardial infarction: A population study. Circulation 124: 2073‐2081, 2011.
 143.Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, Herr W, Deplancke B, Schibler U, Rougemont J, Guex N, Hernandez N, Naef F, Cycli XC. Genome‐wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10: e1001442, 2012.
 144.Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones inhibit food‐induced phase‐shifting of peripheral circadian oscillators. EMBO J 20: 7128‐7136, 2001.
 145.Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilated cardiomyopathy in Bmal1‐deficient mice. Am J Physiol Heart Circ Physiol 303: H475‐H485, 2012.
 146.Leliavski A, Dumbell R, Ott V, Oster H. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms 30: 20‐34, 2015.
 147.Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB. Effects of diurnal variation of gut microbes and high‐fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17: 681‐689, 2015.
 148.Leso V, Vetrani I, Sicignano A, Romano R, Iavicoli I. The impact of shift‐work and night shift‐work on thyroid: A systematic review. Int J Environ Res Public Health 17: 1527, 2020.
 149.Lewis SR, Pritchard MW, Schofield‐Robinson OJ, Alderson P, Smith AF. Melatonin for the promotion of sleep in adults in the intensive care unit. Cochrane Database Syst Rev 5: CD012455, 2018.
 150.Li C, Xiao S, Hao J, Liao X, Li G. Cry1 deficiency leads to testicular dysfunction and altered expression of genes involved in cell communication, chromatin reorganization, spermatogenesis, and immune response in mouse testis. Mol Reprod Dev 85: 325‐335, 2018.
 151.Li C, Zhang L, Ma T, Gao L, Yang L, Wu M, Pang Z, Wang X, Yao Q, Xiao Y, Zhao L, Liu W, Zhao H, Wang C, Wang A, Jin Y, Chen H. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. Chemosphere 263: 128020, 2021.
 152.Li SX, Liu LJ, Xu LZ, Gao L, Wang XF, Zhang JT, Lu L. Diurnal alterations in circadian genes and peptides in major depressive disorder before and after escitalopram treatment. Psychoneuroendocrinology 38: 2789‐2799, 2013.
 153.Lin R, Mo Y, Zha H, Qu Z, Xie P, Zhu ZJ, Xu Y, Xiong Y, Guan KL. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Molecular cell 68: 198‐209 e196, 2017.
 154.Lipton JO, Boyle LM, Yuan ED, Hochstrasser KJ, Chifamba FF, Nathan A, Tsai PT, Davis F, Sahin M. Aberrant proteostasis of BMAL1 underlies circadian abnormalities in a paradigmatic mTOR‐opathy. Cell Rep 20: 868‐880, 2017.
 155.Lipton JO, Yuan ED, Boyle LM, Ebrahimi‐Fakhari D, Kwiatkowski E, Nathan A, Guttler T, Davis F, Asara JM, Sahin M. The circadian protein BMAL1 regulates translation in response to S6K1‐mediated phosphorylation. Cell 161: 1138‐1151, 2015.
 156.Liu D, Stowie A, de Zavalia N, Leise T, Pathak SS, Drewes LR, Davidson AJ, Amir S, Sonenberg N, Cao R. mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction. Proc Natl Acad Sci U S A 115: E3296‐E3304, 2018.
 157.Liu Y, Johnson BP, Shen AL, Wallisser JA, Krentz KJ, Moran SM, Sullivan R, Glover E, Parlow AF, Drinkwater NR, Schuler LA, Bradfield CA. Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure in female mice. Proc Natl Acad Sci U S A 111: 14295‐14300, 2014.
 158.Liu Z, Wei ZY, Chen J, Chen K, Mao X, Liu Q, Sun Y, Zhang Z, Zhang Y, Dan Z, Tang J, Qin L, Chen JH, Liu X. Acute sleep‐wake cycle shift results in community alteration of human gut microbiome. mSphere 5: e00914‐e00919, 2020. DOI: 10.1128/mSphere.00914‐19. PMID: 32051239; PMCID: PMC7021472.
 159.Liyanarachchi K, Ross R, Debono M. Human studies on hypothalamo‐pituitary‐adrenal (HPA) axis. Best Pract Res Clin Endocrinol Metab 31: 459‐473, 2017.
 160.Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. Morning vaccination enhances antibody response over afternoon vaccination: A cluster‐randomised trial. Vaccine 34: 2679‐2685, 2016.
 161.Luciano AK, Santana JM, Velazquez H, Sessa WC. Akt1 controls the timing and amplitude of vascular circadian gene expression. J Biol Rhythms 32: 212‐221, 2017.
 162.Lutshumba J, Liu S, Zhong Y, Hou T, Daugherty A, Lu H, Guo Z, Gong MC. Deletion of BMAL1 in smooth muscle cells protects mice from abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 38: 1063‐1075, 2018.
 163.Ma D, Liu T, Chang L, Rui C, Xiao Y, Li S, Hogenesch JB, Chen YE, Lin JD. The liver clock controls cholesterol homeostasis through Trib1 protein‐mediated regulation of PCSK9/low density lipoprotein receptor (LDLR) axis. J Biol Chem 290: 31003‐31012, 2015.
 164.Maki KA, Burke LA, Calik MW, Watanabe‐Chailland M, Sweeney D, Romick‐Rosendale LE, Green SJ, Fink AM. Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in rats. Physiol Genomics 52: 280‐292, 2020.
 165.Man K, Loudon A, Chawla A. Immunity around the clock. Science 354: 999‐1003, 2016.
 166.Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron 94: 19‐36, 2017.
 167.Maroni MJ, Capri KM, Cushman AV, Monteiro De Pina IK, Chasse MH, Seggio JA. Constant light alters serum hormone levels related to thyroid function in male CD‐1 mice. Chronobiol Int 35: 1456‐1463, 2018.
 168.Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev 53: 101340, 2020.
 169.Mavroudis PD, Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Entrainment of peripheral clock genes by cortisol. Physiol Genomics 44: 607‐621, 2012.
 170.Mazzoccoli G, Giuliani A, Carughi S, De Cata A, Puzzolante F, La Viola M, Urbano N, Perfetto F, Tarquini R. The hypothalamic‐pituitary‐thyroid axis and melatonin in humans: Possible interactions in the control of body temperature. Neuro Endocrinol Lett 25: 368‐372, 2004.
 171.McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C, Anzai A, Chan CT, Mindur JE, Kahles F, Poller WC, Frodermann V, Fenn AM, Gregory AF, Halle L, Iwamoto Y, Hoyer FF, Binder CJ, Libby P, Tafti M, Scammell TE, Nahrendorf M, Swirski FK. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566: 383‐387, 2019.
 172.McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31: 86‐95, 2007.
 173.Meira ECM, Miyazawa M, Gozal D. Putative contributions of circadian clock and sleep in the context of SARS‐CoV‐2 infection. Eur Respir J 55: 2001023, 2020.
 174.Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer‐like transcription factor. Genes Dev 28: 8‐13, 2014.
 175.Mereness AL, Murphy ZC, Forrestel AC, Butler S, Ko C, Richards JS, Sellix MT. Conditional deletion of Bmal1 in ovarian theca cells disrupts ovulation in female mice. Endocrinology 157: 913‐927, 2016.
 176.Mermet J, Yeung J, Hurni C, Mauvoisin D, Gustafson K, Jouffe C, Nicolas D, Emmenegger Y, Gobet C, Franken P, Gachon F, Naef F. Clock‐dependent chromatin topology modulates circadian transcription and behavior. Genes Dev 32: 347‐358, 2018.
 177.Meyer‐Kovac J, Kolbe I, Ehrhardt L, Leliavski A, Husse J, Salinas G, Lingner T, Tsang AH, Barclay JL, Oster H. Hepatic gene therapy rescues high‐fat diet responses in circadian Clock mutant mice. Mol Metab 6: 512‐523, 2017.
 178.Millar‐Craig MW, Bishop CN, Raftery EB. Circadian variation of blood‐pressure. Lancet 1: 795‐797, 1978.
 179.Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS. Circadian and CLOCK‐controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104: 3342‐3347, 2007.
 180.Miller BH, Takahashi JS. Central circadian control of female reproductive function. Front Endocrinol 4: 195, 2013.
 181.Mills JN, Stanbury SW. Persistent 24‐hour renal excretory rhythm on a 12‐hour cycle of activity. J Physiol 117: 22‐37, 1952.
 182.Mirjanic‐Azaric B, Stojakovic‐Jelisavac T, Vukovic B, Stojanovic D, Vujnic M, Uletilovic S. The impact of time of sample collection on the measurement of thyroid stimulating hormone values in the serum. Clin Biochem 48: 1347‐1349, 2015.
 183.Mizutani H, Tamagawa‐Mineoka R, Minami Y, Yagita K, Katoh N. Constant light exposure impairs immune tolerance development in mice. J Dermatol Sci 86: 63‐70, 2017.
 184.Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35: 445‐462, 2012.
 185.Moller‐Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N, von Schantz M, Smith CP, Dijk DJ. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110: E1132‐E1141, 2013.
 186.Montagner A, Korecka A, Polizzi A, Lippi Y, Blum Y, Canlet C, Tremblay‐Franco M, Gautier‐Stein A, Burcelin R, Yen YC, Je HS, Al‐Asmakh M, Mithieux G, Arulampalam V, Lagarrigue S, Guillou H, Pettersson S, Wahli W. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome‐derived signals. Sci Rep 6: 20127, 2016.
 187.Montaruli A, Castelli L, Mule A, Scurati R, Esposito F, Galasso L, Roveda E. Biological rhythm and chronotype: New perspectives in health. Biomolecules 11: 487, 2021.
 188.Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201‐206, 1972.
 189.Moore‐Ede MC. Physiology of the circadian timing system: Predictive versus reactive homeostasis. Am J Physiol 250: R737‐R752, 1986.
 190.Moravcova S, Pacesova D, Melkes B, Kyclerova H, Spisska V, Novotny J, Bendova Z. The day/night difference in the circadian clock's response to acute lipopolysaccharide and the rhythmic Stat3 expression in the rat suprachiasmatic nucleus. PLoS One 13: e0199405, 2018.
 191.Moreira AC, Antonini SR, de Castro M. Mechanisms in endocrinology: A sense of time of the glucocorticoid circadian clock: From the ontogeny to the diagnosis of Cushing's syndrome. Eur J Endocrinol 179: R1‐R18, 2018.
 192.Morris AR, Stanton DL, Roman D, Liu AC. Systems level understanding of circadian integration with cell physiology. J Mol Biol 432: 3547‐3564, 2020.
 193.Morris CJ, Purvis TE, Mistretta J, Scheer FA. Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J Clin Endocrinol Metab 101: 1066‐1074, 2016.
 194.Mouralidarane A, Soeda J, Sugden D, Bocianowska A, Carter R, Ray S, Saraswati R, Cordero P, Novelli M, Fusai G, Vinciguerra M, Poston L, Taylor PD, Oben JA. Maternal obesity programs offspring non‐alcoholic fatty liver disease through disruption of 24‐h rhythms in mice. Int J Obes (Lond) 39: 1339‐1348, 2015.
 195.Mukherji A, Kobiita A, Chambon P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A 112: E6683‐E6690, 2015.
 196.Munzel T, Hahad O, Kuntic M, Keaney JF, Deanfield JE, Daiber A. Effects of tobacco cigarettes, e‐cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur Heart J 41: 4057‐4070, 2020.
 197.Murakami M, Tognini P, Liu Y, Eckel‐Mahan KL, Baldi P, Sassone‐Corsi P. Gut microbiota directs PPARgamma‐driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep 17: 1292‐1303, 2016.
 198.Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354: 1004‐1008, 2016.
 199.Neumann AM, Schmidt CX, Brockmann RM, Oster H. Circadian regulation of endocrine systems. Auton Neurosci 216: 1‐8, 2019.
 200.Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341: 1483‐1488, 2013.
 201.Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, Henry H, Koesters R, Maillard M, Bonny O, Tokonami N, Firsov D. Nephron‐specific deletion of circadian clock gene Bmal1 alters the plasma and renal metabolome and impairs drug disposition. J Am Soc Nephrol 27: 2997‐3004, 2016.
 202.Niu SF, Chung MH, Chu H, Tsai JC, Lin CC, Liao YM, Ou KL, O'Brien AP, Chou KR. Differences in cortisol profiles and circadian adjustment time between nurses working night shifts and regular day shifts: A prospective longitudinal study. Int J Nurs Stud 52: 1193‐1201, 2015.
 203.Nobis CC, Dubeau Laramee G, Kervezee L, Maurice De Sousa D, Labrecque N, Cermakian N. The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 116: 20077‐20086, 2019.
 204.Nohara K, Mallampalli V, Nemkov T, Wirianto M, Yang J, Ye Y, Sun Y, Han L, Esser KA, Mileykovskaya E, D'Alessandro A, Green CB, Takahashi JS, Dowhan W, Yoo SH, Chen Z. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun 10: 3923, 2019.
 205.Nosal C, Ehlers A, Haspel JA. Why lungs keep time: Circadian rhythms and lung immunity. Annu Rev Physiol 82: 391‐412, 2020.
 206.Oh JH, Lee JH, Han DH, Cho S, Lee YJ. Circadian clock is involved in regulation of hepatobiliary transport mediated by multidrug resistance‐associated protein 2. J Pharm Sci 106: 2491‐2498, 2017.
 207.Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The functional and clinical significance of the 24‐hour rhythm of circulating glucocorticoids. Endocr Rev 38: 3‐45, 2017.
 208.Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163‐173, 2006.
 209.Ottenweller JE, Meier AH. Adrenal innervation may be an extrapituitary mechanism able to regulate adrenocortical rhythmicity in rats. Endocrinology 111: 1334‐1338, 1982.
 210.Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307‐320, 2002.
 211.Paulose JK, Wright JM, Patel AG, Cassone VM. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 11: e0146643, 2016.
 212.Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, Bonar NA, McNulty MR, Ramsey KM, Bass J. Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab 25: 86‐92, 2017.
 213.Peliciari‐Garcia RA, Bargi‐Souza P, Young ME, Nunes MT. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int 35: 147‐159, 2018.
 214.Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic beta cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350: aac4250, 2015.
 215.Perfilyeva YV, Abdolla N, Ostapchuk YO, Tleulieva R, Krasnoshtanov VC, Belyaev NN. Expansion of CD11b(+)Ly6G(high) and CD11b(+)CD49d(+) myeloid cells with suppressive potential in mice with chronic inflammation and light‐at‐night‐induced circadian disruption. Inflamm Res 66: 711‐724, 2017.
 216.Perrin L, Loizides‐Mangold U, Chanon S, Gobet C, Hulo N, Isenegger L, Weger BD, Migliavacca E, Charpagne A, Betts JA, Walhin JP, Templeman I, Stokes K, Thompson D, Tsintzas K, Robert M, Howald C, Riezman H, Feige JN, Karagounis LG, Johnston JD, Dermitzakis ET, Gachon F, Lefai E, Dibner C. Transcriptomic analyses reveal rhythmic and CLOCK‐driven pathways in human skeletal muscle. Elife 7: e34114, 2018.
 217.Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res 41: D1009‐D1013, 2013.
 218.Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 14: e1007369, 2018.
 219.Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 20: 227‐241, 2019.
 220.Resuehr D, Wu G, Johnson RL Jr, Young ME, Hogenesch JB, Gamble KL. Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J Biol Rhythms 34: 167‐177, 2019.
 221.Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome‐wide and phase‐specific DNA‐binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9: e1000595, 2011.
 222.Richards J, Greenlee MM, Jeffers LA, Cheng KY, Guo L, Eaton DC, Gumz ML. Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock‐regulatory kinases CK1delta/epsilon. Am J Physiol Renal Physiol 303: F918‐F927, 2012.
 223.Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML. Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of alphaENaC in renal cortical collecting duct cells. Front Physiol 4: 253, 2013.
 224.Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of the NaCl co‐transporter (NCC) and the with‐no‐lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 289: 11791‐11806, 2014.
 225.Riede SJ, van der Vinne V, Hut RA. The flexible clock: Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep‐wake timing. J Exp Biol 220: 738‐749, 2017.
 226.Riera CE, Merkwirth C, De Magalhaes Filho CD, Dillin A. Signaling networks determining life span. Annu Rev Biochem 85: 35‐64, 2016.
 227.Rijo‐Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med 11: 82, 2019.
 228.Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about muscle‐bone crosstalk. Curr Osteoporos Rep 15: 222‐230, 2017.
 229.Riphaus A, Bitter H. Short version S3 guideline sedation for gastrointestinal endoscopy und medicolegal implications. Z Gastroenterol 50: 407‐410, 2012.
 230.Rodrigo GC, Herbert KE. Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med 119: 115‐120, 2018.
 231.Sahar S, Sassone‐Corsi P. Regulation of metabolism: The circadian clock dictates the time. Trends Endocrinol Metab 23: 1‐8, 2012.
 232.Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257‐1263, 2005.
 233.Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 169: 361‐371, 2017.
 234.Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol 18: 423‐437, 2018.
 235.Schilperoort M, Bravenboer N, Lim J, Mletzko K, Busse B, van Ruijven L, Kroon J, Rensen PCN, Kooijman S, Winter EM. Circadian disruption by shifting the light‐dark cycle negatively affects bone health in mice. FASEB J 34: 1052‐1064, 2020.
 236.Schoeller EL, Clark DD, Dey S, Cao NV, Semaan SJ, Chao LW, Kauffman AS, Stowers L, Mellon PL. Bmal1 is required for normal reproductive behaviors in male mice. Endocrinology 157: 4914‐4929, 2016.
 237.Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, Wen Y, Riley LA, Yu Q, Christie A, Smith JD, Seward T, Wolf Horrell EM, Mula J, Peterson CA, Butterfield TA, Esser KA. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol 593: 5387‐5404, 2015.
 238.Schroder EA, Lefta M, Zhang X, Bartos DC, Feng HZ, Zhao Y, Patwardhan A, Jin JP, Esser KA, Delisle BP. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am J Physiol Cell Physiol 304: C954‐C965, 2013.
 239.Sehgal A. Physiology flies with time. Cell 171: 1232‐1235, 2017.
 240.Sehgal A, Mignot E. Genetics of sleep and sleep disorders. Cell 146: 194‐207, 2011.
 241.Sellix MT. Circadian clock function in the mammalian ovary. J Biol Rhythms 30: 7‐19, 2015.
 242.Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL, Valenzuela A, Fisher DG, Grant GR, Lopez CB, FitzGerald GA. Circadian control of lung inflammation in influenza infection. Nat Commun 10: 4107, 2019.
 243.Silva FRD, Guerreiro RC, Andrade HA, Stieler E, Silva A, de Mello MT. Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID‐19)? Chronobiol Int 37: 607‐617, 2020.
 244.Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll‐like receptor 9‐mediated innate and adaptive immunity. Immunity 36: 251‐261, 2012.
 245.Simoni M, Montanini V, Fustini MF, Del Rio G, Cioni K, Marrama P. Circadian rhythm of plasma testosterone in men with idiopathic hypogonadotrophic hypogonadism before and during pulsatile administration of gonadotrophin‐releasing hormone. Clin Endocrinol (Oxf) 36: 29‐34, 1992.
 246.Smale L, Lee T, Nunez AA. Mammalian diurnality: Some facts and gaps. J Biol Rhythms 18: 356‐366, 2003.
 247.So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci U S A 106: 17582‐17587, 2009.
 248.Solocinski K, Holzworth M, Wen X, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Desoxycorticosterone pivalate‐salt treatment leads to non‐dipping hypertension in Per1 knockout mice. Acta physiologica 220: 72‐82, 2017.
 249.Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 105: 20970‐20975, 2008.
 250.Song P, Li Z, Li X, Yang L, Zhang L, Li N, Guo C, Lu S, Wei Y. Transcriptome profiling of the lungs reveals molecular clock genes expression changes after chronic exposure to ambient air particles. Int J Environ Res Public Health 14: 90, 2017.
 251.Soták M, Bryndová J, Ergang P, Vagnerová K, Kvapilová P, Vodička M, Pácha J, Sumová A. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol Int 33: 520‐529, 2016.
 252.Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M, Fox BM, Johnston JG, Becker BK, Jin C, Gamble KL, Young ME, Pollock JS, Pollock DM. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am J Physiol Renal Physiol 314: F89‐F98, 2018.
 253.Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 49: 52‐71, 2018.
 254.Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78‐83, 2002.
 255.Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine‐immune control in chronic inflammatory diseases. J Intern Med 267: 543‐560, 2010.
 256.Sukumaran S, Jusko WJ, Dubois DC, Almon RR. Light‐dark oscillations in the lung transcriptome: Implications for lung homeostasis, repair, metabolism, disease, and drug action. J Appl Physiol 110: 1732‐1747, 2011.
 257.Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock‐coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol 53: 285‐290, 2015.
 258.Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 309: L1056‐L1075, 2015.
 259.Susa K, Sohara E, Isobe K, Chiga M, Rai T, Sasaki S, Uchida S. WNK‐OSR1/SPAK‐NCC signal cascade has circadian rhythm dependent on aldosterone. Biochem Biophys Res Commun 427: 743‐747, 2012.
 260.Sutton CE, Finlay CM, Raverdeau M, Early JO, DeCourcey J, Zaslona Z, O'Neill LAJ, Mills KHG, Curtis AM. Loss of the molecular clock in myeloid cells exacerbates T cell‐mediated CNS autoimmune disease. Nat Commun 8: 1923, 2017.
 261.Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18: 164‐179, 2017.
 262.Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat Rev Genet 9: 764‐775, 2008.
 263.Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Hinoi E. Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res 32: 872‐881, 2017.
 264.Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. Feeding‐dependent VIP neuron‐ILC3 circuit regulates the intestinal barrier. Nature 579: 575‐580, 2020.
 265.Tang H, Zhu M, Zhao G, Fu W, Shi Z, Ding Y, Tang X, Guo D. Loss of CLOCK under high glucose upregulates ROCK1‐mediated endothelial to mesenchymal transition and aggravates plaque vulnerability. Atherosclerosis 275: 58‐67, 2018.
 266.Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H, Jaitin DA, David E, Winter DR, Gury‐BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori‐Bachash M, Pevsner‐Fischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, Halpern Z, Honda K, Amit I, Segal E, Elinav E. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167: 1495‐1510 e1412, 2016.
 267.Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 474: 1823‐1836, 2017.
 268.Toledo M, Batista‐Gonzalez A, Merheb E, Aoun ML, Tarabra E, Feng D, Sarparanta J, Merlo P, Botre F, Schwartz GJ, Pessin JE, Singh R. Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab 28: 268‐281 e264, 2018.
 269.Tsang K, Liu H, Yang Y, Charles JF, Ermann J. Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function. Bone 121: 172‐180, 2019.
 270.Tsareva YO, Mayskova EA, Fedotov EA, Shvarts YG. Circadian rhythms of thyroid hormones in patients with ischemic heart disease, arterial hypertension, and atrial fibrillation. Kardiologiia 59: 23‐29, 2019.
 271.Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S. A transcription factor response element for gene expression during circadian night. Nature 418: 534‐539, 2002.
 272.Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System‐level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187‐192, 2005.
 273.Ulrich‐Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol 290: R1128‐R1135, 2006.
 274.Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. Activation of 5'‐AMP‐activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)‐dependent degradation of clock protein mPer2. J Biol Chem 282: 20794‐20798, 2007.
 275.Van Drunen R, Eckel‐Mahan K. Circadian rhythms of the hypothalamus: From function to physiology. Clocks Sleep 3: 189‐226, 2021.
 276.van Kerkhof LW, Van Dycke KC, Jansen EH, Beekhof PK, van Oostrom CT, Ruskovska T, Velickova N, Kamcev N, Pennings JL, van Steeg H, Rodenburg W. Diurnal variation of hormonal and lipid biomarkers in a molecular epidemiology‐like setting. PLoS One 10: e0135652, 2015.
 277.Viola AU, James LM, Archer SN, Dijk DJ. PER3 polymorphism and cardiac autonomic control: Effects of sleep debt and circadian phase. Am J Physiol Heart Circ Physiol 295: H2156‐H2163, 2008.
 278.Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264: 719‐725, 1994.
 279.von Schantz M. Natural variation in human clocks. Adv Genet 99: 73‐96, 2017.
 280.Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, Janszky I, Mrkobrada M, Parraga G, Hackam DG. Shift work and vascular events: Systematic review and meta‐analysis. BMJ 345: e4800, 2012.
 281.Walker JJ, Spiga F, Waite E, Zhao Z, Kershaw Y, Terry JR, Lightman SL. The origin of glucocorticoid hormone oscillations. PLoS Biol 10: e1001341, 2012.
 282.Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim‐Hashim A, Riddle M, Porcu A, Jiang T, Ecker BL, Tameire F, Koumenis C, Weeraratna AT, Welsh DK, Gillies R, Alwine JC, Zhang L, Powell JD, Dang CV. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell 174: 72‐87 e32, 2018.
 283.Wang CY, Hsieh MJ, Hsieh IC, Shie SS, Ho MY, Yeh JK, Tsai ML, Yang CH, Hung KC, Wang CC, Wen MS. CLOCK modulates survival and acute lung injury in mice with polymicrobial sepsis. Biochem Biophys Res Commun 478: 935‐941, 2016.
 284.Wang CY, Wen MS, Wang HW, Hsieh IC, Li Y, Liu PY, Lin FC, Liao JK. Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation 118: 2166‐2173, 2008.
 285.Wang D, Yin Y, Yu S, Li H, Cheng X, Qiu L. Effect of sampling time on estimates of thyroid‐stimulating hormone, free thyroxine, and free triiodothyronine levels. Scand J Clin Lab Invest 79: 459‐462, 2019.
 286.Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8: 482‐491, 2008.
 287.Wang Q, Yin Y, Zhang W. Ghrelin restores the disruption of the circadian clock in steatotic liver. Int J Mol Sci 19: 3134, 2018.
 288.Wang S, Lin Y, Zhou Z, Gao L, Yang Z, Li F, Wu B. Circadian clock gene Bmal1 regulates bilirubin detoxification: A potential mechanism of feedback control of hyperbilirubinemia. Theranostics 9: 5122‐5133, 2019.
 289.Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357: 912‐916, 2017.
 290.Wang Y, Song L, Liu M, Ge R, Zhou Q, Liu W, Li R, Qie J, Zhen B, Wang Y, He F, Qin J, Ding C. A proteomics landscape of circadian clock in mouse liver. Nat Commun 9: 1553, 2018.
 291.Weeke J, Gundersen HJ. Circadian and 30 minutes variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol (Copenh) 89: 659‐672, 1978.
 292.Winter C, Silvestre‐Roig C, Ortega‐Gomez A, Lemnitzer P, Poelman H, Schumski A, Winter J, Drechsler M, de Jong R, Immler R, Sperandio M, Hristov M, Zeller T, Nicolaes GAF, Weber C, Viola JR, Hidalgo A, Scheiermann C, Soehnlein O. Chrono‐pharmacological targeting of the CCL2‐CCR2 axis ameliorates atherosclerosis. Cell Metab 28: 175‐182 e175, 2018.
 293.Wirz‐Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 51: 346‐365, 2020.
 294.Wisor JP, O'Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P. A role for cryptochromes in sleep regulation. BMC Neurosci 3: 20, 2002.
 295.Wu G, Anafi RC, Hughes ME, Kornacker K, Hogenesch JB. MetaCycle: An integrated R package to evaluate periodicity in large scale data. Bioinformatics 32: 3351‐3353, 2016.
 296.Wyller VB, Vitelli V, Sulheim D, Fagermoen E, Winger A, Godang K, Bollerslev J. Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: A cross‐sectional study. J Transl Med 14: 121, 2016.
 297.Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, Hinoi E, Okawa A, Takeda S. Circadian clock regulates bone resorption in mice. J Bone Min Res 31: 1344‐1355, 2016.
 298.Xu J, Li Y, Wang Y, Xu Y, Zhou C. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice. Zygote 24: 760‐767, 2016.
 299.Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5: 18, 2004.
 300.Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM, Yang T. Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism. PLoS One 7: e38117, 2012.
 301.Yang G, Zhang J, Jiang T, Monslow J, Tang SY, Todd L, Pure E, Chen L, FitzGerald GA. Bmal1 deletion in myeloid cells attenuates atherosclerotic lesion development and restrains abdominal aortic aneurysm formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 40: 1523‐1532, 2020.
 302.Yang X, Wang H, Li T, Chen L, Zheng B, Liu RH. Nobiletin delays aging and enhances stress resistance of Caenorhabditis elegans. Int J Mol Sci 21: 341, 2020.
 303.Yeung J, Mermet J, Jouffe C, Marquis J, Charpagne A, Gachon F, Naef F. Transcription factor activity rhythms and tissue‐specific chromatin interactions explain circadian gene expression across organs. Genome Res 28: 182‐191, 2018.
 304.Yoder JM, Brandeland M, Engeland WC. Phase‐dependent resetting of the adrenal clock by ACTH in vitro. Am J Physiol Regul Integr Comp Physiol 306: R387‐R393, 2014.
 305.Yoshitane H, Ozaki H, Terajima H, Du NH, Suzuki Y, Fujimori T, Kosaka N, Shimba S, Sugano S, Takagi T, Iwasaki W, Fukada Y. CLOCK‐controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E‐boxes. Mol Cell Biol 34: 1776‐1787, 2014.
 306.Yu S, Tang Q, Xie M, Zhou X, Long Y, Xie Y, Guo F, Chen L. Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway. Cell Prolif 53: e12727, 2020.
 307.Zaslona Z, Case S, Early JO, Lalor SJ, McLoughlin RM, Curtis AM, O'Neill LAJ. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol 312: L855‐L860, 2017.
 308.Zeb F, Wu X, Fatima S, Zaman MH, Khan SA, Safdar M, Alam I, Feng Q. Time‐restricted feeding regulates molecular mechanisms with involvement of circadian rhythm to prevent metabolic diseases. Nutrition 89: 111244, 2021.
 309.Zhang D, Jin C, Obi IE, Rhoads MK, Soliman RH, Sedaka RS, Allan JM, Tao B, Speed JS, Pollock JS, Pollock DM. Loss of circadian gene Bmal1 in the collecting duct lowers blood pressure in male, but not female, mice. Am J Physiol Renal Physiol 318: F710‐F719, 2020.
 310.Zhang D, Tong X, Nelson BB, Jin E, Sit J, Charney N, Yang M, Omary MB, Yin L. The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARalpha pathway. Hepatology 68: 883‐896, 2018.
 311.Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW 3rd, Janes J, Su AI, Hogenesch JB, Kay SA. A genome‐wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139: 199‐210, 2009.
 312.Zhang J, Lu X, Liu M, Fan H, Zheng H, Zhang S, Rahman N, Wolczynski S, Kretowski A, Li X. Melatonin inhibits inflammasome‐associated activation of endothelium and macrophages attenuating pulmonary arterial hypertension. Cardiovasc Res 116: 2156‐2169, 2020.
 313.Zhang L, Prosdocimo DA, Bai X, Fu C, Zhang R, Campbell F, Liao X, Coller J, Jain MK. KLF15 establishes the landscape of diurnal expression in the heart. Cell Rep 13: 2368‐2375, 2015.
 314.Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci U S A 111: 16219‐16224, 2014.
 315.Zhang Y, Papazyan R, Damle M, Fang B, Jager J, Feng D, Peed LC, Guan D, Sun Z, Lazar MA. The hepatic circadian clock fine‐tunes the lipogenic response to feeding through RORalpha/gamma. Genes Dev 31: 1202‐1211, 2017.
 316.Zhang Z, Hunter L, Wu G, Maidstone R, Mizoro Y, Vonslow R, Fife M, Hopwood T, Begley N, Saer B, Wang P, Cunningham P, Baxter M, Durrington H, Blaikley JF, Hussell T, Rattray M, Hogenesch JB, Gibbs J, Ray DW, Loudon ASI. Genome‐wide effect of pulmonary airway epithelial cell‐specific Bmal1 deletion. FASEB J 33: 6226‐6238, 2019.
 317.Zhao M, Zhao H, Deng J, Guo L, Wu B. Role of the CLOCK protein in liver detoxification. Br J Pharmacol 176: 4639‐4652, 2019.
 318.Zheng Z, Kim H, Qiu Y, Chen X, Mendez R, Dandekar A, Zhang X, Zhang C, Liu AC, Yin L, Lin JD, Walker PD, Kapatos G, Zhang K. CREBH couples circadian clock with hepatic lipid metabolism. Diabetes 65: 3369‐3383, 2016.
 319.Zhong X, Yu J, Frazier K, Weng X, Li Y, Cham CM, Dolan K, Zhu X, Hubert N, Tao Y, Lin F, Martinez‐Guryn K, Huang Y, Wang T, Liu J, He C, Chang EB, Leone V. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep 25: 1816‐1828 e1814, 2018.
 320.Zhou X, Yu R, Long Y, Zhao J, Yu S, Tang Q, Chen L. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif 51: e12470, 2018.
 321.Zhu M, Tang H, Tang X, Ma X, Guo D, Chen F. BMAL1 suppresses ROS‐induced endothelial‐to‐mesenchymal transition and atherosclerosis plaque progression via BMP signaling. Am J Transl Res 10: 3150‐3161, 2018.
 322.Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, Bonny O, Firsov D. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A 106: 16523‐16528, 2009.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

G. Ryan Crislip, Jermaine G. Johnston, Lauren G. Douma, Hannah M. Costello, Alexandria Juffre, Kyla Boyd, Wendy Li, Cheoting C. Maugans, Miguel Gutierrez‐Monreal, Karyn A. Esser, Andrew J. Bryant, Andrew C. Liu, Michelle L. Gumz. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021, 12: 2769-2798. doi: 10.1002/cphy.c210011