Comprehensive Physiology Wiley Online Library

Endothelial Cells and the Cerebral Circulation

Full Article on Wiley Online Library



Abstract

Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood‐brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449‐3508, 2022.

Figure 1. Figure 1. Cerebral endothelial functions and signaling molecules produced by the endothelial cells. Servier Medical Art. Retrieved from https://servier.com/Powerpoint‐image‐bank. Licensed under CC BY‐3.0.
Figure 2. Figure 2. Cerebrovascular anatomy. The neurovascular unit (center) with a representation of a parenchymal arteriole (left) and a capillary (right). The neurovascular unit is composed of VSMC, endothelial cells, astrocytes, pericytes, and neurons. Parenchymal arterioles have a layer of endothelial cells surrounded by a single layer of smooth muscle cells, which provides the contractile machinery for the arteriole. The endothelium regulates the contractile state of the smooth muscle cells through dilatory mechanisms involving NO, TRPV4, PGE2, NMDAR, TRPA1, and TRPV3. Capillaries contain pericytes in lieu of smooth muscle cells to regulate their contractile state. Important dilatory mechanisms in capillary endothelial cells include KIR2.1, TRPV4, and TRPA1. Activation of these mechanisms in capillaries results in an upward flowing hyperpolarization that reaches the arterioles, ultimately increasing local blood flow. Parenchymal arterioles and capillaries each interact with astrocytic end feet, which acts as a liaison between neurons and the vascular system. Adapted from “Brain Vascular System”, 2021, by BioRender.com.
Figure 3. Figure 3. (A) Representative image of a cerebral myoendothelial projection. Myoendothelial projections span between endothelial cells and vascular smooth muscle cells through the internal elastic lamina and are important point of localization for vascular constriction and dilatory factors. Nearby MEPs are GqPCRs that, when activated by agonists such as carbachol (CCh), trigger the breakdown of phosphatidylinositol 4,5‐bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol 1,4,5‐trisphosphate (IP3). IP3 goes on to activate IP3 receptors on the endoplasmic reticulum to induce the release of internal Ca2+ stores. DAG activates protein kinase C (PKC), which interacts with A‐kinase anchoring protein 150 (AKAP150) to assist in anchoring transient receptor potential vanilloid 4 (TRPV4) channels to the MEP. This anchoring mechanism is inhibited by hypertension. Activation of TRPV4 channels initiates an influx of Ca2+ into the endothelial cell, which then activates the nearby intermediate‐conductance Ca2+‐activated K+ channels (IKCa) to hyperpolarize the endothelial cell. This hyperpolarization crosses through gap junctions to the VSMCs, resulting in vasodilation. Vasodilation in VSMCs can be initiated by K+ influx through inwardly rectifying K+ channels (KIR) and Na+/K+ ATPase, causing the closing of voltage‐dependent Ca2+ channels. Reproduced, with permission, from Bagher P and Garland CJ, 2014 39. (B) The images were taken from mesenteric arteries, which show endothelial projections in close apposition to VSMC. Transmission electron microscopy images were obtained from third‐order mesenteric resistance arteries (a,c). Tracings of cellular structures highlight the endothelial cell (EC; dark pink), internal elastic lamina (IEL; green), smooth muscle cell (SMC; dark blue), and endoplasmic reticulum (ER; white). (b,d) Mitochondria (orange) are present at the base of the endothelial projection; caveolae (yellow) and ER‐like structures (white; vesicles gray) are visible. Reproduced from Maarouf N, et al., 2017 473.
Figure 4. Figure 4. Endothelial tight junctions and the BBB. Tight junctions between cerebrovascular endothelial cells prevent the passage of cells and molecules from the blood to the brain parenchyma. Tight junctions are formed from intracellularly linked occludin, claudin, and JAM proteins that are linked to the endothelial cell actin cytoskeleton via ZO proteins. Reproduced, with permission, from Mastorakos P and McGavern D, 2019 490.
Figure 5. Figure 5. The Glycocalyx. (A) Scanning electron micrographs showing the ultrastructure of capillaries in the brain. Upper panels: without lanthanum nitrate staining. Lower panels: with lanthanum nitrate staining to visualize the glycocalyx. Panels on the right are expanded views of those on the left. Reproduced from Ando Y, et al., 2018 29. (B) Schematic of the functions of the endothelial glycocalyx. The endothelial glycocalyx senses changes in blood flow and transduces the signal to the cytoskeleton of the endothelial cell, resulting in the production of NO and vasodilation. The glycocalyx also acts as a barrier in front of endothelial cell surface adhesion molecules to prevent recruitment of leukocytes from the blood. The glycocalyx acts as a molecular sieve by entangling blood proteins and macromolecules before they reach the endothelial cell surface. Servier Medical Art. Retrieved from https://servier.com/Powerpoint‐image‐bank. Licensed under CC BY‐3.0.
Figure 6. Figure 6. Caveolae in the cerebral vasculature. Pseudocolored electron microscopy image of a cerebral capillary (A) showing the capillary endothelial cell (cEC; purple), pericyte (teal), astrocyte end foot (blue), red blood cell (RBC; red), lumen (L; white), and neuropil (yellow). The lower part of this panel shows an inverted zoomed image of the section in the box above. Panel (B) shows a pseudocolored electron microscopy image of a cerebral arteriole. Arteriolar endothelial cell (aEC; purple), smooth muscle cell (SMC; green), astrocyte end foot (blue), and neuropil (yellow). Bottom shows a zoomed image of boxed area above. In both images, the pink arrowheads point to vesicles. Panel (C) shows electron microscopy images of arteriolar endothelial and VSMC from mice with normal caveolin expression (Cav1+/+) and caveolin knockout mice (Cav1−/−) with arrowheads identifying the caveolae. Panel (D) shows the vesicular density between capillary and arteriolar endothelial cells from wild‐type mice (n = 5 mice, 46 capillaries, and 24 arterioles). Panels (E) and (F) show the mean vesicular density in arteriolar endothelial cells (E) and VSMCs (F) between Cav1+/+ (n = 5 mice, 20 arterioles) and Cav1−/− mice (n = 5 mice, 28 arterioles). Statistical significance was determined by nested, unpaired, two‐tailed t‐test for (D‐F). Data are shown as mean ± standard error of the mean. Reproduced, with permission, from Chow BW, et al., 2020 125.
Figure 7. Figure 7. Endothelial cell‐mediated control of thrombosis. The coagulation pathway begins with the activation of either the extrinsic or intrinsic pathway that initiates a series of proteolytic steps that ultimately lead to the production of thrombin. Endothelial cells express inhibitors of thrombosis that prevent the production of thrombin. Once activated, endothelial cells play a role in the generation of thrombin through the expression of factors that promote thrombin generation. Reproduced, with permission, from Yau JW, et al., 2015 858. Licensed under CC BY 4.0.
Figure 8. Figure 8. Myogenic tone generation in mouse cerebral parenchymal arterioles. Panel (A) shows representative images for mouse parenchymal arterioles. The left image was taken immediately after increasing the intraluminal pressure to 40 mmHg prior to tone generation; the lumen diameter of the arteriole is 27 μm. The right image was taken once myogenic tone was stable; the lumen diameter was 16 μm. A representative image of the lumen diameter tracing is shown as an example, and the lumen diameters of the parenchymal arterioles are included in the images. Panel (B) shows the effects of hypertension on myogenic tone generation in parenchymal arterioles from mice. Sixteen‐week‐old C57Bl/6 male mice were treated with angiotensin II (800 ng/kg/min) for 4 weeks to induce hypertension; these were compared to control sham mice that were normotensive. The parenchymal arterioles from the hypertensive mice generated significantly more myogenic tone than their normotensive counterparts (* indicates P < 0.05 by Students t‐test). Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.
Figure 9. Figure 9. Dilation in response to muscarinic receptor activation in parenchymal arterioles is mediated by TRPV4 activation. Twenty‐week‐old male C56Bl/6 mice were used. Parenchymal arteriole endothelium‐dependent dilation was assessed by pressure myography. The carbachol‐mediated dilation was not altered by N‐nitro‐l‐arginine methyl ester (L‐NAME) (100 μM) + indomethacin (Indo) (10 μM) (A), but it was impaired by GSK2193874 (B). Arteries were inhibited with various inhibitors for 20 min prior to beginning the carbachol concentration response curve. *P < 0.05 by two‐way ANOVA. Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.
Figure 10. Figure 10. Hypertension impairs endothelium‐dependent parenchymal arteriole dilation. Sixteen‐week‐old male C56Bl/6 mice were treated with AngII (800 ng/kg/min) for 4 weeks; control mice were sham operated. Parenchymal arterioles were mounted in a pressure myograph system, and myogenic tone was allowed to generate. Once tone was stable, arterioles were exposed to increasing concentrations of carbachol or GSK1016790A, a specific transient receptor potential vanilloid 4 channel agonist, and vasodilator responses were compared. Both carbachol‐ and GSK1016790A‐mediated dilation was impaired in the mice made hypertensive with AngII. Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.


Figure 1. Cerebral endothelial functions and signaling molecules produced by the endothelial cells. Servier Medical Art. Retrieved from https://servier.com/Powerpoint‐image‐bank. Licensed under CC BY‐3.0.


Figure 2. Cerebrovascular anatomy. The neurovascular unit (center) with a representation of a parenchymal arteriole (left) and a capillary (right). The neurovascular unit is composed of VSMC, endothelial cells, astrocytes, pericytes, and neurons. Parenchymal arterioles have a layer of endothelial cells surrounded by a single layer of smooth muscle cells, which provides the contractile machinery for the arteriole. The endothelium regulates the contractile state of the smooth muscle cells through dilatory mechanisms involving NO, TRPV4, PGE2, NMDAR, TRPA1, and TRPV3. Capillaries contain pericytes in lieu of smooth muscle cells to regulate their contractile state. Important dilatory mechanisms in capillary endothelial cells include KIR2.1, TRPV4, and TRPA1. Activation of these mechanisms in capillaries results in an upward flowing hyperpolarization that reaches the arterioles, ultimately increasing local blood flow. Parenchymal arterioles and capillaries each interact with astrocytic end feet, which acts as a liaison between neurons and the vascular system. Adapted from “Brain Vascular System”, 2021, by BioRender.com.


Figure 3. (A) Representative image of a cerebral myoendothelial projection. Myoendothelial projections span between endothelial cells and vascular smooth muscle cells through the internal elastic lamina and are important point of localization for vascular constriction and dilatory factors. Nearby MEPs are GqPCRs that, when activated by agonists such as carbachol (CCh), trigger the breakdown of phosphatidylinositol 4,5‐bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol 1,4,5‐trisphosphate (IP3). IP3 goes on to activate IP3 receptors on the endoplasmic reticulum to induce the release of internal Ca2+ stores. DAG activates protein kinase C (PKC), which interacts with A‐kinase anchoring protein 150 (AKAP150) to assist in anchoring transient receptor potential vanilloid 4 (TRPV4) channels to the MEP. This anchoring mechanism is inhibited by hypertension. Activation of TRPV4 channels initiates an influx of Ca2+ into the endothelial cell, which then activates the nearby intermediate‐conductance Ca2+‐activated K+ channels (IKCa) to hyperpolarize the endothelial cell. This hyperpolarization crosses through gap junctions to the VSMCs, resulting in vasodilation. Vasodilation in VSMCs can be initiated by K+ influx through inwardly rectifying K+ channels (KIR) and Na+/K+ ATPase, causing the closing of voltage‐dependent Ca2+ channels. Reproduced, with permission, from Bagher P and Garland CJ, 2014 39. (B) The images were taken from mesenteric arteries, which show endothelial projections in close apposition to VSMC. Transmission electron microscopy images were obtained from third‐order mesenteric resistance arteries (a,c). Tracings of cellular structures highlight the endothelial cell (EC; dark pink), internal elastic lamina (IEL; green), smooth muscle cell (SMC; dark blue), and endoplasmic reticulum (ER; white). (b,d) Mitochondria (orange) are present at the base of the endothelial projection; caveolae (yellow) and ER‐like structures (white; vesicles gray) are visible. Reproduced from Maarouf N, et al., 2017 473.


Figure 4. Endothelial tight junctions and the BBB. Tight junctions between cerebrovascular endothelial cells prevent the passage of cells and molecules from the blood to the brain parenchyma. Tight junctions are formed from intracellularly linked occludin, claudin, and JAM proteins that are linked to the endothelial cell actin cytoskeleton via ZO proteins. Reproduced, with permission, from Mastorakos P and McGavern D, 2019 490.


Figure 5. The Glycocalyx. (A) Scanning electron micrographs showing the ultrastructure of capillaries in the brain. Upper panels: without lanthanum nitrate staining. Lower panels: with lanthanum nitrate staining to visualize the glycocalyx. Panels on the right are expanded views of those on the left. Reproduced from Ando Y, et al., 2018 29. (B) Schematic of the functions of the endothelial glycocalyx. The endothelial glycocalyx senses changes in blood flow and transduces the signal to the cytoskeleton of the endothelial cell, resulting in the production of NO and vasodilation. The glycocalyx also acts as a barrier in front of endothelial cell surface adhesion molecules to prevent recruitment of leukocytes from the blood. The glycocalyx acts as a molecular sieve by entangling blood proteins and macromolecules before they reach the endothelial cell surface. Servier Medical Art. Retrieved from https://servier.com/Powerpoint‐image‐bank. Licensed under CC BY‐3.0.


Figure 6. Caveolae in the cerebral vasculature. Pseudocolored electron microscopy image of a cerebral capillary (A) showing the capillary endothelial cell (cEC; purple), pericyte (teal), astrocyte end foot (blue), red blood cell (RBC; red), lumen (L; white), and neuropil (yellow). The lower part of this panel shows an inverted zoomed image of the section in the box above. Panel (B) shows a pseudocolored electron microscopy image of a cerebral arteriole. Arteriolar endothelial cell (aEC; purple), smooth muscle cell (SMC; green), astrocyte end foot (blue), and neuropil (yellow). Bottom shows a zoomed image of boxed area above. In both images, the pink arrowheads point to vesicles. Panel (C) shows electron microscopy images of arteriolar endothelial and VSMC from mice with normal caveolin expression (Cav1+/+) and caveolin knockout mice (Cav1−/−) with arrowheads identifying the caveolae. Panel (D) shows the vesicular density between capillary and arteriolar endothelial cells from wild‐type mice (n = 5 mice, 46 capillaries, and 24 arterioles). Panels (E) and (F) show the mean vesicular density in arteriolar endothelial cells (E) and VSMCs (F) between Cav1+/+ (n = 5 mice, 20 arterioles) and Cav1−/− mice (n = 5 mice, 28 arterioles). Statistical significance was determined by nested, unpaired, two‐tailed t‐test for (D‐F). Data are shown as mean ± standard error of the mean. Reproduced, with permission, from Chow BW, et al., 2020 125.


Figure 7. Endothelial cell‐mediated control of thrombosis. The coagulation pathway begins with the activation of either the extrinsic or intrinsic pathway that initiates a series of proteolytic steps that ultimately lead to the production of thrombin. Endothelial cells express inhibitors of thrombosis that prevent the production of thrombin. Once activated, endothelial cells play a role in the generation of thrombin through the expression of factors that promote thrombin generation. Reproduced, with permission, from Yau JW, et al., 2015 858. Licensed under CC BY 4.0.


Figure 8. Myogenic tone generation in mouse cerebral parenchymal arterioles. Panel (A) shows representative images for mouse parenchymal arterioles. The left image was taken immediately after increasing the intraluminal pressure to 40 mmHg prior to tone generation; the lumen diameter of the arteriole is 27 μm. The right image was taken once myogenic tone was stable; the lumen diameter was 16 μm. A representative image of the lumen diameter tracing is shown as an example, and the lumen diameters of the parenchymal arterioles are included in the images. Panel (B) shows the effects of hypertension on myogenic tone generation in parenchymal arterioles from mice. Sixteen‐week‐old C57Bl/6 male mice were treated with angiotensin II (800 ng/kg/min) for 4 weeks to induce hypertension; these were compared to control sham mice that were normotensive. The parenchymal arterioles from the hypertensive mice generated significantly more myogenic tone than their normotensive counterparts (* indicates P < 0.05 by Students t‐test). Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.


Figure 9. Dilation in response to muscarinic receptor activation in parenchymal arterioles is mediated by TRPV4 activation. Twenty‐week‐old male C56Bl/6 mice were used. Parenchymal arteriole endothelium‐dependent dilation was assessed by pressure myography. The carbachol‐mediated dilation was not altered by N‐nitro‐l‐arginine methyl ester (L‐NAME) (100 μM) + indomethacin (Indo) (10 μM) (A), but it was impaired by GSK2193874 (B). Arteries were inhibited with various inhibitors for 20 min prior to beginning the carbachol concentration response curve. *P < 0.05 by two‐way ANOVA. Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.


Figure 10. Hypertension impairs endothelium‐dependent parenchymal arteriole dilation. Sixteen‐week‐old male C56Bl/6 mice were treated with AngII (800 ng/kg/min) for 4 weeks; control mice were sham operated. Parenchymal arterioles were mounted in a pressure myograph system, and myogenic tone was allowed to generate. Once tone was stable, arterioles were exposed to increasing concentrations of carbachol or GSK1016790A, a specific transient receptor potential vanilloid 4 channel agonist, and vasodilator responses were compared. Both carbachol‐ and GSK1016790A‐mediated dilation was impaired in the mice made hypertensive with AngII. Modified, with permission, from Diaz‐Otero JM, et al., 2018 179.
References
 1.Aanerud J, Borghammer P, Rodell A, Jónsdottir KY, Gjedde A. Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 37: 2433‐2440, 2017.
 2.Abbott NJ, Rönnbäck L, Hansson E. Astrocyte‐endothelial interactions at the blood‐brain barrier. Nat Rev Neurosci 7: 41‐53, 2006.
 3.Abeysinghe HCS, Roulston CL. A complete guide to using the endothelin‐1 model of stroke in conscious rats for acute and long‐term recovery studies. Methods Mol Biol 1717: 115‐133, 2018.
 4.Absi M, Burnham MP, Weston AH, Harno E, Rogers M, Edwards G. Effects of methyl beta‐cyclodextrin on EDHF responses in pig and rat arteries; Association between SK(Ca) channels and caveolin‐rich domains. Br J Pharmacol 151: 332‐340, 2007.
 5.Adair TH, Montani J‐P. Angiogenesis. San Rafael, CA: Morgan & Claypool Life Sciences, 2010.
 6.Adams MN, Ramachandran R, Yau M‐K, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130: 248‐282, 2011.
 7.Adili R, Holinstat M. Formation and resolution of pial microvascular thrombosis in a mouse model of thrombotic thrombocytopenic purpura. Arterioscler Thromb Vasc Biol 39: 1817‐1830, 2019.
 8.Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36: 1040‐1046, 2005.
 9.Ahmed HA, Ishrat T, Pillai B, Bunting KM, Vazdarjanova A, Waller JL, Ergul A, Fagan SC. Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals‐A randomized double‐ blind pre‐clinical study. Behav Brain Res 359: 560‐569, 2019.
 10.Ahmed HA, Ishrat T, Pillai B, Fouda AY, Sayed MA, Eldahshan W, Waller JL, Ergul A, Fagan SC. RAS modulation prevents progressive cognitive impairment after experimental stroke: A randomized, blinded preclinical trial. J Neuroinflammation 15: 229, 2018.
 11.Ahn BJ, Lee H‐J, Shin MW, Choi J‐H, Jeong J‐W, Kim K‐W. Ninjurin1 is expressed in myeloid cells and mediates endothelium adhesion in the brains of EAE rats. Biochem Biophys Res Commun 387: 321‐325, 2009.
 12.Aijima R, Wang B, Takao T, Mihara H, Kashio M, Ohsaki Y, Zhang J‐Q, Mizuno A, Suzuki M, Yamashita Y, Masuko S, Goto M, Tominaga M, Kido MA. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J 29: 182‐192, 2015.
 13.Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J 357: 593‐615, 2001.
 14.Alessi M‐C, Poggi M, Juhan‐Vague I. Plasminogen activator inhibitor‐1, adipose tissue and insulin resistance. Curr Opin Lipidol 18: 240‐245, 2007.
 15.Alhusban A, Fouda AY, Pillai B, Ishrat T, Soliman S, Fagan SC. Compound 21 is pro‐angiogenic in the brain and results in sustained recovery after ischemic stroke. J Hypertens 33: 170‐180, 2015.
 16.Alkayed NJ, Birks EK, Hudetz AG, Roman RJ, Henderson L, Harder DR. Inhibition of brain P‐450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am J Physiol 271: H1541‐H1546, 1996.
 17.Alkayed NJ, Birks EK, Narayanan J, Petrie KA, Kohler‐Cabot AE, Harder DR. Role of P‐450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 28: 1066‐1072, 1997.
 18.Alkayed NJ, Goyagi T, Joh H‐D, Klaus J, Harder DR, Traystman RJ, Hurn PD. Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack. Stroke 33: 1677‐1684, 2002.
 19.Alkayed NJ, Narayanan J, Gebremedhin D, Medhora M, Roman RJ, Harder DR. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 27: 971‐979, 1996.
 20.Allen LA, Schmidt JR, Thompson CT, Carlson BE, Beard DA, Lombard JH. High salt diet impairs cerebral blood flow regulation via salt‐induced angiotensin II suppression. Microcirculation 26: e12518, 2019.
 21.Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24: 413‐420, 2004.
 22.Alvarez JI, Dodelet‐Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood‐brain barrier integrity and CNS immune quiescence. Science 334: 1727‐1731, 2011.
 23.Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 61: 1939‐1958, 2013.
 24.Alzheimer's Association. Alzheimer's disease facts and figures. Alzheimers Dement 15: 321, 2019‐387, 2019.
 25.Amanso AM, Griendling KK. Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed) 4: 1044‐1064, 2012.
 26.Amberg GC, Navedo MF. Calcium dynamics in vascular smooth muscle. Microcirculation 20: 281‐289, 2013.
 27.Amruthesh SC, Boerschel MF, McKinney JS, Willoughby KA, Ellis EF. Metabolism of arachidonic acid to epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and prostaglandins in cultured rat hippocampal astrocytes. J Neurochem 61: 150‐159, 1993.
 28.Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35: 1726‐1731, 2004.
 29.Ando Y, Okada H, Takemura G, Suzuki K, Takada C, Tomita H, Zaikokuji R, Hotta Y, Miyazaki N, Yano H, Muraki I, Kuroda A, Fukuda H, Kawasaki Y, Okamoto H, Kawaguchi T, Watanabe T, Doi T, Yoshida T, Ushikoshi H, Yoshida S, Ogura S. Brain‐specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep 8: 17523, 2018.
 30.Andreone BJ, Chow BW, Tata A, Lacoste B, Ben‐Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C. Blood‐brain barrier permeability is regulated by lipid transport‐dependent suppression of caveolae‐mediated transcytosis. Neuron 94: 581‐594.e5, 2017.
 31.Andresen J, Shafi NI, Bryan RM. Endothelial influences on cerebrovascular tone. J Appl Physiol 100: 318‐327, 2006.
 32.Anfray A, Drieu A, Hingot V, Hommet Y, Yetim M, Rubio M, Deffieux T, Tanter M, Orset C, Vivien D. Circulating tPA contributes to neurovascular coupling by a mechanism involving the endothelial NMDA receptors. J Cereb Blood Flow Metab 40: 2038‐2054, 2020.
 33.Armstrong JM, Lattimer N, Moncada S, Vane JR. Comparison of the vasodepressor effects of prostacyclin and 6‐oxo‐prostaglandin F1alpha with those of prostaglandin E2 in rats and rabbits. Br J Pharmacol 62: 125‐130, 1978.
 34.Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood‐brain barrier. Nature 468: 557‐561, 2010.
 35.Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 468: 232‐243, 2010.
 36.Austin SA, Katusic ZS. Loss of endothelial nitric oxide synthase promotes p25 generation and tau phosphorylation in a murine model of alzheimer's disease. Circ Res 119: 1128‐1134, 2016.
 37.Aydin F, Rosenblum WI, Povlishock JT. Myoendothelial junctions in human brain arterioles. Stroke 22: 1592‐1597, 1991.
 38.Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood‐brain barrier formation and stroke. Dev Neurobiol 71: 1018‐1039, 2011.
 39.Bagher P, Garland CJ. Scaffolding builds to reduce blood pressure. Sci Signal 7: pe16, 2014.
 40.Bains JS, Potyok A, Ferguson AV. Angiotensin II actions in paraventricular nucleus: Functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res 599: 223‐229, 1992.
 41.Banks WA. Brain meets body: The blood‐brain barrier as an endocrine interface. Endocrinology 153: 4111‐4119, 2012.
 42.Banks WA. The blood‐brain barrier as an endocrine tissue. Nat Rev Endocrinol 15: 444‐455, 2019.
 43.Bartha K, Dömötör E, Lanza F, Adam‐Vizi V, Machovich R. Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab 20: 175‐182, 2000.
 44.Barton M, Yanagisawa M. Endothelin: 30 years from discovery to therapy. Hypertension 74: 1232‐1265, 2019.
 45.Baumann E, Preston E, Slinn J, Stanimirovic D. Post‐ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood‐brain barrier disruption after global cerebral ischemia. Brain Res 1269: 185‐197, 2009.
 46.Baumbach GL, Faraci FM, Heistad DD. Effects of local reduction in pressure on endothelium‐dependent responses of cerebral arterioles. Stroke 25: 1456‐1461, 1994; discussion 1461.
 47.Baumbach GL, Sigmund CD, Faraci FM. Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res 95: 822‐829, 2004.
 48.Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol (Lond) 28: 220‐231, 1902.
 49.Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 117: 481‐496, 2009.
 50.Begley DJ, Brightman MW. Structural and functional aspects of the blood‐brain barrier. Prog Drug Res 61: 39‐78, 2003.
 51.Benyó Z, Görlach C, Wahl M. Involvement of thromboxane A2 in the mediation of the contractile effect induced by inhibition of nitric oxide synthesis in isolated rat middle cerebral arteries. J Cereb Blood Flow Metab 18: 616‐618, 1998.
 52.Benz F, Liebner S. Structure and function of the blood‐brain barrier (BBB). Handb Exp Pharmacol, 2020. DOI: 10.1007/164_2020_404.
 53.Ben‐Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood‐brain barrier. Nature 509: 507‐511, 2014.
 54.Berra‐Romani R, Faris P, Negri S, Botta L, Genova T, Moccia F. Arachidonic acid evokes an increase in intracellular Ca2+ concentration and nitric oxide production in endothelial cells from human brain microcirculation. Cells 8: 689, 2019.
 55.Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM, Gerhold TD, Ghoneim SM, de Lange WJ, Keen HL, Tsai Y‐S, Maeda N, Sigmund CD, Faraci FM. Interference with PPARgamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension 51: 867‐871, 2008.
 56.Beyer AM, Fredrich K, Lombard JH. AT1 receptors prevent salt‐induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney‐1 clip hypertensive rats. Am J Hypertens 26: 1398‐1404, 2013.
 57.Bhatia P, Kaur G, Singh N. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascul Pharmacol 137: 106827, 2021.
 58.Bhatia P, Singh N. Ameliorative effect of ozagrel, a thromboxane A2 synthase inhibitor, in hyperhomocysteinemia‐induced experimental vascular cognitive impairment and dementia. Fundam Clin Pharmacol, 2020. DOI: 10.1111/fcp.12610.
 59.Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood‐brain barrier. Hypertension 63: 572‐579, 2014.
 60.Bixel MG, Petri B, Khandoga AG, Khandoga A, Wolburg‐Buchholz K, Wolburg H, März S, Krombach F, Vestweber D. A CD99‐related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo. Blood 109: 5327‐5336, 2007.
 61.Bkaily G, Simon Y, Jazzar A, Najibeddine H, Normand A, Jacques D. High na+ salt diet and remodeling of vascular smooth muscle and endothelial cells. Biomedicines 9: 883, 2021.
 62.Blinder P, Shih AY, Rafie C, Kleinfeld D. Topological basis for the robust distribution of blood to rodent neocortex. Proc Natl Acad Sci U S A 107: 12670‐12675, 2010.
 63.Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 16: 889‐897, 2013.
 64.Bodkin JV, Thakore P, Aubdool AA, Liang L, Fernandes ES, Nandi M, Spina D, Clark JE, Aaronson PI, Shattock MJ, Brain SD. Investigating the potential role of TRPA1 in locomotion and cardiovascular control during hypertension. Pharmacol Res Perspect 2: e00052, 2014.
 65.Boegehold MA. Heterogeneity of endothelial function within the circulation. Curr Opin Nephrol Hypertens 7: 71‐78, 1998.
 66.Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 69: 107‐127, 2005.
 67.Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 39: 1413‐1432, 2019.
 68.Bosnyak S, Jones ES, Christopoulos A, Aguilar M‐I, Thomas WG, Widdop RE. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci 121: 297‐303, 2011.
 69.Bouby N, Hus‐Citharel A, Marchetti J, Bankir L, Corvol P, Llorens‐Cortes C. Expression of type 1 angiotensin II receptor subtypes and angiotensin II‐induced calcium mobilization along the rat nephron. J Am Soc Nephrol 8: 1658‐1667, 1997.
 70.Bouchard JF, Chouinard J, Lamontagne D. Participation of prostaglandin E2 in the endothelial protective effect of ischaemic preconditioning in isolated rat heart. Cardiovasc Res 45: 418‐427, 2000.
 71.Boulanger C, Lüscher TF. Release of endothelin from the porcine aorta. Inhibition by endothelium‐derived nitric oxide. J Clin Invest 85: 587‐590, 1990.
 72.Bouleti C, Mathivet T, Coqueran B, Serfaty J‐M, Lesage M, Berland E, Ardidie‐Robouant C, Kauffenstein G, Henrion D, Lapergue B, Mazighi M, Duyckaerts C, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Monnot C, Margaill I, Germain S. Protective effects of angiopoietin‐like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J 34: 3657‐3668, 2013.
 73.Bradfield PF, Nourshargh S, Aurrand‐Lions M, Imhof BA. JAM family and related proteins in leukocyte migration (Vestweber series). Arterioscler Thromb Vasc Biol 27: 2104‐2112, 2007.
 74.Braga VA, Medeiros IA, Ribeiro TP, França‐Silva MS, Botelho‐Ono MS, Guimarães DD. Angiotensin‐II‐induced reactive oxygen species along the SFO‐PVN‐RVLM pathway: Implications in neurogenic hypertension. Braz J Med Biol Res 44: 871‐876, 2011.
 75.Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 1657: 167‐175, 2017.
 76.Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648‐677, 1969.
 77.Briones AM, Alonso MJ, Hernanz R, Miguel M, Salaices M. Alterations of the nitric oxide pathway in cerebral arteries from spontaneously hypertensive rats. J Cardiovasc Pharmacol 39: 378‐388, 2002.
 78.Briones AM, Alonso MJ, Marín J, Salaices M. Role of iNOS in the vasodilator responses induced by l‐arginine in the middle cerebral artery from normotensive and hypertensive rats. Br J Pharmacol 126: 111‐120, 1999.
 79.Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, Bard RH, Bühler FR. Essential hypertension: Renin and aldosterone, heart attack and stroke. N Engl J Med 286: 441‐449, 1972.
 80.Buchheim J‐I, Enzinger MC, Choukèr A, Bruegel M, Holdt L, Rehm M. The stressed vascular barrier and coagulation ‐ The impact of key glycocalyx components on in vitro clot formation. Thromb Res 186: 93‐102, 2020.
 81.Bunting S, Gryglewski R, Moncada S, Vane JR. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins 12: 897‐913, 1976.
 82.Burton AC. Physiology and Biophysics of the Circulation:An Introductory Text (2nd ed). Chicago, IL: Year Book Medical Publishers, 1972.
 83.Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N‐methyl‐d‐aspartate in cerebral cortex. Brain Res Rev 56: 89‐100, 2007.
 84.Butler MJ, Down CJ, Foster RR, Satchell SC. The pathological relevance of increased endothelial glycocalyx permeability. Am J Pathol 190: 742‐751, 2020.
 85.Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17: 64‐72, 1997.
 86.Cai Z, Zhao G, Yan J, Liu W, Feng W, Ma B, Yang L, Wang J, Tu L, Wang DW. CYP2J2 overexpression increases EETs and protects against angiotensin II‐induced abdominal aortic aneurysm in mice. J Lipid Res 54: 1448‐1456, 2013.
 87.Calcinaghi N, Jolivet R, Wyss MT, Ametamey SM, Gasparini F, Buck A, Weber B. Metabotropic glutamate receptor mGluR5 is not involved in the early hemodynamic response. J Cereb Blood Flow Metab 31: e1‐10, 2011.
 88.Calcinaghi N, Wyss MT, Jolivet R, Singh A, Keller AL, Winnik S, Fritschy J‐M, Buck A, Matter CM, Weber B. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke 44: 1957‐1964, 2013.
 89.Campbell WB, Deeter C, Gauthier KM, Ingraham RH, Falck JR, Li P‐L. 14,15‐Dihydroxyeicosatrienoic acid relaxes bovine coronary arteries by activation of K(Ca) channels. Am J Physiol Heart Circ Physiol 282: H1656‐H1664, 2002.
 90.Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium‐dependent responses. Pflugers Arch 459: 881‐895, 2010.
 91.Candelario‐Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 335: 113494, 2021.
 92.Cao L, Cao Y‐X, Xu C‐B, Edvinsson L. Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries. PLoS One 8: e73761, 2013.
 93.Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, Fang J, Wilcox DA, Zhang DX. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A‐mediated phosphorylation. J Biol Chem, 2018. DOI: 10.1074/jbc.M117.811075.
 94.Cao Y, Xu H, Zhu Y, Shi M‐J, Wei L, Zhang J, Cheng S, Shi Y, Tong H, Kang L, Lu L, Luo H, Yang X, Bai X, Wang R, Ma Y, Wang Y, Wang Z, Zhong K, Zhao B‐Q, Fan W. ADAMTS13 maintains cerebrovascular integrity to ameliorate Alzheimer‐like pathology. PLoS Biol 17: e3000313, 2019.
 95.Capone C, Anrather J, Milner TA, Iadecola C. Estrous cycle‐dependent neurovascular dysfunction induced by angiotensin II in the mouse neocortex. Hypertension 54: 302‐307, 2009.
 96.Capone C, Faraco G, Coleman C, Young CN, Pickel VM, Anrather J, Davisson RL, Iadecola C. Endothelin 1‐dependent neurovascular dysfunction in chronic intermittent hypoxia. Hypertension 60: 106‐113, 2012.
 97.Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol 300: H397‐H407, 2011.
 98.Capone C, Faraco G, Peterson JR, Coleman C, Anrather J, Milner TA, Pickel VM, Davisson RL, Iadecola C. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension. J Neurosci 32: 4878‐4886, 2012.
 99.Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368: 419‐424, 1994.
 100.Carroll MA, Garcia MP, Falck JR, McGiff JC. 5,6‐Epoxyeicosatrienoic acid, a novel arachidonate metabolite. Mechanism of vasoactivity in the rat. Circ Res 67: 1082‐1088, 1990.
 101.Castoldi E, Hackeng TM. Regulation of coagulation by protein S. Curr Opin Hematol 15: 529‐536, 2008.
 102.Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int J Mol Sci 20: 5372, 2019.
 103.Catella‐Lawson F, McAdam B, Morrison BW, Kapoor S, Kujubu D, Antes L, Lasseter KC, Quan H, Gertz BJ, FitzGerald GA. Effects of specific inhibition of cyclooxygenase‐2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther 289: 735‐741, 1999.
 104.Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex‐specific eNOS activity and function in human endothelial cells. Sci Rep 7: 9612, 2017.
 105.Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D. Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910: 81‐93, 2001.
 106.Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor‐1 (PAI‐1): A key factor linking fibrinolysis and age‐related subclinical and clinical conditions. Cardiovasc Ther 28: e72‐91, 2010.
 107.Chan RC, Durity FA, Thompson GB, Nugent RA, Kendall M. The role of the prostacyclin‐thromboxane system in cerebral vasospasm following induced subarachnoid hemorrhage in the rabbit. J Neurosurg 61: 1120‐1128, 1984.
 108.Chan S‐L, Sweet JG, Bishop N, Cipolla MJ. Pial collateral reactivity during hypertension and aging: Understanding the function of collaterals for stroke therapy. Stroke 47: 1618‐1625, 2016.
 109.Channon KM. Tetrahydrobiopterin and nitric oxide synthase recouplers. Handb Exp Pharmacol 264: 339‐352, 2021.
 110.Charpie JR, Schreur KD, Papadopoulos SM, Webb RC. Endothelium dependency of contractile activity differs in infant and adult vertebral arteries. J Clin Invest 93: 1339‐1343, 1994.
 111.Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EMC. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3: e000787, 2014.
 112.Chen H. Role of thromboxane A2 signaling in endothelium‐dependent contractions of arteries. Prostaglandins Other Lipid Mediat 134: 32‐37, 2018.
 113.Chen J, Cui X, Zacharek A, Roberts C, Chopp M. eNOS mediates TO90317 treatment‐induced angiogenesis and functional outcome after stroke in mice. Stroke 40: 2532‐2538, 2009.
 114.Chen J, Ling M, Fu X, López JA, Chung DW. Simultaneous exposure of sites in von Willebrand factor for glycoprotein Ib binding and ADAMTS13 cleavage: Studies with ristocetin. Arterioscler Thromb Vasc Biol 32: 2625‐2630, 2012.
 115.Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, Lehallier B, Quake SR, Wyss‐Coray T. Brain endothelial cells are exquisite sensors of age‐related circulatory cues. Cell Rep 30: 4418‐4432.e4, 2020.
 116.Chen W, Wang M, Zhu M, Xiong W, Qin X, Zhu X. 14,15‐Epoxyeicosatrienoic acid alleviates pathology in a mouse model of Alzheimer's disease. J Neurosci 40: 8188‐8203, 2020.
 117.Chen W, Zheng G, Yang S, Ping W, Fu X, Zhang N, Wang DW, Wang J. CYP2J2 and EETs protect against oxidative stress and Apoptosis in vivo and in vitro following lung ischemia/reperfusion. Cell Physiol Biochem 33: 1663‐1680, 2014.
 118.Chen Y‐L, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. Curr Top Membr 85: 89‐117, 2020.
 119.Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar SB, Deane R, Fernández JA, LaRue B, Griffin JH, Chopp M, Zlokovic BV. Activated protein C inhibits tissue plasminogen activator‐induced brain hemorrhage. Nat Med 12: 1278‐1285, 2006.
 120.Cheng X, Jin J, Hu L, Shen D, Dong X‐P, Samie MA, Knoff J, Eisinger B, Liu M‐L, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141: 331‐343, 2010.
 121.Cheng Y‐W, Li W‐J, Dou X‐J, Jia R, Yang H, Liu X‐G, Xu C‐B, Liu J, Cao Y‐X, Luo G‐G. Role of endothelin‐1 and its receptors in cerebral vasospasm following subarachnoid hemorrhage. Mol Med Rep 18: 5229‐5236, 2018.
 122.Chidgey J, Fraser PA, Aaronson PI. Reactive oxygen species facilitate the EDH response in arterioles by potentiating intracellular endothelial Ca(2+) release. Free Radic Biol Med 97: 274‐284, 2016.
 123.Chillon JM, Ghoneim S, Baumbach GL. Effects of chronic nitric oxide synthase inhibition on cerebral arterioles in rats. Hypertension 30: 1097‐1104, 1997.
 124.Chou C‐H, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment. Brain Res Bull 158: 9‐19, 2020.
 125.Chow BW, Nuñez V, Kaplan L, Granger AJ, Bistrong K, Zucker HL, Kumar P, Sabatini BL, Gu C. Caveolae in CNS arterioles mediate neurovascular coupling. Nature 579: 106‐110, 2020.
 126.Chrissobolis S, Faraci FM. Sex differences in protection against angiotensin II‐induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension 55: 905‐910, 2010.
 127.Chung DW, Fujikawa K. Processing of von Willebrand factor by ADAMTS‐13. Biochemistry 41: 11065‐11070, 2002.
 128.Cipolla MJ. The Cerebral Circulation. San Rafael, CA: Morgan & Claypool Life Sciences, 2009.
 129.Cipolla MJ, Bishop N, Vinke RS, Godfrey JA. PPAR{gamma} activation prevents hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke 41: 1266‐1270, 2010.
 130.Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation 15: 495‐501, 2008.
 131.Cipolla MJ, Liebeskind DS, Chan S‐L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 38: 2129‐2149, 2018.
 132.Cipolla MJ, Porter JM, Osol G. High glucose concentrations dilate cerebral arteries and diminish myogenic tone through an endothelial mechanism. Stroke 28: 405‐410.; ; discussion 410, 1997.
 133.Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: Effect of ischemia and reperfusion. Stroke 40: 1451‐1457, 2009.
 134.Cipolla MJ, Sweet J, Chan S‐L, Tavares MJ, Gokina N, Brayden JE. Increased pressure‐induced tone in rat parenchymal arterioles vs. middle cerebral arteries: Role of ion channels and calcium sensitivity. J Appl Physiol 117: 53‐59, 2014.
 135.Clapham DE. TRP channels as cellular sensors. Nature 426: 517‐524, 2003.
 136.Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system‐induced drinking and blood pressure: Importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 308: R238‐R249, 2015.
 137.Collen D, Lijnen HR. The tissue‐type plasminogen activator story. Arterioscler Thromb Vasc Biol 29: 1151‐1155, 2009.
 138.Constantinescu AA, Vink H, Spaan JAE. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23: 1541‐1547, 2003.
 139.Cosentino F, Sill JC, Katusić ZS. Role of superoxide anions in the mediation of endothelium‐dependent contractions. Hypertension 23: 229‐235, 1994.
 140.Cosgun ZC, Fels B, Kusche‐Vihrog K. Nanomechanics of the endothelial glycocalyx: From structure to function. Am J Pathol 190: 732‐741, 2020.
 141.Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, Vukovic R, Drenjancevic I. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet. J Physiol (Lond) 594: 4917‐4931, 2016.
 142.Costa ED, Rezende BA, Cortes SF, Lemos VS. Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol 7: 206, 2016.
 143.Coughlin SR. Thrombin signalling and protease‐activated receptors. Nature 407: 258‐264, 2000.
 144.Coughlin SR. Protease‐activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3: 1800‐1814, 2005.
 145.Covington BP, Al Khalili Y. Neuroanatomy, nucleus lateral geniculate. In: StatPearls. Treasure Island, FL: StatPearls Publishing, 2022, p. 1‐3.
 146.Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13: 899‐913, 1993.
 147.Crane GJ, Garland CJ. Thromboxane receptor stimulation associated with loss of SKCa activity and reduced EDHF responses in the rat isolated mesenteric artery. Br J Pharmacol 142: 43‐50, 2004.
 148.Cronin M, Anderson PN, Cook JE, Green CR, Becker DL. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39: 152‐160, 2008.
 149.Cucullo L, Couraud P‐O, Weksler B, Romero I‐A, Hossain M, Rapp E, Janigro D. Immortalized human brain endothelial cells and flow‐based vascular modeling: A marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 28: 312‐328, 2008.
 150.Cui X, Chopp M, Zacharek A, Zhang C, Roberts C, Chen J. Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice. Neuroscience 159: 744‐750, 2009.
 151.Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res 20: 96‐99, 1980.
 152.Czigler A, Toth L, Szarka N, Szilágyi K, Kellermayer Z, Harci A, Vecsernyes M, Ungvari Z, Szolics A, Koller A, Buki A, Toth P. Prostaglandin E2, a postulated mediator of neurovascular coupling, at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. Prostaglandins Other Lipid Mediat 146: 106389, 2020.
 153.d'Uscio LV, Das P, Santhanam AVR, He T, Younkin SG, Katusic ZS. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid‐β precursor protein. Cardiovasc Res 96: 504‐512, 2012.
 154.Dabertrand F, Hannah RM, Pearson JM, Hill‐Eubanks DC, Brayden JE, Nelson MT. Prostaglandin E2, a postulated astrocyte‐derived neurovascular coupling agent, constricts rather than dilates parenchymal arterioles. J Cereb Blood Flow Metab 33: 479‐482, 2013.
 155.Dahm A, Van Hylckama VA, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 101: 4387‐4392, 2003.
 156.Daneshtalab N, Smeda JS. Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke. Cardiovasc Res 86: 160‐168, 2010.
 157.Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 78: 217‐228, 2016.
 158.Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 68: 357‐418, 2016.
 159.David S, Kümpers P, van Slyke P, Parikh SM. Mending leaky blood vessels: The angiopoietin‐Tie2 pathway in sepsis. J Pharmacol Exp Ther 345: 2‐6, 2013.
 160.Davis CM, Liu X, Alkayed NJ. Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther 179: 31‐46, 2017.
 161.Davis CM, Siler DA, Alkayed NJ. Endothelium‐derived hyperpolarizing factor in the brain: Influence of sex, vessel size and disease state. Womens Health (Lond Engl) 7: 293‐303, 2011.
 162.Davis CM, Zhang WH, Allen EM, Bah TM, Shangraw RE, Alkayed NJ. Soluble epoxide hydrolase blockade after stroke onset protects normal but not diabetic mice. Int J Mol Sci 22: 5419, 2021.
 163.Davson H. Review lecture. The blood‐brain barrier. J Physiol (Lond) 255: 1‐28, 1976.
 164.De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood‐brain barrier permeability. J Cereb Blood Flow Metab 31: 1942‐1957, 2011.
 165.de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52: 415‐472, 2000.
 166.de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin‐angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 309: R444‐R458, 2015.
 167.De Silva TM, Faraci FM. Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 36: 241‐258, 2016.
 168.De Silva TM, Faraci FM. Contributions of aging to cerebral small vessel disease. Annu Rev Physiol 82: 275‐295, 2020.
 169.De Silva TM, Modrick ML, Dabertrand F, Faraci FM. Changes in cerebral arteries and parenchymal arterioles with aging: Role of rho kinase 2 and impact of genetic background. Hypertension 71: 921‐927, 2018.
 170.De Silva TM, Silva RAP, Faraci FM. Endothelium, the blood–brain barrier, and hypertension. In: Girouard H, editor. Hypertension and the Brain as an End‐Organ Target. Cham: Springer International Publishing, 2016, p. 155‐180.
 171.DeBault LE, Cancilla PA. Some properties of isolated endothelial cells in culture. Adv Exp Med Biol 131: 69‐78, 1980.
 172.Deidda G, Biazzo M. Gut and brain: Investigating physiological and pathological interactions between microbiota and brain to gain new therapeutic avenues for brain diseases. Front Neurosci 15: 753915, 2021.
 173.dela Paz NG, D'Amore PA. Arterial versus venous endothelial cells. Cell Tissue Res 335: 5‐16, 2009.
 174.Demchenko IT, Luchakov YI, Moskvin AN, Gutsaeva DR, Allen BW, Thalmann ED, Piantadosi CA. Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure. J Cereb Blood Flow Metab 25: 1288‐1300, 2005.
 175.Dementiev A, Petitou M, Herbert J‐M, Gettins PGW. The ternary complex of antithrombin‐anhydrothrombin‐heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol 11: 863‐867, 2004.
 176.Diaz‐Otero JM, Fisher C, Downs K, Moss ME, Jaffe IZ, Jackson WF, Dorrance AM. Endothelial mineralocorticoid receptor mediates parenchymal arteriole and posterior cerebral artery remodeling during angiotensin II‐induced hypertension. Hypertension 70: 1113‐1121, 2017.
 177.Diaz‐Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 310: H365‐H375, 2016.
 178.Diaz‐Otero JM, Yen T‐C, Ahmad A, Laimon‐Thomson E, Abolibdeh B, Kelly K, Lewis MT, Wiseman RW, Jackson WF, Dorrance AM. Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation 26: e12535, 2019.
 179.Diaz‐Otero JM, Yen T‐C, Fisher C, Bota D, Jackson WF, Dorrance AM. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4‐dependent mechanism and prevents cognitive dysfunction in hypertension. Am J Physiol Heart Circ Physiol 315: H1304‐H1315, 2018.
 180.Didion SP, Faraci FM. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol Heart Circ Physiol 282: H688‐H695, 2002.
 181.Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 100: 86‐93, 2016.
 182.Diglio CA, Grammas P, Giacomelli F, Wiener J. Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Invest 46: 554‐563, 1982.
 183.Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HHHW, Harrison DG, Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II‐stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45: 1340‐1351, 2008.
 184.Ding R, Yin Y‐L, Jiang L‐H. Reactive oxygen species‐induced TRPM2‐mediated Ca2+ signalling in endothelial cells. Antioxidants (Basel) 10: 718, 2021.
 185.Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone‐induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 1637: 146‐153, 2016.
 186.Do KH, Kim MS, Kim JH, Rhim BY, Lee WS, Kim CD, Bae SS. Angiotensin II‐induced aortic ring constriction is mediated by phosphatidylinositol 3‐kinase/L‐type calcium channel signaling pathway. Exp Mol Med 41: 569‐576, 2009.
 187.Dogulu F, Barun S, Emmez H, Elmas C, Onal B, Belen HB, Erdogan D, Ilgit E, Sarioglu Y, Kurt G, Ercan S, Baykaner MK. Effect of a chloride channel inhibitor, 5‐nitro‐2‐ (3‐phenylpropylamino)‐benzoate, on endothelin‐1 induced vasoconstriction in rabbit basilar artery. Turk Neurosurg 19: 380‐386, 2009.
 188.Dong H, Waldron GJ, Cole WC, Triggle CR. Roles of calcium‐activated and voltage‐gated delayed rectifier potassium channels in endothelium‐dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 123: 821‐832, 1998.
 189.Dopico AM, Bukiya AN, Jaggar JH. Calcium‐ and voltage‐gated BK channels in vascular smooth muscle. Pflugers Arch 470: 1271‐1289, 2018.
 190.Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol 12: 462‐472, 2014.
 191.Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD. An epoxide hydrolase inhibitor, 12‐(3‐adamantan‐1‐yl‐ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke‐prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 46: 842‐848, 2005.
 192.Dorrance AM, Rupp NC, Nogueira EF. Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia. Hypertension 47: 590‐595, 2006.
 193.Dougherty JH, Levy DE, Rawlinson DG, Ruff R, Weksler BB, Plum F. Experimental cerebral ischemia produced by extracranial vascular injury: Protection with indomethacin and prostacyclin. Neurology 32: 970‐974, 1982.
 194.Drouin A, Farhat N, Bolduc V, Thorin‐Trescases N, Gillis M‐A, Villeneuve L, Nguyen A, Thorin E. Up‐regulation of thromboxane A2 impairs cerebrovascular eNOS function in aging atherosclerotic mice. Pflugers Arch 462: 371‐383, 2011.
 195.Drouin A, Thorin‐Trescases N, Hamel E, Falck JR, Thorin E. Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries. Cardiovasc Res 73: 73‐81, 2007.
 196.Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46: 235‐276, 2006.
 197.Dudzinski DM, Michel T. Life history of eNOS: Partners and pathways. Cardiovasc Res 75: 247‐260, 2007.
 198.Dunn KM, Nelson MT. Potassium channels and neurovascular coupling. Circ J 74: 608‐616, 2010.
 199.Dunn WR, Wallis SJ, Gardiner SM. Remodelling and enhanced myogenic tone in cerebral resistance arteries isolated from genetically hypertensive Brattleboro rats. J Vasc Res 35: 18‐26, 1998.
 200.Ea Kim L, Javellaud J, Oudart N. Endothelium‐dependent relaxation of rabbit middle cerebral artery to a histamine H3‐agonist is reduced by inhibitors of nitric oxide and prostacyclin synthesis. Br J Pharmacol 105: 103‐106, 1992.
 201.Earley S. Endothelium‐dependent cerebral artery dilation mediated by transient receptor potential and Ca2+‐activated K+ channels. J Cardiovasc Pharmacol 57: 148‐153, 2011.
 202.Earley S. TRPA1 channels in the vasculature. Br J Pharmacol 167: 13‐22, 2012.
 203.Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 95: 645‐690, 2015.
 204.Earley S, Gonzales AL, Crnich R. Endothelium‐dependent cerebral artery dilation mediated by TRPA1 and Ca2+‐Activated K+ channels. Circ Res 104: 987‐994, 2009.
 205.Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97: 1270‐1279, 2005.
 206.Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4‐dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297: H1096‐H1102, 2009.
 207.Ebnet K. Junctional adhesion molecules (jams): Cell adhesion receptors with pleiotropic functions in cell physiology and development. Physiol Rev 97: 1529‐1554, 2017.
 208.Eddy AA, Fogo AB. Plasminogen activator inhibitor‐1 in chronic kidney disease: Evidence and mechanisms of action. J Am Soc Nephrol 17: 2999‐3012, 2006.
 209.Eldahshan W, Ishrat T, Pillai B, Sayed MA, Alwhaibi A, Fouda AY, Ergul A, Fagan SC. Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: A pilot study. Am J Physiol Heart Circ Physiol 316: H1192‐H1201, 2019.
 210.Eldahshan W, Sayed MA, Awad ME, Ahmed HA, Gillis E, Althomali W, Pillai B, Alshammari A, Jackson L, Dong G, Sullivan JC, Cooley MA, Elsalanty M, Ergul A, Fagan SC. Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vascul Pharmacol 141: 106904, 2021.
 211.Elhusseiny A, Hamel E. Muscarinic‐‐but not nicotinic‐‐acetylcholine receptors mediate a nitric oxide‐dependent dilation in brain cortical arterioles: A possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20: 298‐305, 2000.
 212.Ellinsworth DC, Earley S, Murphy TV, Sandow SL. Endothelial control of vasodilation: Integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 466: 389‐405, 2014.
 213.Ellis EF, Police RJ, Yancey L, McKinney JS, Amruthesh SC. Dilation of cerebral arterioles by cytochrome P‐450 metabolites of arachidonic acid. Am J Physiol 259: H1171‐H1177, 1990.
 214.El‐Yazbi AF, Abd‐Elrahman KS. ROK and arteriolar myogenic tone generation: Molecular evidence in health and disease. Front Pharmacol 8: 87, 2017.
 215.Engelhardt B. β1‐Integrin/matrix interactions support blood‐brain barrier integrity. J Cereb Blood Flow Metab 31: 1969‐1971, 2011.
 216.Enko K, Nakamura K, Yunoki K, Miyoshi T, Akagi S, Yoshida M, Toh N, Sangawa M, Nishii N, Nagase S, Kohno K, Morita H, Kusano KF, Ito H. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci 61: 507‐513, 2011.
 217.Erbe DV, Gartrell K, Zhang Y‐L, Suri V, Kirincich SJ, Will S, Perreault M, Wang S, Tobin JF. Molecular activation of PPARgamma by angiotensin II type 1‐receptor antagonists. Vascul Pharmacol 45: 154‐162, 2006.
 218.Ergul A. Endothelin‐1 and diabetic complications: Focus on the vasculature. Pharmacol Res 63: 477‐482, 2011.
 219.Esmon CT. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J 9: 946‐955, 1995.
 220.Esmon CT. The protein C pathway. Chest 124: 26S‐32S, 2003.
 221.Esmon CT, Esmon NL. The link between vascular features and thrombosis. Annu Rev Physiol 73: 503‐514, 2011.
 222.Fan H‐C, Zhang X, McNaughton PA. Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284: 27884‐27891, 2009.
 223.Faraci FM. Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol 257: H799‐H803, 1989.
 224.Faraci FM. Reactive oxygen species: Influence on cerebral vascular tone. J Appl Physiol 100: 739‐743, 2006.
 225.Faraci FM, Breese KR. Nitric oxide mediates vasodilatation in response to activation of N‐methyl‐d‐aspartate receptors in brain. Circ Res 72: 476‐480, 1993.
 226.Faraci FM, Heistad DD. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev 78: 53‐97, 1998.
 227.Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: New insights from genetic models. J Cereb Blood Flow Metab 26: 449‐455, 2006.
 228.Faraci FM, Lynch C, Lamping KG. Responses of cerebral arterioles to ADP: eNOS‐dependent and eNOS‐independent mechanisms. Am J Physiol Heart Circ Physiol 287: H2871‐H2876, 2004.
 229.Faraco G, Brea D, Garcia‐Bonilla L, Wang G, Racchumi G, Chang H, Buendia I, Santisteban MM, Segarra SG, Koizumi K, Sugiyama Y, Murphy M, Voss H, Anrather J, Iadecola C. Dietary salt promotes neurovascular and cognitive dysfunction through a gut‐initiated TH17 response. Nat Neurosci 21: 240‐249, 2018.
 230.Faraco G, Hochrainer K, Segarra SG, Schaeffer S, Santisteban MM, Menon A, Jiang H, Holtzman DM, Anrather J, Iadecola C. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574: 686‐690, 2019.
 231.Faraco G, Iadecola C. Hypertension: A harbinger of stroke and dementia. Hypertension 62: 810‐817, 2013.
 232.Faraco G, Moraga A, Moore J, Anrather J, Pickel VM, Iadecola C. Circulating endothelin‐1 alters critical mechanisms regulating cerebral microcirculation. Hypertension 62: 759‐766, 2013.
 233.Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: Characterization and functional roles in health and disease. J Mol Med 95: 1143‐1152, 2017.
 234.Faraco G, Sugiyama Y, Lane D, Garcia‐Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 126: 4674‐4689, 2016.
 235.Fay WP, Murphy JG, Owen WG. High concentrations of active plasminogen activator inhibitor‐1 in porcine coronary artery thrombi. Arterioscler Thromb Vasc Biol 16: 1277‐1284, 1996.
 236.Félétou M. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium‐Derived Vasoactive Mediators. San Rafael, CA: Morgan & Claypool Life Sciences, 2011.
 237.Félétou M. Endothelium‐dependent hyperpolarization and endothelial dysfunction. J Cardiovasc Pharmacol 67: 373‐387, 2016.
 238.Félétou M, Huang Y, Vanhoutte PM. Endothelium‐mediated control of vascular tone: COX‐1 and COX‐2 products. Br J Pharmacol 164: 894‐912, 2011.
 239.Félétou M, Verbeuren TJ, Vanhoutte PM. Endothelium‐dependent contractions in SHR: A tale of prostanoid TP and IP receptors. Br J Pharmacol 156: 563‐574, 2009.
 240.Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single cell analysis of endothelial cells identified organ‐specific molecular signatures and heart‐specific cell populations and molecular features. Front Cardiovasc Med 6: 165, 2019.
 241.Fernández N, Monge L, García JL, García‐Villalón AL, Gómez B, Diéguez G. In vivo and in vitro action of endothelin‐1 on goat cerebrovascular bed. Eur J Pharmacol 348: 199‐211, 1998.
 242.Fernández‐Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107: 22290‐22295, 2010.
 243.Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric‐oxide synthase‐caveolin regulatory cycle. J Biol Chem 273: 3125‐3128, 1998.
 244.Filosa JA, Blanco VM. Neurovascular coupling in the mammalian brain. Exp Physiol 92: 641‐646, 2007.
 245.Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9: 1397‐1403, 2006.
 246.Fisslthaler B, Popp R, Michaelis UR, Kiss L, Fleming I, Busse R. Cyclic stretch enhances the expression and activity of coronary endothelium‐derived hyperpolarizing factor synthase. Hypertension 38: 1427‐1432, 2001.
 247.Fleming I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat 82: 60‐67, 2007.
 248.Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res 43: 532‐541, 1999.
 249.Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sander A, Haendeler J, Falck JR, Morisseau C, Hammock BD, Busse R. Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 27: 2612‐2618, 2007.
 250.Forejtová S. Problems of cardiovascular toxicity of coxibs and non‐selective NSA. Vnitr Lek 52: 677‐685, 2006.
 251.Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol Rev 98: 1627‐1738, 2018.
 252.Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122: 877‐902, 2018.
 253.Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 113: 1708‐1714, 2006.
 254.Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 33: 829‐837, 837a, 2012.
 255.Fouda AY, Pillai B, Dhandapani KM, Ergul A, Fagan SC. Role of interleukin‐10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. Eur J Pharmacol 799: 128‐134, 2017.
 256.Francisco DMF, Marchetti L, Rodríguez‐Lorenzo S, Frías‐Anaya E, Figueiredo RM, Network BRAIN, Winter P, Romero IA, de Vries HE, Engelhardt B, Bruggmann R. Advancing brain barriers RNA sequencing: Guidelines from experimental design to publication. Fluids Barriers CNS 17: 51, 2020.
 257.Fredricks KT, Liu Y, Rusch NJ, Lombard JH. Role of endothelium and arterial K+ channels in mediating hypoxic dilation of middle cerebral arteries. Am J Physiol 267: H580‐H586, 1994.
 258.Freitas‐Andrade M, Raman‐Nair J, Lacoste B. Structural and functional remodeling of the brain vasculature following stroke. Front Physiol 11: 948, 2020.
 259.Fukai T, Ushio‐Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15: 1583‐1606, 2011.
 260.Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35: 998‐1004, 2004.
 261.Fukudome K, Kurosawa S, Stearns‐Kurosawa DJ, He X, Rezaie AR, Esmon CT. The endothelial cell protein C receptor. Cell surface expression and direct ligand binding by the soluble receptor. J Biol Chem 271: 17491‐17498, 1996.
 262.Fulton DJR. Transcriptional and posttranslational regulation of eNOS in the endothelium. Adv Pharmacol 77: 29‐64, 2016.
 263.Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient receptor potential ankyrin type‐1 channels as a potential target for the treatment of cardiovascular diseases. Front Physiol 11: 836, 2020.
 264.Garcia DCG, Longden TA. Ion channels in capillary endothelium. Curr Top Membr 85: 261‐300, 2020.
 265.Garcia V, Sessa WC. Endothelial NOS: Perspective and recent developments. Br J Pharmacol 176: 189‐196, 2019.
 266.Garland CJ, Dora KA. EDH: Endothelium‐dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf) 219: 152‐161, 2017.
 267.Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine‐immune regulation. Pharmacol Res 173: 105909, 2021.
 268.Geary GG, Buchholz JN, Pearce WJ. Maturation depresses mouse cerebrovascular tone through endothelium‐dependent mechanisms. Am J Physiol Regul Integr Comp Physiol 284: R734‐R741, 2003.
 269.Geary GG, Krause DN, Duckles SP. Estrogen reduces myogenic tone through a nitric oxide‐dependent mechanism in rat cerebral arteries. Am J Physiol Heart Circ Physiol 275: H292‐H300, 1998.
 270.Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOS‐ and cyclooxygenase‐dependent mechanisms. Am J Physiol Heart Circ Physiol 279: H511‐H519, 2000.
 271.Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, Narayanan J, Falck JR, Okamoto H, Roman RJ, Nithipatikom K, Campbell WB, Harder DR. Production of 20‐HETE and its role in autoregulation of cerebral blood flow. Circ Res 87: 60‐65, 2000.
 272.Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 263: H519‐H525, 1992.
 273.Gecse A, Ottlecz A, Mezei Z, Telegdy G, Joó F, Dux E, Karnushina I. Prostacyclin and prostaglandin synthesis in isolated brain capillaries. Prostaglandins 23: 287‐297, 1982.
 274.Gerhardt H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4: 241‐246, 2008.
 275.Gerzanich V, Ivanova S, Zhou H, Simard JM. Mislocalization of eNOS and upregulation of cerebral vascular Ca2+ channel activity in angiotensin‐hypertension. Hypertension 41: 1124‐1130, 2003.
 276.Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves‐Cintrón M, Navedo MF. Calcium channels in vascular smooth muscle. Adv Pharmacol 78: 49‐87, 2017.
 277.Giles AR, Nesheim ME, Herring SW, Hoogendoorn H, Stump DC, Heldebrant CM. The fibrinolytic potential of the normal primate following the generation of thrombin in vivo. Thromb Haemost 63: 476‐481, 1990.
 278.Girouard H, Lessard A, Capone C, Milner TA, Iadecola C. The neurovascular dysfunction induced by angiotensin II in the mouse neocortex is sexually dimorphic. Am J Physiol Heart Circ Physiol 294: H156‐H163, 2008.
 279.Giwa MO, Williams J, Elderfield K, Jiwa NS, Bridges LR, Kalaria RN, Markus HS, Esiri MM, Hainsworth AH. Neuropathologic evidence of endothelial changes in cerebral small vessel disease. Neurology 78: 167‐174, 2012.
 280.Gluais P, Lonchampt M, Morrow JD, Vanhoutte PM, Feletou M. Acetylcholine‐induced endothelium‐dependent contractions in the SHR aorta: The Janus face of prostacyclin. Br J Pharmacol 146: 834‐845, 2005.
 281.Goedicke‐Fritz S, Kaistha A, Kacik M, Markert S, Hofmeister A, Busch C, Bänfer S, Jacob R, Grgic I, Hoyer J. Evidence for functional and dynamic microcompartmentation of Cav‐1/TRPV4/K(Ca) in caveolae of endothelial cells. Eur J Cell Biol 94: 391‐400, 2015.
 282.Goehlert UG, Ng Ying Kin NM, Wolfe LS. Biosynthesis of prostacyclin in rat cerebral microvessels and the choroid plexus. J Neurochem 36: 1192‐1201, 1981.
 283.Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN. Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 289: H578‐H585, 2005.
 284.Gonzales RJ, Krause DN, Duckles SP. Testosterone suppresses endothelium‐dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 286: H552‐H560, 2004.
 285.González JM, Somoza B, Conde MV, Fernández‐Alfonso MS, González MC, Arribas SM. Hypertension increases middle cerebral artery resting tone in spontaneously hypertensive rats: Role of tonic vasoactive factor availability. Clin Sci 114: 651‐659, 2008.
 286.Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 65: 475‐502, 1996.
 287.Gordon GRJ, Choi HB, Rungta RL, Ellis‐Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456: 745‐749, 2008.
 288.Görlach C, Wahl M. Bradykinin dilates rat middle cerebral artery and its large branches via endothelial B2 receptors and release of nitric oxide. Peptides 17: 1373‐1378, 1996.
 289.Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, Pak H, Pettigrew K, Sokoloff L. Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol Heart Circ Physiol 280: H821‐H829, 2001.
 290.Granstam SO, Granstam E, Fellström B, Lind L. Effects of endothelin receptor type A antagonism and nitric oxide synthase inhibition on cerebral blood flow in hypertensive rats. Acta Physiol Scand 164: 213‐218, 1998.
 291.Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med 262: 157‐172, 2007.
 292.Gres P, Schulz R, Jansen J, Umschlag C, Heusch G. Involvement of endogenous prostaglandins in ischemic preconditioning in pigs. Cardiovasc Res 55: 626‐632, 2002.
 293.Griffin JH, Zlokovic BV, Mosnier LO. Protein C anticoagulant and cytoprotective pathways. Int J Hematol 95: 333‐345, 2012.
 294.Guild S‐J, McBryde FD, Malpas SC, Barrett CJ. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: A direct telemetric study. Hypertension 59: 614‐620, 2012.
 295.Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev 93: 525‐569, 2013.
 296.Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ. Soluble epoxide hydrolase: Sex differences and role in endothelial cell survival. Arterioscler Thromb Vasc Biol 32: 1936‐1942, 2012.
 297.Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 7: 335‐346, 2006.
 298.Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 2449‐2460, 2007.
 299.Haas TL, Duling BR. Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res 53: 113‐120, 1997.
 300.Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 291: H2047‐H2056, 2006.
 301.Halabi CM, Beyer AM, de Lange WJ, Keen HL, Baumbach GL, Faraci FM, Sigmund CD. Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 7: 215‐226, 2008.
 302.Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508: 55‐60, 2014.
 303.Hallenbeck JM, Furlow TW. Prostaglandin I2 and indomethacin prevent impairment of post‐ischemic brain reperfusion in the dog. Stroke 10: 629‐637, 1979.
 304.Han H, Rosenhouse‐Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I. Silencing of Kir2 channels by caveolin‐1: Cross‐talk with cholesterol. J Physiol (Lond) 592: 4025‐4038, 2014.
 305.Hardebo JE, Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood‐brain interface. Ann Neurol 8: 1‐31, 1980.
 306.Harder DR, Alkayed NJ, Lange AR, Gebremedhin D, Roman RJ. Functional hyperemia in the brain: Hypothesis for astrocyte‐derived vasodilator metabolites. Stroke 29: 229‐234, 1998.
 307.Harder DR, Campbell WB, Roman RJ. Role of cytochrome P‐450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res 32: 79‐92, 1995.
 308.Harraz OF, Longden TA, Dabertrand F, Hill‐Eubanks D, Nelson MT. Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP2 depletion. Proc Natl Acad Sci U S A 115: E3569‐E3577, 2018.
 309.Harraz OF, Longden TA, Hill‐Eubanks D, Nelson MT. PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. Elife 7: e38689, 2018.
 310.Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am 93: 621‐635, 2009.
 311.Hashmat S, Rudemiller N, Lund H, Abais‐Battad JM, Van Why S, Mattson DL. Interleukin‐6 inhibition attenuates hypertension and associated renal damage in Dahl salt‐sensitive rats. Am J Physiol Renal Physiol 311: F555‐F561, 2016.
 312.Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid‐β from the mouse brain. Aging Cell 12: 224‐236, 2013.
 313.Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood‐brain barrier permeability and altered tight junctions in experimental diabetes in the rat: Contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50: 202‐211, 2007.
 314.Hayashi T, Katsumi Y, Mukai T, Inoue M, Nagahama Y, Oyanagi C, Yamauchi H, Shibasaki H, Fukuyama H. Neuronal nitric oxide has a role as a perfusion regulator and a synaptic modulator in cerebellum but not in neocortex during somatosensory stimulation—An animal PET study. Neurosci Res 44: 155‐165, 2002.
 315.He D, Pan Q, Chen Z, Sun C, Zhang P, Mao A, Zhu Y, Li H, Lu C, Xie M, Zhou Y, Shen D, Tang C, Yang Z, Jin J, Yao X, Nilius B, Ma X. Treatment of hypertension by increasing impaired endothelial TRPV4‐KCa2.3 interaction. EMBO Mol Med 9: 1491‐1503, 2017.
 316.He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein‐α in cerebral microvessels. J Cereb Blood Flow Metab 37: 106‐122, 2017.
 317.Hébert M, Anfray A, Chevilley A, Martinez de Lizarrondo S, Quenault A, Louessard M, Roussel BD, Obiang P, Save E, Orset C, Maubert E, Vivien D, Agin V. Distant space processing is controlled by tPA‐dependent NMDA receptor signaling in the entorhinal cortex. Cereb Cortex 27: 4783‐4796, 2017.
 318.Hecquet CM, Ahmmed GU, Vogel SM, Malik AB. Role of TRPM2 channel in mediating H2O2‐induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102: 347‐355, 2008.
 319.Heiss C, Rodriguez‐Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 22: 1230‐1242, 2015.
 320.Heistad DD, Kontos HA. The Cardiovascular System III. In: Berne R, Sperelakis N, editors. Handbook of Physiology. Bethesda, MD: American Physiological Society, 1979, p. 137‐182.
 321.Heistad DD, Mayhan WG, Coyle P, Baumbach GL. Impaired dilatation of cerebral arterioles in chronic hypertension. Blood Vessels 27: 258‐262, 1990.
 322.Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz‐Ballester C, Robel S. Astrocytes are necessary for blood‐brain barrier maintenance in the adult mouse brain. Glia 69: 436‐472, 2021.
 323.Heitsch H. The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opin Investig Drugs 12: 759‐770, 2003.
 324.Heitzer T, Wenzel U, Hink U, Krollner D, Skatchkov M, Stahl RA, MacHarzina R, Bräsen JH, Meinertz T, Münzel T. Increased NAD(P)H oxidase‐mediated superoxide production in renovascular hypertension: Evidence for an involvement of protein kinase C. Kidney Int 55: 252‐260, 1999.
 325.Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 277: H508‐H514, 1999.
 326.Hermann DM, Popa‐Wagner A, Kleinschnitz C, Doeppner TR. Animal models of ischemic stroke and their impact on drug discovery. Expert Opin Drug Discov 14: 315‐326, 2019.
 327.Heye AK, Thrippleton MJ, Chappell FM, Hernández M del CV, Armitage PA, Makin SD, Maniega SM, Sakka E, Flatman PW, Dennis MS, Wardlaw JM. Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease. J Cereb Blood Flow Metab 36: 264‐274, 2016.
 328.Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87: 95‐110, 2015.
 329.Hirose H, Ide K, Sasaki T, Takahashi R, Kobayashi M, Ikemoto F, Yano M, Nishikibe M. The role of endothelin and nitric oxide in modulation of normal and spastic cerebral vascular tone in the dog. Eur J Pharmacol 277: 77‐87, 1995.
 330.Hogan‐Cann AD, Lu P, Anderson CM. Endothelial NMDA receptors mediate activity‐dependent brain hemodynamic responses in mice. Proc Natl Acad Sci U S A 116: 10229‐10231, 2019.
 331.Hollenberg SM, Shelhamer JH, Cunnion RE. Tachyphylaxis to the vasopressor effects of endothelin in rat aortic rings. Am J Physiol 264: H352‐H356, 1993.
 332.Holm Nielsen S, Tengryd C, Edsfeldt A, Brix S, Genovese F, Bengtsson E, Karsdal M, Leeming DJ, Nilsson J, Goncalves I. Markers of basement membrane remodeling are associated with higher mortality in patients with known atherosclerosis. J Am Heart Assoc 7: e009193, 2018.
 333.Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20‐HETE. Prostaglandins Other Lipid Mediat 120: 9‐16, 2015.
 334.Horvath B, Hegedus D, Szapary L, Marton Z, Alexy T, Koltai K, Czopf L, Wittmann I, Juricskay I, Toth K, Kesmarky G. Measurement of von Willebrand factor as the marker of endothelial dysfunction in vascular diseases. Exp Clin Cardiol 9: 31‐34, 2004.
 335.Horváth B, Lenzsér G, Benyó B, Németh T, Benko R, Iring A, Hermán P, Komjáti K, Lacza Z, Sándor P, Benyó Z. Hypersensitivity to thromboxane receptor mediated cerebral vasomotion and CBF oscillations during acute NO‐deficiency in rats. PLoS One 5: e14477, 2010.
 336.Hoshi O, Ushiki T. Neutrophil extravasation in rat mesenteric venules induced by the chemotactic peptide N‐formyl‐methionyl‐luecylphenylalanine (fMLP), with special attention to a barrier function of the vascular basal lamina for neutrophil migration. Arch Histol Cytol 67: 107‐114, 2004.
 337.Hougaard A, Younis S, Iljazi A, Haanes KA, Lindberg U, Vestergaard MB, Amin FM, Sugimoto K, Kruse LS, Ayata C, Ashina M. Cerebrovascular effects of endothelin‐1 investigated using high‐resolution magnetic resonance imaging in healthy volunteers. J Cereb Blood Flow Metab 40: 1685‐1694, 2020.
 338.Hu C, Lu K‐T, Mukohda M, Davis DR, Faraci FM, Sigmund CD. Interference with PPARγ in endothelium accelerates angiotensin II‐induced endothelial dysfunction. Physiol Genomics 48: 124‐134, 2016.
 339.Hu S, Kim HS. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur J Pharmacol 230: 215‐221, 1993.
 340.Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim S‐G. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 187: 17‐31, 2019.
 341.Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood‐Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 131: 110647, 2020.
 342.Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro‐l‐arginine. J Cereb Blood Flow Metab 16: 981‐987, 1996.
 343.Huang ZF, Higuchi D, Lasky N, Broze GJ. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 90: 944‐951, 1997.
 344.Hurn PD, Traystman RJ. Overview of cerebrovascular hemodynamics. In: Welch KMA, Caplan LR, Reis DJ, Siesjo BK, Weir B, editors. Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, p. 42‐44.
 345.Hynes RO. The extracellular matrix: Not just pretty fibrils. Science 326: 1216‐1219, 2009.
 346.Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5: 347‐360, 2004.
 347.Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 96: 17‐42, 2017.
 348.Iadecola C, Gottesman RF. Cerebrovascular alterations in alzheimer disease. Circ Res 123: 406‐408, 2018.
 349.Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension. Circ Res 124: 1025‐1044, 2019.
 350.Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10: 1369‐1376, 2007.
 351.Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2: 157‐161, 1999.
 352.Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from l‐arginine. Proc Natl Acad Sci U S A 90: 8103‐8107, 1993.
 353.Iliff JJ, Close LN, Selden NR, Alkayed NJ. A novel role for P450 eicosanoids in the neurogenic control of cerebral blood flow in the rat. Exp Physiol 92: 653‐658, 2007.
 354.Imig JD. Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci 134: 2707‐2727, 2020.
 355.Imig JD, Simpkins AN, Renic M, Harder DR. Cytochrome P450 eicosanoids and cerebral vascular function. Expert Rev Mol Med 13: e7, 2011.
 356.Isakson BE, Ramos SI, Duling BR. Ca2+ and inositol 1,4,5‐trisphosphate‐mediated signaling across the myoendothelial junction. Circ Res 100: 246‐254, 2007.
 357.Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW. Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain. Blood 67: 362‐365, 1986.
 358.Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction‐associated MAGUKs, ZO‐1, ZO‐2, and ZO‐3, with the COOH termini of claudins. J Cell Biol 147: 1351‐1363, 1999.
 359.Izzard AS, Horton S, Heerkens EH, Shaw L, Heagerty AM. Middle cerebral artery structure and distensibility during developing and established phases of hypertension in the spontaneously hypertensive rat. J Hypertens 24: 875‐880, 2006.
 360.Jackson WF. KV channels and the regulation of vascular smooth muscle tone. Microcirculation 25: 10, 2018.
 361.Jambusaria A, Hong Z, Zhang L, Srivastava S, Jana A, Toth PT, Dai Y, Malik AB, Rehman J. Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. Elife 9: e5141, 2020.
 362.Jandl K, Marsh LM, Hoffmann J, Mutgan AC, Baum O, Bloch W, Thekkekara‐Puthenparampil H, Kolb D, Sinn K, Klepetko W, Heinemann A, Olschewski A, Olschewski H, Kwapiszewska G. Basement membrane remodeling controls endothelial function in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 63: 104‐117, 2020.
 363.Jang H, Kim HJ, Choe YS, Kim S‐J, Park S, Kim Y, Kim KW, Lyoo CH, Cho H, Ryu YH, Choi JY, DeCarli C, Na DL, Seo SW, Alzheimer's Disease Neuroimaging Initiative. The impact of amyloid‐β or Tau on cognitive change in the presence of severe cerebrovascular disease. J Alzheimers Dis 78: 573‐585, 2020.
 364.Jansen I, Fallgren B, Edvinsson L. Mechanisms of action of endothelin on isolated feline cerebral arteries: In vitro pharmacology and electrophysiology. J Cereb Blood Flow Metab 9: 743‐747, 1989.
 365.Janzer RC, Raff MC. Astrocytes induce blood‐brain barrier properties in endothelial cells. Nature 325: 253‐257, 1987.
 366.Jellinger KA. Alzheimer disease and cerebrovascular pathology: An update. J Neural Transm 109: 813‐836, 2002.
 367.Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton‐Tyrrell K, van der Veen FM, Meltzer CC. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 64: 1358‐1365, 2005.
 368.Jesmin S, Togashi H, Mowa CN, Ueno K, Yamaguchi T, Shibayama A, Miyauchi T, Sakuma I, Yoshioka M. Characterization of regional cerebral blood flow and expression of angiogenic growth factors in the frontal cortex of juvenile male SHRSP and SHR. Brain Res 1030: 172‐182, 2004.
 369.Jia J, Davis CM, Zhang W, Edin ML, Jouihan S, Jia T, Bradbury JA, Graves JP, DeGraff LM, Lee CR, Ronnekleiv O, Wang R, Xu Y, Zeldin DC, Alkayed NJ. Sex‐ and isoform‐specific mechanism of neuroprotection by transgenic expression of P450 epoxygenase in vascular endothelium. Exp Neurol 279: 75‐85, 2016.
 370.Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin‐5, occludin, and ZO‐1 of the blood‐brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44: 130‐139, 2011.
 371.Jin X, Sun Y, Xu J, Liu W. Caveolin‐1 mediates tissue plasminogen activator‐induced MMP‐9 up‐regulation in cultured brain microvascular endothelial cells. J Neurochem 132: 724‐730, 2015.
 372.Johansson B. Myogenic tone and reactivity: Definitions based on muscle physiology. J Hypertens Suppl 7: S5‐S8; discussion S9, 1989.
 373.Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278: 69‐118, 2009.
 374.Jones PA, Scott‐Burden T, Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci U S A 76: 353‐357, 1979.
 375.Jouihan SA, Zuloaga KL, Zhang W, Shangraw RE, Krasnow SM, Marks DL, Alkayed NJ. Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin‐induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 33: 1650‐1656, 2013.
 376.Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox‐containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109: 1795‐1801, 2004.
 377.Jüni P, Nartey L, Reichenbach S, Sterchi R, Dieppe PA, Egger M. Risk of cardiovascular events and rofecoxib: Cumulative meta‐analysis. Lancet 364: 2021‐2029, 2004.
 378.Kalsoum E, Leclerc X, Drizenko A, Pruvo JP. Circle of Willis. In: Daroff R, Aminoff MJ, editors. Encyclopedia of the Neurological Sciences. Amsterdam: Elsevier, 2014, p. 803‐805.
 379.Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA. Renal transporter activation during angiotensin‐II hypertension is blunted in interferon‐γ−/− and interleukin‐17A−/− mice. Hypertension 65: 569‐576, 2015.
 380.Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood‐brain barrier and neurovascular coupling. Nat Rev Neurosci 21: 416‐432, 2020.
 381.Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist‐induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 98: 773‐783, 2010.
 382.Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International union of basic and clinical pharmacology. XCIX. angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67: 754‐819, 2015.
 383.Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: Basic and clinical aspects. Arterioscler Thromb Vasc Biol 22: 539‐548, 2002.
 384.Katusic ZS. Vascular endothelial dysfunction: Does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281: H981‐H986, 2001.
 385.Katusic ZS, Austin SA. Neurovascular protective function of endothelial nitric oxide ‐ Recent advances. Circ J 80: 1499‐1503, 2016.
 386.Katusic ZS, Santhanam AV, He T. Vascular effects of prostacyclin: Does activation of PPARδ play a role? Trends Pharmacol Sci 33: 559‐564, 2012.
 387.Katusić ZS, Shepherd JT. Endothelium‐derived vasoactive factors: II. Endothelium‐dependent contraction. Hypertension 18: III86‐92, 1991.
 388.Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase‐derived radicals. Circ Res 95: 1019‐1026, 2004.
 389.Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 285: H1890‐H1899, 2003.
 390.Kerr PM, Tam R, Ondrusova K, Mittal R, Narang D, Tran CHT, Welsh DG, Plane F. Endothelial feedback and the myoendothelial projection. Microcirculation 19: 416‐422, 2012.
 391.Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS. H(2)O(2)‐mediated permeability: Role of MAPK and occludin. Am J Physiol Cell Physiol 279: C21‐C30, 2000.
 392.Kiliç T, Akakin A. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci 23: 4‐15, 2008.
 393.Kim HJ, Park S, Cho H, Jang YK, San Lee J, Jang H, Kim Y, Kim KW, Ryu YH, Choi JY, Moon SH, Weiner MW, Jagust WJ, Rabinovici GD, DeCarli C, Lyoo CH, Na DL, Seo SW. Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F‐AV1451 positron emission tomography imaging. JAMA Neurol 75: 999‐1007, 2018.
 394.Kim KJ, Iddings JA, Stern JE, Blanco VM, Croom D, Kirov SA, Filosa JA. Astrocyte contributions to flow/pressure‐evoked parenchymal arteriole vasoconstriction. J Neurosci 35: 8245‐8257, 2015.
 395.Kim KJ, Ramiro Diaz J, Iddings JA, Filosa JA. Vasculo‐neuronal coupling: Retrograde vascular communication to brain neurons. J Neurosci 36: 12624‐12639, 2016.
 396.Kim S‐H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209: 139‐151, 2011.
 397.Kim S‐W, Lee H‐K, Seol S‐I, Davaanyam D, Lee H, Lee J‐K. Ninjurin 1 dodecamer peptide containing the N‐terminal adhesion motif (N‐NAM) exerts proangiogenic effects in HUVECs and in the postischemic brain. Sci Rep 10: 16656, 2020.
 398.Kim YV, Di Cello F, Hillaire CS, Kim KS. Differential Ca2+ signaling by thrombin and protease‐activated receptor‐1‐activating peptide in human brain microvascular endothelial cells. Am J Physiol Cell Physiol 286: C31‐C42, 2004.
 399.Kingma JG, Laher I. Effect of endothelin on sex‐dependent regulation of tone in coronary resistance vessels. Biochem Biophys Res Commun 540: 56‐60, 2021.
 400.Kitazono T, Heistad DD, Faraci FM. Dilatation of the basilar artery in response to selective activation of endothelin B receptors in vivo. J Pharmacol Exp Ther 273: 1‐6, 1995.
 401.Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, Saido T, Taniguchi N. Brain endothelial cells produce amyloid {beta} from amyloid precursor protein 770 and preferentially secrete the O‐glycosylated form. J Biol Chem 285: 40097‐40103, 2010.
 402.Kluft C, Jie AF, Rijken DC, Verheijen JH. Daytime fluctuations in blood of tissue‐type plasminogen activator (t‐PA) and its fast‐acting inhibitor (PAI‐1). Thromb Haemost 59: 329‐332, 1988.
 403.Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 145: 385‐427, 2019.
 404.Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol (Lond) 508 (Pt 1): 199‐209, 1998.
 405.Kochanek PM, Dutka AJ, Kumaroo KK, Hallenbeck JM. Effects of prostacyclin, indomethacin, and heparin on cerebral blood flow and platelet adhesion after multifocal ischemia of canine brain. Stroke 19: 693‐699, 1988.
 406.Kochukov MY, Balasubramanian A, Abramowitz J, Birnbaumer L, Marrelli SP. Activation of endothelial transient receptor potential C3 channel is required for small conductance calcium‐activated potassium channel activation and sustained endothelial hyperpolarization and vasodilation of cerebral artery. J Am Heart Assoc 3: e000913, 2014.
 407.Koerner IP, Jacks R, DeBarber AE, Koop D, Mao P, Grant DF, Alkayed NJ. Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci 27: 4642‐4649, 2007.
 408.Komatsu H, Takehana Y, Hamano S, Ujiie A, Hiraku S. Beneficial effect of OKY‐046, a selective thromboxane A2 synthetase inhibitor, on experimental cerebral vasospasm. Jpn J Pharmacol 41: 381‐391, 1986.
 409.Kontos HA, Wei EP, Povlishock JT, Christman CW. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res 55: 295‐303, 1984.
 410.Körbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A, Wenzel J, Seismann H, Lampe M, Bannach J, Pasparakis M, Kleinschmidt JA, Schwaninger M, Trepel M. A brain microvasculature endothelial cell‐specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med 8: 609‐625, 2016.
 411.Koskinen L‐OD, Eklund A, Sundström N, Olivecrona M. Prostacyclin influences the pressure reactivity in patients with severe traumatic brain injury treated with an ICP‐targeted therapy. Neurocrit Care 22: 26‐33, 2015.
 412.Koskinen L‐OD, Sundström N, Hägglund L, Eklund A, Olivecrona M. Prostacyclin affects the relation between brain interstitial glycerol and cerebrovascular pressure reactivity in severe traumatic brain injury. Neurocrit Care, 2019. DOI: 10.1007/s12028‐019‐00741‐4.
 413.Kotlikoff MI. EDHF redux: EETs, TRPV4, and Ca2+ sparks. Circ Res 97: 1209‐1210, 2005.
 414.Kugler EC, Greenwood J, MacDonald RB. The “Neuro‐Glial‐Vascular” unit: The role of glia in neurovascular unit formation and dysfunction. Front Cell Dev Biol 9: 732820, 2021.
 415.Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, Kamel H, Navi BB. Associations between cerebrovascular risk factors and parkinson disease. Ann Neurol 86: 572‐581, 2019.
 416.Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood‐brain barrier. Proc Natl Acad Sci U S A 115: E9429‐E9438, 2018.
 417.Lacroix A, Toussay X, Anenberg E, Lecrux C, Ferreirós N, Karagiannis A, Plaisier F, Chausson P, Jarlier F, Burgess SA, Hillman EMC, Tegeder I, Murphy TH, Hamel E, Cauli B. COX‐2‐derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J Neurosci 35: 11791‐11810, 2015.
 418.Lacy F, Kailasam MT, O'Connor DT, Schmid‐Schönbein GW, Parmer RJ. Plasma hydrogen peroxide production in human essential hypertension: Role of heredity, gender, and ethnicity. Hypertension 36: 878‐884, 2000.
 419.Lacy F, O'Connor DT, Schmid‐Schönbein GW. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens 16: 291‐303, 1998.
 420.Lacza Z, Hermán P, Görlach C, Hortobágyi T, Sándor P, Wahl M, Benyó Z. NO synthase blockade induces chaotic cerebral vasomotion via activation of thromboxane receptors. Stroke 32: 2609‐2614, 2001.
 421.Lacza Z, Káldi K, Kövecs K, Görlach C, Nagy Z, Sándor P, Benyó Z, Wahl M. Involvement of prostanoid release in the mediation of UTP‐induced cerebrovascular contraction in the rat. Brain Res 896: 169‐174, 2001.
 422.Lapenna A, De Palma M, Lewis CE. Perivascular macrophages in health and disease. Nat Rev Immunol 18: 689‐702, 2018.
 423.Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, Falck JR, Gutterman DD. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: Implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol 290: H491‐H499, 2006.
 424.Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285: R277‐R297, 2003.
 425.Lassègue B, Griendling KK. NADPH oxidases: Functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30: 653‐661, 2010.
 426.Laszik Z, Mitro A, Taylor FB, Ferrell G, Esmon CT. Human protein C receptor is present primarily on endothelium of large blood vessels: Implications for the control of the protein C pathway. Circulation 96: 3633‐3640, 1997.
 427.Lazzari MA, Sanchez‐Luceros A, Woods AI, Alberto MF, Meschengieser SS. Von Willebrand factor (VWF) as a risk factor for bleeding and thrombosis. Hematology Am Soc Hematol Educ Program 17 Suppl 1: S150‐S152, 2012.
 428.Le Jan S, Amy C, Cazes A, Monnot C, Lamandé N, Favier J, Philippe J, Sibony M, Gasc J‐M, Corvol P, Germain S. Angiopoietin‐like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162: 1521‐1528, 2003.
 429.Ledingham JM, Laverty R. Basilar artery remodelling in the genetically hypertensive rat: Effects of nitric oxide synthase inhibition and treatment with valsartan and enalapril. Clin Exp Pharmacol Physiol 27: 642‐646, 2000.
 430.Lee DL, Sturgis LC, Labazi H, Osborne JB, Fleming C, Pollock JS, Manhiani M, Imig JD, Brands MW. Angiotensin II hypertension is attenuated in interleukin‐6 knockout mice. Am J Physiol Heart Circ Physiol 290: H935‐H940, 2006.
 431.Lee H‐K, Lee H, Luo L, Lee J‐K. Induction of nerve injury‐induced protein 1 (Ninjurin 1) in myeloid cells in rat brain after transient focal cerebral ischemia. Exp Neurobiol 25: 64‐74, 2016.
 432.Lee J, Dahl M, Grande P, Tybjaerg‐Hansen A, Nordestgaard BG. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease. Stroke 41: 27‐33, 2010.
 433.Lee KSS, Ng JC, Yang J, Hwang S‐H, Morisseau C, Wagner K, Hammock BD. Preparation and evaluation of soluble epoxide hydrolase inhibitors with improved physical properties and potencies for treating diabetic neuropathic pain. Bioorg Med Chem 28: 115735, 2020.
 434.Lee SWL, Rogosic R, Venturi C, Raimondi MT, Pavesi A, Adriani G. A human neurovascular unit on‐a‐chip. Methods Mol Biol 2373: 107‐119, 2022.
 435.Lefferts WK, DeBlois JP, Barreira TV, Heffernan KS. Neurovascular coupling during cognitive activity in adults with controlled hypertension. J Appl Physiol 125: 1906‐1916, 2018.
 436.Leffler CW, Busija DW, Armstead WM, Mirro R. H2O2 effects on cerebral prostanoids and pial arteriolar diameter in piglets. Am J Physiol 258: H1382‐H1387, 1990.
 437.LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM. Coactivation of NMDA receptors by glutamate and d‐serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32: 537‐547, 2012.
 438.Lepelletier FX, Mann DMA, Robinson AC, Pinteaux E, Boutin H. Early changes in extracellular matrix in Alzheimer's disease. Neuropathol Appl Neurobiol 43: 167‐182, 2017.
 439.Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal models of hypertension: A scientific statement from the american heart association. Hypertension 73: e87‐e120, 2019.
 440.Leung JW‐C, Wong WT, Koon HW, Mo FM, Tam S, Huang Y, Vanhoutte PM, Chung SSM, Chung SK. Transgenic mice over‐expressing ET‐1 in the endothelial cells develop systemic hypertension with altered vascular reactivity. PLoS One 6: e26994, 2011.
 441.Levi‐Rosenzvig R, Beyer AM, Hockenberry J, Ben‐Shushan RS, Chuyun D, Atiya S, Tamir S, Gutterman DD, Szuchman‐Sapir A. 5,6‐δ‐DHTL, a stable metabolite of arachidonic acid, is a potential EDHF that mediates microvascular dilation. Free Radic Biol Med 103: 87‐94, 2017.
 442.Li K, Guo D, Zhu H, Hering‐Smith KS, Hamm LL, Ouyang J, Dong Y. Interleukin‐6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am J Physiol Regul Integr Comp Physiol 299: R590‐R595, 2010.
 443.Li S, Wang Y, Jiang Z, Huai Y, Liao JK, Lynch KA, Zafonte R, Wood LJ, Wang QM. Impaired cognitive performance in endothelial nitric oxide synthase knockout mice after ischemic stroke: A pilot study. Am J Phys Med Rehabil 97: 492‐499, 2018.
 444.Li W, Johnson DJD, Esmon CT, Huntington JA. Structure of the antithrombin‐thrombin‐heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11: 857‐862, 2004.
 445.Lijnen HR, Moons L, Beelen V, Carmelie P, Collen D. Biological effects of combined inactivation of plasminogen activator and plasminogen activator inhibitor‐1 gene function in mice. Thromb Haemost 74: 1126‐1131, 1995.
 446.Lin J, Chang W, Dong J, Zhang F, Mohabeer N, Kushwaha KK, Wang L, Su Y, Fang H, Li D. Thymic stromal lymphopoietin over‐expressed in human atherosclerosis: Potential role in Th17 differentiation. Cell Physiol Biochem 31: 305‐318, 2013.
 447.Lindahl AK, Sandset PM, Abildgaard U. The present status of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 3: 439‐449, 1992.
 448.Lip GYH, Blann AD. Does hypertension confer a prothrombotic state? Circulation 101: 218‐220, 2000.
 449.Liu B, Luo W, Zhang Y, Li H, Zhu N, Huang D, Zhou Y. Involvement of cyclo‐oxygenase‐1‐mediated prostacyclin synthesis in the vasoconstrictor activity evoked by ACh in mouse arteries. Exp Physiol 97: 277‐289, 2012.
 450.Liu B, Zhan M, Zhang Y, Li H, Wu X, Zhuang F, Luo W, Zhou Y. Increased role of E prostanoid receptor‐3 in prostacyclin‐evoked contractile activity of spontaneously hypertensive rat mesenteric resistance arteries. Sci Rep 7: 8927, 2017.
 451.Liu F, McCullough LD. Middle cerebral artery occlusion model in rodents: Methods and potential pitfalls. J Biomed Biotechnol 2011: 464701, 2011.
 452.Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 27: 869‐882, 2021.
 453.Liu J, Pedersen LC. Anticoagulant heparan sulfate: Structural specificity and biosynthesis. Appl Microbiol Biotechnol 74: 263‐272, 2007.
 454.Liu L, Gu L, Chen M, Zheng Y, Xiong X, Zhu S. Novel targets for stroke therapy: Special focus on TRPC channels and TRPC6. Front Aging Neurosci 12: 70, 2020.
 455.Liu M, Alkayed NJ. Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha‐linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab 25: 939‐948, 2005.
 456.Liu W, Wang T, He X, Liu X, Wang B, Liu Y, Li Z, Tan R, Ding C, Wang H, Zeng H. CYP2J2 overexpression increases EETs and protects against HFD‐induced atherosclerosis in ApoE−/− mice. J Cardiovasc Pharmacol 67: 491‐502, 2016.
 457.Liu X, Davis CM, Alkayed NJ. P450 eicosanoids and reactive oxygen species interplay in brain injury and neuroprotection. Antioxid Redox Signal 28: 987‐1007, 2018.
 458.Liu X, Li C, Falck JR, Roman RJ, Harder DR, Koehler RC. Interaction of nitric oxide, 20‐HETE, and EETs during functional hyperemia in whisker barrel cortex. Am J Physiol Heart Circ Physiol 295: H619‐H631, 2008.
 459.Liu Y, Dong Y‐H, Lyu P‐Y, Chen W‐H, Li R. Hypertension‐induced cerebral small vessel disease leading to cognitive impairment. Chin Med J 131: 615‐619, 2018.
 460.Lochhead JJ, McCaffrey G, Sanchez‐Covarrubias L, Finch JD, Demarco KM, Quigley CE, Davis TP, Ronaldson PT. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood‐brain barrier during inflammatory pain. Am J Physiol Heart Circ Physiol 302: H582‐H593, 2012.
 461.Loewenstein D, Rabbat M. Neurological complications of systemic hypertension. Handb Clin Neurol 177: 253‐259, 2021.
 462.Lombard JH, Liu Y, Fredricks KT, Bizub DM, Roman RJ, Rusch NJ. Electrical and mechanical responses of rat middle cerebral arteries to reduced PO2 and prostacyclin. Am J Physiol 276: H509‐H516, 1999.
 463.Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill‐Eubanks D, Nelson MT. Capillary K+‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20: 717‐726, 2017.
 464.Longden TA, Hill‐Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 36: 492‐512, 2016.
 465.Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450‐dependent transient receptor potential V4 activation in flow‐induced vasodilatation. Cardiovasc Res 80: 445‐452, 2008.
 466.Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76: 22‐76, 2005.
 467.Lu L, Hogan‐Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX, Anderson CM. Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab 39: 481‐496, 2019.
 468.Lu T, Wang X‐L, Chai Q, Sun X, Sieck GC, Katusic ZS, Lee H‐C. Role of the endothelial caveolae microdomain in shear stress‐mediated coronary vasorelaxation. J Biol Chem 292: 19013‐19023, 2017.
 469.Luissint A‐C, Nusrat A, Parkos CA. JAM‐related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 36: 211‐226, 2014.
 470.Lüscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, Siebenmann R, Turina M, Bühler FR. Interaction between endothelin‐1 and endothelium‐derived relaxing factor in human arteries and veins. Circ Res 66: 1088‐1094, 1990.
 471.Lynch J, Jin L, Richardson A, Jagatheesan G, Lorkiewicz P, Xie Z, Theis WS, Shirk G, Malovichko MV, Bhatnagar A, Srivastava S, Conklin DJ. Acute and chronic vascular effects of inhaled crotonaldehyde in mice: Role of TRPA1. Toxicol Appl Pharmacol 402: 115120, 2020.
 472.Ma J, Chen L, Fan J, Cao W, Zeng G, Wang Y, Li Y, Zhou Y, Deng X. Dual‐targeting Rutaecarpine‐NO donor hybrids as novel anti‐hypertensive agents by promoting release of CGRP. Eur J Med Chem 168: 146‐153, 2019.
 473.Maarouf N, Sancho M, Fürstenhaupt T, Tran CH, Welsh DG. Structural analysis of endothelial projections from mesenteric arteries. Microcirculation 24: e12330, 2017.
 474.Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood‐brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 88: 1457‐1474, 2010.
 475.Macrae IM. Preclinical stroke research‐‐advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164: 1062‐1078, 2011.
 476.MacVicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 7: a020388, 2015.
 477.Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG. Interleukin 17 promotes angiotensin II‐induced hypertension and vascular dysfunction. Hypertension 55: 500‐507, 2010.
 478.Mäe MA, He L, Nordling S, Vazquez‐Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave‐Gassiot A, Wenk MR, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver DL, Vanlandewijck M, Butcher EC, Keller A, Betsholtz C. Single‐cell analysis of blood‐brain barrier response to pericyte loss. Circ Res 128: e46‐e62, 2021.
 479.Makin SDJ, Mubki GF, Doubal FN, Shuler K, Staals J, Dennis MS, Wardlaw JM. Small vessel disease and dietary salt intake: Cross‐sectional study and systematic review. J Stroke Cerebrovasc Dis 26: 3020‐3028, 2017.
 480.Manabe K, Shirahase H, Usui H, Kurahashi K, Fujiwara M. Endothelium‐dependent contractions induced by angiotensin I and angiotensin II in canine cerebral artery. J Pharmacol Exp Ther 251: 317‐320, 1989.
 481.Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: Role of nitrotyrosine and F‐actin. Am J Physiol Heart Circ Physiol 292: H1042‐H1050, 2007.
 482.Marceau F, Bachelard H, Bouthillier J, Fortin J‐P, Morissette G, Bawolak M‐T, Charest‐Morin X, Gera L. Bradykinin receptors: Agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. Int Immunopharmacol 82: 106305, 2020.
 483.Maroney SA, Mast AE. Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus Apher Sci 38: 9‐14, 2008.
 484.Marowsky A, Burgener J, Falck JR, Fritschy JM, Arand M. Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism. Neuroscience 163: 646‐661, 2009.
 485.Martín‐Bórnez M, Galeano‐Otero I, Del Toro R, Smani T. TRPC and TRPV channels' role in vascular remodeling and disease. Int J Mol Sci 21: 6125, 2020.
 486.Martinez‐Lemus LA, Crow T, Davis MJ, Meininger GA. alphavbeta3‐ and alpha5beta1‐integrin blockade inhibits myogenic constriction of skeletal muscle resistance arterioles. Am J Physiol Heart Circ Physiol 289: H322‐H329, 2005.
 487.Martìn‐Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142: 117‐127, 1998.
 488.Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM‐1 in aldosterone‐induced atherosclerosis. Int J Cardiol 232: 233‐242, 2017.
 489.Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation. Vascul Pharmacol 115: 13‐17, 2019.
 490.Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 4: eaav0492, 2019.
 491.Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol 65: 226‐232, 2015.
 492.Matic A, Jukic I, Mihaljevic Z, Kolobaric N, Stupin A, Kozina N, Bujak IT, Kibel A, Lombard JH, Drenjancevic I. Low‐dose angiotensin II supplementation restores flow‐induced dilation mechanisms in cerebral arteries of Sprague‐Dawley rats on a high salt diet. J. Hypertens., 2021. DOI: 10.1097/HJH.0000000000003030.
 493.Matin N, Fisher C, Jackson WF, Diaz‐Otero JM, Dorrance AM. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am J Physiol Heart Circ Physiol 314: H122‐H130, 2018.
 494.Matin N, Fisher C, Jackson WF, Dorrance AM. Bilateral common carotid artery stenosis in normotensive rats impairs endothelium‐dependent dilation of parenchymal arterioles. Am J Physiol Heart Circ Physiol 310: H1321‐H1329, 2016.
 495.Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation, 2020. DOI: 10.1111/micc.12653.
 496.Matin N, Pires PW, Garver H, Jackson WF, Dorrance AM. DOCA‐salt hypertension impairs artery function in rat middle cerebral artery and parenchymal arterioles. Microcirculation 23: 571‐579, 2016.
 497.Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 17: 453‐458, 2005.
 498.Matter K, Balda MS. Functional analysis of tight junctions. Methods 30: 228‐234, 2003.
 499.Maurer P, Moskowitz MA, Levine L, Melamed E. The synthesis of prostaglandins by bovine cerebral microvessels. Prostaglandins Med 4: 153‐161, 1980.
 500.Mayhan WG. Role of prostaglandin H2‐thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol 262: H539‐H543, 1992.
 501.Mayhan WG. Endothelium‐dependent responses of cerebral arterioles to adenosine 5′‐diphosphate. J Vasc Res 29: 353‐358, 1992.
 502.Mayhan WG, Arrick DM, Sharpe GM, Sun H. Age‐related alterations in reactivity of cerebral arterioles: Role of oxidative stress. Microcirculation 15: 225‐236, 2008.
 503.Mayhan WG, Faraci FM, Baumbach GL, Heistad DD. Effects of aging on responses of cerebral arterioles. Am J Physiol 258: H1138‐H1143, 1990.
 504.Mayhan WG, Faraci FM, Heistad DD. Disruption of the blood‐brain barrier in cerebrum and brain stem during acute hypertension. Am J Physiol 251: H1171‐H1175, 1986.
 505.Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium‐dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 253: H1435‐H1440, 1987.
 506.McCarron RM. IL‐1‐induced prostacyclin production by cerebral vascular endothelial cells inhibits myelin basic protein‐specific lymphocyte proliferation. Cell Immunol 145: 21‐29, 1992.
 507.McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem 292: 762‐770, 2017.
 508.McKinley MJ, McAllen RM, Pennington GL, Smardencas A, Weisinger RS, Oldfield BJ. Physiological actions of angiotensin II mediated by AT1 AND AT2 receptors in the brain. Clin Exp Pharmacol Physiol 23 Suppl 3: S99‐S104, 1996.
 509.McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end‐organ damage. Circ Res 116: 1022‐1033, 2015.
 510.McNeill AM, Kim N, Duckles SP, Krause DN, Kontos HA. Chronic estrogen treatment increases levels of endothelial nitric oxide synthase protein in rat cerebral microvessels. Stroke 30: 2186‐2190, 1999.
 511.McNeill AM, Zhang C, Stanczyk FZ, Duckles SP, Krause DN. Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: Effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke 33: 1685‐1691, 2002.
 512.McNeish AJ, Garland CJ. Thromboxane A2 inhibition of SKCa after NO synthase block in rat middle cerebral artery. Br J Pharmacol 151: 441‐449, 2007.
 513.Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T. Gq‐coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27: 3092‐3103, 2008.
 514.Mederos Y, Schnitzler M, Storch U, Gudermann T. Mechanosensitive Gq/11 protein‐coupled receptors mediate myogenic vasoconstriction. Microcirculation 23: 621‐625, 2016.
 515.Medhora M, Harder D. Functional role of epoxyeicosatrienoic acids and their production in astrocytes: Approaches for gene transfer and therapy (review). Int J Mol Med 2: 661‐669, 1998.
 516.Medhora M, Narayanan J, Harder D, Maier KG. Identifying endothelium‐derived hyperpolarizing factor: Recent approaches to assay the role of epoxyeicosatrienoic acids. Jpn J Pharmacol 86: 369‐375, 2001.
 517.Meissner A, Minnerup J, Soria G, Planas AM. Structural and functional brain alterations in a murine model of Angiotensin II‐induced hypertension. J Neurochem 140: 509‐521, 2017.
 518.Meng W, Ayata C, Waeber C, Huang PL, Moskowitz MA. Neuronal NOS‐cGMP‐dependent ACh‐induced relaxation in pial arterioles of endothelial NOS knockout mice. Am J Physiol 274: H411‐H415, 1998.
 519.Menozzi E, Macnaughtan J, Schapira AHV. The gut‐brain axis and Parkinson disease: Clinical and pathogenetic relevance. Ann Med 53: 611‐625, 2021.
 520.Michel JB, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric‐oxide synthase by Ca2+‐calmodulin and caveolin. J Biol Chem 272: 15583‐15586, 1997.
 521.Miggin SM, Kinsella BT. Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochim Biophys Acta 1425: 543‐559, 1998.
 522.Miller AA, Drummond GR, Schmidt HHHW, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97: 1055‐1062, 2005.
 523.Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH‐oxidase in cerebral vascular control. Pharmacol Ther 111: 928‐948, 2006.
 524.Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol 16: 223‐237, 2020.
 525.Mima T, Yanagisawa M, Shigeno T, Saito A, Goto K, Takakura K, Masaki T. Endothelin acts in feline and canine cerebral arteries from the adventitial side. Stroke 20: 1553‐1556, 1989.
 526.Mimee A, Smith PM, Ferguson AV. Circumventricular organs: Targets for integration of circulating fluid and energy balance signals? Physiol Behav 121: 96‐102, 2013.
 527.Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev 82: 429‐472, 2002.
 528.Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19: 1619‐1627, 2016.
 529.Miura S, Karnik SS. Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. J Hypertens 17: 397‐404, 1999.
 530.Miyamoto A, Nakamoto T, Matsuoka Y, Ishiguro S, Nishio A. The role of thromboxane A2 in regulating porcine basilar arterial tone. J Vet Pharmacol Ther 21: 223‐227, 1998.
 531.Miyauchi T, Masaki T. Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol 61: 391‐415, 1999.
 532.Moake J. Thrombotic microangiopathies: Multimers, metalloprotease, and beyond. Clin Transl Sci 2: 366‐373, 2009.
 533.Modrick ML, Didion SP, Sigmund CD, Faraci FM. Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 296: H1914‐H1919, 2009.
 534.Momoi H, Ikomi F, Ohhashi T. Estrogen‐induced augmentation of endothelium‐dependent nitric oxide‐mediated vasodilation in isolated rat cerebral small arteries. Jpn J Physiol 53: 193‐203, 2003.
 535.Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663‐665, 1976.
 536.Moncada S, Vane JR. Prostacyclin in the cardiovascular system. Adv Prostaglandin Thromboxane Res 6: 43‐60, 1980.
 537.Moore DH, Ruska H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol 3: 457‐462, 1957.
 538.Moore SA, Spector AA, Hart MN. Eicosanoid metabolism in cerebromicrovascular endothelium. Am J Physiol 254: C37‐C44, 1988.
 539.Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L‐type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22: 6027‐6034, 2003.
 540.Morange PE, Simon C, Alessi MC, Luc G, Arveiler D, Ferrieres J, Amouyel P, Evans A, Ducimetiere P, Juhan‐Vague I, PRIME Study Group. Endothelial cell markers and the risk of coronary heart disease: The Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 109: 1343‐1348, 2004.
 541.Moreau P, Takase H, Küng CF, Lüscher TF. Effect of chronic inhibition of nitric oxide synthesis on vascular structure: Remodeling or growth? Arch Mal Coeur Vaiss 88: 1141‐1143, 1995.
 542.Moro L, Pedone C, Mondì A, Nunziata E, Antonelli Incalzi R. Effect of local and remote ischemic preconditioning on endothelial function in young people and healthy or hypertensive elderly people. Atherosclerosis 219: 750‐752, 2011.
 543.Mott FW. The late professor Edwin Goldmann's investigations on the central nervous system by vital staining. Br Med J 2: 871‐873, 1913.
 544.Mouchlis VD, Dennis EA. Phospholipase A2 catalysis and lipid mediator lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 766‐771, 2019.
 545.Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med 371: 624‐634, 2014.
 546.Mughal A, Anto S, Sun C, O'Rourke ST. Apelin inhibits an endothelium‐derived hyperpolarizing factor‐like pathway in rat cerebral arteries. Peptides 132: 170350, 2020.
 547.Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA. Immunologic privilege in the central nervous system and the blood‐brain barrier. J Cereb Blood Flow Metab 33: 13‐21, 2013.
 548.Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD. Vascular remodeling. Hypertension 28: 505‐506, 1996.
 549.Muoio V, Persson PB, Sendeski MM. The neurovascular unit ‐ concept review. Acta Physiol (Oxf) 210: 790‐798, 2014.
 550.Murakami S, Motohashi H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic Biol Med 88: 168‐178, 2015.
 551.Murugesan N, Demarest TG, Madri JA, Pachter JS. Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol Aging 33: 1004.e1‐16, 2012.
 552.Nag S. Immunohistochemical localization of extracellular matrix proteins in cerebral vessels in chronic hypertension. J Neuropathol Exp Neurol 55: 381‐388, 1996.
 553.Nag S, Kilty DW. Cerebrovascular changes in chronic hypertension. Protective effects of enalapril in rats. Stroke 28: 1028‐1034, 1997.
 554.Nagai N, Van Hoef B, Lijnen HR. Plasminogen activator inhibitor‐1 contributes to the deleterious effect of obesity on the outcome of thrombotic ischemic stroke in mice. J Thromb Haemost 5: 1726‐1731, 2007.
 555.Nair AR, Agbor LN, Mukohda M, Liu X, Hu C, Wu J, Sigmund CD. Interference with endothelial PPAR (peroxisome proliferator‐activated receptor)‐γ causes accelerated cerebral vascular dysfunction in response to endogenous renin‐angiotensin system activation. Hypertension 72: 1227‐1235, 2018.
 556.Nakayama T. Genetic polymorphisms of prostacyclin synthase gene and cardiovascular disease. Int Angiol 29: 33‐42, 2010.
 557.Namiki A, Hirata Y, Fukazawa M, Ishikawa M, Moroi M, Aikawa J, Yabuki S, Machii K. Endothelin‐1‐ and endothelin‐3‐induced vasorelaxation via endothelium‐derived nitric oxide. Jpn J Pharmacol 58 Suppl 2: 326P, 1992.
 558.Nation DA, Edmonds EC, Bangen KJ, Delano‐Wood L, Scanlon BK, Han SD, Edland SD, Salmon DP, Galasko DR, Bondi MW, Alzheimer's Disease Neuroimaging Initiative Investigators. Pulse pressure in relation to tau‐mediated neurodegeneration, cerebral amyloidosis, and progression to dementia in very old adults. JAMA Neurol 72: 546‐553, 2015.
 559.Negri S, Faris P, Berra‐Romani R, Guerra G, Moccia F. Endothelial transient receptor potential channels and vascular remodeling: Extracellular Ca2+ entry for angiogenesis, arteriogenesis and vasculogenesis. Front Physiol 10: 1618, 2019.
 560.Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res 77: 832‐840, 1995.
 561.Nguyen LN, Ma D, Shui G, Wong P, Cazenave‐Gassiot A, Zhang X, Wenk MR, Goh ELK, Silver DL. Mfsd2a is a transporter for the essential omega‐3 fatty acid docosahexaenoic acid. Nature 509: 503‐506, 2014.
 562.Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A. The proteolytic activity of tissue‐plasminogen activator enhances NMDA receptor‐mediated signaling. Nat Med 7: 59‐64, 2001.
 563.Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein‐Rathlou N‐H. Gap junctions. Compr Physiol 2: 1981‐2035, 2012.
 564.Nippert AR, Biesecker KR, Newman EA. Mechanisms mediating functional hyperemia in the brain. Neuroscientist 24: 73‐83, 2018.
 565.Nishimura N, Rosidi NL, Iadecola C, Schaffer CB. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab 30: 1914‐1927, 2010.
 566.Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104: 365‐370, 2007.
 567.Nisimoto Y, Diebold BA, Cosentino‐Gomes D, Lambeth JD. Nox4: A hydrogen peroxide‐generating oxygen sensor. Biochemistry 53: 5111‐5120, 2014.
 568.Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size‐selective loosening of the blood‐brain barrier in claudin‐5‐deficient mice. J Cell Biol 161: 653‐660, 2003.
 569.Noell S, Wolburg‐Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP, Wolburg H, Fallier‐Becker P. Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci 33: 2179‐2186, 2011.
 570.Nogami K, Shima M, Nishiya K, Hosokawa K, Saenko EL, Sakurai Y, Shibata M, Suzuki H, Tanaka I, Yoshioka A. A novel mechanism of factor VIII protection by von Willebrand factor from activated protein C‐catalyzed inactivation. Blood 99: 3993‐3998, 2002.
 571.Norlander AE, Madhur MS. Inflammatory cytokines regulate renal sodium transporters: How, where, and why? Am J Physiol Renal Physiol 313: F141‐F144, 2017.
 572.Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard‐Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science 365: eaav9518, 2019.
 573.Novotny WF, Brown SG, Miletich JP, Rader DJ, Broze GJ. Plasma antigen levels of the lipoprotein‐associated coagulation inhibitor in patient samples. Blood 78: 387‐393, 1991.
 574.Ogletree ML. Overview of physiological and pathophysiological effects of thromboxane A2. Fed Proc 46: 133‐138, 1987.
 575.Ohashi KL, Tung DK, Wilson J, Zweifach BW, Schmid‐Schönbein GW. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation 3: 199‐210, 1996.
 576.Ohlstein EH, Storer BL. Oxyhemoglobin stimulation of endothelin production in cultured endothelial cells. J Neurosurg 77: 274‐278, 1992.
 577.Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. Exogenous expression of claudin‐5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 210: 81‐86, 2007.
 578.Okamoto M, Etani H, Yagita Y, Kinoshita N, Nukada T. Diminished reserve for cerebral vasomotor response to l‐arginine in the elderly: Evaluation by transcranial Doppler sonography. Gerontology 47: 131‐135, 2001.
 579.Oldendorf WH. Stereospecificity of blood‐brain barrier permeability to amino acids. Am J Physiol 224: 967‐969, 1973.
 580.Onoue H, Kaito N, Tomii M, Tokudome S, Nakajima M, Abe T. Human basilar and middle cerebral arteries exhibit endothelium‐dependent responses to peptides. Am J Physiol 267: H880‐H886, 1994.
 581.Osada T, Gu Y‐H, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, Milner R, del Zoppo GJ. Interendothelial claudin‐5 expression depends on cerebral endothelial cell‐matrix adhesion by β(1)‐integrins. J Cereb Blood Flow Metab 31: 1972‐1985, 2011.
 582.Osborn JW, Fink GD, Sved AF, Toney GM, Raizada MK. Circulating angiotensin II and dietary salt: Converging signals for neurogenic hypertension. Curr Hypertens Rep 9: 228‐235, 2007.
 583.Osmond JM, Dorrance AM. 11beta‐hydroxysteroid dehydrogenase type II inhibition causes cerebrovascular remodeling and increases infarct size after cerebral ischemia. Endocrinology 150: 713‐719, 2009.
 584.Osol G, Brekke JF, McElroy‐Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: A three‐phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol 283: H2260‐H2267, 2002.
 585.Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, Sokolowski JD, Marziano C, Nguyen NY, Altschmied J, Haendeler J, Johnstone SR, Kalani MY, Park MS, Patel RP, Liedtke W, Isakson BE, Sonkusare SK. Local peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure in obesity. Circulation 141: 1318‐1333, 2020.
 586.Owen WG, Esmon CT. Functional properties of an endothelial cell cofactor for thrombin‐catalyzed activation of protein C. J Biol Chem 256: 5532‐5535, 1981.
 587.Pan L, Liu Z, Chen Y, Yang B, Cheng B. Angiopoietin‐1: Can be produced by endothelial cells and act in an autocrine agonistic manner? Clin Hemorheol Microcirc 74: 341‐345, 2020.
 588.Panatier A, Theodosis DT, Mothet J‐P, Touquet B, Pollegioni L, Poulain DA, Oliet SHR. Glia‐derived d‐serine controls NMDA receptor activity and synaptic memory. Cell 125: 775‐784, 2006.
 589.Pantoni L, Garcia JH. Cognitive impairment and cellular/vascular changes in the cerebral white matter. Ann N Y Acad Sci 826: 92‐102, 1997.
 590.Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14: 383‐400, 2013.
 591.Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH‐oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 35: 584‐589, 2004.
 592.Paravicini TM, Drummond GR, Sobey CG. Reactive oxygen species in the cerebral circulation: Physiological roles and therapeutic implications for hypertension and stroke. Drugs 64: 2143‐2157, 2004.
 593.Paravicini TM, Sobey CG. Cerebral vascular effects of reactive oxygen species: Recent evidence for a role of NADPH‐oxidase. Clin Exp Pharmacol Physiol 30: 855‐859, 2003.
 594.Parcq J, Bertrand T, Montagne A, Baron AF, Macrez R, Billard JM, Briens A, Hommet Y, Wu J, Yepes M, Lijnen HR, Dutar P, Anglés‐Cano E, Vivien D. Unveiling an exceptional zymogen: The single‐chain form of tPA is a selective activator of NMDA receptor‐dependent signaling and neurotoxicity. Cell Death Differ 19: 1983‐1991, 2012.
 595.Park L, Gallo EF, Anrather J, Wang G, Norris EH, Paul J, Strickland S, Iadecola C. Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci U S A 105: 1073‐1078, 2008.
 596.Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, Iadecola C. The key role of transient receptor potential melastatin‐2 channels in amyloid‐β‐induced neurovascular dysfunction. Nat Commun 5: 5318, 2014.
 597.Park L, Zhou J, Koizumi K, Wang G, Anfray A, Ahn SJ, Seo J, Zhou P, Zhao L, Paul S, Anrather J, Iadecola C. tPA deficiency underlies neurovascular coupling dysfunction by amyloid‐β. J Neurosci 40: 8160‐8173, 2020.
 598.Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2: 161‐192, 1990.
 599.Paulsson M. Basement membrane proteins: Structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27: 93‐127, 1992.
 600.Peeters AC, Netea MG, Janssen MC, Kullberg BJ, Van der Meer JW, Thien T. Pro‐inflammatory cytokines in patients with essential hypertension. Eur J Clin Invest 31: 31‐36, 2001.
 601.Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A. A heat‐sensitive TRP channel expressed in keratinocytes. Science 296: 2046‐2049, 2002.
 602.Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. ADP‐ribose gating of the calcium‐permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595‐599, 2001.
 603.Peters EC, Gee MT, Pawlowski LN, Kath AM, Polk FD, Vance CJ, Sacoman JL, Pires PW. Amyloid‐β disrupts unitary calcium entry through endothelial NMDA receptors in mouse cerebral arteries. J Cereb Blood Flow Metab, 2021. DOI: 10.1177/0271678X211039592.
 604.Peterson JR, Sharma RV, Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep 8: 232‐241, 2006.
 605.Pfister SL, Gauthier KM, Campbell WB. Vascular pharmacology of epoxyeicosatrienoic acids. Adv Pharmacol 60: 27‐59, 2010.
 606.Piazza M, Taiakina V, Guillemette SR, Guillemette JG, Dieckmann T. Solution structure of calmodulin bound to the target peptide of endothelial nitric oxide synthase phosphorylated at Thr495. Biochemistry 53: 1241‐1249, 2014.
 607.Pickard J, Tamura A, Stewart M, McGeorge A, Fitch W. Prostacyclin, indomethacin and the cerebral circulation. Brain Res 197: 425‐431, 1980.
 608.Piehl C, Piontek J, Cording J, Wolburg H, Blasig IE. Participation of the second extracellular loop of claudin‐5 in paracellular tightening against ions, small and large molecules. Cell Mol Life Sci 67: 2131‐2140, 2010.
 609.Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR, Gehring C, Rahn H‐P, Wolburg H, Blasig IE. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 68: 3903‐3918, 2011.
 610.Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. Formation of tight junction: Determinants of homophilic interaction between classic claudins. FASEB J 22: 146‐158, 2008.
 611.Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol 304: H1598‐H1614, 2013.
 612.Pires PW, Deutsch C, McClain JL, Rogers CT, Dorrance AM. Tempol, a superoxide dismutase mimetic, prevents cerebral vessel remodeling in hypertensive rats. Microvasc Res 80: 445‐452, 2010.
 613.Pires PW, Earley S. Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. Elife 7: e35316, 2018.
 614.Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 309: H127‐H136, 2015.
 615.Pires PW, Ko E‐A, Pritchard HAT, Rudokas M, Yamasaki E, Earley S. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. J Physiol (Lond) 595: 4735‐4753, 2017.
 616.Pires PW, Rogers CT, McClain JL, Garver HS, Fink GD, Dorrance AM. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke‐prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 301: H87‐H97, 2011.
 617.Pires PW, Sullivan MN, Pritchard HAT, Robinson JJ, Earley S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium‐dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 309: H2031‐H2041, 2015.
 618.Popel AS, Johnson PC. Microcirculation and Hemorheology. Annu Rev Fluid Mech 37: 43‐69, 2005.
 619.Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79: 43‐66, 2017.
 620.Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 146: 873‐887, 2011.
 621.Prat A, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood‐brain barrier. Glia 36: 145‐155, 2001.
 622.Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo‐neuronal coupling and neurovascular coupling at the neurovascular unit: Impact of hypertension. Front Physiol 11: 584135, 2020.
 623.Przysinda A, Feng W, Li G. Diversity of organism‐wide and organ‐specific endothelial cells. Curr Cardiol Rep 22: 19, 2020.
 624.Pun PBL, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res 43: 348‐364, 2009.
 625.Qiu Z, Yang J, Deng G, Fang Y, Li D, Zhang S. Angiopoietin‐like 4 attenuates brain edema and neurological deficits in a mouse model of experimental intracerebral hemorrhage. Med Sci Monit 24: 880‐890, 2018.
 626.Qu C, Song H, Shen J, Xu L, Li Y, Qu C, Li T, Zhang J. Mfsd2a reverses spatial learning and memory impairment caused by chronic cerebral hypoperfusion via protection of the blood‐brain barrier. Front Neurosci 14: 461, 2020.
 627.Rabelink TJ, de Zeeuw D. The glycocalyx – linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol 11: 667‐676, 2015.
 628.Raignault A, Bolduc V, Lesage F, Thorin E. Pulse pressure‐dependent cerebrovascular eNOS regulation in mice. J Cereb Blood Flow Metab 37: 413‐424, 2017.
 629.Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II‐mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97: 1916‐1923, 1996.
 630.Ramadan FM, Upchurch GR, Keagy BA, Johnson G. Endothelial cell thromboxane production and its inhibition by a calcium‐channel blocker. Ann Thorac Surg 49: 916‐919, 1990.
 631.Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 68: 619‐647, 2006.
 632.Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom‐Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31: 1368‐1376, 2011.
 633.Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Sáez GT. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41: 1096‐1101, 2003.
 634.Reese TS, Karnovsky MJ. Fine structural localization of a blood‐brain barrier to exogenous peroxidase. J Cell Biol 34: 207‐217, 1967.
 635.Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch 454: 345‐359, 2007.
 636.Revermann M. Pharmacological inhibition of the soluble epoxide hydrolase‐from mouse to man. Curr Opin Pharmacol 10: 173‐178, 2010.
 637.Rezende SM, Simmonds RE, Lane DA. Coagulation, inflammation, and apoptosis: Different roles for protein S and the protein S‐C4b binding protein complex. Blood 103: 1192‐1201, 2004.
 638.Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood‐brain barrier: A historical point of view. Anat Rec B New Anat 289: 3‐8, 2006.
 639.Rich G, Yoder EJ, Prokuski L, Moore SA. Prostaglandin production in cultured cerebral microvascular smooth muscle is serum dependent. Am J Physiol 270: C1379‐C1387, 1996.
 640.Riedel MW, Anneser F, Haberl RL. Different mechanisms of l‐arginine induced dilation of brain arterioles in normotensive and hypertensive rats. Brain Res 671: 21‐26, 1995.
 641.Rigsby CS, Dorrance AM. Spironolactone increases lumen diameter in the middle cerebral artery of spontaneously hypertensive stroke‐prone rats (SHRSP). Hypertension 44: P110, 2004.
 642.Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 7: 4‐13, 2009.
 643.Rizzoni D, Porteri E, Boari GEM, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti‐Rosei E. Prognostic significance of small‐artery structure in hypertension. Circulation 108: 2230‐2235, 2003.
 644.Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265: C299‐C303, 1993.
 645.Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood‐brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase‐dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PLoS One 9: e101815, 2014.
 646.Rodriguez‐Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev 97: 1127‐1164, 2017.
 647.Roggendorf W, Cervós‐Navarro J, Lazaro‐Lacalle MD. Ultrastructure of venules in the cat brain. Cell Tissue Res 192: 461‐474, 1978.
 648.Roman LJ, Martásek P, Masters BSS. Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 102: 1179‐1190, 2002.
 649.Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase‐9 reduces infarct size. Stroke 29: 1020‐1030, 1998.
 650.Rosehart AC, Longden TA, Weir N, Fontaine JT, Joutel A, Dabertrand F. Prostaglandin E2 dilates intracerebral arterioles when applied to capillaries: Implications for small vessel diseases. Front Aging Neurosci 13: 695965, 2021.
 651.Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stetler‐Stevenson WG. TIMP‐2 reduces proteolytic opening of blood‐brain barrier by type IV collagenase. Brain Res 576: 203‐207, 1992.
 652.Rosenblum WI. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles. Stroke 17: 494‐497, 1986.
 653.Rosenblum WI. Endothelium‐dependent responses in the microcirculation observed in vivo. Acta Physiol (Oxf) 224: e13111, 2018.
 654.Ross JM, Kim C, Allen D, Crouch EE, Narsinh K, Cooke DL, Abla AA, Nowakowski TJ, Winkler EA. The expanding cell diversity of the brain vasculature. Front Physiol 11: 600767, 2020.
 655.Rossi GP, Colonna S, Belloni AS, Savoia C, Albertin G, Nussdorfer GG, Hagiwara H, Rubattu S, Volpe M. Altered regulation of endothelin A receptor subtype in the cerebral arterioles in response to a Japanese‐style diet, in stroke‐prone hypertensive rats. J Hypertens 21: 105‐113, 2003.
 656.Ruben GC, Yurchenco PD. High resolution platinum‐carbon replication of freeze‐dried basement membrane. Microsc Res Tech 28: 13‐28, 1994.
 657.Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J. A cell culture model of the blood‐brain barrier. J Cell Biol 115: 1725‐1735, 1991.
 658.Rucker D, Dhamoon AS. Physiology, thromboxane A2. In: StatPearls. Treasure Island, FL: StatPearls Publishing, 2022.
 659.Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 1: 1335‐1342, 2003.
 660.Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin‐binding VEGF‐A control blood vessel branching morphogenesis. Genes Dev 16: 2684‐2698, 2002.
 661.Russell FD, Davenport AP. Secretory pathways in endothelin synthesis. Br J Pharmacol 126: 391‐398, 1999.
 662.Rytter N, Carter H, Piil P, Sørensen H, Ehlers T, Holmegaard F, Tuxen C, Jones H, Thijssen D, Gliemann L, Hellsten Y. Ischemic preconditioning improves microvascular endothelial function in remote vasculature by enhanced prostacyclin production. J Am Heart Assoc 9: e016017, 2020.
 663.Saito A, Shiba R, Kimura S, Yanagisawa M, Goto K, Masaki T. Vasoconstrictor response of large cerebral arteries of cats to endothelin, an endothelium‐derived vasoactive peptide. Eur J Pharmacol 162: 353‐358, 1989.
 664.Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131‐4142, 2000.
 665.Salom JB, Torregrosa G, Miranda FJ, Alabadí JA, Alvarez C, Alborch E. Effects of endothelin‐1 on the cerebrovascular bed of the goat. Eur J Pharmacol 192: 39‐45, 1991.
 666.Sancho M, Gao Y, Hald BO, Yin H, Boulton M, Steven DA, MacDougall KW, Parrent AG, Pickering JG, Welsh DG. An assessment of KIR channel function in human cerebral arteries. Am J Physiol Heart Circ Physiol 316: H794‐H800, 2019.
 667.Sandoval KE, Witt KA. Blood‐brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32: 200‐219, 2008.
 668.Sandow SL, Hill CE. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium‐derived hyperpolarizing factor‐mediated responses. Circ Res 86: 341‐346, 2000.
 669.Santhanam AVR, d'Uscio LV, He T, Das P, Younkin SG, Katusic ZS. Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice. J Neurochem 134: 1129‐1138, 2015.
 670.Santhanam AVR, d'Uscio LV, Smith LA, Katusic ZS. Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph‐1 mice. J Neurochem 122: 1211‐1218, 2012.
 671.Santhanam AVR, Smith LA, Katusic ZS. Brain‐derived neurotrophic factor stimulates production of prostacyclin in cerebral arteries. Stroke 41: 350‐356, 2010.
 672.Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, Joseph J, Garcia‐Pereira F, Johnson RD, Shenoy V, Raizada MK, Zubcevic J. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res 117: 178‐191, 2015.
 673.Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia‐Bonilla L, Racchumi G, Poon C, Schaeffer S, Segarra SG, Körbelin J, Anrather J, Iadecola C. Endothelium‐macrophage crosstalk mediates blood‐brain barrier dysfunction in hypertension. Hypertension 76: 795‐807, 2020.
 674.Santisteban MM, Iadecola C. Hypertension, dietary salt and cognitive impairment. J Cereb Blood Flow Metab 38: 2112‐2128, 2018.
 675.Santizo R, Baughman VL, Pelligrino DA. Relative contributions from neuronal and endothelial nitric oxide synthases to regional cerebral blood flow changes during forebrain ischemia in rats. Neuroreport 11: 1549‐1553, 2000.
 676.Sapatino BV, Welsh CJ, Smith CA, Bebo BF, Linthicum DS. Cloned mouse cerebrovascular endothelial cells that maintain their differentiation markers for factor VIII, low density lipoprotein, and angiotensin‐converting enzyme. In Vitro Cell Dev Biol Anim 29A: 923‐928, 1993.
 677.Sasaki T, Wakai S, Asano T, Takakura K, Sano K. Prevention of cerebral vasospasm after SAH with a thromboxane synthetase inhibitor, OKY‐1581. J Neurosurg 57: 74‐82, 1982.
 678.Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ. Cloning, characterization, and expression of two angiotensin receptor (AT‐1) isoforms from the mouse genome. Biochem Biophys Res Commun 185: 253‐259, 1992.
 679.Saubaméa B, Cochois‐Guégan V, Cisternino S, Scherrmann J‐M. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P‐glycoprotein expression. J Cereb Blood Flow Metab 32: 81‐92, 2012.
 680.Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174: 1015‐1030.e16, 2018.
 681.Saunders NR, Dreifuss J‐J, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer H‐C. The rights and wrongs of blood‐brain barrier permeability studies: A walk through 100 years of history. Front Neurosci 8: 404, 2014.
 682.Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol 3: 46, 2012.
 683.Scemes E, Giaume C. Astrocyte calcium waves: What they are and what they do. Glia 54: 716‐725, 2006.
 684.Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D. Two‐photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4: e22, 2006.
 685.Schaller B. Physiology of cerebral venous blood flow: From experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46: 243‐260, 2004.
 686.Schiffrin EL. Role of endothelin‐1 in hypertension and vascular disease. Am J Hypertens 14: 83S‐89S, 2001.
 687.Schleifenbaum J, Kassmann M, Szijártó IA, Hercule HC, Tano J‐Y, Weinert S, Heidenreich M, Pathan AR, Anistan Y‐M, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M. Stretch‐activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 115: 263‐272, 2014.
 688.Schmithorst VJ, Vannest J, Lee G, Hernandez‐Garcia L, Plante E, Rajagopal A, Holland SK, CMIND Authorship Consortium. Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood. Hum Brain Mapp 36: 1‐15, 2015.
 689.Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud P‐O, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21: 3666‐3676, 2007.
 690.Schreiber V, Dantzer F, Ame J‐C, de Murcia G. Poly(ADP‐ribose): Novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517‐528, 2006.
 691.Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110: 1217‐1225, 2012.
 692.Schwartz E, Adamany AM, Blumenfeld OO. Isolation and characterization of the internal elastic lamina from calf thoracic aorta. Exp Mol Pathol 34: 299‐306, 1981.
 693.Searles CD. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 291: C803‐C816, 2006.
 694.Segarra G, Medina P, Ballester RM, Lluch P, Aldasoro M, Vila JM, Lluch S, Pelligrino DA. Effects of some guanidino compounds on human cerebral arteries. Stroke 30: 2206‐2210.; ; discussion 2210, 1999.
 695.Sellers MM, Stallone JN. Sympathy for the devil: The role of thromboxane in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ Physiol 294: H1978‐H1986, 2008.
 696.Sessa WC. eNOS at a glance. J Cell Sci 117: 2427‐2429, 2004.
 697.Seyfried BK, Friedbacher G, Rottensteiner H, Schwarz HP, Ehrlich H, Allmaier G, Turecek PL. Comparison of plasma‐derived and recombinant von Willebrand factor by atomic force microscopy. Thromb Haemost 104: 523‐530, 2010.
 698.Shamsaldeen YA, Lione LA, Benham CD. Dysregulation of TRPV4, eNOS and caveolin‐1 contribute to endothelial dysfunction in the streptozotocin rat model of diabetes. Eur J Pharmacol 888: 173441, 2020.
 699.Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning‐induced neuroprotection in cerebral ischemia‐reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol, 2020. DOI: 10.1016/j.ejphar.2020.173380.
 700.Sharma JN, Thani RB. Therapeutic prospects for bradykinin receptor agonists in the treatment of cardiovascular diseases. IDrugs 7: 926‐934, 2004.
 701.Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T. Acylation targets emdothelial nitric‐oxide synthase to plasmalemmal caveolae. J Biol Chem 271: 6518‐6522, 1996.
 702.Shepherd JT, Katusić ZS. Endothelium‐derived vasoactive factors: I. Endothelium‐dependent relaxation. Hypertension 18: III76‐85, 1991.
 703.Shi Y, Vanhoutte PM. Macro‐ and microvascular endothelial dysfunction in diabetes. J Diabetes 9: 434‐449, 2017.
 704.Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, Kleinfeld D. The smallest stroke: Occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 16: 55‐63, 2013.
 705.Shih AY, Rühlmann C, Blinder P, Devor A, Drew PJ, Friedman B, Knutsen PM, Lyden PD, Mateo C, Mellander L, Nishimura N, Schaffer CB, Tsai PS, Kleinfeld D. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation 22: 204‐218, 2015.
 706.Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium‐dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28: 703‐711, 1996.
 707.Shirahase H, Fujiwara M, Usui H, Kurahashi K. A possible role of thromboxane A2 in endothelium in maintaining resting tone and producing contractile response to acetylcholine and arachidonic acid in canine cerebral arteries. Blood Vessels 24: 117‐119, 1987.
 708.Shirahase H, Kanda M, Shimaji H, Usui H, Rorstad OP, Kurahashi K. Somatostatin‐induced contraction mediated by endothelial TXA2 production in canine cerebral arteries. Life Sci 53: 1539‐1544, 1993.
 709.Shirahase H, Murase K, Kanda M, Kurahashi K, Nakamura S. Endothelium‐dependent contraction induced by substance P in canine cerebral arteries: Involvement of NK1 receptors and thromboxane A2. Life Sci 64: 211‐219, 1999.
 710.Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. J Cardiovasc Pharmacol 10: 517‐522, 1987.
 711.Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K. Endothelium‐dependent contraction induced by nicotine in isolated canine basilar artery – possible involvement of a thromboxane A2 (TXA2) like substance. Life Sci 42: 437‐445, 1988.
 712.Shochina M, Loesch A, Rubino A, Miah S, Macdonald G, Burnstock G. Immunoreactivity for nitric oxide synthase and endothelin in the coronary and basilar arteries of renal hypertensive rats. Cell Tissue Res 288: 509‐516, 1997.
 713.Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 72: 4561‐4575, 2015.
 714.Siegenthaler JA, Sohet F, Daneman R. “Sealing off the CNS”: Cellular and molecular regulation of blood‐brain barriergenesis. Curr Opin Neurobiol 23: 1057‐1064, 2013.
 715.Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67: 863‐885, 1975.
 716.Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai H‐J, Hammock BD, Imig JD. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am J Pathol 174: 2086‐2095, 2009.
 717.Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa MR, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai L‐H, Fischer A, Grobe K, Dimou L, Götz M. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. Cell Stem Cell 12: 629, 2013.
 718.Skarsgard P, van Breemen C, Laher I. Estrogen regulates myogenic tone in pressurized cerebral arteries by enhanced basal release of nitric oxide. Am J Physiol 273: H2248‐H2256, 1997.
 719.Smani T, Gómez LJ, Regodon S, Woodard GE, Siegfried G, Khatib A‐M, Rosado JA. TRP channels in angiogenesis and other endothelial functions. Front Physiol 9: 1731, 2018.
 720.Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB. TRPV3 is a temperature‐sensitive vanilloid receptor‐like protein. Nature 418: 186‐190, 2002.
 721.Smith PM, Ferguson AV. Circulating signals as critical regulators of autonomic state – central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 299: R405‐R415, 2010.
 722.Sobey CG, Heistad DD, Faraci FM. Mechanisms of bradykinin‐induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28: 2290‐2294.; ; discussion 2295, 1997.
 723.Sobey CG, Heistad DD, Faraci FM. Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate. Am J Physiol 275: H1606‐H1612, 1998.
 724.Sobey CG, Weiler JM, Boujaoude M, Woodman OL. Effect of short‐term phytoestrogen treatment in male rats on nitric oxide‐mediated responses of carotid and cerebral arteries: Comparison with 17beta‐estradiol. J Pharmacol Exp Ther 310: 135‐140, 2004.
 725.Sokoya EM, Burns AR, Setiawan CT, Coleman HA, Parkington HC, Tare M. Evidence for the involvement of myoendothelial gap junctions in EDHF‐mediated relaxation in the rat middle cerebral artery. Am J Physiol Heart Circ Physiol 291: H385‐H393, 2006.
 726.Solan JL, Lampe PD. Spatio‐temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim Biophys Acta Biomembr 1860: 83‐90, 2018.
 727.Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood‐cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17: 35, 2020.
 728.Sommer CJ. Ischemic stroke: Experimental models and reality. Acta Neuropathol 133: 245‐261, 2017.
 729.Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill‐Eubanks DC, Nelson MT. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597‐601, 2012.
 730.Sonkusare SK, Dalsgaard T, Bonev AD, Hill‐Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150‐dependent cooperative TRPV4 channel gating is central to endothelium‐dependent vasodilation and is disrupted in hypertension. Sci Signal 7: ra66, 2014.
 731.Souma T, Thomson BR, Heinen S, Carota IA, Yamaguchi S, Onay T, Liu P, Ghosh AK, Li C, Eremina V, Hong Y‐K, Economides AN, Vestweber D, Peters KG, Jin J, Quaggin SE. Context‐dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A 115: 1298‐1303, 2018.
 732.Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103: 16586‐16591, 2006.
 733.Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Prog Lipid Res 43: 55‐90, 2004.
 734.Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol 292: C996‐C1012, 2007.
 735.Sporn LA, Marder VJ, Wagner DD. Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. J Cell Biol 108: 1283‐1289, 1989.
 736.Stackhouse TL, Mishra A. Neurovascular coupling in development and disease: Focus on astrocytes. Front Cell Dev Biol 9: 702832, 2021.
 737.Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV. Monocyte chemoattractant protein‐1 regulation of blood‐brain barrier permeability. J Cereb Blood Flow Metab 25: 593‐606, 2005.
 738.Stanimirovic DB, Yamamoto T, Uematsu S, Spatz M. Endothelin‐1 receptor binding and cellular signal transduction in cultured human brain endothelial cells. J Neurochem 62: 592‐601, 1994.
 739.Stearns‐Kurosawa DJ, Kurosawa S, Mollica JS, Ferrell GL, Esmon CT. The endothelial cell protein C receptor augments protein C activation by the thrombin‐thrombomodulin complex. Proc Natl Acad Sci U S A 93: 10212‐10216, 1996.
 740.Steckelings UM, Kaschina E, Unger T. The AT2 receptor – a matter of love and hate. Peptides 26: 1401‐1409, 2005.
 741.Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood‐brain barrier characteristics in invading endothelial cells: A study using quail – chick transplantation chimeras. Dev Biol 84: 183‐192, 1981.
 742.Stirone C, Chu Y, Sunday L, Duckles SP, Krause DN. 17 Beta‐estradiol increases endothelial nitric oxide synthase mRNA copy number in cerebral blood vessels: Quantification by real‐time polymerase chain reaction. Eur J Pharmacol 478: 35‐38, 2003.
 743.Stobart JLL, Lu L, Anderson HDI, Mori H, Anderson CM. Astrocyte‐induced cortical vasodilation is mediated by d‐serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 110: 3149‐3154, 2013.
 744.Strandgaard S, Barry DI, Paulson OB. Converting enzyme inhibition and autoregulation of cerebral blood flow in spontaneously hypertensive and normotensive rats. Scand J Urol Nephrol Suppl 79: 35‐38, 1984.
 745.Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft‐Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE. Compartmentalized connexin 43 s‐nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31: 399‐407, 2011.
 746.Straub AC, Zeigler AC, Isakson BE. The myoendothelial junction: Connections that deliver the message. Physiology (Bethesda) 29: 242‐249, 2014.
 747.Strazzullo P, D'Elia L, Kandala N‐B, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: Meta‐analysis of prospective studies. BMJ 339: b4567, 2009.
 748.Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51: 978‐992, 2011.
 749.Suidan GL, Brill A, De Meyer SF, Voorhees JR, Cifuni SM, Cabral JE, Wagner DD. Endothelial Von Willebrand factor promotes blood‐brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol 33: 2112‐2120, 2013.
 750.Sullivan MN, Gonzales AL, Pires PW, Bruhl A, Leo MD, Li W, Oulidi A, Boop FA, Feng Y, Jaggar JH, Welsh DG, Earley S. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal 8: ra2, 2015.
 751.Sun W, McConnell E, Pare J‐F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M. Glutamate‐dependent neuroglial calcium signaling differs between young and adult brain. Science 339: 197‐200, 2013.
 752.Sun Z, Martinez‐Lemus LA, Hill MA, Meininger GA. Extracellular matrix‐specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. Am J Physiol Cell Physiol 295: C268‐C278, 2008.
 753.Szok D, Hansen‐Schwartz J, Edvinsson L. In depth pharmacological characterization of endothelin B receptors in the rat middle cerebral artery. Neurosci Lett 314: 69‐72, 2001.
 754.Tajima Y, Takuwa H, Kokuryo D, Kawaguchi H, Seki C, Masamoto K, Ikoma Y, Taniguchi J, Aoki I, Tomita Y, Suzuki N, Kanno I, Saeki N, Ito H. Changes in cortical microvasculature during misery perfusion measured by two‐photon laser scanning microscopy. J Cereb Blood Flow Metab 34: 1363‐1372, 2014.
 755.Takano T, Tian G‐F, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte‐mediated control of cerebral blood flow. Nat Neurosci 9: 260‐267, 2006.
 756.Tamaki K, Sadoshima S, Baumbach GL, Iadecola C, Reis DJ, Heistad DD. Evidence that disruption of the blood‐brain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy. Hypertension 6: I75‐I81, 1984.
 757.Tanaka K, Gotoh F, Fukuuchi Y, Amano T, Suzuki N, Uematsu D, Kawamura J, Yamawaki T, Itoh N, Obara K. Stable prostacyclin analogue preventing microcirculatory derangement in experimental cerebral ischemia in cats. Stroke 19: 1267‐1274, 1988.
 758.Tang SY, Monslow J, Todd L, Lawson J, Puré E, Fitzgerald GA. Cyclooxygenase‐2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation 129: 1761‐1769, 2014.
 759.Tao‐Cheng JH, Nagy Z, Brightman MW. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7: 3293‐3299, 1987.
 760.Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases MMP‐2, MMP‐9, and MT1‐MMP as membrane vesicle‐associated components by endothelial cells. Am J Pathol 160: 673‐680, 2002.
 761.Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, Tinajero C, Zhang R. Cerebral hemodynamics in normal aging: Central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab 34: 971‐978, 2014.
 762.Tateson JE, Moncada S, Vane JR. Effects of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins 13: 389‐397, 1977.
 763.Teichert AM, Miller TL, Tai SC, Wang Y, Bei X, Robb GB, Phillips MJ, Marsden PA. In vivo expression profile of an endothelial nitric oxide synthase promoter‐reporter transgene. Am J Physiol Heart Circ Physiol 278: H1352‐H1361, 2000.
 764.Tennyson VM, Pappas GD. Fine structure of the developing telencephalic and myelencephalic choroid plexus in the rabbit. J Comp Neurol 123: 379‐411, 1964.
 765.Thakore P, Ali S, Earley S. Regulation of vascular tone by transient receptor potential ankyrin 1 channels. Curr Top Membr 85: 119‐150, 2020.
 766.Thakore P, Alvarado MG, Ali S, Mughal A, Pires PW, Yamasaki E, Pritchard HA, Isakson BE, Tran CHT, Earley S. Brain endothelial cell TRPA1 channels initiate neurovascular coupling. Elife 10: e63040, 2021.
 767.Thakore P, Earley S. Transient receptor potential channels and endothelial cell calcium signaling. Compr Physiol 9: 1249‐1277, 2019.
 768.Thomsen MS, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood‐brain barrier. J Neurochem 140: 741‐754, 2017.
 769.Thorin E, Shreeve SM, Thorin‐Trescases N, Bevan JA. Reversal of endothelin‐1 release by stimulation of endothelial alpha2‐adrenoceptor contributes to cerebral vasorelaxation. Hypertension 30: 830‐836, 1997.
 770.Tian Y, Baukal AJ, Sandberg K, Bernstein KE, Balla T, Catt KJ. Properties of AT1a and AT1b angiotensin receptors expressed in adrenocortical Y‐1 cells. Am J Physiol 270: E831‐E839, 1996.
 771.Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209: 493‐506, 2015.
 772.Toda N. Age‐related changes in endothelial function and blood flow regulation. Pharmacol Ther 133: 159‐176, 2012.
 773.Tong X‐K, Lecrux C, Rosa‐Neto P, Hamel E. Age‐dependent rescue by simvastatin of Alzheimer's disease cerebrovascular and memory deficits. J Neurosci 32: 4705‐4715, 2012.
 774.Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS. ZO‐1 controls endothelial adherens junctions, cell‐cell tension, angiogenesis, and barrier formation. J Cell Biol 208: 821‐838, 2015.
 775.Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20‐HETE, TRPC channels, and BKCa in dysregulation of pressure‐induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 305: H1698‐H1708, 2013.
 776.Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Resveratrol treatment rescues neurovascular coupling in aged mice: Role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 306: H299‐H308, 2014.
 777.Totoson P, Pedard M, Marie C, Demougeot C. Activation of endothelial TrkB receptors induces relaxation of resistance arteries. Vascul Pharmacol 106: 46‐53, 2018.
 778.Totoson P, Santini C, Prigent‐Tessier A, Marie C, Demougeot C. Endothelial TrkB receptor activation controls vascular tone of rat middle cerebral artery. Vascul Pharmacol 141: 106930, 2021.
 779.Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2: 98‐105, 2000.
 780.Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular biology of superoxide‐generating NADPH oxidase 5‐implications in hypertension and cardiovascular disease. Antioxid Redox Signal 30: 1027‐1040, 2019.
 781.Touyz RM, Rios FJ, Alves‐Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol 36: 659‐670, 2020.
 782.Tran CHT, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG. Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302: C1226‐C1242, 2012.
 783.Tran ND, Correale J, Schreiber SS, Fisher M. Transforming growth factor‐beta mediates astrocyte‐specific regulation of brain endothelial anticoagulant factors. Stroke 30: 1671‐1678, 1999.
 784.Tran ND, Wong VL, Schreiber SS, Bready JV, Fisher M. Regulation of brain capillary endothelial thrombomodulin mRNA expression. Stroke 27: 2304‐2310.; ; discussion 2310, 1996.
 785.Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 62: 405‐496, 2010.
 786.Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, Lyden PD, Kleinfeld D. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci 29: 14553‐14570, 2009.
 787.Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers ‐ anatomic and physiologic considerations. Handb Clin Neurol 146: 21‐32, 2017.
 788.Turner N, Nolasco L, Tao Z, Dong JF, Moake J. Human endothelial cells synthesize and release ADAMTS‐13. J Thromb Haemost 4: 1396‐1404, 2006.
 789.Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7: 485‐581, 2017.
 790.Uemura M, Tatsumi K, Matsumoto M, Fujimoto M, Matsuyama T, Ishikawa M, Iwamoto T‐A, Mori T, Wanaka A, Fukui H, Fujimura Y. Localization of ADAMTS13 to the stellate cells of human liver. Blood 106: 922‐924, 2005.
 791.Ueno M, Wu B, Nishiyama A, Huang C, Hosomi N, Kusaka T, Nakagawa T, Onodera M, Kido M, Sakamoto H. The expression of matrix metalloproteinase‐13 is increased in vessels with blood‐brain barrier impairment in a stroke‐prone hypertensive model. Hypertens Res 32: 332‐338, 2009.
 792.Usatyuk PV, Natarajan V. Regulation of reactive oxygen species‐induced endothelial cell‐cell and cell‐matrix contacts by focal adhesion kinase and adherens junction proteins. Am J Physiol Lung Cell Mol Physiol 289: L999‐L1010, 2005.
 793.Ustun C. NEUROwords Dr. Thomas Willis' famous eponym: The circle of Willis. J Hist Neurosci 14: 16‐21, 2005.
 794.Vacher E, Richer C, Giudicelli JF. Effects of losartan on cerebral arteries in stroke‐prone spontaneously hypertensive rats. J Hypertens 14: 1341‐1348, 1996.
 795.Vajda S, Bartha K, Wilhelm I, Krizbai IA, Adam‐Vizi V. Identification of protease‐activated receptor‐4 (PAR‐4) in puromycin‐purified brain capillary endothelial cells cultured on Matrigel. Neurochem Int 52: 1234‐1239, 2008.
 796.van den Meiracker AH, Boomsma F. The angiotensin II‐sympathetic nervous system connection. J Hypertens 21: 1453‐1454, 2003.
 797.Van Hecken A, Schwartz JI, Depré M, De Lepeleire I, Dallob A, Tanaka W, Wynants K, Buntinx A, Arnout J, Wong PH, Ebel DL, Gertz BJ, De Schepper PJ. Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX‐2 versus COX‐1 in healthy volunteers. J Clin Pharmacol 40: 1109‐1120, 2000.
 798.van Hinsbergh VWM, Koolwijk P. Endothelial sprouting and angiogenesis: Matrix metalloproteinases in the lead. Cardiovasc Res 78: 203‐212, 2008.
 799.Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: Sweet shield of blood vessels. Trends Cardiovasc Med 17: 101‐105, 2007.
 800.van Varik BJ, Rennenberg RJMW, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ. Mechanisms of arterial remodeling: Lessons from genetic diseases. Front Genet 3: 290, 2012.
 801.Vanhoutte PM, Lüscher TF, Gräser T. Endothelium‐dependent contractions. Blood Vessels 28: 74‐83, 1991.
 802.Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554: 475‐480, 2018.
 803.Vatter H, Konczalla J, Seifert V. Endothelin related pathophysiology in cerebral vasospasm: What happens to the cerebral vessels? Acta Neurochir Suppl 110: 177‐180, 2011.
 804.Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 93: 327‐358, 2013.
 805.Vingtdeux V, Marambaud P. Identification and biology of α‐secretase. J Neurochem 120 Suppl 1: 34‐45, 2012.
 806.Viossat I, Duverger D, Chapelat M, Pirotzky E, Chabrier PE, Braquet P. Elevated tissue endothelin content during focal cerebral ischemia in the rat. J Cardiovasc Pharmacol 22 Suppl 8: S306‐S309, 1993.
 807.Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang N‐Y, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics‐2021 update: A report from the American Heart Association. Circulation 143: e254‐e743, 2021.
 808.Vital SA, Terao S, Nagai M, Granger DN. Mechanisms underlying the cerebral microvascular responses to angiotensin II‐induced hypertension. Microcirculation 17: 641‐649, 2010.
 809.Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97: 908‐915, 2005.
 810.Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101: 396‐401, 2004.
 811.Wahlström MR, Olivecrona M, Ahlm C, Bengtsson A, Koskinen L‐OD, Naredi S, Hultin M. Effects of prostacyclin on the early inflammatory response in patients with traumatic brain injury‐a randomised clinical study. Springerplus 3: 98, 2014.
 812.Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol 178: 422‐428, 2011.
 813.Wang A, Duan Q, Wu J, Liu X, Sun Z. The expression of ADAMTS13 in human microvascular endothelial cells. Blood Coagul Fibrinolysis 27: 464‐466, 2016.
 814.Wang X, Lee S‐R, Arai K, Lee S‐R, Tsuji K, Rebeck GW, Lo EH. Lipoprotein receptor‐mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9: 1313‐1317, 2003.
 815.Wang Y, Deng X, Hewavitharana T, Soboloff J, Gill DL. Stim, ORAI and TRPC channels in the control of calcium entry signals in smooth muscle. Clin Exp Pharmacol Physiol 35: 1127‐1133, 2008.
 816.Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 17: 5‐21, 2016.
 817.Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J, Wan J. The TRPA1 channel in the cardiovascular system: Promising features and challenges. Front Pharmacol 10: 1253, 2019.
 818.Wang Z‐H, Davis BB, Jiang D‐Q, Zhao T‐T, Xu D‐Y. Soluble epoxide hydrolase inhibitors and cardiovascular diseases. Curr Vasc Pharmacol 11: 105‐111, 2013.
 819.Ward ME, Yan L, Kelly S, Angle MR. Flow modulation of pressure‐sensitive tone in rat pial arterioles: Role of the endothelium. Anesthesiology 93: 1456‐1464, 2000.
 820.Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, Doubal FN, Brown R, Ramirez J, MacIntosh BJ, Tannenbaum A, Ballerini L, Rungta RL, Boido D, Sweeney M, Montagne A, Charpak S, Joutel A, Smith KJ, Black SE, Colleagues from the Fondation Leducq Transatlantic Network of Excellence on the Role of the Perivascular Space in Cerebral Small Vessel Disease. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat Rev Neurol 16: 137‐153, 2020.
 821.Warnholtz A, Nickenig G, Schulz E, Macharzina R, Bräsen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Böhm M, Meinertz T, Münzel T. Increased NADH‐oxidase‐mediated superoxide production in the early stages of atherosclerosis: Evidence for involvement of the renin‐angiotensin system. Circulation 99: 2027‐2033, 1999.
 822.Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434‐438, 2003.
 823.Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des 15: 1358‐1372, 2009.
 824.Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7: 467‐477, 2007.
 825.Wei EP, Kontos HA. H2O2 and endothelium‐dependent cerebral arteriolar dilation. Implications for the identity of endothelium‐derived relaxing factor generated by acetylcholine. Hypertension 16: 162‐169, 1990.
 826.Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271: H1262‐H1266, 1996.
 827.Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121‐167, 2007.
 828.Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90: 248‐250, 2002.
 829.Whalley ET, Schilling L, Wahl M. Cerebrovascular effects of prostanoids: In‐vitro studies in feline middle cerebral and basilar artery. Prostaglandins 38: 625‐634, 1989.
 830.Widdop RE, Jones ES, Hannan RE, Gaspari TA. Angiotensin AT2 receptors: Cardiovascular hope or hype? Br J Pharmacol 140: 809‐824, 2003.
 831.Wiemer G, Popp R, Schölkens BA, Gögelein H. Enhancement of cytosolic calcium, prostacyclin and nitric oxide by bradykinin and the ACE inhibitor ramiprilat in porcine brain capillary endothelial cells. Brain Res 638: 261‐266, 1994.
 832.Williams JM, Hull AD, Pearce WJ. Maturational modulation of endothelium‐dependent vasodilatation in ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol 288: R149‐R157, 2005.
 833.Winklewski PJ, Radkowski M, Wszedybyl‐Winklewska M, Demkow U. Brain inflammation and hypertension: The chicken or the egg? J Neuroinflammation 12: 85, 2015.
 834.Wong MS‐K, Vanhoutte PM. COX‐mediated endothelium‐dependent contractions: From the past to recent discoveries. Acta Pharmacol Sin 31: 1095‐1102, 2010.
 835.Wong VL, Hofman FM, Ishii H, Fisher M. Regional distribution of thrombomodulin in human brain. Brain Res 556: 1‐5, 1991.
 836.Wood JP, Ellery PER, Maroney SA, Mast AE. Protein S is a cofactor for platelet and endothelial tissue factor pathway inhibitor‐α but not for cell surface‐associated tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 34: 169‐176, 2014.
 837.Wright JW, Harding JW. The brain renin‐angiotensin system: A diversity of functions and implications for CNS diseases. Pflugers Arch 465: 133‐151, 2013.
 838.Wu J, Fan Z, Zhao Y, Chen Q, Xiao Q. Inhibition of soluble epoxide hydrolase (sEH) protects hippocampal neurons and reduces cognitive decline in type 2 diabetic mice. Eur J Neurosci 53: 2532‐2540, 2021.
 839.Wu W, Li H, Navaneetham D, Reichenbach ZW, Tuma RF, Walsh PN. The kunitz protease inhibitor domain of protease nexin‐2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis. Blood 120: 671‐677, 2012.
 840.Xing C‐Y, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, Tinajero CD, Yuan L‐J, Zhang R. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab 37: 2848‐2856, 2017.
 841.Xu H, Cao Y, Yang X, Cai P, Kang L, Zhu X, Luo H, Lu L, Wei L, Bai X, Zhu Y, Zhao B‐Q, Fan W. ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. Blood 130: 11‐22, 2017.
 842.Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9: 628‐635, 2006.
 843.Xu J, Qu ZX, Moore SA, Hsu CY, Hogan EL. Receptor‐linked hydrolysis of phosphoinositides and production of prostacyclin in cerebral endothelial cells. J Neurochem 58: 1930‐1935, 1992.
 844.Yadav R, Larbi KY, Young RE, Nourshargh S. Migration of leukocytes through the vessel wall and beyond. Thromb Haemost 90: 598‐606, 2003.
 845.Yamakawa H, Jezova M, Ando H, Saavedra JM. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23: 371‐380, 2003.
 846.Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 92: 2791‐2801, 1998.
 847.Yamasaki E, Thakore P, Krishnan V, Earley S. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. Am J Physiol Heart Circ Physiol 318: H461‐H469, 2019.
 848.Yamazaki T, Mukouyama Y‐S. Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med 5: 78, 2018.
 849.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411‐415, 1988.
 850.Yang C, DeMars KM, Alexander JC, Febo M, Candelario‐Jalil E. Sustained neurological recovery after stroke in aged rats treated with a novel prostacyclin analog. Stroke 48: 1948‐1956, 2017.
 851.Yang F, Liu S, Wang S‐J, Yu C, Paganini‐Hill A, Fisher MJ. Tissue plasminogen activator expression and barrier properties of human brain microvascular endothelial cells. Cell Physiol Biochem 28: 631‐638, 2011.
 852.Yang ST, Faraci FM, Heistad DD. Effects of cilazapril on cerebral vasodilatation in hypertensive rats. Hypertension 22: 150‐155, 1993.
 853.Yang ST, Mayhan WG, Faraci FM, Heistad DD. Endothelium‐dependent responses of cerebral blood vessels during chronic hypertension. Hypertension 17: 612‐618, 1991.
 854.Yang ST, Mayhan WG, Faraci FM, Heistad DD. Mechanisms of impaired endothelium‐dependent cerebral vasodilatation in response to bradykinin in hypertensive rats. Stroke 22: 1177‐1182, 1991.
 855.Yang T, Guo R, Zhang F. Brain perivascular macrophages: Recent advances and implications in health and diseases. CNS Neurosci Ther 25: 1318‐1328, 2019.
 856.Yao ST, May CN. Intra‐carotid angiotensin II activates tyrosine hydroxylase‐expressing rostral ventrolateral medulla neurons following blood‐brain barrier disruption in rats. Neuroscience 245: 148‐156, 2013.
 857.Yao Y. Basement membrane and stroke. J Cereb Blood Flow Metab 39: 3‐19, 2019.
 858.Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15: 130, 2015.
 859.Yepes M, Woo Y, Martin‐Jimenez C. Plasminogen activators in neurovascular and neurodegenerative disorders. Int J Mol Sci 22: 4380, 2021.
 860.Yip H, Chan W‐Y, Leung P‐C, Kwan H‐Y, Liu C, Huang Y, Michel V, Yew DT‐W, Yao X. Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122: 553‐561, 2004.
 861.Yoon J‐H, Lee E‐S, Jeong Y. In vivo imaging of the cerebral endothelial glycocalyx in mice. J Vasc Res 54: 59‐67, 2017.
 862.Young AP, Zhu J, Bagher AM, Denovan‐Wright EM, Howlett SE, Kelly MEM. Endothelin B receptor dysfunction mediates elevated myogenic tone in cerebral arteries from aged male Fischer 344 rats. Geroscience, 2021. DOI: 10.1007/s11357‐020‐00309‐7.
 863.Yu X, Peng Y, Liang H, Fu K, Zhao Z, Xie C, Zhou L, Zhang K. TSLP/TSLPR promote angiogenesis following ischemic stroke via activation of the PI3K/AKT pathway. Mol Med Rep 17: 3411‐3417, 2018.
 864.Yudilevich DL, De Rose N. Blood‐brain transfer of glucose and other molecules measured by rapid indicator dilution. Am J Physiol 220: 841‐846, 1971.
 865.Yurchenco PD. Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3: a004911, 2011.
 866.Zardetto‐Smith AM, Thunhorst RL, Cicha MZ, Johnson AK. Afferent signaling and forebrain mechanisms in the behavioral control of extracellular fluid volume. Ann N Y Acad Sci 689: 161‐176, 1993.
 867.Zarriello S, Tuazon JP, Corey S, Schimmel S, Rajani M, Gorsky A, Incontri D, Hammock BD, Borlongan CV. Humble beginnings with big goals: Small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders. Prog Neurobiol 172: 23‐39, 2019.
 868.Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276: 36059‐36062, 2001.
 869.Zeldin DC, DuBois RN, Falck JR, Capdevila JH. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 322: 76‐86, 1995.
 870.Zerrouk A, Auguet M, Delaflotte S, Chabrier PE. Effects of angiotensin I and angiotensin II in blood vessels: Greater influence of converting enzyme activity in the rabbit basilar artery. Naunyn Schmiedebergs Arch Pharmacol 354: 466‐473, 1996.
 871.Zhang DX, Gutterman DD. Transient receptor potential channel activation and endothelium‐dependent dilation in the systemic circulation. J Cardiovasc Pharmacol 57: 133‐139, 2011.
 872.Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 93: 1165‐1183, 2015.
 873.Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow‐Robin) spaces in the human cerebrum. J Anat 170: 111‐123, 1990.
 874.Zhang F, Xu S, Iadecola C. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: Evidence for an involvement of endothelial nitric oxide. Neuroscience 69: 1195‐1204, 1995.
 875.Zhang W, Davis CM, Edin ML, Lee CR, Zeldin DC, Alkayed NJ. Role of endothelial soluble epoxide hydrolase in cerebrovascular function and ischemic injury. PLoS One 8: e61244, 2013.
 876.Zhang W, Davis CM, Zeppenfeld DM, Golgotiu K, Wang MX, Haveliwala M, Hong D, Li Y, Wang RK, Iliff JJ, Alkayed NJ. Role of endothelium‐pericyte signaling in capillary blood flow response to neuronal activity. J. Cereb. Blood Flow Metab., 2021. DOI: 10.1177/0271678X211007957.
 877.Zhang W, Koerner IP, Noppens R, Grafe M, Tsai H‐J, Morisseau C, Luria A, Hammock BD, Falck JR, Alkayed NJ. Soluble epoxide hydrolase: A novel therapeutic target in stroke. J Cereb Blood Flow Metab 27: 1931‐1940, 2007.
 878.Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR, Alkayed NJ. Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39: 2073‐2078, 2008.
 879.Zheng X, Zinkevich NS, Gebremedhin D, Gauthier KM, Nishijima Y, Fang J, Wilcox DA, Campbell WB, Gutterman DD, Zhang DX. Arachidonic acid‐induced dilation in human coronary arterioles: Convergence of signaling mechanisms on endothelial TRPV4‐mediated Ca2+ entry. J Am Heart Assoc 2: e000080, 2013.
 880.Zhou J, Pavel J, Macova M, Yu Z‐X, Imboden H, Ge L, Nishioku T, Dou J, Delgiacco E, Saavedra JM. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke 37: 1271‐1276, 2006.
 881.Zhou W, Inada M, Lee T‐P, Benten D, Lyubsky S, Bouhassira EE, Gupta S, Tsai H‐M. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest 85: 780‐788, 2005.
 882.Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W. Bone marrow‐derived cells do not incorporate into the adult growing vasculature. Circ Res 94: 230‐238, 2004.
 883.Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci 28: 202‐208, 2005.
 884.Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K‐A, Pozzan T, Carmignoto G. Neuron‐to‐astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43‐50, 2003.
 885.Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS‐induced ROS release. Physiol Rev 94: 909‐950, 2014.
 886.Zou Q, Leung SWS, Vanhoutte PM. Transient receptor potential channel opening releases endogenous acetylcholine, which contributes to endothelium‐dependent relaxation induced by mild hypothermia in spontaneously hypertensive rat but not Wistar‐Kyoto rat arteries. J Pharmacol Exp Ther 354: 121‐130, 2015.
 887.Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6: 499‐506, 2004.
 888.Zubkov A, Miao L, Zhang J. Signal transduction of ET‐1 in contraction of cerebral arteries. J Cardiovasc Pharmacol 44 Suppl 1: S24‐S26, 2004.
 889.Zuloaga KL, Davis CM, Zhang W, Alkayed NJ. Role of aromatase in sex‐specific cerebrovascular endothelial function in mice. Am J Physiol Heart Circ Physiol 306: H929‐H937, 2014.
 890.Zuloaga KL, Krasnow SM, Zhu X, Zhang W, Jouihan SA, Shangraw RE, Alkayed NJ, Marks DL. Mechanism of protection by soluble epoxide hydrolase inhibition in type 2 diabetic stroke. PLoS One 9: e97529, 2014.
 891.Zuo D, Pi Q, Shi Y, Luo S, Xia Y. Dihydroxyeicosatrienoic acid, a metabolite of epoxyeicosatrienoic acids upregulates endothelial nitric oxide synthase expression through transcription: Mechanism of vascular endothelial function protection. Cell Biochem Biophys 79: 289‐299, 2021.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Theresa A. Lansdell, Laura C. Chambers, Anne M. Dorrance. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022, 12: 3449-3508. doi: 10.1002/cphy.c210015