Comprehensive Physiology Wiley Online Library

Control of Mammalian Locomotion by Somatosensory Feedback

Full Article on Wiley Online Library



Abstract

When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1‐71, 2021.

Figure 1. Figure 1. Neural control of locomotion . (A) The half‐center model is composed of populations of last‐order interneurons that control extensor (In‐E) and flexor (In‐F) motoneurons. MN‐E and MN‐F represent extensor and flexor motoneurons, respectively. The In‐E and In‐F populations receive excitatory inputs from contralateral (coFRA) and ipsilateral (iFRA) flexor reflex afferents, respectively, and these interneuron populations mutually inhibit each other. FRAs have been used to characterize a collection of high‐threshold afferents from muscle, joint, and cutaneous receptors involved in generating ipsilateral limb flexion (and crossed extension). However, stimulating FRAs produce excitatory and inhibitory responses in both ipsilateral flexors and extensors as well as muscles of the other limbs and the term can lead to confusion. Based on Jankowska E, et al., 1967 440 . (B) The unit burst generator model originally proposed by Grillner 337 . EDB, extensor digitorum brevis. Modified, with permission, from Grillner S, et al., 2008 343 . (C) The two‐layer central pattern generator model separating rhythm generation (RG) and pattern formation (PF). Last‐order extensor (PF‐E) and flexor (PF‐F) populations of interneurons at the PF level control extensor (MN‐E) and flexor (MN‐F) motoneuron pools, respectively. PF‐E and PF‐F mutually inhibit each other via inhibitory interneurons (InPF‐E and InPF‐F). The pattern formation level receives inputs from extensor (RG‐E) and flexor (RG‐F) populations of interneurons located at the rhythm generation level. The RG‐E and RG‐F populations can mutually excite or inhibit each other. Somatosensory feedback projects to neurons at the RG and PF levels as well as motoneurons. Motoneurons also receive inputs from Ia inhibitory interneurons (Ia‐E and Ia‐F) and motoneuron collaterals project to Renshaw cells (R‐E and R‐F). Adapted, with permission, from Rybak IA, et al., 2006 729,730 . (D) Schematic representation of the neural control of interlimb coordination. A distinct spinal locomotor CPG controls each limb. Commissural interneurons ensure left‐right coordination at cervical and lumbar levels. Descending and ascending propriospinal pathways, with homolateral and diagonal projections, coordinate cervical and lumbar CPGs. Propriospinal pathways can consist of neurons with long or short axonal projections. Supraspinal inputs and somatosensory feedback from the limbs access spinal CPGs via commissural and propriospinal pathways. Reproduced, with permission, from Frigon A, 2017 275 . Arrows represent excitatory or inhibitory influences. E, extensor; F, flexor; LF, left forelimb; LH, left hindlimb; RF, right forelimb; RH, right hindlimb.
Figure 2. Figure 2. Examples of mammalian gaits . Examples of quadrupedal symmetric gaits classified based on the duty cycle (the horizontal axis in the graph) and the phase difference between the homolateral hindlimb and forelimb footfalls (vertical axis). Examples of symmetric gaits include walking with a lateral sequence of footfalls of the pygmy hippopotamus with a lateral limb support sequence (top left); three running gaits of the horse, including a pace with in‐phase 2‐beat movements of the homolateral limbs (top right), trot with in‐phase 2‐beat movements of the contralateral fore‐ and hindlimbs (middle bottom) and a 4‐beat lateral sequence gait with a single foot on the ground and the other limbs in swing (middle top); a 4‐beat diagonal sequence gait with a single foot on the ground and the other limbs in swing in the duiker, an African antelope (bottom right); and walking with a diagonal sequence of footfalls in the monkey. Modified, with permission, from Hildebrand M, 1989 374 .
Figure 3. Figure 3. Support phases during walking in the cat and related static and dynamic stability measures . (A) Limb support phases (top), the corresponding cat body configurations with the base of support (in gray), paw prints, center of mass (circles), and extrapolated center of mass (diamonds) shown for each limb support phase during cat overground walking. Reproduced, with permission, from Farrell BJ, et al., 2014 251 . (B) Support phases during treadmill walking for the left hindlimb (LH), left forelimb (LF), right hindlimb (RH), and right forelimb (RF) shown by horizontal lines at bottom. The traces correspond to the position of the center of mass (CoM), extrapolated center of mass (xCoM), and the center of pressure (CoP) in the left‐right direction as a function of time. Vertical shaded rectangles correspond to the 8 support phases. Reproduced, with permission, from Park H, et al., 2019 636 .
Figure 4. Figure 4. Ground reaction forces of different quadrupedal species and humans during locomotion . In quadrupeds of different sizes from a mouse to a giraffe, vertical ground reaction force (GRF) applied to the forelimbs is typically greater than the GRF applied to the hindlimbs. The forelimbs generate larger breaking force impulses than accelerating impulses in the anterior‐posterior direction. The accelerating force impulses of the hindlimbs are larger than breaking ones. In all panels except for human walking, solid lines are vertical forces, dashed lines are anterior‐posterior forces, and dashed lines with dots are medio‐lateral forces (medio‐lateral ground reaction applied to the foot is directed toward the body, that is, the foot applies force on the ground in the opposite outward direction). From top left to bottom right: GRFs of walking mouse, Modified from 156 , GRFs of trotting rat, modified from 591 , GRFs of walking cat 251 , normal and anterior‐posterior forces during level, upslope and downslope walking in humans, modified from 487 , GRFs of trotting horse, modified from 157 and GRFs of walking giraffe, modified from 66 . BW, bodyweight; LF, left forelimb; LH, left hindlimb; RF, right forelimb; RH, right hindlimb.
Figure 5. Figure 5. Schematic representation of ensemble activity of muscle afferents . The figure shows afferent activity recorded in freely walking cats (red lines) and computed using a neuromechanical model relating afferent activity to instantaneous muscle fascicle length and velocity and tendon force (blue lines). Length‐related spindle primary (Ia) and secondary (II) afferents from ankle (tibialis anterior) and knee (biceps femoris posterior) flexors demonstrate increased activity at the swing‐to‐stance transition, while spindle secondary afferents from hip flexors (rectus femoris and medial sartorius) show increased activity at the stance‐to‐swing transition. These patterns of activity are consistent with muscle fascicle length changes. Length‐related activity of spindle afferents and force‐related activity of GTO afferents of ankle (triceps surae, soleus, gastrocnemius) and knee (vasti and rectus femoris) extensors is high during the stance phase and corresponds to high EMG activity of these muscles in stance. High activity of GTO afferents of the knee flexor‐hip extensor hamstrings at phase transitions also corresponds to EMG activity pattern of this muscle. BFP, posterior biceps femoris; GS, gastrocnemius; HAM, hamstrings; RF, rectus femoris; SOL, soleus; SrtM, medial sartorius TA, tibialis anterior; TS, triceps surae; [1] Prochazka and Gorassini 692 ; [2] and [5], Loeb, Duysens 503 ; [3, 4] and [6], Loeb et al. 504,505,506 ; [7] Loeb 500 . Computed afferent activity is taken from 686 . Adapted, with permission, from Prilutsky BI, et al., 2016 686 .
Figure 6. Figure 6. Projections from single group Ia afferent to neuronal targets of spinal cord . The figure shows the trajectory of axon collaterals of a muscle spindle primary afferent (group Ia) from the medial gastrocnemius intra‐axonally labeled with horseradish peroxidase. Colored circles indicate the location of five populations of target cells contacted by terminal branches of the group Ia afferent. Approximate locations of spinal cord laminae are shown (from Roman numerals II‐X). DSCT, dorsal spinocerebellar tract; VSCT, ventral spinocerebellar tract. Adapted and reproduced, with permission, from Jankowska E, 2015 435 ; Ishizuka N, et al., 1979 419 .
Figure 7. Figure 7. Muscle afferent projections in the rat spinal cord . Figure shows contour maps of varicosities from three afferents of each class (Group Ia, II, and Ib). Contour maps created by calculating the density of varicosities and outlining areas above a certain threshold. Approximate locations of spinal cord laminae are shown. Modified, with permission, from Vincent JA, et al., 2017 835 .
Figure 8. Figure 8. Task‐dependent modulation of somatosensory feedback . Effects of manually dorsiflexing the ankle (∼5°) during spontaneous (A) fictive locomotion and (B) fictive scratching in a decerebrate curarized cat. Figure shows activity from extensor and flexor nerves. EDL, extensor digitorum longus; MG, medial gastrocnemius; SmAB, semimembranosus‐anterior biceps; TA, tibialis anterior. Modified, with permission, from Frigon A and Gossard JP, 2010 282 .
Figure 9. Figure 9. Phase‐dependent modulation of cutaneous reflexes . Phase‐and speed‐dependent modulation of cutaneous reflexes evoked by electrically stimulating the superficial peroneal nerve (single 0.2 ms pulse at 1.2 times the motor threshold) in (A) semitendinosus, (B) vastus lateralis and (C) lateral gastrocnemius at a treadmill speed of 0.4 m/s in a spinal cat. Cutaneous reflexes are separated into 10 bins. Rectified EMG waveforms obtained with stimulation are separated into 10 bins (average of 5–17 cycles per bin). The black lines show the background level of EMG in each bin (average of ∼90 control cycles). The EMG waveform shown vertically on the right of each panel is the rectified activity of the muscle across the normalized cycle. Modified, with permission, from Hurteau MF, et al., 2017 407 .
Figure 10. Figure 10. Phase‐dependent modulation of postsynaptic potentials evoked by stimulating extensor and flexor muscle afferents at group I strength during fictive locomotion . (A) Nerves to plantaris (Pl) and sartorius (Srt) muscles were stimulated at group I strength during spontaneous fictive locomotion in a decerebrate curarized cat. Intracellular recordings from antidromically identified motoneurons were made with glass micropipettes filled with QX‐314. The type (i.e., inhibitory or excitatory) of last‐order interneuron activated within a given reflex pathway can be inferred by the sign of the postsynaptic potential recorded in the motoneuron. (B) During a fictive locomotor episode, the 2 nerves were stimulated with high frequency and short trains (6 pulses at 200 Hz) in alternation, with an interval of 150 to 250 ms between nerve stimulations. From top to bottom: Evoked responses tilted 90° evoked by Srt and Pl nerve stimulation given in alternation; intracellular membrane potential oscillations in the SmAB motoneuron showing the locomotor‐drive potential and superimposed evoked responses; ENGs from extensors, semimembranosus‐anterior biceps (SmAB), and lateral gastrocnemius‐soleus (LGS) and from a flexor, tibialis anterior (TA). The locomotor cycle was divided into extension and flexion phases according to the extensor ENG onset and offsets. (C) Postsynaptic potentials evoked by stimulating Srt and Pl nerves were divided and averaged into extension and flexion phases. Data were recorded in Jean‐Pierre Gossard's lab at the Université de Montréal.
Figure 11. Figure 11. Presynaptic inhibition through primary afferent depolarization . The figure shows synaptic contact between a primary afferent and a postsynaptic neuron. Two GABAergic interneurons make axo‐axonic contacts on the primary afferent. One GABAergic interneuron receives converging glutamatergic inputs from a group I afferent and from a CPG neuron while the other GABAergic interneuron receives input from a reticulospinal neuron. During locomotion, the group I afferent and CPG neuron depolarize their target GABAergic interneuron, leading to the release of GABA. GABA binds to GABA A ionotropic receptors on the primary afferent and opens Cl channels. Cl exits the primary afferent leading to a depolarization (PAD, primary afferent depolarization) and an electrotonic potential that travels in both directions. The antidromic PAD collides with the action potential coming from the periphery, reducing the orthodromic response and preventing release of glutamate at the primary afferent terminal. The electrotonic potential traveling in the orthodromic direction weakens in magnitude the further it travels and as it reaches the terminal, it is too weak to affect transmitter release.
Figure 12. Figure 12. Modulation of somatosensory feedback and its interactions with central locomotor networks . The figure shows potential mechanisms and interactions modulating inputs from a group Ib afferent of an ankle extensor. Upon entering the spinal cord, the Ib afferent makes synaptic contacts with neurons of the dorsal spinocerebellar tract (DSCT), the spinal locomotor CPG, represented as extensor and flexor half‐centers, as well as inhibitory and excitatory last‐order interneurons that project to ankle extensor motoneurons. The Ib afferent also ascends to brainstem nuclei that transmit the information to the cerebellum, thalamus, and cerebral cortex. At rest, the disynaptic inhibitory pathway is open and the excitatory pathway is inhibited. During locomotion, the spinal CPG inhibits the inhibitory pathway and releases the excitatory pathway from inhibition through disinhibition. At the same time, various supraspinal structures interact dynamically with each other and with spinal circuits, such as the spinal CPG and local reflex circuits.
Figure 13. Figure 13. Proprioceptive feedback and mouse genetics . (A) Selective removal of muscle spindles in Egr3‐KO mice occurs through loss of neurotrophin 3 (NT3) expression in the muscle spindles resulting in their degeneration postnatally. (B) Proprioceptive afferent neurons are selectively removed by making them selectively express the highly toxic DTA using the calcium‐binding protein Parvalbumin (Pv) and the transcription factor Isl2, both genes collectively expressed in proprioceptive afferents only. (C) Alternatively, proprioceptive afferent neurons can be made susceptible to the diphtheria toxin (DTX) by making them express the gene that encodes the diphtheria toxin receptor (DTR), normally not expressed in mice. In these mice, systemic injection of DTX results in acute removal of the proprioceptors. (D) The gene that encodes the DTR in a cre‐dependent manner can be postnatally delivered via adeno associated virus (AAV) injections into selected muscles. Later, as in (C), proprioceptive afferents only from the AAV injected muscles can be destroyed by systemic injection of DTX.
Figure 14. Figure 14. Hill‐type muscle model and its properties . (A) Three‐element Hill‐type model. CE, contractile element; PE, parallel elastic element; T, tendon; m, mass of muscle fascicles. (B) Normalized force‐length relationship of the contractile element fully activated and producing force isometrically, that is, without length change. Force is normalized to the maximum muscle force developed by the fully activated muscle at its optimal length. Length is normalized to the optimal muscle fascicle length. (C) Normalized force‐velocity relationship of the contractile element. Velocity is normalized to the maximum shortening velocity. Positive velocity corresponds to shortening. (D) Normalized tendon force‐length relationship. Parameters F Tnl , L Tnl and L T Max are empirical constants; L To is the resting (slack) tendon length. Adapted, with permission, from Prilutsky BI, et al., 2016 686 .
Figure 15. Figure 15. Pyridoxine intoxications reveal that large diameter somatosensory afferents contribute to postural control . (A) Schematic of the experimental set‐up. Filled circles represent kinematic markers. The antero‐posterior (AP) stance distance is the horizontal distance between the wrist and ankle joints. Forelimb, hindlimb, and trunk axis indicated by dashed lines. Reproduced and modified, with permission, from Fung J and Macpherson JM, 1999 293 . (B) Rectified averaged EMG activity of the gluteus medius and biceps femoris medial head before (control) and 7 days after pyridoxine intoxication, which destroys large‐diameter somatosensory afferents, in one cat with translation of the support surface at 240°. The dashed vertical line indicates the onset of platform acceleration. Under each trace, the arrows indicate response onset in control trials and at day 7. (C) Amplitude maximum initial displacement of the CoM and time of maximum displacement in relation to platform translation at 240°. Error bars indicate SE. **Significantly different from control values ( P  < 0.001, one‐way ANOVA). (B,C) Reproduced and modified, with permission, from Stapley PJ, et al., 2002 791 .
Figure 16. Figure 16. Somatosensory feedback is required for proper paw placement during skilled locomotion . (A) Cat stepping on a horizontal ladder before (control) and after a complete cutaneous denervation of the hindpaws. Based on, with permission, Bouyer LJ and Rossignol S, 2003 93 . (B) Egr3 mutant mice make more errors during walking on a horizontal ladder, determined as more frequent foot droppings between rungs than in wild types. Each bar indicates the number of steps that landed on a rung (black bars) or missed the rung (red bars) counted during one run. Each set of bar represents a run from different mouse ( n  = 13 for wild type and n  = 15 for Egr3 mutants). Based on, with permission, Akay T, et al., 2014 10 .
Figure 17. Figure 17. The loss of muscle spindle feedback in mice impairs swimming but not treadmill locomotion . Locomotor pattern gradually degrades with removal of proprioceptive feedback. (A) Chronic EMG recordings were made during treadmill locomotion and swimming in wild‐type and Egr3 mutants that lack functional muscle spindle feedback. (B) Bar diagram illustrating the activity of flexor (red) and extensor (blue) muscles during treadmill walking and swimming in wild‐type ( n  = 16 for walking and n  = 14 for swimming) and Egr3 mutant ( n  = 15 for walking and swimming) mice. Each horizontal bar is the average EMG activity in a normalized locomotor cycle (between successive swing or iliopsoas burst onsets for walking and swimming, respectively). GM, gluteus maximum; IP, iliopsoas; St, semitendinosus; TA, tibialis anterior; VL, vastus lateralis. Based on, with permission, Akay T, et al., 2014 10 .
Figure 18. Figure 18. Effect of stimulating muscle afferents during spontaneous fictive locomotion in decerebrate curarized cats . The figure shows the effect of stimulating the plantaris (Pl) nerve at group I strength and the sartorius (Srt) nerve at group II strength on the raw ENG bursts of activity during spontaneous fictive locomotion. Stimulation of the Pl nerve during (A) mid‐flexion resets the rhythm to extension while stimulation during (B) late extension prolongs the extensor burst. Stimulation of the Srt nerve during (C) early flexion resets the rhythm to extension while stimulation during (D) mid‐ to late extension has no visible effect. LGS, lateral gastrocnemius‐soleus; SmAB, semimembranosus‐anterior biceps; T, threshold; TA, tibialis anterior. Reproduced and modified, with permission, from Frigon A, et al., 2010 288 .
Figure 19. Figure 19. Proprioceptive feedback from extensor muscles contributes to the magnitude of extensor activity . (A) When the hindlimb of a decerebrate cat steps in a hole during treadmill locomotion, the EMG activity in ankle (LG, lateral gastrocnemius) and knee extensor (VM, vastus medialis) muscles is reduced. The shaded area indicates the time the foot entered the hole. (B) Loading ankle extensor muscles during foot‐in‐hole trials restored normal levels of EMG activity in ankle extensor muscles. The shaded area indicates the time the foot entered the hole without (top) and with (bottom) load applied to the Achilles tendon. Adapted, with permission, from Hiebert GW and Pearson KG, 1999 370 .
Figure 20. Figure 20. Cutaneous inputs regulate muscle activity and alter limb trajectory in a phase‐dependent manner . (A) The effects of stimulating the superficial radial (SR) and superficial peroneal (SP) nerves on the EMG activity of selected muscles and the phases of the four limbs during treadmill locomotion at 0.4 m/s in an intact cat. The SR and SP nerves were stimulated during mid‐stance and mid‐swing of the homonymous limb. The shaded area indicates the period of stimulation (25 pulses of 0.2 ms duration at 200 Hz and at 1.2 times the motor threshold). (B) Kinematic reconstruction of the forelimb (top panels) and hindlimb (bottom panels) without (control) and with stimulation during stance and swing. Note that in the top panels the left SR was stimulated while in the bottom panels the right SP was stimulated. Unpublished data from Frigon lab. BB, biceps brachii; ECU, extensor carpi ulnaris; FCU, flexor carpi ulnaris; GL, gastrocnemius lateralis; L, left; F, forelimb; H, hindlimb; R, right; Srt, anterior sartorius; ST, stance; TA, tibialis anterior; TRI, triceps brachii.
Figure 21. Figure 21. Cutaneous inputs regulate inter‐joint coordination during locomotion . The figure shows short‐latency pathways from cutaneous afferents of the superficial peroneal (SP) nerve to different hindlimb motoneurons during the flexion phase of fictive locomotion. The central pattern generator (CPG) is shown with mutually inhibiting extensor (E) and flexor (F) parts. The CPG can phasically modulate interneurons mediating di‐ and trisynaptic excitation of hindlimb motoneurons from SP afferents. The inhibitory pathway to ankle extensor motoneurons observed at rest (last‐order inhibitory interneuron In‐2) is inhibited by the spinal locomotor CPG. Ex‐1 and Ex‐2, excitatory interneurons 1 and 2; In‐1 and In‐2, inhibitory interneurons 1 and 2. Reproduced and modified, with permission, from Quevedo J, et al., 2000 705 .
Figure 22. Figure 22. Interlimb reflexes coordinate the four limbs during locomotion . Schematic of reflex pathways and main responses during stance and swing evoked by SP nerve stimulation. (A) Upon entering the spinal cord, primary afferents from the SP nerve contact (i) interneurons that project within the hemisegment (homonymous responses), (ii) commissural interneurons that project contralaterally (crossed responses), and (iii) ascending propriospinal neurons with their main axonal projections terminating ipsilaterally (homolateral responses) or on the other side (diagonal responses). Diagonal pathways cross at various segments along the length of the spinal cord and include collaterals from homolateral pathways that also project contralaterally. (B) Panels show the main pattern of forelimb and hindlimb responses evoked with SP nerve stimulation when the different limbs are in mid‐swing or mid‐stance. Responses shaded in dark blue represent excitatory responses while those in red represent inhibitory responses. Responses are aligned to the start of the stimulation. Adapted, with permission, from Hurteau MF, et al., 2018 408 .


Figure 1. Neural control of locomotion . (A) The half‐center model is composed of populations of last‐order interneurons that control extensor (In‐E) and flexor (In‐F) motoneurons. MN‐E and MN‐F represent extensor and flexor motoneurons, respectively. The In‐E and In‐F populations receive excitatory inputs from contralateral (coFRA) and ipsilateral (iFRA) flexor reflex afferents, respectively, and these interneuron populations mutually inhibit each other. FRAs have been used to characterize a collection of high‐threshold afferents from muscle, joint, and cutaneous receptors involved in generating ipsilateral limb flexion (and crossed extension). However, stimulating FRAs produce excitatory and inhibitory responses in both ipsilateral flexors and extensors as well as muscles of the other limbs and the term can lead to confusion. Based on Jankowska E, et al., 1967 440 . (B) The unit burst generator model originally proposed by Grillner 337 . EDB, extensor digitorum brevis. Modified, with permission, from Grillner S, et al., 2008 343 . (C) The two‐layer central pattern generator model separating rhythm generation (RG) and pattern formation (PF). Last‐order extensor (PF‐E) and flexor (PF‐F) populations of interneurons at the PF level control extensor (MN‐E) and flexor (MN‐F) motoneuron pools, respectively. PF‐E and PF‐F mutually inhibit each other via inhibitory interneurons (InPF‐E and InPF‐F). The pattern formation level receives inputs from extensor (RG‐E) and flexor (RG‐F) populations of interneurons located at the rhythm generation level. The RG‐E and RG‐F populations can mutually excite or inhibit each other. Somatosensory feedback projects to neurons at the RG and PF levels as well as motoneurons. Motoneurons also receive inputs from Ia inhibitory interneurons (Ia‐E and Ia‐F) and motoneuron collaterals project to Renshaw cells (R‐E and R‐F). Adapted, with permission, from Rybak IA, et al., 2006 729,730 . (D) Schematic representation of the neural control of interlimb coordination. A distinct spinal locomotor CPG controls each limb. Commissural interneurons ensure left‐right coordination at cervical and lumbar levels. Descending and ascending propriospinal pathways, with homolateral and diagonal projections, coordinate cervical and lumbar CPGs. Propriospinal pathways can consist of neurons with long or short axonal projections. Supraspinal inputs and somatosensory feedback from the limbs access spinal CPGs via commissural and propriospinal pathways. Reproduced, with permission, from Frigon A, 2017 275 . Arrows represent excitatory or inhibitory influences. E, extensor; F, flexor; LF, left forelimb; LH, left hindlimb; RF, right forelimb; RH, right hindlimb.


Figure 2. Examples of mammalian gaits . Examples of quadrupedal symmetric gaits classified based on the duty cycle (the horizontal axis in the graph) and the phase difference between the homolateral hindlimb and forelimb footfalls (vertical axis). Examples of symmetric gaits include walking with a lateral sequence of footfalls of the pygmy hippopotamus with a lateral limb support sequence (top left); three running gaits of the horse, including a pace with in‐phase 2‐beat movements of the homolateral limbs (top right), trot with in‐phase 2‐beat movements of the contralateral fore‐ and hindlimbs (middle bottom) and a 4‐beat lateral sequence gait with a single foot on the ground and the other limbs in swing (middle top); a 4‐beat diagonal sequence gait with a single foot on the ground and the other limbs in swing in the duiker, an African antelope (bottom right); and walking with a diagonal sequence of footfalls in the monkey. Modified, with permission, from Hildebrand M, 1989 374 .


Figure 3. Support phases during walking in the cat and related static and dynamic stability measures . (A) Limb support phases (top), the corresponding cat body configurations with the base of support (in gray), paw prints, center of mass (circles), and extrapolated center of mass (diamonds) shown for each limb support phase during cat overground walking. Reproduced, with permission, from Farrell BJ, et al., 2014 251 . (B) Support phases during treadmill walking for the left hindlimb (LH), left forelimb (LF), right hindlimb (RH), and right forelimb (RF) shown by horizontal lines at bottom. The traces correspond to the position of the center of mass (CoM), extrapolated center of mass (xCoM), and the center of pressure (CoP) in the left‐right direction as a function of time. Vertical shaded rectangles correspond to the 8 support phases. Reproduced, with permission, from Park H, et al., 2019 636 .


Figure 4. Ground reaction forces of different quadrupedal species and humans during locomotion . In quadrupeds of different sizes from a mouse to a giraffe, vertical ground reaction force (GRF) applied to the forelimbs is typically greater than the GRF applied to the hindlimbs. The forelimbs generate larger breaking force impulses than accelerating impulses in the anterior‐posterior direction. The accelerating force impulses of the hindlimbs are larger than breaking ones. In all panels except for human walking, solid lines are vertical forces, dashed lines are anterior‐posterior forces, and dashed lines with dots are medio‐lateral forces (medio‐lateral ground reaction applied to the foot is directed toward the body, that is, the foot applies force on the ground in the opposite outward direction). From top left to bottom right: GRFs of walking mouse, Modified from 156 , GRFs of trotting rat, modified from 591 , GRFs of walking cat 251 , normal and anterior‐posterior forces during level, upslope and downslope walking in humans, modified from 487 , GRFs of trotting horse, modified from 157 and GRFs of walking giraffe, modified from 66 . BW, bodyweight; LF, left forelimb; LH, left hindlimb; RF, right forelimb; RH, right hindlimb.


Figure 5. Schematic representation of ensemble activity of muscle afferents . The figure shows afferent activity recorded in freely walking cats (red lines) and computed using a neuromechanical model relating afferent activity to instantaneous muscle fascicle length and velocity and tendon force (blue lines). Length‐related spindle primary (Ia) and secondary (II) afferents from ankle (tibialis anterior) and knee (biceps femoris posterior) flexors demonstrate increased activity at the swing‐to‐stance transition, while spindle secondary afferents from hip flexors (rectus femoris and medial sartorius) show increased activity at the stance‐to‐swing transition. These patterns of activity are consistent with muscle fascicle length changes. Length‐related activity of spindle afferents and force‐related activity of GTO afferents of ankle (triceps surae, soleus, gastrocnemius) and knee (vasti and rectus femoris) extensors is high during the stance phase and corresponds to high EMG activity of these muscles in stance. High activity of GTO afferents of the knee flexor‐hip extensor hamstrings at phase transitions also corresponds to EMG activity pattern of this muscle. BFP, posterior biceps femoris; GS, gastrocnemius; HAM, hamstrings; RF, rectus femoris; SOL, soleus; SrtM, medial sartorius TA, tibialis anterior; TS, triceps surae; [1] Prochazka and Gorassini 692 ; [2] and [5], Loeb, Duysens 503 ; [3, 4] and [6], Loeb et al. 504,505,506 ; [7] Loeb 500 . Computed afferent activity is taken from 686 . Adapted, with permission, from Prilutsky BI, et al., 2016 686 .


Figure 6. Projections from single group Ia afferent to neuronal targets of spinal cord . The figure shows the trajectory of axon collaterals of a muscle spindle primary afferent (group Ia) from the medial gastrocnemius intra‐axonally labeled with horseradish peroxidase. Colored circles indicate the location of five populations of target cells contacted by terminal branches of the group Ia afferent. Approximate locations of spinal cord laminae are shown (from Roman numerals II‐X). DSCT, dorsal spinocerebellar tract; VSCT, ventral spinocerebellar tract. Adapted and reproduced, with permission, from Jankowska E, 2015 435 ; Ishizuka N, et al., 1979 419 .


Figure 7. Muscle afferent projections in the rat spinal cord . Figure shows contour maps of varicosities from three afferents of each class (Group Ia, II, and Ib). Contour maps created by calculating the density of varicosities and outlining areas above a certain threshold. Approximate locations of spinal cord laminae are shown. Modified, with permission, from Vincent JA, et al., 2017 835 .


Figure 8. Task‐dependent modulation of somatosensory feedback . Effects of manually dorsiflexing the ankle (∼5°) during spontaneous (A) fictive locomotion and (B) fictive scratching in a decerebrate curarized cat. Figure shows activity from extensor and flexor nerves. EDL, extensor digitorum longus; MG, medial gastrocnemius; SmAB, semimembranosus‐anterior biceps; TA, tibialis anterior. Modified, with permission, from Frigon A and Gossard JP, 2010 282 .


Figure 9. Phase‐dependent modulation of cutaneous reflexes . Phase‐and speed‐dependent modulation of cutaneous reflexes evoked by electrically stimulating the superficial peroneal nerve (single 0.2 ms pulse at 1.2 times the motor threshold) in (A) semitendinosus, (B) vastus lateralis and (C) lateral gastrocnemius at a treadmill speed of 0.4 m/s in a spinal cat. Cutaneous reflexes are separated into 10 bins. Rectified EMG waveforms obtained with stimulation are separated into 10 bins (average of 5–17 cycles per bin). The black lines show the background level of EMG in each bin (average of ∼90 control cycles). The EMG waveform shown vertically on the right of each panel is the rectified activity of the muscle across the normalized cycle. Modified, with permission, from Hurteau MF, et al., 2017 407 .


Figure 10. Phase‐dependent modulation of postsynaptic potentials evoked by stimulating extensor and flexor muscle afferents at group I strength during fictive locomotion . (A) Nerves to plantaris (Pl) and sartorius (Srt) muscles were stimulated at group I strength during spontaneous fictive locomotion in a decerebrate curarized cat. Intracellular recordings from antidromically identified motoneurons were made with glass micropipettes filled with QX‐314. The type (i.e., inhibitory or excitatory) of last‐order interneuron activated within a given reflex pathway can be inferred by the sign of the postsynaptic potential recorded in the motoneuron. (B) During a fictive locomotor episode, the 2 nerves were stimulated with high frequency and short trains (6 pulses at 200 Hz) in alternation, with an interval of 150 to 250 ms between nerve stimulations. From top to bottom: Evoked responses tilted 90° evoked by Srt and Pl nerve stimulation given in alternation; intracellular membrane potential oscillations in the SmAB motoneuron showing the locomotor‐drive potential and superimposed evoked responses; ENGs from extensors, semimembranosus‐anterior biceps (SmAB), and lateral gastrocnemius‐soleus (LGS) and from a flexor, tibialis anterior (TA). The locomotor cycle was divided into extension and flexion phases according to the extensor ENG onset and offsets. (C) Postsynaptic potentials evoked by stimulating Srt and Pl nerves were divided and averaged into extension and flexion phases. Data were recorded in Jean‐Pierre Gossard's lab at the Université de Montréal.


Figure 11. Presynaptic inhibition through primary afferent depolarization . The figure shows synaptic contact between a primary afferent and a postsynaptic neuron. Two GABAergic interneurons make axo‐axonic contacts on the primary afferent. One GABAergic interneuron receives converging glutamatergic inputs from a group I afferent and from a CPG neuron while the other GABAergic interneuron receives input from a reticulospinal neuron. During locomotion, the group I afferent and CPG neuron depolarize their target GABAergic interneuron, leading to the release of GABA. GABA binds to GABA A ionotropic receptors on the primary afferent and opens Cl channels. Cl exits the primary afferent leading to a depolarization (PAD, primary afferent depolarization) and an electrotonic potential that travels in both directions. The antidromic PAD collides with the action potential coming from the periphery, reducing the orthodromic response and preventing release of glutamate at the primary afferent terminal. The electrotonic potential traveling in the orthodromic direction weakens in magnitude the further it travels and as it reaches the terminal, it is too weak to affect transmitter release.


Figure 12. Modulation of somatosensory feedback and its interactions with central locomotor networks . The figure shows potential mechanisms and interactions modulating inputs from a group Ib afferent of an ankle extensor. Upon entering the spinal cord, the Ib afferent makes synaptic contacts with neurons of the dorsal spinocerebellar tract (DSCT), the spinal locomotor CPG, represented as extensor and flexor half‐centers, as well as inhibitory and excitatory last‐order interneurons that project to ankle extensor motoneurons. The Ib afferent also ascends to brainstem nuclei that transmit the information to the cerebellum, thalamus, and cerebral cortex. At rest, the disynaptic inhibitory pathway is open and the excitatory pathway is inhibited. During locomotion, the spinal CPG inhibits the inhibitory pathway and releases the excitatory pathway from inhibition through disinhibition. At the same time, various supraspinal structures interact dynamically with each other and with spinal circuits, such as the spinal CPG and local reflex circuits.


Figure 13. Proprioceptive feedback and mouse genetics . (A) Selective removal of muscle spindles in Egr3‐KO mice occurs through loss of neurotrophin 3 (NT3) expression in the muscle spindles resulting in their degeneration postnatally. (B) Proprioceptive afferent neurons are selectively removed by making them selectively express the highly toxic DTA using the calcium‐binding protein Parvalbumin (Pv) and the transcription factor Isl2, both genes collectively expressed in proprioceptive afferents only. (C) Alternatively, proprioceptive afferent neurons can be made susceptible to the diphtheria toxin (DTX) by making them express the gene that encodes the diphtheria toxin receptor (DTR), normally not expressed in mice. In these mice, systemic injection of DTX results in acute removal of the proprioceptors. (D) The gene that encodes the DTR in a cre‐dependent manner can be postnatally delivered via adeno associated virus (AAV) injections into selected muscles. Later, as in (C), proprioceptive afferents only from the AAV injected muscles can be destroyed by systemic injection of DTX.


Figure 14. Hill‐type muscle model and its properties . (A) Three‐element Hill‐type model. CE, contractile element; PE, parallel elastic element; T, tendon; m, mass of muscle fascicles. (B) Normalized force‐length relationship of the contractile element fully activated and producing force isometrically, that is, without length change. Force is normalized to the maximum muscle force developed by the fully activated muscle at its optimal length. Length is normalized to the optimal muscle fascicle length. (C) Normalized force‐velocity relationship of the contractile element. Velocity is normalized to the maximum shortening velocity. Positive velocity corresponds to shortening. (D) Normalized tendon force‐length relationship. Parameters F Tnl , L Tnl and L T Max are empirical constants; L To is the resting (slack) tendon length. Adapted, with permission, from Prilutsky BI, et al., 2016 686 .


Figure 15. Pyridoxine intoxications reveal that large diameter somatosensory afferents contribute to postural control . (A) Schematic of the experimental set‐up. Filled circles represent kinematic markers. The antero‐posterior (AP) stance distance is the horizontal distance between the wrist and ankle joints. Forelimb, hindlimb, and trunk axis indicated by dashed lines. Reproduced and modified, with permission, from Fung J and Macpherson JM, 1999 293 . (B) Rectified averaged EMG activity of the gluteus medius and biceps femoris medial head before (control) and 7 days after pyridoxine intoxication, which destroys large‐diameter somatosensory afferents, in one cat with translation of the support surface at 240°. The dashed vertical line indicates the onset of platform acceleration. Under each trace, the arrows indicate response onset in control trials and at day 7. (C) Amplitude maximum initial displacement of the CoM and time of maximum displacement in relation to platform translation at 240°. Error bars indicate SE. **Significantly different from control values ( P  < 0.001, one‐way ANOVA). (B,C) Reproduced and modified, with permission, from Stapley PJ, et al., 2002 791 .


Figure 16. Somatosensory feedback is required for proper paw placement during skilled locomotion . (A) Cat stepping on a horizontal ladder before (control) and after a complete cutaneous denervation of the hindpaws. Based on, with permission, Bouyer LJ and Rossignol S, 2003 93 . (B) Egr3 mutant mice make more errors during walking on a horizontal ladder, determined as more frequent foot droppings between rungs than in wild types. Each bar indicates the number of steps that landed on a rung (black bars) or missed the rung (red bars) counted during one run. Each set of bar represents a run from different mouse ( n  = 13 for wild type and n  = 15 for Egr3 mutants). Based on, with permission, Akay T, et al., 2014 10 .


Figure 17. The loss of muscle spindle feedback in mice impairs swimming but not treadmill locomotion . Locomotor pattern gradually degrades with removal of proprioceptive feedback. (A) Chronic EMG recordings were made during treadmill locomotion and swimming in wild‐type and Egr3 mutants that lack functional muscle spindle feedback. (B) Bar diagram illustrating the activity of flexor (red) and extensor (blue) muscles during treadmill walking and swimming in wild‐type ( n  = 16 for walking and n  = 14 for swimming) and Egr3 mutant ( n  = 15 for walking and swimming) mice. Each horizontal bar is the average EMG activity in a normalized locomotor cycle (between successive swing or iliopsoas burst onsets for walking and swimming, respectively). GM, gluteus maximum; IP, iliopsoas; St, semitendinosus; TA, tibialis anterior; VL, vastus lateralis. Based on, with permission, Akay T, et al., 2014 10 .


Figure 18. Effect of stimulating muscle afferents during spontaneous fictive locomotion in decerebrate curarized cats . The figure shows the effect of stimulating the plantaris (Pl) nerve at group I strength and the sartorius (Srt) nerve at group II strength on the raw ENG bursts of activity during spontaneous fictive locomotion. Stimulation of the Pl nerve during (A) mid‐flexion resets the rhythm to extension while stimulation during (B) late extension prolongs the extensor burst. Stimulation of the Srt nerve during (C) early flexion resets the rhythm to extension while stimulation during (D) mid‐ to late extension has no visible effect. LGS, lateral gastrocnemius‐soleus; SmAB, semimembranosus‐anterior biceps; T, threshold; TA, tibialis anterior. Reproduced and modified, with permission, from Frigon A, et al., 2010 288 .


Figure 19. Proprioceptive feedback from extensor muscles contributes to the magnitude of extensor activity . (A) When the hindlimb of a decerebrate cat steps in a hole during treadmill locomotion, the EMG activity in ankle (LG, lateral gastrocnemius) and knee extensor (VM, vastus medialis) muscles is reduced. The shaded area indicates the time the foot entered the hole. (B) Loading ankle extensor muscles during foot‐in‐hole trials restored normal levels of EMG activity in ankle extensor muscles. The shaded area indicates the time the foot entered the hole without (top) and with (bottom) load applied to the Achilles tendon. Adapted, with permission, from Hiebert GW and Pearson KG, 1999 370 .


Figure 20. Cutaneous inputs regulate muscle activity and alter limb trajectory in a phase‐dependent manner . (A) The effects of stimulating the superficial radial (SR) and superficial peroneal (SP) nerves on the EMG activity of selected muscles and the phases of the four limbs during treadmill locomotion at 0.4 m/s in an intact cat. The SR and SP nerves were stimulated during mid‐stance and mid‐swing of the homonymous limb. The shaded area indicates the period of stimulation (25 pulses of 0.2 ms duration at 200 Hz and at 1.2 times the motor threshold). (B) Kinematic reconstruction of the forelimb (top panels) and hindlimb (bottom panels) without (control) and with stimulation during stance and swing. Note that in the top panels the left SR was stimulated while in the bottom panels the right SP was stimulated. Unpublished data from Frigon lab. BB, biceps brachii; ECU, extensor carpi ulnaris; FCU, flexor carpi ulnaris; GL, gastrocnemius lateralis; L, left; F, forelimb; H, hindlimb; R, right; Srt, anterior sartorius; ST, stance; TA, tibialis anterior; TRI, triceps brachii.


Figure 21. Cutaneous inputs regulate inter‐joint coordination during locomotion . The figure shows short‐latency pathways from cutaneous afferents of the superficial peroneal (SP) nerve to different hindlimb motoneurons during the flexion phase of fictive locomotion. The central pattern generator (CPG) is shown with mutually inhibiting extensor (E) and flexor (F) parts. The CPG can phasically modulate interneurons mediating di‐ and trisynaptic excitation of hindlimb motoneurons from SP afferents. The inhibitory pathway to ankle extensor motoneurons observed at rest (last‐order inhibitory interneuron In‐2) is inhibited by the spinal locomotor CPG. Ex‐1 and Ex‐2, excitatory interneurons 1 and 2; In‐1 and In‐2, inhibitory interneurons 1 and 2. Reproduced and modified, with permission, from Quevedo J, et al., 2000 705 .


Figure 22. Interlimb reflexes coordinate the four limbs during locomotion . Schematic of reflex pathways and main responses during stance and swing evoked by SP nerve stimulation. (A) Upon entering the spinal cord, primary afferents from the SP nerve contact (i) interneurons that project within the hemisegment (homonymous responses), (ii) commissural interneurons that project contralaterally (crossed responses), and (iii) ascending propriospinal neurons with their main axonal projections terminating ipsilaterally (homolateral responses) or on the other side (diagonal responses). Diagonal pathways cross at various segments along the length of the spinal cord and include collaterals from homolateral pathways that also project contralaterally. (B) Panels show the main pattern of forelimb and hindlimb responses evoked with SP nerve stimulation when the different limbs are in mid‐swing or mid‐stance. Responses shaded in dark blue represent excitatory responses while those in red represent inhibitory responses. Responses are aligned to the start of the stimulation. Adapted, with permission, from Hurteau MF, et al., 2018 408 .
References
 1. Abelew TA , Miller MD , Cope TC , Nichols TR . Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat . J Neurophysiol 84 : 2709 ‐ 2714 , 2000 .
 2. Abraham LD , Marks WB , Loeb GE . The distal hindlimb musculature of the cat. Cutaneous reflexes during locomotion . Exp Brain Res 58 : 594 ‐ 603 , 1985 .
 3. Abraira VE , Ginty DD . The sensory neurons of touch . Neuron 79 : 618 ‐ 639 , 2013 .
 4. Abraira VE , Kuehn ED , Chirila AM , Springel MW , Toliver AA , Zimmerman AL , Orefice LL , Boyle KA , Bai L , Song BJ , Bashista KA , O'Neill TG , Zhuo J , Tsan C , Hoynoski J , Rutlin M , Kus L , Niederkofler V , Watanabe M , Dymecki SM , Nelson SB , Heintz N , Hughes DI , Ginty DD . The cellular and synaptic architecture of the mechanosensory dorsal horn . Cell 168 : 295 ‐ 310 , 2017 .
 5. Adal MN . The fine structure of the sensory region of cat muscle spindles . J Ultrastruct Res 26 : 332 ‐ 353 , 1969 .
 6. af Klint R , Mazzaro N , Nielsen JB , Sinkjaer T , Grey MJ , et al. J Neurophysiol 103 : 2747 ‐ 2756 , 2010 .
 7. Aggelopoulos NC , Edgley SA . Segmental localisation of the relays mediating crossed inhibition of hindlimb motoneurones from group II afferents in the anaesthetized cat spinal cord . Neurosci Lett 185 : 60 ‐ 64 , 1995 .
 8. Akay T . Long‐term measurement of muscle denervation and locomotor behavior in individual wild‐type and ALS model mice . J Neurophysiol 111 : 694 ‐ 703 , 2014 .
 9. Akay T , Acharya HJ , Fouad K , Pearson KG . Behavioral and electromyographic characterization of mice lacking Eph A4 receptors . J Neurophysiol 96 : 642 ‐ 651 , 2006 .
 10. Akay T , Tourtellotte WG , Arber S , Jessell TM . Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback . Proc Natl Acad Sci U S A 111 : 16877 ‐ 16882 , 2014 .
 11. Akazawa K , Aldridge JW , Steeves JD , Stein RB . Modulation of stretch reflexes during locomotion in the mesencephalic cat . J Physiol 329 : 553 ‐ 567 , 1982 .
 12. Albers KM , Davis BM . The skin as a neurotrophic organ . Neuroscientist 13 : 371 ‐ 382 , 2007 .
 13. Alessandro C , Barroso FO , Prashara A , Tentler DP , Yeh HY , Tresch MC . Coordination amongst quadriceps muscles suggests neural regulation of internal joint stresses, not simplification of task performance . Proc Natl Acad Sci U S A 117 : 8135 ‐ 8142 , 2020 .
 14. Alexander RM . The gaits of bipedal and quadrupedal animals . Int Jf Rob Res 3 : 49 ‐ 59 , 1984 .
 15. Alexander RM . Optimization and gaits in the locomotion of vertebrates . Physiol Rev 69 : 1199 ‐ 1227 , 1989 .
 16. Alexander RM . Simple models of human locomotion . J Theor Med 1 : 129 ‐ 135 , 1997 .
 17. Allen GI , Sabah NH , Toyama K . Synaptic actions of peripheral nerve impulses upon Deiters neurones via the climbing fibre afferents . J Physiol 226 : 311 ‐ 333 , 1972 .
 18. Allen GI , Sabah NH , Toyama K . Synaptic actions of peripheral nerve impulses upon Deiters neurones via the mossy fibre afferents . J Physiol 226 : 335 ‐ 351 , 1972 .
 19. Allen JL , Kautz SA , Neptune RR . The influence of merged muscle excitation modules on post‐stroke hemiparetic walking performance . Clin Biomech (Bristol, Avon) 28 : 697 ‐ 704 , 2013 .
 20. Alluin O , Delivet‐Mongrain H , Rossignol S . Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only . J Neurophysiol 114 : 1931 ‐ 1946 , 2015 .
 21. Alstermark B , Ekerot CF . The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements . Front Comput Neurosci 9 : 102 , 2015 .
 22. Alvarez FJ , Jonas PC , Sapir T , Hartley R , Berrocal MC , Geiman EJ , Todd AJ , Goulding M . Postnatal phenotype and localization of spinal cord V1 derived interneurons . J Comp Neurol 493 : 177 ‐ 192 , 2005 .
 23. Alvarez FJ , Rotterman TM , Akhter ET , Lane AR , English AW , Cope TC . Synaptic plasticity on motoneurons after axotomy: A necessary change in paradigm . Front Mol Neurosci 13 : 68 , 2020 .
 24. Alvarez FJ , Titus‐Mitchell HE , Bullinger KL , Kraszpulski M , Nardelli P , Cope TC . Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons . J Neurophysiol 106 : 2450 ‐ 2470 , 2011 .
 25. Alvarez FJ , Villalba RM , Zerda R , Schneider SP . Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses . J Comp Neurol 472 : 257 ‐ 280 , 2004 .
 26. An KN , Takahashi K , Harrigan TP , Chao EY . Determination of muscle orientations and moment arms . J Biomech Eng 106 : 280 ‐ 282 , 1984 .
 27. Anderson FC , Pandy MG . Static and dynamic optimization solutions for gait are practically equivalent . J Biomech 34 : 153 ‐ 161 , 2001 .
 28. Andersson EA , Nilsson J , Thorstensson A . Intramuscular EMG from the hip flexor muscles during human locomotion . Acta Physiol Scand 161 : 361 ‐ 370 , 1997 .
 29. Andersson G , Armstrong DM . Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion . J Physiol 385 : 107 ‐ 134 , 1987 .
 30. Andersson O , Grillner S . Peripheral control of the cat's step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion” . Acta Physiol Scand 118 : 229 ‐ 239 , 1983 .
 31. Andrada E , Mampel J , Schmidt A , Fischer MS , Karguth A , Witte H . From biomechanics of rats' inclined locomotion to a climbing robot . Int J Design Nat Ecodynamics 8 : 192 ‐ 212 , 2013 .
 32. ANDREW BL . The sensory innervation of the medial ligament of the knee joint . J Physiol 123 : 241 ‐ 250 , 1954 .
 33. Angel MJ , Guertin P , Jimenez I , McCrea DA . Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion . J Physiol 494 ( Pt 3 ): 851 ‐ 861 , 1996 .
 34. Angel MJ , Jankowska E , McCrea DA . Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat . J Physiol 563 : 597 ‐ 610 , 2005 .
 35. Angeli CA , Boakye M , Morton RA , Vogt J , Benton K , Chen Y , Ferreira CK , Harkema SJ . Recovery of over‐ground walking after chronic motor complete spinal cord injury . N Engl J Med 379 : 1244 ‐ 1250 , 2018 .
 36. Appenteng K , Prochazka A . Tendon organ firing during active muscle lengthening in awake, normally behaving cats . J Physiol 353 : 81 ‐ 92 , 1984 .
 37. Apps R . Movement‐related gating of climbing fibre input to cerebellar cortical zones . Prog Neurobiol 57 : 537 ‐ 562 , 1999 .
 38. Apps R , Lee S . Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat . J Physiol 516 ( Pt 3 ): 875 ‐ 883 , 1999 .
 39. Apps R , Lidierth M , Armstrong DM . Locomotion‐related variations in excitability of spino‐olivocerebellar paths to cat cerebellar cortical c2 zone . J Physiol 424 : 487 ‐ 512 , 1990 .
 40. Arber S . Motor circuits in action: Specification, connectivity, and function . Neuron 74 : 975 ‐ 989 , 2012 .
 41. Armstrong DM , Edgley SA . Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat . J Physiol 352 : 403 ‐ 424 , 1984 .
 42. Armstrong DM , Edgley SA , Lidierth M . Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion . J Physiol 400 : 405 ‐ 414 , 1988 .
 43. Armstrong DM , Harvey RJ , Schild RF . Spino‐olivocerebellar pathways to the posterior lobe of the cat cerebellum . Exp Brain Res 18 : 1 ‐ 18 , 1973 .
 44. Arshavskii I , Kots I , Orlovskii GN , Rodionov IM , Shik ML . Study of biomechanics of running dogs . Biofizika 10 : 665 ‐ 671 , 1965 .
 45. Arshavsky YI , Berkinblit MB , Fukson OI , Gelfand IM , Orlovsky GN . Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion . Brain Res 43 : 276 ‐ 279 , 1972 .
 46. Arshavsky YI , Berkinblit MB , Fukson OI , Gelfand IM , Orlovsky GN . Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion . Brain Res 43 : 272 ‐ 275 , 1972 .
 47. Arshian MS , Hobson CE , Catanzaro MF , Miller DJ , Puterbaugh SR , Cotter LA , Yates BJ , McCall AA . Vestibular nucleus neurons respond to hindlimb movement in the decerebrate cat . J Neurophysiol 111 : 2423 ‐ 2432 , 2014 .
 48. Arya T , Bajwa S , Edgley SA . Crossed reflex actions from group II muscle afferents in the lumbar spinal cord of the anaesthetized cat . J Physiol 444 : 117 ‐ 131 , 1991 .
 49. Bacque‐Cazenave J , Chung B , Cofer DW , Cattaert D , Edwards DH . The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop . J Neurophysiol 113 : 1772 ‐ 1783 , 2015 .
 50. Bajwa S , Edgley SA , Harrison PJ . Crossed actions on group II‐activated interneurones in the midlumbar segments of the cat spinal cord . J Physiol 455 : 205 ‐ 217 , 1992 .
 51. Baken BC , Dietz V , Duysens J . Phase‐dependent modulation of short latency cutaneous reflexes during walking in man . Brain Res 1031 : 268 ‐ 275 , 2005 .
 52. Balaskas N , Abbott LF , Jessell TM , Ng D . Positional strategies for connection specificity and synaptic organization in spinal sensory‐motor circuits . Neuron 102 : 1143 ‐ 1156 , 2019 .
 53. Banks RW . A histological study of the motor innervation of the cat's muscle spindle . J Anat 133 : 571 ‐ 591 , 1981 .
 54. Banks RW . The motor innervation of mammalian muscle spindles . Prog Neurobiol 43 : 323 ‐ 362 , 1994 .
 55. Banks RW . The innervation of the muscle spindle: A personal history . J Anat 227 : 115 ‐ 135 , 2015 .
 56. Banks RW , Bewick GS , Reid B , Richardson C . Evidence for activity‐dependent modulation of sensory‐terminal excitability in spindles by glutamate release from synaptic‐like vesicles . Adv Exp Med Biol 508 : 13 ‐ 18 , 2002 .
 57. Banks RW , Harker DW , Stacey MJ . A study of mammalian intrafusal muscle fibres using a combined histochemical and ultrastructural technique . J Anat 123 : 783 ‐ 796 , 1977 .
 58. Banks RW , Hulliger M , Saed HH , Stacey MJ . A comparative analysis of the encapsulated end‐organs of mammalian skeletal muscles and of their sensory nerve endings . J Anat 214 : 859 ‐ 887 , 2009 .
 59. Banks RW , Hulliger M , Scheepstra KA , Otten E . Pacemaker activity in a sensory ending with multiple encoding sites: The cat muscle spindle primary ending . J Physiol 498 ( Pt 1 ): 177 ‐ 199 , 1997 .
 60. Bannatyne BA , Edgley SA , Hammar I , Jankowska E , Maxwell DJ . Differential projections of excitatory and inhibitory dorsal horn interneurons relaying information from group II muscle afferents in the cat spinal cord . J Neurosci 26 : 2871 ‐ 2880 , 2006 .
 61. Barbeau H , Rossignol S . Recovery of locomotion after chronic spinalization in the adult cat . Brain Res 412 : 84 ‐ 95 , 1987 .
 62. Barker D , Emonet‐Denand F , Laporte Y , Proske U , Stacey MJ . Morphological identification and intrafusal distribution of the endings of static fusimotor axons in the cat . J Physiol 230 : 405 ‐ 427 , 1973 .
 63. Barliya A , Omlor L , Giese MA , Flash T . An analytical formulation of the law of intersegmental coordination during human locomotion . Exp Brain Res 193 : 371 ‐ 385 , 2009 .
 64. Barthelemy D , Grey MJ , Nielsen JB , Bouyer L . Involvement of the corticospinal tract in the control of human gait . Prog Brain Res 192 : 181 ‐ 197 , 2011 .
 65. Barthelemy D , Nielsen JB . Corticospinal contribution to arm muscle activity during human walking . J Physiol 588 : 967 ‐ 979 , 2010 .
 66. Basu C , Wilson AM , Hutchinson JR . The locomotor kinematics and ground reaction forces of walking giraffes . J Exp Biol 222 : 1 ‐ 11 , 2019 .
 67. Bays PM , Wolpert DM . Computational principles of sensorimotor control that minimize uncertainty and variability . J Physiol 578 : 387 ‐ 396 , 2007 .
 68. Beloozerova IN , Rossignol S . Antidromic discharges in dorsal roots of decerebrate cats. II: Studies during treadmill locomotion . Brain Res 996 : 227 ‐ 236 , 2004 .
 69. Beloozerova IN , Stout EE , Sirota MG . Distinct thalamo‐cortical controls for shoulder, elbow, and wrist during locomotion . Front Comput Neurosci 7 : 62 , 2013 .
 70. Ben‐Arie N , Bellen HJ , Armstrong DL , McCall AE , Gordadze PR , Guo Q , Matzuk MM , Zoghbi HY . Math1 is essential for genesis of cerebellar granule neurons . Nature 390 : 169 ‐ 172 , 1997 .
 71. Ben‐Arie N , Hassan BA , Bermingham NA , Malicki DM , Armstrong D , Matzuk M , Bellen HJ , Zoghbi HY . Functional conservation of atonal and Math1 in the CNS and PNS . Development 127 : 1039 ‐ 1048 , 2000 .
 72. Berkley KJ , Budell RJ , Blomqvist A , Bull M . Output systems of the dorsal column nuclei in the cat . Brain Res 396 : 199 ‐ 225 , 1986 .
 73. Bernard G , Bouyer L , Provencher J , Rossignol S . Study of cutaneous reflex compensation during locomotion after nerve section in the cat . J Neurophysiol 97 : 4173 ‐ 4185 , 2007 .
 74. Berniker M , Jarc A , Bizzi E , Tresch MC . Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics . Proc Natl Acad Sci U S A 106 : 7601 ‐ 7606 , 2009 .
 75. Bernstein N . The Co‐ordination and Regulation of Movements . Oxford : Pergamon Press , 1967 .
 76. Bessou P , Dupui P , Cabelguen JM , Joffroy M , Montoya R , Pages B . Discharge patterns of gamma motoneurone populations of extensor and flexor hindlimb muscles during walking in the thalamic cat . Prog Brain Res 80 : 37 ‐ 45 , 1989 .
 77. Bessou P , Joffroy M , Montoya R , Pages B . Evidence of the co‐activation of alpha‐motoneurones and static gamma‐motoneurones of the sartorius medialis muscle during locomotion in the thalamic cat . Exp Brain Res 82 : 191 ‐ 198 , 1990 .
 78. Betley JN , Wright CV , Kawaguchi Y , Erdelyi F , Szabo G , Jessell TM , Kaltschmidt JA . Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit . Cell 139 : 161 ‐ 174 , 2009 .
 79. Bewick GS , Banks RW . Mechanotransduction in the muscle spindle . Pflugers Arch 467 : 175 ‐ 190 , 2015 .
 80. Bewick GS , Reid B , Richardson C , Banks RW . Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic‐like vesicles: Evidence from the rat muscle spindle primary sensory ending . J Physiol 562 : 381 ‐ 394 , 2005 .
 81. Bianchi L , Angelini D , Orani GP , Lacquaniti F . Kinematic coordination in human gait: Relation to mechanical energy cost . J Neurophysiol 79 : 2155 ‐ 2170 , 1998 .
 82. Blaszczyk J , Loeb GE . Why cats pace on the treadmill . Physiol Behav 53 : 501 ‐ 507 , 1993 .
 83. Blemker SS , Delp SL . Three‐dimensional representation of complex muscle architectures and geometries . Ann Biomed Eng 33 : 661 ‐ 673 , 2005 .
 84. Bloedel JR , Courville J . Cerebellar afferent systems . In: Brooks VB , editor. Handbook of Physiology Vol. II, Motor Control, Part 2 . Bethesda : American Physiological Society , 1981 , p. 735 ‐ 829 .
 85. Blouin J , Bard C , Teasdale N , Paillard J , Fleury M , Forget R , Lamarre Y . Reference systems for coding spatial information in normal subjects and a deafferented patient . Exp Brain Res 93 : 324 ‐ 331 , 1993 .
 86. Blum KP , Campbell KS , Horslen BC , Nardelli P , Housley SN , Cope TC , Ting LH . Diverse and complex muscle spindle afferent firing properties emerge from multiscale muscle mechanics . elife 9 : 1 ‐ 32 , 2020 .
 87. Blum KP , Nardelli P , Cope TC , Ting LH . Elastic tissue forces mask muscle fiber forces underlying muscle spindle Ia afferent firing rates in stretch of relaxed rat muscle . J Exp Biol 222 : 1 ‐ 6 , 2019 .
 88. Boesten AJ , Voogd J . Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat . J Comp Neurol 161 : 215 ‐ 237 , 1975 .
 89. Bolton DA , Misiaszek JE . Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat . J Neurophysiol 102 : 1711 ‐ 1724 , 2009 .
 90. Borisyuk R , Merrison‐Hort R , Soffe SR , Koutsikou S , Li WC . To swim or not to swim: A population‐level model of Xenopus tadpole decision making and locomotor behaviour . Biosystems 161 : 3 ‐ 14 , 2017 .
 91. Bosco G , Poppele RE . Proprioception from a spinocerebellar perspective . Physiol Rev 81 : 539 ‐ 568 , 2001 .
 92. Bourane S , Grossmann KS , Britz O , Dalet A , Del Barrio MG , Stam FJ , Garcia‐Campmany L , Koch S , Goulding M . Identification of a spinal circuit for light touch and fine motor control . Cell 160 : 503 ‐ 515 , 2015 .
 93. Bouyer LJ , Rossignol S . Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats . J Neurophysiol 90 : 3625 ‐ 3639 , 2003 .
 94. Bouyer LJ , Rossignol S . Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats . J Neurophysiol 90 : 3640 ‐ 3653 , 2003 .
 95. Bouyer LJ , Whelan PJ , Pearson KG , Rossignol S . Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy . J Neurosci 21 : 3531 ‐ 3541 , 2001 .
 96. BOYD IA . The histological structure of the receptors in the knee‐joint of the cat correlated with their physiological response . J Physiol 124 : 476 ‐ 488 , 1954 .
 97. Boyd IA , Gladden MH , McWilliam PN , Ward J . Control of dynamic and static nuclear bag fibres and nuclear chain fibres by gamma and beta axons in isolated cat muscle spindels . J Physiol 265 : 133 ‐ 162 , 1977 .
 98. Bras H , Jankowska E , Noga B , Skoog B . Comparison of effects of various types of NA and 5‐HT agonists on transmission from group II muscle afferents in the cat . Eur J Neurosci 2 : 1029 ‐ 1039 , 1990 .
 99. Bretzner F , Drew T . Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: A microstimulation study . J Neurophysiol 94 : 657 ‐ 672 , 2005 .
 100. Brock LG , Coombs JS , Eccles JC . The recording of potentials from motoneurones with an intracellular electrode . J Physiol 117 : 431 ‐ 460 , 1952 .
 101. Brown AG . Organization in the Spinal Cord ‐ The Anatomy and Physiology of Identified Neurones . London : Springer‐Verlag , 1981 .
 102. Brown AG . The spinocervical tract . Prog Neurobiol 17 : 59 ‐ 96 , 1981 .
 103. Brown AG , Fyffe RE . Direct observations on the contacts made between Ia afferent fibres and alpha‐motoneurones in the cat's lumbosacral spinal cord . J Physiol 313 : 121 ‐ 140 , 1981 .
 104. Brown AG , Iggo A . A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit . J Physiol 193 : 707 ‐ 733 , 1967 .
 105. Brown MC , Engberg I , Matthews PB . The relative sensitivity to vibration of muscle receptors of the cat . J Physiol 192 : 773 ‐ 800 , 1967 .
 106. Brown TG . The intrinsic factors in the act of progression in the mammal . Proc R Soc B 84 : 308 ‐ 319 , 1911 .
 107. Brownstone RM , Gossard JP , Hultborn H . Voltage‐dependent excitation of motoneurones from spinal locomotor centres in the cat . Exp Brain Res 102 : 34 ‐ 44 , 1994 .
 108. Brownstone RM , Wilson JM . Strategies for delineating spinal locomotor rhythm‐generating networks and the possible role of Hb9 interneurones in rhythmogenesis . Brain Res Rev 57 : 64 ‐ 76 , 2008 .
 109. Buchanan TS , Almdale DP , Lewis JL , Rymer WZ . Characteristics of synergic relations during isometric contractions of human elbow muscles . J Neurophysiol 56 : 1225 ‐ 1241 , 1986 .
 110. Buford JA , Smith JL . Adaptive control for backward quadrupedal walking. III. Stumbling corrective reactions and cutaneous reflex sensitivity . J Neurophysiol 70 : 1102 ‐ 1114 , 1993 .
 111. Bui TV , Akay T , Loubani O , Hnasko TS , Jessell TM , Brownstone RM . Circuits for grasping: Spinal dI3 interneurons mediate cutaneous control of motor behavior . Neuron 78 : 191 ‐ 204 , 2013 .
 112. Bullinger KL , Nardelli P , Pinter MJ , Alvarez FJ , Cope TC . Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons . J Neurophysiol 106 : 2471 ‐ 2485 , 2011 .
 113. Burgess PR , Howe JF , Lessler MJ , Whitehorn D . Cutaneous receptors supplied by myelinated fibers in the cat. II. Number of mechanoreceptors excited by a local stimulus . J Neurophysiol 37 : 1373 ‐ 1386 , 1974 .
 114. Burgess PR , Petit D , Warren RM . Receptor types in cat hairy skin supplied by myelinated fibers . J Neurophysiol 31 : 833 ‐ 848 , 1968 .
 115. Burke D , Gandevia SC , McKeon B . The afferent volleys responsible for spinal proprioceptive reflexes in man . J Physiol 339 : 535 ‐ 552 , 1983 .
 116. Burke D , Gandevia SC , McKeon B . Monosynaptic and oligosynaptic contributions to human ankle jerk and H‐reflex . J Neurophysiol 52 : 435 ‐ 448 , 1984 .
 117. Burke RE . John Eccles' pioneering role in understanding central synaptic transmission . Prog Neurobiol 78 : 173 ‐ 188 , 2006 .
 118. Burke RE , Jankowska E , ten Bruggencate G . A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae . J Physiol 207 : 709 ‐ 732 , 1970 .
 119. Butt SJ , Harris‐Warrick RM , Kiehn O . Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator . J Neurosci 22 : 9961 ‐ 9971 , 2002 .
 120. Caggiano V , Leiras R , Goni‐Erro H , Masini D , Bellardita C , Bouvier J , Caldeira V , Fisone G , Kiehn O . Midbrain circuits that set locomotor speed and gait selection . Nature 553 : 455 ‐ 460 , 2018 .
 121. Caicoya AG , Illert M , Janike R . Monosynaptic Ia pathways at the cat shoulder . J Physiol 518 ( Pt 3 ): 825 ‐ 841 , 1999 .
 122. Capaday C , Stein RB . Amplitude modulation of the soleus H‐reflex in the human during walking and standing . J Neurosci 6 : 1308 ‐ 1313 , 1986 .
 123. Capaday C , Stein RB . Difference in the amplitude of the human soleus H reflex during walking and running . J Physiol 392 : 513 ‐ 522 , 1987 .
 124. Capelli P , Pivetta C , Soledad EM , Arber S . Locomotor speed control circuits in the caudal brainstem . Nature 551 : 373 ‐ 377 , 2017 .
 125. Capogrosso M , Wenger N , Raspopovic S , Musienko P , Beauparlant J , Bassi LL , Courtine G , Micera S . A computational model for epidural electrical stimulation of spinal sensorimotor circuits . J Neurosci 33 : 19326 ‐ 19340 , 2013 .
 126. Cappellini G , Ivanenko YP , Poppele RE , Lacquaniti F . Motor patterns in human walking and running . J Neurophysiol 95 : 3426 ‐ 3437 , 2006 .
 127. Carlson‐Kuhta P , Trank TV , Smith JL . Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking . J Neurophysiol 79 : 1687 ‐ 1701 , 1998 .
 128. Carp JS , Tennissen AM , Chen XY , Schalk G , Wolpaw JR . Long‐term spinal reflex studies in awake behaving mice . J Neurosci Methods 149 : 134 ‐ 143 , 2005 .
 129. Carp JS , Tennissen AM , Chen XY , Wolpaw JR . H‐reflex operant conditioning in mice . J Neurophysiol 96 : 1718 ‐ 1727 , 2006 .
 130. Catavitello G , Ivanenko YP , Lacquaniti F . Planar covariation of hindlimb and forelimb elevation angles during terrestrial and aquatic locomotion of dogs . PLoS ONE 10 : e0133936 , 2015 .
 131. Caterina MJ . Transient receptor potential ion channels as participants in thermosensation and thermoregulation . Am J Physiol Regul Integr Comp Physiol 292 : R64 ‐ R76 , 2007 .
 132. Cavagna GA , Heglund NC , Taylor CR . Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure . Am J Phys 233 : R243 ‐ R261 , 1977 .
 133. Cazalets JR , Borde M , Clarac F . Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat . J Neurosci 15 : 4943 ‐ 4951 , 1995 .
 134. Cazalets JR , Sqalli‐Houssaini Y , Clarac F . Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat . J Physiol 455 : 187 ‐ 204 , 1992 .
 135. Chamberlin ME , Fulwider BD , Sanders SL , Medeiros JM . Does fear of falling influence spatial and temporal gait parameters in elderly persons beyond changes associated with normal aging? J Gerontol A Biol Sci Med Sci 60 : 1163 ‐ 1167 , 2005 .
 136. Chambers WW , Sprague JM . Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei . AMA Arch Neurol Psychiatry 74 : 653 ‐ 680 , 1955 .
 137. Chanaud CM , Pratt CA , Loeb GE . Functionally complex muscles of the cat hindlimb. II. Mechanical and architectural heterogenity within the biceps femoris . Exp Brain Res 85 : 257 ‐ 270 , 1991 .
 138. Chapin JK , Sorensen SM , Woodward DJ . Acute ethanol effects on sensory responses of single units in the somatosensory cortex of rats during different behavioral states . Pharmacol Biochem Behav 25 : 607 ‐ 614 , 1986 .
 139. Chapin JK , Woodward DJ . Somatic sensory transmission to the cortex during movement: Gating of single cell responses to touch . Exp Neurol 78 : 654 ‐ 669 , 1982 .
 140. Chapin JK , Woodward DJ . Somatic sensory transmission to the cortex during movement: Phasic modulation over the locomotor step cycle . Exp Neurol 78 : 670 ‐ 684 , 1982 .
 141. Charles JP , Cappellari O , Spence AJ , Wells DJ , Hutchinson JR . Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model . J Anat 229 : 514 ‐ 535 , 2016 .
 142. Chen HH , Hippenmeyer S , Arber S , Frank E . Development of the monosynaptic stretch reflex circuit . Curr Opin Neurobiol 13 : 96 ‐ 102 , 2003 .
 143. Chen HH , Tourtellotte WG , Frank E . Muscle spindle‐derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons . J Neurosci 22 : 3512 ‐ 3519 , 2002 .
 144. Chen XY , Wolpaw JR . Operant conditioning of H‐reflex in freely moving rats . J Neurophysiol 73 : 411 ‐ 415 , 1995 .
 145. Chen Y , Chen XY , Jakeman LB , Chen L , Stokes BT , Wolpaw JR . Operant conditioning of H‐reflex can correct a locomotor abnormality after spinal cord injury in rats . J Neurosci 26 : 12537 ‐ 12543 , 2006 .
 146. Chen Y , Chen XY , Jakeman LB , Schalk G , Stokes BT , Wolpaw JR . The interaction of a new motor skill and an old one: H‐reflex conditioning and locomotion in rats . J Neurosci 25 : 6898 ‐ 6906 , 2005 .
 147. Chesler AT , Szczot M , Bharucha‐Goebel D , Ceko M , Donkervoort S , Laubacher C , Hayes LH , Alter K , Zampieri C , Stanley C , Innes AM , Mah JK , Grosmann CM , Bradley N , Nguyen D , Foley AR , Le Pichon CE , Bonnemann CG . The role of PIEZO2 in human mechanosensation . N Engl J Med 375 : 1355 ‐ 1364 , 2016 .
 148. Cheung VC , d'Avella A , Tresch MC , Bizzi E . Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors . J Neurosci 25 : 6419 ‐ 6434 , 2005 .
 149. Cheung VCK , Cheung BMF , Zhang JH , Chan ZYS , Ha SCW , Chen CY , Cheung RTH . Plasticity of muscle synergies through fractionation and merging during development and training of human runners . Nat Commun 11 : 4356 , 2020 .
 150. Chowdhury RH , Tresch MC , Miller LE . Musculoskeletal geometry accounts for apparent extrinsic representation of paw position in dorsal spinocerebellar tract . J Neurophysiol 118 : 234 ‐ 242 , 2017 .
 151. Christie BP , Charkhkar H , Shell CE , Burant CJ , Tyler DJ , Triolo RJ . Ambulatory searching task reveals importance of somatosensation for lower‐limb amputees . Sci Rep 10 : 10216 , 2020 .
 152. Chung B , Bacque‐Cazenave J , Cofer DW , Cattaert D , Edwards DH . The effect of sensory feedback on crayfish posture and locomotion: I. Experimental analysis of closing the loop . J Neurophysiol 113 : 1763 ‐ 1771 , 2015 .
 153. Chvatal SA , Macpherson JM , Torres‐Oviedo G , Ting LH . Absence of postural muscle synergies for balance after spinal cord transection . J Neurophysiol 110 : 1301 ‐ 1310 , 2013 .
 154. Chvatal SA , Ting LH . Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking . J Neurosci 32 : 12237 ‐ 12250 , 2012 .
 155. Clark FJ , Burgess RC , Chapin JW , Lipscomb WT . Role of intramuscular receptors in the awareness of limb position . J Neurophysiol 54 : 1529 ‐ 1540 , 1985 .
 156. Clarke KA , Still J . Gait analysis in the mouse . Physiol Behav 66 : 723 ‐ 729 , 1999 .
 157. Clayton HM , Hobbs SJ . A review of biomechanical gait classification with reference to collected trot, passage and piaffe in dressage horses . Animals (Basel) 9 : 1 ‐ 19 , 2019 .
 158. Cofer D , Cymbalyuk G , Reid J , Zhu Y , Heitler WJ , Edwards DH . AnimatLab: A 3D graphics environment for neuromechanical simulations . J Neurosci Methods 187 : 280 ‐ 288 , 2010 .
 159. Cohen O , Harel R , Aumann TD , Israel Z , Prut Y . Parallel processing of internal and external feedback in the spinocerebellar system of primates . J Neurophysiol 118 : 254 ‐ 266 , 2017 .
 160. Cole JD , Katifi HA . Evoked potentials in a man with a complete large myelinated fibre sensory neuropathy below the neck . Electroencephalogr Clin Neurophysiol 80 : 103 ‐ 107 , 1991 .
 161. Collins WF III , Mendell LM , Munson JB . On the specificity of sensory reinnervation of cat skeletal muscle . J Physiol 375 : 587 ‐ 609 , 1986 .
 162. Conway BA , Hultborn H , Kiehn O . Proprioceptive input resets central locomotor rhythm in the spinal cat . Exp Brain Res 68 : 643 ‐ 656 , 1987 .
 163. Cooke JD , Larson B , Oscarsson O , Sjolund B . Organization of afferent connections to cuneocerebellar tract . Exp Brain Res 13 : 359 ‐ 377 , 1971 .
 164. Cooke JD , Larson B , Oscarsson O , Sjolund B . Origin and termination of cuneocerebellar tract . Exp Brain Res 13 : 339 ‐ 358 , 1971 .
 165. Cooper S . The responses of the primary and secondary endings of muscle spindles with intact motor innervation during applied stretch . Q J Exp Physiol Cogn Med Sci 46 : 389 ‐ 398 , 1961 .
 166. Cooper SE , Martin JH , Ghez C . Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement . J Neurophysiol 84 : 1988 ‐ 2000 , 2000 .
 167. Cope TC , Bonasera SJ , Nichols TR . Reinnervated muscles fail to produce stretch reflexes . J Neurophysiol 71 : 817 ‐ 820 , 1994 .
 168. Cope TC , Clark BD . Motor‐unit recruitment in self‐reinnervated muscle . J Neurophysiol 70 : 1787 ‐ 1796 , 1993 .
 169. Cote MP , Gossard JP . Task‐dependent presynaptic inhibition . J Neurosci 23 : 1886 ‐ 1893 , 2003 .
 170. Courtine G , Schieppati M . Human walking along a curved path. II. Gait features and EMG patterns . Eur J Neurosci 18 : 191 ‐ 205 , 2003 .
 171. Crago PE , Houk JC , Rymer WZ . Sampling of total muscle force by tendon organs . J Neurophysiol 47 : 1069 ‐ 1083 , 1982 .
 172. Cronin NJ , Prilutsky BI , Lichtwark GA , Maas H . Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans? J Biomech 46 : 1383 ‐ 1386 , 2013 .
 173. Crowe A , Matthews PB . The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles . J Physiol 174 : 109 ‐ 131 , 1964 .
 174. Dacko SM , Sokoloff AJ , Cope TC . Recruitment of triceps surae motor units in the decerebrate cat. I. Independence of type S units in soleus and medial gastrocnemius muscles . J Neurophysiol 75 : 1997 ‐ 2004 , 1996 .
 175. Dagg AI . The locomotion of the camel ( Camelus dromedarius ) . J Zool 174 : 67 ‐ 78 , 1974 .
 176. Dambreville C , Labarre A , Thibaudier Y , Hurteau MF , Frigon A . The spinal control of locomotion and step‐to‐step variability in left‐right symmetry from slow to moderate speeds . J Neurophysiol 114 : 1119 ‐ 1128 , 2015 .
 177. D'Angelo G , Thibaudier Y , Telonio A , Hurteau MF , Kuczynski V , Dambreville C , Frigon A . Modulation of phase durations, phase variations and temporal coordination of the four limbs during quadrupedal split‐belt locomotion in intact adult cats . J Neurophysiol 112 : 1825 ‐ 1837 , 2014 .
 178. Danner SM , Shevtsova NA , Frigon A , Rybak IA . Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds . elife 6 : e31050 , 2017 .
 179. Danner SM , Zhang H , Shevtsova NA , Borowska‐Fielding J , Deska‐Gauthier D , Rybak IA , Zhang Y . Spinal V3 interneurons and left‐right coordination in mammalian locomotion . Front Cell Neurosci 13 : 516 , 2019 .
 180. Dasen JS , De CA , Wang B , Tucker PW , Jessell TM . Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1 . Cell 134 : 304 ‐ 316 , 2008 .
 181. Dasen JS , Tice BC , Brenner‐Morton S , Jessell TM . A Hox regulatory network establishes motor neuron pool identity and target‐muscle connectivity . Cell 123 : 477 ‐ 491 , 2005 .
 182. Dassule HR , Lewis P , Bei M , Maas R , McMahon AP . Sonic hedgehog regulates growth and morphogenesis of the tooth . Development 127 : 4775 ‐ 4785 , 2000 .
 183. d'Avella A , Saltiel P , Bizzi E . Combinations of muscle synergies in the construction of a natural motor behavior . Nat Neurosci 6 : 300 ‐ 308 , 2003 .
 184. de Guzman CP , Roy RR , Hodgson JA , Edgerton VR . Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking . Brain Res 555 : 202 ‐ 214 , 1991 .
 185. Degtyarenko AM , Simon ES , Burke RE . Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion . J Neurophysiol 76 : 2972 ‐ 2985 , 1996 .
 186. Degtyarenko AM , Simon ES , Norden‐Krichmar T , Burke RE . Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat . J Neurophysiol 79 : 447 ‐ 463 , 1998 .
 187. Delhaye BP , Long KH , Bensmaia SJ . Neural basis of touch and proprioception in primate cortex . Compr Physiol 8 : 1575 ‐ 1602 , 2018 .
 188. Deliagina TG , Musienko PE , Zelenin PV . Nervous mechanisms of locomotion in different directions . Curr Opin Physiol 8 : 7 ‐ 13 , 2019 .
 189. Delp SL , Anderson FC , Arnold AS , Loan P , Habib A , John CT , Guendelman E , Thelen DG . OpenSim: Open‐source software to create and analyze dynamic simulations of movement . IEEE Trans Biomed Eng 54 : 1940 ‐ 1950 , 2007 .
 190. Descherevsky VI . Kinetic model of muscle contraction . In: Chance B , Ghosh AK , Pye EK , Hess BA , editors. Biological and Biochemical Oscillators . New York : Academic Press , 1973 , p. 311 ‐ 328 .
 191. Desrochers E , Harnie J , Doelman A , Hurteau MF , Frigon A . Spinal control of muscle synergies for adult mammalian locomotion . J Physiol 597 : 333 ‐ 350 , 2019 .
 192. Dietz V , Fouad K , Bastiaanse CM . Neuronal coordination of arm and leg movements during human locomotion . Eur J Neurosci 14 : 1906 ‐ 1914 , 2001 .
 193. Dietz V , Quintern J , Berger W . Corrective reactions to stumbling in man: Functional significance of spinal and transcortical reflexes . Neurosci Lett 44 : 131 ‐ 135 , 1984 .
 194. Dietz V , Quintern J , Sillem M . Stumbling reactions in man: Significance of proprioceptive and pre‐programmed mechanisms . J Physiol 386 : 149 ‐ 163 , 1987 .
 195. Dietz V , Zijlstra W , Duysens J . Human neuronal interlimb coordination during split‐belt locomotion . Exp Brain Res 101 : 513 ‐ 520 , 1994 .
 196. DiGiovanna J , Dominici N , Friedli L , Rigosa J , Duis S , Kreider J , Beauparlant J , van den Brand R , Schieppati M , Micera S , Courtine G . Engagement of the rat Hindlimb motor cortex across natural locomotor behaviors . J Neurosci 36 : 10440 ‐ 10455 , 2016 .
 197. Dominguez‐Rodriguez LE , Stecina K , Garcia‐Ramirez DL , Mena‐Avila E , Milla‐Cruz JJ , Martinez‐Silva L , Zhang M , Hultborn H , Quevedo JN . Candidate interneurons mediating the resetting of the locomotor rhythm by extensor group i afferents in the cat . Neuroscience 450 : 96 ‐ 112 , 2020 .
 198. Dominici N , Ivanenko YP , Cappellini G , d'Avella A , Mondi V , Cicchese M , Fabiano A , Silei T , Di PA , Giannini C , Poppele RE , Lacquaniti F . Locomotor primitives in newborn babies and their development . Science 334 : 997 ‐ 999 , 2011 .
 199. Donelan JM , McVea DA , Pearson KG . Force regulation of ankle extensor muscle activity in freely walking cats . J Neurophysiol 101 : 360 ‐ 371 , 2009 .
 200. Donelan JM , Pearson KG . Contribution of force feedback to ankle extensor activity in decerebrate walking cats . J Neurophysiol 92 : 2093 ‐ 2104 , 2004 .
 201. Donelan JM , Pearson KG . Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking . Can J Physiol Pharmacol 82 : 589 ‐ 598 , 2004 .
 202. Dorn TW , Schache AG , Pandy MG . Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance . J Exp Biol 215 : 1944 ‐ 1956 , 2012 .
 203. Dorofeev IY , Avelev VD , Shcherbakova NA , Gerasimenko YP . The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats . Neurosci Behav Physiol 38 : 695 ‐ 701 , 2008 .
 204. Dostal WF , Andrews JG . A three‐dimensional biomechanical model of hip musculature . J Biomech 14 : 803 ‐ 812 , 1981 .
 205. Drew T . Functional organization within the medullary reticular formation of the intact unanesthetized cat. III. Microstimulation during locomotion . J Neurophysiol 66 : 919 ‐ 938 , 1991 .
 206. Drew T , Cabana T , Rossignol S . Responses of medullary reticulospinal neurones to stimulation of cutaneous limb nerves during locomotion in intact cats . Exp Brain Res 111 : 153 ‐ 168 , 1996 .
 207. Drew T , Dubuc R , Rossignol S . Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill . J Neurophysiol 55 : 375 ‐ 401 , 1986 .
 208. Drew T , Rossignol S . Phase‐dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats . J Neurophysiol 52 : 653 ‐ 675 , 1984 .
 209. Drew T , Rossignol S . A kinematic and electromyographic study of cutaneous reflexes evoked from the forelimb of unrestrained walking cats . J Neurophysiol 57 : 1160 ‐ 1184 , 1987 .
 210. Dubuc R , Cabelguen JM , Rossignol S . Rhythmic antidromic discharges of single primary afferents recorded in cut dorsal root filaments during locomotion in the cat . Brain Res 359 : 375 ‐ 378 , 1985 .
 211. Duenas SH , Loeb GE , Marks WB . Monosynaptic and dorsal root reflexes during locomotion in normal and thalamic cats . J Neurophysiol 63 : 1467 ‐ 1476 , 1990 .
 212. Durkovic RG . Classical conditioning, sensitization and habituation in the spinal cat . Physiol Behav 14 : 297 ‐ 304 , 1975 .
 213. Durkovic RG . Classical conditioning of the flexion reflex in spinal cat: Features of the reflex circuitry . Neurosci Lett 39 : 155 ‐ 160 , 1983 .
 214. Durkovic RG , Damianopoulos EN . Forward and backward classical conditioning of the flexion reflex in the spinal cat . J Neurosci 6 : 2921 ‐ 2925 , 1986 .
 215. Dutto DJ , Hoyt DF , Cogger EA , Wickler SJ . Ground reaction forces in horses trotting up an incline and on the level over a range of speeds . J Exp Biol 207 : 3507 ‐ 3514 , 2004 .
 216. Duysens J . Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats . J Neurophysiol 40 : 737 ‐ 751 , 1977 .
 217. Duysens J , Loeb GE . Modulation of ipsi‐ and contralateral reflex responses in unrestrained walking cats . J Neurophysiol 44 : 1024 ‐ 1037 , 1980 .
 218. Duysens J , Pearson KG . The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats . Exp Brain Res 24 : 245 ‐ 255 , 1976 .
 219. Duysens J , Pearson KG . Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats . Brain Res 187 : 321 ‐ 332 , 1980 .
 220. Duysens J , Tax AA , Murrer L , Dietz V . Backward and forward walking use different patterns of phase‐dependent modulation of cutaneous reflexes in humans . J Neurophysiol 76 : 301 ‐ 310 , 1996 .
 221. Duysens J , Tax AA , Trippel M , Dietz V . Increased amplitude of cutaneous reflexes during human running as compared to standing . Brain Res 613 : 230 ‐ 238 , 1993 .
 222. Duysens J , Tax AA , van der Doelen B , Trippel M , Dietz V . Selective activation of human soleus or gastrocnemius in reflex responses during walking and running . Exp Brain Res 87 : 193 ‐ 204 , 1991 .
 223. Duysens J , Van de Crommert HW . Neural control of locomotion: The central pattern generator from cats to humans . Gait Posture 7 : 131 ‐ 141 , 1998 .
 224. Duysens J , Van Wezel BM , Van de Crommert HW , Faist M , Kooloos JG . The role of afferent feedback in the control of hamstrings activity during human gait . Eur J Morphol 36 : 293 ‐ 299 , 1998 .
 225. Eccles JC , Eccles RM , Lundberg A . Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents . J Physiol 138 : 227 ‐ 252 , 1957 .
 226. Eccles JC , Eccles RM , Lundberg A . The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones . J Physiol 137 : 22 ‐ 50 , 1957 .
 227. Eccles JC , Eccles RM , MAGNI F . Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys . J Physiol 159 : 147 ‐ 166 , 1961 .
 228. Eccles JC , Hubbard JI , Oscarsson O . Intracellular recording from cells of the ventral spinocerebellar tract . J Physiol 158 : 486 ‐ 516 , 1961 .
 229. Eccles JC , Kostyuk PG , Schmidt RF . Central pathways responsible for depolarization of primary afferent fibres . J Physiol 161 : 237 ‐ 257 , 1962 .
 230. Eccles JC , Nicoll RA , Schwarz WF , Taborikova H , Willey TJ . Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei . J Neurophysiol 38 : 513 ‐ 530 , 1975 .
 231. Eccles JC , Oscarsson O , Willis WD . Synaptic action of group I and II afferent fibres of muscle on the cells of the dorsal spinocerebellar tract . J Physiol 158 : 517 ‐ 543 , 1961 .
 232. Eccles JC , Schmidt R , Willis WD . Pharmacological studies on studies on presynaptic inhibition . J Physiol 168 : 500 ‐ 530 , 1963 .
 233. Eccles RM , Lundberg A . Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles . J Physiol 144 : 271 ‐ 298 , 1958 .
 234. Edgley S , Jankowska E , McCrea D . The heteronymous monosynaptic actions of triceps surae group Ia afferents on hip and knee extensor motoneurones in the cat . Exp Brain Res 61 : 443 ‐ 446 , 1986 .
 235. Edgley SA . Organisation of inputs to spinal interneurone populations . J Physiol 533 : 51 ‐ 56 , 2001 .
 236. Edgley SA , Aggelopoulos NC . Short latency crossed inhibitory reflex actions evoked from cutaneous afferents . Exp Brain Res 171 : 541 ‐ 550 , 2006 .
 237. Edgley SA , Jankowska E . An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord . J Physiol 389 : 647 ‐ 674 , 1987 .
 238. Edgley SA , Jankowska E . Field potentials generated by group II muscle afferents in the middle lumbar segments of the cat spinal cord . J Physiol 385 : 393 ‐ 413 , 1987 .
 239. Edgley SA , Jankowska E . Information processed by dorsal horn spinocerebellar tract neurones in the cat . J Physiol 397 : 81 ‐ 97 , 1988 .
 240. Edgley SA , Wallace NA . A short‐latency crossed pathway from cutaneous afferents to rat hindlimb motoneurones . J Physiol 411 : 469 ‐ 480 , 1989 .
 241. Edwards DH , Prilutsky BI . Sensory feedback in the control of posture and locomotion . In: Hooper SL , Buschges A , editors. Neurobiology of Motor Control: Fundamental Concepts and New Directions . New York : Wiley , 2017 , p. 263 ‐ 304 .
 242. Ekeberg O , Grillner S . Simulations of neuromuscular control in lamprey swimming . Philos Trans R Soc Lond Ser B Biol Sci 354 : 895 ‐ 902 , 1999 .
 243. Ekeberg O , Pearson K . Computer simulation of stepping in the hind legs of the cat: An examination of mechanisms regulating the stance‐to‐swing transition . J Neurophysiol 94 : 4256 ‐ 4268 , 2005 .
 244. Ekerot CF , Larson B . The dorsal spino‐olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe . Exp Brain Res 36 : 201 ‐ 217 , 1979 .
 245. Ellaway PH , Taylor A , Durbaba R . Muscle spindle and fusimotor activity in locomotion . J Anat 227 : 157 ‐ 166 , 2015 .
 246. Emonet‐Denand F , Jami L , Laporte Y . Skeleto‐fusimotor axons in the hind‐limb muscles of the cat . J Physiol 249 : 153 ‐ 166 , 1975 .
 247. Eng JJ , Hoffer JA . Regional variability of stretch reflex amplitude in the cat medial gastrocnemius muscle during a postural task . J Neurophysiol 78 : 1150 ‐ 1154 , 1997 .
 248. Engberg I , Lundberg A . An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion . Acta Physiol Scand 75 : 614 ‐ 630 , 1969 .
 249. English AW . An electromyographic analysis of forelimb muscles during overground stepping in the cat . J Exp Biol 76 : 105 ‐ 122 , 1978 .
 250. English AW , Weeks OI . An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles . J Morphol 191 : 161 ‐ 175 , 1987 .
 251. Farrell BJ , Bulgakova MA , Beloozerova IN , Sirota MG , Prilutsky BI . Body stability and muscle and motor cortex activity during walking with wide stance . J Neurophysiol 112 : 504 ‐ 524 , 2014 .
 252. Favorov OV , Nilaweera WU , Miasnikov AA , Beloozerova IN . Activity of somatosensory‐responsive neurons in high subdivisions of SI cortex during locomotion . J Neurosci 35 : 7763 ‐ 7776 , 2015 .
 253. Fedirchuk B , Stecina K , Kristensen KK , Zhang M , Meehan CF , Bennett DJ , Hultborn H . Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions . J Neurophysiol 109 : 375 ‐ 388 , 2013 .
 254. Feldman AG , Orlovsky GN . Activity of interneurons mediating reciprocal 1a inhibition during locomotion . Brain Res 84 : 181 ‐ 194 , 1975 .
 255. Feldman EL , Callaghan BC , Pop‐Busui R , Zochodne DW , Wright DE , Bennett DL , Bril V , Russell JW , Viswanathan V . Diabetic neuropathy . Nat Rev Dis Primers 5 : 41 , 2019 .
 256. Feng‐Chen KC , Wolpaw JR . Operant conditioning of H‐reflex changes synaptic terminals on primate motoneurons . Proc Natl Acad Sci U S A 93 : 9206 ‐ 9211 , 1996 .
 257. Fenn WO , Marsh BS . Muscular force at different speeds of shortening . J Physiol 85 : 277 ‐ 297 , 1935 .
 258. Fields HL , Clanton CH , Anderson SD . Somatosensory properties of spinoreticular neurons in the cat . Brain Res 120 : 49 ‐ 66 , 1977 .
 259. Fink AJ , Croce KR , Huang ZJ , Abbott LF , Jessell TM , Azim E . Presynaptic inhibition of spinal sensory feedback ensures smooth movement . Nature 509 : 43 ‐ 48 , 2014 .
 260. Fischer MS , Lehmann SV , Andrada E . Three‐dimensional kinematics of canine hind limbs: In vivo, biplanar, high‐frequency fluoroscopic analysis of four breeds during walking and trotting . Sci Rep 8 : 16982 , 2018 .
 261. Fitzsimmons NA , Lebedev MA , Peikon ID , Nicolelis MA . Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity . Front Integr Neurosci 3 : 3 , 2009 .
 262. Flash T , Hogan N . The coordination of arm movements: An experimentally confirmed mathematical model . J Neurosci 5 : 1688 ‐ 1703 , 1985 .
 263. Flynn JR , Graham BA , Galea MP , Callister RJ . The role of propriospinal interneurons in recovery from spinal cord injury . Neuropharmacology 60 : 809 ‐ 822 , 2011 .
 264. Formento E , Minassian K , Wagner F , Mignardot JB , Le Goff‐Mignardot CG , Rowald A , Bloch J , Micera S , Capogrosso M , Courtine G . Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury . Nat Neurosci 21 : 1728 ‐ 1741 , 2018 .
 265. Forssberg H . Stumbling corrective reaction: A phase‐dependent compensatory reaction during locomotion . J Neurophysiol 42 : 936 ‐ 953 , 1979 .
 266. Forssberg H , Grillner S , Halbertsma J . The locomotion of the low spinal cat. I. Coordination within a hindlimb . Acta Physiol Scand 108 : 269 ‐ 281 , 1980 .
 267. Forssberg H , Grillner S , Halbertsma J , Rossignol S . The locomotion of the low spinal cat. II. Interlimb coordination . Acta Physiol Scand 108 : 283 ‐ 295 , 1980 .
 268. Forssberg H , Grillner S , Rossignol S . Phase dependent reflex reversal during walking in chronic spinal cats . Brain Res 85 : 103 ‐ 107 , 1975 .
 269. Forssberg H , Grillner S , Rossignol S . Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion . Brain Res 132 : 121 ‐ 139 , 1977 .
 270. Francis JT , Xu S , Chapin JK . Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus . J Neurophysiol 99 : 2291 ‐ 2304 , 2008 .
 271. Freeman AW , Johnson KO . A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey . J Physiol 323 : 43 ‐ 64 , 1982 .
 272. Freeman AW , Johnson KO . Cutaneous mechanoreceptors in macaque monkey: Temporal discharge patterns evoked by vibration, and a receptor model . J Physiol 323 : 21 ‐ 41 , 1982 .
 273. Freeman MA , Wyke B . The innervation of the knee joint. An anatomical and histological study in the cat . J Anat 101 : 505 ‐ 532 , 1967 .
 274. Frigon A . Central pattern generators of the mammalian spinal cord . Neuroscientist 18 : 56 ‐ 69 , 2012 .
 275. Frigon A . The neural control of interlimb coordination during mammalian locomotion . J Neurophysiol 117 : 2224 ‐ 2241 , 2017 .
 276. Frigon A . Fundamental contributions of the cat model to the neural control of locomotion . In: Whelan PJ , Sharples SA , editors. The Neural Control of Movement . London : Academic Press , 2020 , p. 315 ‐ 348 .
 277. Frigon A , Barriere G , Leblond H , Rossignol S . Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat . J Neurophysiol 102 : 2667 ‐ 2680 , 2009 .
 278. Frigon A , Carroll TJ , Jones KE , Zehr EP , Collins DF . Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior . Muscle Nerve 35 : 756 ‐ 766 , 2007 .
 279. Frigon A , D'Angelo G , Thibaudier Y , Hurteau MF , Telonio A , Kuczynski V , Dambreville C . Speed‐dependent modulation of phase variations on a step‐by‐step basis and its impact on the consistency of interlimb coordination during quadrupedal locomotion in intact adult cats . J Neurophysiol 111 : 1885 ‐ 1902 , 2014 .
 280. Frigon A , Desrochers E , Thibaudier Y , Hurteau MF , Dambreville C . Left‐right coordination from simple to extreme conditions during split‐belt locomotion in the chronic spinal adult cat . J Physiol 595 : 341 ‐ 361 , 2017 .
 281. Frigon A , Gossard JP . Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat . J Physiol 587 : 4617 ‐ 4628 , 2009 .
 282. Frigon A , Gossard JP . Evidence for specialized rhythm‐generating mechanisms in the adult mammalian spinal cord . J Neurosci 30 : 7061 ‐ 7071 , 2010 .
 283. Frigon A , Hurteau MF , Thibaudier Y , Leblond H , Telonio A , D'Angelo G . Split‐belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats . J Neurosci 33 : 8559 ‐ 8566 , 2013 .
 284. Frigon A , Rossignol S . Plasticity of reflexes from the foot during locomotion after denervating ankle extensors in intact cats . J Neurophysiol 98 : 2122 ‐ 2132 , 2007 .
 285. Frigon A , Rossignol S . Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization . J Physiol 586 : 2927 ‐ 2945 , 2008 .
 286. Frigon A , Rossignol S . Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats . J Neurophysiol 100 : 1513 ‐ 1522 , 2008 .
 287. Frigon A , Rossignol S . Short‐latency crossed inhibitory responses in extensor muscles during locomotion in the cat . J Neurophysiol 99 : 989 ‐ 998 , 2008 .
 288. Frigon A , Sirois J , Gossard JP . Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion . J Neurophysiol 103 : 1591 ‐ 1605 , 2010 .
 289. Frigon A , Thibaudier Y , Hurteau MF . Modulation of forelimb and hindlimb muscle activity during quadrupedal tied‐belt and split‐belt locomotion in intact cats . Neuroscience 290 : 266 ‐ 278 , 2015 .
 290. Frigon A , Thibaudier Y , Johnson MD , Hurteau MF , Heckman CJ . Cutaneous inputs from the back abolish locomotor‐like activity and reduce spastic‐like activity in the adult cat following complete spinal cord injury . Exp Neurol 235 : 588 ‐ 598 , 2012 .
 291. Fritz N , Illert M , de la Motte S , Reeh P , Saggau P . Pattern of monosynaptic Ia connections in the cat forelimb . J Physiol 419 : 321 ‐ 351 , 1989 .
 292. Fung J , Macpherson JM . Determinants of postural orientation in quadrupedal stance . J Neurosci 15 : 1121 ‐ 1131 , 1995 .
 293. Fung J , Macpherson JM . Attributes of quiet stance in the chronic spinal cat . J Neurophysiol 82 : 3056 ‐ 3065 , 1999 .
 294. Galvez‐Lopez E , Maes LD , Abourachid A . The search for stability on narrow supports: An experimental study in cats and dogs . Zoology (Jena) 114 : 224 ‐ 232 , 2011 .
 295. Gambaryan PP . How Mammals Run: Anatomical Adaptations . New York : John Wiley & Sons , 1974 .
 296. Ganley KJ , Powers CM . Intersegmental dynamics during the swing phase of gait: A comparison of knee kinetics between 7 year‐old children and adults . Gait Posture 23 : 499 ‐ 504 , 2006 .
 297. Garcia‐Ramirez DL , Calvo JR , Hochman S , Quevedo JN . Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord . PLoS ONE 9 : e89999 , 2014 .
 298. Garwicz M . Spinal reflexes provide motor error signals to cerebellar modules‐‐relevance for motor coordination . Brain Res Brain Res Rev 40 : 152 ‐ 165 , 2002 .
 299. Garwicz M , Levinsson A , Schouenborg J . Common principles of sensory encoding in spinal reflex modules and cerebellar climbing fibres . J Physiol 540 : 1061 ‐ 1069 , 2002 .
 300. Gatto G , Smith KM , Ross SE , Goulding M . Neuronal diversity in the somatosensory system: Bridging the gap between cell type and function . Curr Opin Neurobiol 56 : 167 ‐ 174 , 2019 .
 301. Geertsen SS , Stecina K , Meehan CF , Nielsen JB , Hultborn H . Reciprocal Ia inhibition contributes to motoneuronal hyperpolarisation during the inactive phase of locomotion and scratching in the cat . J Physiol 589 : 119 ‐ 134 , 2011 .
 302. Gellman R , Gibson AR , Houk JC . Inferior olivary neurons in the awake cat: Detection of contact and passive body displacement . J Neurophysiol 54 : 40 ‐ 60 , 1985 .
 303. Gellman R , Houk JC , Gibson AR . Somatosensory properties of the inferior olive of the cat . J Comp Neurol 215 : 228 ‐ 243 , 1983 .
 304. Gibson AR , Horn KM , Pong M . Activation of climbing fibers . Cerebellum 3 : 212 ‐ 221 , 2004 .
 305. Gill ML , Grahn PJ , Calvert JS , Linde MB , Lavrov IA , Strommen JA , Beck LA , Sayenko DG , Van Straaten MG , Drubach DI , Veith DD , Thoreson AR , Lopez C , Gerasimenko YP , Edgerton VR , Lee KH , Zhao KD . Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia . Nat Med 24 : 1677 ‐ 1682 , 2018 .
 306. Gillis GB , Biewener AA . Hindlimb muscle function in relation to speed and gait: In vivo patterns of strain and activation in a hip and knee extensor of the rat ( Rattus norvegicus ) . J Exp Biol 204 : 2717 ‐ 2731 , 2001 .
 307. Gillis GB , Flynn JP , McGuigan P , Biewener AA . Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion . J Exp Biol 208 : 4599 ‐ 4611 , 2005 .
 308. Giuliani CA , Smith JL . Stepping behaviors in chronic spinal cats with one hindlimb deafferented . J Neurosci 7 : 2537 ‐ 2546 , 1987 .
 309. Goldberger ME , Murray M . Restitution of function and collateral sprouting in the cat spinal cord: The deafferented animal . J Comp Neurol 158 : 37 ‐ 53 , 1974 .
 310. Goldfinger MD , Fukami Y . Distribution, density and size of muscle receptors in cat tail dorsolateral muscles . J Anat 135 : 371 ‐ 384 , 1982 .
 311. Goldring JM , Kuno M , Nunez R , Snider WD . Reaction of synapses on motoneurones to section and restoration of peripheral sensory connexions in the cat . J Physiol 309 : 185 ‐ 198 , 1980 .
 312. Goode DJ , Van HJ . Loss of patellar and Achilles tendon reflexes in classical ballet dancers . Arch Neurol 39 : 323 , 1982 .
 313. Gorassini M , Eken T , Bennett DJ , Kiehn O , Hultborn H . Activity of hindlimb motor units during locomotion in the conscious rat . J Neurophysiol 83 : 2002 ‐ 2011 , 2000 .
 314. Gordon AM , Huxley AF , Julian FJ . The variation in isometric tension with sarcomere length in vertebrate muscle fibres . J Physiol 184 : 170 ‐ 192 , 1966 .
 315. Gosgnach S , Quevedo J , Fedirchuk B , McCrea DA . Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion . J Physiol 526 ( Pt 3 ): 639 ‐ 652 , 2000 .
 316. Goslow GE Jr , Reinking RM , Stuart DG . The cat step cycle: Hind limb joint angles and muscle lengths during unrestrained locomotion . J Morphol 141 : 1 ‐ 41 , 1973 .
 317. Goslow GE Jr , Seeherman HJ , Taylor CR , McCutchin MN , Heglund NC . Electrical activity and relative length changes of dog limb muscles as a function of speed and gait . J Exp Biol 94 : 15 ‐ 42 , 1981 .
 318. Gossard JP . Control of transmission in muscle group IA afferents during fictive locomotion in the cat . J Neurophysiol 76 : 4104 ‐ 4112 , 1996 .
 319. Gossard JP , Brownstone RM , Barajon I , Hultborn H . Transmission in a locomotor‐related group Ib pathway from hindlimb extensor muscles in the cat . Exp Brain Res 98 : 213 ‐ 228 , 1994 .
 320. Gossard JP , Cabelguen JM , Rossignol S . Intra‐axonal recordings of cutaneous primary afferents during fictive locomotion in the cat . J Neurophysiol 62 : 1177 ‐ 1188 , 1989 .
 321. Gossard JP , Cabelguen JM , Rossignol S . Phase‐dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat . Brain Res 537 : 14 ‐ 23 , 1990 .
 322. Gossard JP , Cabelguen JM , Rossignol S . An intracellular study of muscle primary afferents during fictive locomotion in the cat . J Neurophysiol 65 : 914 ‐ 926 , 1991 .
 323. Gossard JP , Rossignol S . Phase‐dependent modulation of dorsal root potentials evoked by peripheral nerve stimulation during fictive locomotion in the cat . Brain Res 537 : 1 ‐ 13 , 1990 .
 324. Gossard JP , Sirois J , Noue P , Cote MP , Menard A , Leblond H , Frigon A . Chapter 2‐‐the spinal generation of phases and cycle duration . Prog Brain Res 188 : 15 ‐ 29 , 2011 .
 325. Granit R . The functional role of the muscle spindles‐‐facts and hypotheses . Brain 98 : 531 ‐ 556 , 1975 .
 326. Grau JW . Learning from the spinal cord: How the study of spinal cord plasticity informs our view of learning . Neurobiol Learn Mem 108 : 155 ‐ 171 , 2014 .
 327. Grau JW , Salinas JA , Illich PA , Meagher MW . Associative learning and memory for an antinociceptive response in the spinalized rat . Behav Neurosci 104 : 489 ‐ 494 , 1990 .
 328. Gray J . Animal Locomotion (World Naturalist) . Norton, New York : Littlehampton Book Services Ltd , 1968 .
 329. Gregor RJ , Maas H , Bulgakova MA , Oliver A , English AW , Prilutsky BI . Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles . J Neurophysiol 119 : 1166 ‐ 1185 , 2018 .
 330. Gregor RJ , Roy RR , Whiting WC , Lovely RG , Hodgson JA , Edgerton VR . Mechanical output of the cat soleus during treadmill locomotion: In vivo vs in situ characteristics . J Biomech 21 : 721 ‐ 732 , 1988 .
 331. Gregor RJ , Smith DW , Prilutsky BI . Mechanics of slope walking in the cat: Quantification of muscle load, length change, and ankle extensor EMG patterns . J Neurophysiol 95 : 1397 ‐ 1409 , 2006 .
 332. Gregory JE , Brockett CL , Morgan DL , Whitehead NP , Proske U . Effect of eccentric muscle contractions on Golgi tendon organ responses to passive and active tension in the cat . J Physiol 538 : 209 ‐ 218 , 2002 .
 333. Gregory JE , McIntyre AK , Proske U . Tendon organ afferents in the knee joint nerve of the cat . Neurosci Lett 103 : 287 ‐ 292 , 1989 .
 334. Grey MJ , Mazzaro N , Nielsen JB , Sinkjaer T . Ankle extensor proprioceptors contribute to the enhancement of the soleus EMG during the stance phase of human walking . Can J Physiol Pharmacol 82 : 610 ‐ 616 , 2004 .
 335. Grey MJ , Nielsen JB , Mazzaro N , Sinkjaer T . Positive force feedback in human walking . J Physiol 581 : 99 ‐ 105 , 2007 .
 336. Griffin TM , Kram R , Wickler SJ , Hoyt DF . Biomechanical and energetic determinants of the walk‐trot transition in horses . J Exp Biol 207 : 4215 ‐ 4223 , 2004 .
 337. Grillner S . Control of locomotion in bipeds, tetrapods, and fish . In: Brooks VB , editor. Handbook of Physiology, The Nervous System, Motor Control . Bethesda, MD : American Physiological Society , 1981 , p. 1179 ‐ 1236 .
 338. Grillner S , Dubuc R . Control of locomotion in vertebrates: Spinal and supraspinal mechanisms . Adv Neurol 47 : 425 ‐ 453 , 1988 .
 339. Grillner S , El Manira A . Current principles of motor control, with special reference to vertebrate locomotion . Physiol Rev 100 : 271 ‐ 320 , 2020 .
 340. Grillner S , Halbertsma J , Nilsson J , Thorstensson A . The adaptation to speed in human locomotion . Brain Res 165 : 177 ‐ 182 , 1979 .
 341. Grillner S , Hongo T , Lund S . Descending monosynaptic and reflex control of gamma‐motoneurones . Acta Physiol Scand 75 : 592 ‐ 613 , 1969 .
 342. Grillner S , Rossignol S . On the initiation of the swing phase of locomotion in chronic spinal cats . Brain Res 146 : 269 ‐ 277 , 1978 .
 343. Grillner S , Wallen P , Saitoh K , Kozlov A , Robertson B . Neural bases of goal‐directed locomotion in vertebrates‐‐an overview . Brain Res Rev 57 : 2 ‐ 12 , 2008 .
 344. Grillner S , Zangger P . On the central generation of locomotion in the low spinal cat . Exp Brain Res 34 : 241 ‐ 261 , 1979 .
 345. Grillner S , Zangger P . The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion . Acta Physiol Scand 120 : 393 ‐ 405 , 1984 .
 346. Guertin P , Angel MJ , Perreault MC , McCrea DA . Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat . J Physiol 487 ( Pt 1 ): 197 ‐ 209 , 1995 .
 347. Gurfinkel VS , Pal'tsev EI . Effect of the segmentary apparatus of the spinal cord on the execution of simple movement reactions . Biofizika 10 : 855 ‐ 860 , 1965 .
 348. Haftel VK , Bichler EK , Wang QB , Prather JF , Pinter MJ , Cope TC . Central suppression of regenerated proprioceptive afferents . J Neurosci 25 : 4733 ‐ 4742 , 2005 .
 349. Hagbarth KE . Excitatory and inhibitory skin areas for flexor and extensor motoneurons . Acta Physiol Scand Suppl 26 : 1 ‐ 58 , 1952 .
 350. Halbertsma JM . The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings . Acta Physiol Scand Suppl 521 : 1 ‐ 75 , 1983 .
 351. Hammar I , Bannatyne BA , Maxwell DJ , Edgley SA , Jankowska E . The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord . Eur J Neurosci 19 : 1305 ‐ 1316 , 2004 .
 352. Hammar I , Chojnicka B , Jankowska E . Modulation of responses of feline ventral spinocerebellar tract neurons by monoamines . J Comp Neurol 443 : 298 ‐ 309 , 2002 .
 353. Han S , Chu JU , Kim H , Park JW , Youn I . Multiunit activity‐based real‐time limb‐state estimation from dorsal root ganglion recordings . Sci Rep 7 : 44197 , 2017 .
 354. Haridas C , Zehr EP . Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking . J Neurophysiol 90 : 2850 ‐ 2861 , 2003 .
 355. Haridas C , Zehr EP , Misiaszek JE . Context‐dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking . J Neurophysiol 96 : 3096 ‐ 3103 , 2006 .
 356. Harischandra N , Knuesel J , Kozlov A , Bicanski A , Cabelguen JM , Ijspeert A , Ekeberg O . Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study . Front Neurorobot 5 : 3 , 2011 .
 357. Harkema SJ , Hurley SL , Patel UK , Requejo PS , Dobkin BH , Edgerton VR . Human lumbosacral spinal cord interprets loading during stepping . J Neurophysiol 77 : 797 ‐ 811 , 1997 .
 358. Harnie J , Audet J , Klishko AN , Doelman A , Prilutsky BI , Frigon A . The spinal control of backward locomotion . J Neurosci 41 : 630 ‐ 647 , 2020 .
 359. Harnie J , Audet J , Klishko AN , Doelman A , Prilutsky BI , Frigon A . The spinal control of backward locomotion . J Neurosci 41 : 630 ‐ 647 , 2021 .
 360. Harnie J , Doelman A , de Vette E , Audet J , Desrochers E , Gaudreault N , Frigon A . The recovery of standing and locomotion after spinal cord injury does not require task‐specific training . elife 8 : 1 ‐ 25 , 2019 .
 361. Harrison PJ , Jankowska E . Sources of input to interneurones mediating group I non‐reciprocal inhibition of motoneurones in the cat . J Physiol 361 : 379 ‐ 401 , 1985 .
 362. Hart BL . Facilitation by strychnine of reflex walking in spinal dogs . Physiol Behav 6 : 627 ‐ 628 , 1971 .
 363. Hasan Z . A model of spindle afferent response to muscle stretch . J Neurophysiol 49 : 989 ‐ 1006 , 1983 .
 364. Hatze H . A general myocybernetic control model of skeletal muscle . Biol Cybern 28 : 143 ‐ 157 , 1978 .
 365. Hatze H . A three‐dimensional multivariate model of passive human joint torques and articular boundaries . Clin Biomech (Bristol, Avon) 12 : 128 ‐ 135 , 1997 .
 366. He J , Levine WS , Loeb GE . Feedback gains for correcting small perturbations to standing posture . IEEE Trans Autom Control 36 : 322 ‐ 332 , 1991 .
 367. Heglund NC , Taylor CR , McMahon TA . Scaling stride frequency and gait to animal size: Mice to horses . Science 186 : 1112 ‐ 1113 , 1974 .
 368. Hicheur H , Pham QC , Arechavaleta G , Laumond JP , Berthoz A . The formation of trajectories during goal‐oriented locomotion in humans. I. A stereotyped behaviour . Eur J Neurosci 26 : 2376 ‐ 2390 , 2007 .
 369. Hicheur H , Terekhov AV , Berthoz A . Intersegmental coordination during human locomotion: Does planar covariation of elevation angles reflect central constraints? J Neurophysiol 96 : 1406 ‐ 1419 , 2006 .
 370. Hiebert GW , Pearson KG . Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat . J Neurophysiol 81 : 758 ‐ 770 , 1999 .
 371. Hiebert GW , Whelan PJ , Prochazka A , Pearson KG . Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle . J Neurophysiol 75 : 1126 ‐ 1137 , 1996 .
 372. Higgin D , Krupka A , Maghsoudi OH , Klishko AN , Nichols TR , Lyle MA , Prilutsky BI , Lemay MA . Adaptation to slope in locomotor‐trained spinal cats with intact and self‐reinnervated lateral gastrocnemius and soleus muscles . J Neurophysiol 123 : 70 ‐ 89 , 2020 .
 373. Hildebrand M . Symmetrical gaits of dogs in relation to body build . J Morphol 124 : 353 ‐ 360 , 1968 .
 374. Hildebrand M . The quadrupedal gaits of vertebrates . Bioscience 39 : 766 ‐ 775 , 1989 .
 375. Hill AV . The heat of shortening and the dynamic constants of muscle . Proc R Soc B 126 : 136 ‐ 195 , 1938 .
 376. Hines ML , Carnevale NT . The NEURON simulation environment . Neural Comput 9 : 1179 ‐ 1209 , 1997 .
 377. Hippenmeyer S , Vrieseling E , Sigrist M , Portmann T , Laengle C , Ladle DR , Arber S . A developmental switch in the response of DRG neurons to ETS transcription factor signaling . PLoS Biol 3 : e159 , 2005 .
 378. Hishinuma M , Yamaguchi T . Modulation of reflex responses during fictive locomotion in the forelimb of the cat . Brain Res 482 : 184 ‐ 188 , 1989 .
 379. Hof AL , Gazendam MG , Sinke WE . The condition for dynamic stability . J Biomech 38 : 1 ‐ 8 , 2005 .
 380. Hoffer JA , Caputi AA , Pose IE , Griffiths RI . Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat . Prog Brain Res 80 : 75 ‐ 85 , 1989 .
 381. Hoffer JA , Loeb GE , Sugano N , Marks WB , O'Donovan MJ , Pratt CA . Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius . J Neurophysiol 57 : 554 ‐ 562 , 1987 .
 382. Hollerbach MJ , Flash T . Dynamic interactions between limb segments during planar arm movement . Biol Cybern 44 : 67 ‐ 77 , 1982 .
 383. Holmqvist B , Lundberg A . Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones . Acta Physiol Scand Suppl 186 : 1 ‐ 15 , 1961 .
 384. Holmqvist B , Oscarsson O , ROSEN I . Functional organization of the cuneocrebellar tract in the cat . Acta Physiol Scand 58 : 216 ‐ 235 , 1963 .
 385. Honeycutt CF , Gottschall JS , Nichols TR . Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations . J Neurophysiol 101 : 2751 ‐ 2761 , 2009 .
 386. Honeycutt CF , Nardelli P , Cope TC , Nichols TR . Muscle spindle responses to horizontal support surface perturbation in the anesthetized cat: Insights into the role of autogenic feedback in whole body postural control . J Neurophysiol 108 : 1253 ‐ 1261 , 2012 .
 387. Honeycutt CF , Nichols TR . Disruption of cutaneous feedback alters magnitude but not direction of muscle responses to postural perturbations in the decerebrate cat . Exp Brain Res 203 : 765 ‐ 771 , 2010 .
 388. Honeycutt CF , Nichols TR . The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb . J Neurophysiol 111 : 900 ‐ 907 , 2014 .
 389. Hongo T , Jankowska E , Lundberg A . The rubrospinal tract. 3. Effects on primary afferent terminals . Exp Brain Res 15 : 39 ‐ 53 , 1972 .
 390. Hongo T , Lundberg A , Phillips CG , Thompson RF . The pattern of monosynaptic Ia‐connections to hindlimb motor nuclei in the baboon: A comparison with the cat . Proc R Soc Lond B Biol Sci 221 : 261 ‐ 289 , 1984 .
 391. Hooper SL . Body size and the neural control of movement . Curr Biol 22 : R318 ‐ R322 , 2012 .
 392. Hoover DM , Carlton WW . The subacute neurotoxicity of excess pyridoxine HCl and clioquinol (5‐chloro‐7‐iodo‐8‐hydroxyquinoline) in beagle dogs. II Pathology . Vet Pathol 18 : 757 ‐ 768 , 1981 .
 393. Horak FB , Diener HC , Nashner LM . Influence of central set on human postural responses . J Neurophysiol 62 : 841 ‐ 853 , 1989 .
 394. Horn KM , Deep A , Gibson AR . Progressive limb ataxia following inferior olive lesions . J Physiol 591 : 5475 ‐ 5489 , 2013 .
 395. Houk J , Henneman E . Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat . J Neurophysiol 30 : 466 ‐ 481 , 1967 .
 396. Houk J , Simon W . Responses of golgi tendon organs to forces applied to muscle tendon . J Neurophysiol 30 : 1466 ‐ 1481 , 1967 .
 397. Housley SN , Nardelli P , Carrasco DI , Rotterman TM , Pfahl E , Matyunina LV , McDonald JF , Cope TC . Cancer exacerbates chemotherapy‐induced sensory neuropathy . Cancer Res 80 : 2940 ‐ 2955 , 2020 .
 398. Hoyt DF , Taylor CR . Gait and the energetics of locomotion in horses . Nature 292 : 239 ‐ 240 , 1981 .
 399. Hreljac A . Determinants of the gait transition speed during human locomotion: Kinematic factors . J Biomech 28 : 669 ‐ 677 , 1995 .
 400. Hu Y , Hu S , Wang W , Wu X , Marshall FB , Chen X , Hou L , Wang C . Earliest evidence for commensal processes of cat domestication . Proc Natl Acad Sci U S A 111 : 116 ‐ 120 , 2014 .
 401. Hughes DI , Mackie M , Nagy GG , Riddell JS , Maxwell DJ , Szabo G , Erdelyi F , Veress G , Szucs P , Antal M , Todd AJ . P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase‐65 and originate from cells in deep medial dorsal horn . Proc Natl Acad Sci U S A 102 : 9038 ‐ 9043 , 2005 .
 402. Hulliger M . The mammalian muscle spindle and its central control . Rev Physiol Biochem Pharmacol 101 : 1 ‐ 110 , 1984 .
 403. Hultborn H , Conway BA , Gossard JP , Brownstone R , Fedirchuk B , Schomburg ED , Enriquez‐Denton M , Perreault MC . How do we approach the locomotor network in the mammalian spinal cord? Ann N Y Acad Sci 860 : 70 ‐ 82 , 1998 .
 404. Hultborn H , Nielsen JB . Spinal control of locomotion‐‐from cat to man . Acta Physiol (Oxf) 189 : 111 ‐ 121 , 2007 .
 405. Hunt SP , Mantyh PW . The molecular dynamics of pain control . Nat Rev Neurosci 2 : 83 ‐ 91 , 2001 .
 406. Hurteau MF , Frigon A . A spinal mechanism related to left‐right symmetry reduces cutaneous reflex modulation independent of speed during split‐belt locomotion . J Neurosci 38 : 10314 ‐ 10328 , 2018 .
 407. Hurteau MF , Thibaudier Y , Dambreville C , Chraibi A , Desrochers E , Telonio A , Frigon A . Non‐linear modulation of cutaneous reflexes with increasing speed of locomotion in spinal cats . J Neurosci 37 : 3896 ‐ 3912 , 2017 .
 408. Hurteau MF , Thibaudier Y , Dambreville C , Danner SM , Rybak I , Frigon A . Intralimb and interlimb cutaneous reflexes during locomotion in the intact cat . J Neurosci 38 : 4104 ‐ 4122 , 2018 .
 409. Hurteau MF , Thibaudier Y , Dambreville C , Desaulniers C , Frigon A . Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion . J Neurophysiol 113 : 669 ‐ 676 , 2015 .
 410. Hutchison DL , Roy RR , Hodgson JA , Edgerton VR . EMG amplitude relationships between the rat soleus and medial gastrocnemius during various motor tasks . Brain Res 502 : 233 ‐ 244 , 1989 .
 411. Huxley AF . Muscle structure and theories of contraction . Prog Biophys Biophys Chem 7 : 255 ‐ 318 , 1957 .
 412. Hyvarinen J , Poranen A . Receptive field integration and submodality convergence in the hand area of the post‐central gyrus of the alert monkey . J Physiol 283 : 539 ‐ 556 , 1978 .
 413. Ijspeert AJ . Biorobotics: Using robots to emulate and investigate agile locomotion . Science 346 : 196 ‐ 203 , 2014 .
 414. Illich PA , Salinas JA , Grau JW . Latent inhibition, overshadowing, and blocking of a conditioned antinociceptive response in spinalized rats . Behav Neural Biol 62 : 140 ‐ 150 , 1994 .
 415. Imai F , Yoshida Y . Molecular mechanisms underlying monosynaptic sensory‐motor circuit development in the spinal cord . Dev Dyn 247 : 581 ‐ 587 , 2018 .
 416. Inglis JT , Horak FB , Shupert CL , Jones‐Rycewicz C . The importance of somatosensory information in triggering and scaling automatic postural responses in humans . Exp Brain Res 101 : 159 ‐ 164 , 1994 .
 417. Inglis JT , Macpherson JM . Bilateral labyrinthectomy in the cat: Effects on the postural response to translation . J Neurophysiol 73 : 1181 ‐ 1191 , 1995 .
 418. Ishikawa M , Komi PV , Grey MJ , Lepola V , Bruggemann GP . Muscle‐tendon interaction and elastic energy usage in human walking . J Appl Physiol (1985) 99 : 603 ‐ 608 , 2005 .
 419. Ishizuka N , Mannen H , Hongo T , Sasaki S . Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: Three dimensional reconstructions from serial sections . J Comp Neurol 186 : 189 ‐ 211 , 1979 .
 420. Ito M . Cerebellar circuitry as a neuronal machine . Prog Neurobiol 78 : 272 ‐ 303 , 2006 .
 421. Ivanenko YP , Cappellini G , Dominici N , Poppele RE , Lacquaniti F . Coordination of locomotion with voluntary movements in humans . J Neurosci 25 : 7238 ‐ 7253 , 2005 .
 422. Ivanenko YP , Cappellini G , Dominici N , Poppele RE , Lacquaniti F . Modular control of limb movements during human locomotion . J Neurosci 27 : 11149 ‐ 11161 , 2007 .
 423. Ivanenko YP , Cappellini G , Poppele RE , Lacquaniti F . Spatiotemporal organization of alpha‐motoneuron activity in the human spinal cord during different gaits and gait transitions . Eur J Neurosci 27 : 3351 ‐ 3368 , 2008 .
 424. Ivanenko YP , d'Avella A , Poppele RE , Lacquaniti F . On the origin of planar covariation of elevation angles during human locomotion . J Neurophysiol 99 : 1890 ‐ 1898 , 2008 .
 425. Ivanenko YP , Poppele RE , Lacquaniti F . Spinal cord maps of spatiotemporal alpha‐motoneuron activation in humans walking at different speeds . J Neurophysiol 95 : 602 ‐ 618 , 2006 .
 426. Ivashko DG , Prilutsky BI , Markin SN , Chapin JK , Rybak IA . Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion . Neurocomputing 52‐54 : 621 ‐ 629 , 2003 .
 427. Iwahara T , Atsuta Y , Garcia‐Rill E , Skinner RD . Spinal cord stimulation‐induced locomotion in the adult cat . Brain Res Bull 28 : 99 ‐ 105 , 1992 .
 428. Iwamura Y . Hierarchical somatosensory processing . Curr Opin Neurobiol 8 : 522 ‐ 528 , 1998 .
 429. Jacobs R , van Ingen Schenau GJ . Control of an external force in leg extensions in humans . J Physiol 457 : 611 ‐ 626 , 1992 .
 430. Jalaleddini K , Minos NC , Chakravarthi RS , Joon SW , Loeb GE , Sanger TD , Valero‐Cuevas FJ . Neuromorphic meets neuromechanics, part II: The role of fusimotor drive . J Neural Eng 14 : 025002 , 2017 .
 431. Jami L . Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions . Physiol Rev 72 : 623 ‐ 666 , 1992 .
 432. Janig W , Schmidt RF , Zimmermann M . Single unit responses and the total afferent outflow from the cat's foot pad upon mechanical stimulation . Exp Brain Res 6 : 100 ‐ 115 , 1968 .
 433. Jankowska E . Interneuronal relay in spinal pathways from proprioceptors . Prog Neurobiol 38 : 335 ‐ 378 , 1992 .
 434. Jankowska E . Spinal interneuronal networks in the cat: Elementary components . Brain Res Rev 57 : 46 ‐ 55 , 2008 .
 435. Jankowska E . On the distribution of information from muscle spindles in the spinal cord; how much does it depend on random factors? J Anat 227 : 184 ‐ 193 , 2015 .
 436. Jankowska E , Bannatyne BA , Stecina K , Hammar I , Cabaj A , Maxwell DJ . Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: Neurotransmitters, projections and target cells . J Physiol 587 : 401 ‐ 418 , 2009 .
 437. Jankowska E , Edgley SA . Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update . Eur J Neurosci 32 : 881 ‐ 893 , 2010 .
 438. Jankowska E , Hammar I . Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Brain Res Rev 40 : 19 ‐ 28 , 2002 .
 439. Jankowska E , Hammar I . Interactions between spinal interneurons and ventral spinocerebellar tract neurons . J Physiol 591 : 5445 ‐ 5451 , 2013 .
 440. Jankowska E , Jukes MG , Lund S , Lundberg A . The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors . Acta Physiol Scand 70 : 369 ‐ 388 , 1967 .
 441. Jankowska E , Jukes MG , Lund S , Lundberg A . The effect of DOPA on the spinal cord. 6. Half‐centre organization of interneurones transmitting effects from the flexor reflex afferents . Acta Physiol Scand 70 : 389 ‐ 402 , 1967 .
 442. Jeneskog T , Johansson H . The rubro‐bulbospinal path. A descending system known to influence dynamic fusimotor neurones and its interaction with distal cutaneous afferents in the control of flexor reflex afferent pathways . Exp Brain Res 27 : 161 ‐ 179 , 1977 .
 443. Jessell TM , Surmeli G , Kelly JS . Motor neurons and the sense of place . Neuron 72 : 419 ‐ 424 , 2011 .
 444. Jiang J , Azim E , Ekerot CF , Alstermark B . Direct and indirect spino‐cerebellar pathways: Shared ideas but different functions in motor control . Front Comput Neurosci 9 : 75 , 2015 .
 445. Johansson H . Role of knee ligaments in proprioception and regulation of muscle stiffness . J Electromyogr Kinesiol 1 : 158 ‐ 179 , 1991 .
 446. Johansson H , Sjolander P , Sojka P . Actions on gamma‐motoneurones elicited by electrical stimulation of joint afferent fibres in the hind limb of the cat . J Physiol 375 : 137 ‐ 152 , 1986 .
 447. Johansson H , Sjolander P , Sojka P . A sensory role for the cruciate ligaments . Clin Orthop Relat Res 268 : 161 ‐ 178 , 1991 .
 448. Johansson RS , Westling G . Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects . Exp Brain Res 56 : 550 ‐ 564 , 1984 .
 449. Johnson KO . The roles and functions of cutaneous mechanoreceptors . Curr Opin Neurobiol 11 : 455 ‐ 461 , 2001 .
 450. Jordan LM . Factors determining motoneuron rhythmicity during fictive locomotion . Symp Soc Exp Biol 37 : 423 ‐ 444 , 1983 .
 451. Josset N , Roussel M , Lemieux M , Lafrance‐Zoubga D , Rastqar A , Bretzner F . Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse . Curr Biol 28 : 884 ‐ 901 , 2018 .
 452. Kaas JH , Nelson RJ , Sur M , Dykes RW , Merzenich MM . The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus . J Comp Neurol 226 : 111 ‐ 140 , 1984 .
 453. Katonis P , Papoutsidakis A , Aligizakis A , Tzanakakis G , Kontakis GM , Papagelopoulos PJ . Mechanoreceptors of the posterior cruciate ligament . J Int Med Res 36 : 387 ‐ 393 , 2008 .
 454. Kiehn O . Locomotor circuits in the mammalian spinal cord . Annu Rev Neurosci 29 : 279 ‐ 306 , 2006 .
 455. Kiehn O . Decoding the organization of spinal circuits that control locomotion . Nat Rev Neurosci 17 : 224 ‐ 238 , 2016 .
 456. Kiehn O , Butt SJ . Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord . Prog Neurobiol 70 : 347 ‐ 361 , 2003 .
 457. Kiehn O , Dougherty KJ , Hagglund M , Borgius L , Talpalar A , Restrepo CE . Probing spinal circuits controlling walking in mammals . Biochem Biophys Res Commun 396 : 11 ‐ 18 , 2010 .
 458. Kiehn O , Kjaerulff O . Spatiotemporal characteristics of 5‐HT and dopamine‐induced rhythmic hindlimb activity in the in vitro neonatal rat . J Neurophysiol 75 : 1472 ‐ 1482 , 1996 .
 459. Kim JH , Ebner TJ , Bloedel JR . Comparison of response properties of dorsal and ventral spinocerebellar tract neurons to a physiological stimulus . Brain Res 369 : 125 ‐ 135 , 1986 .
 460. Kim JH , Wang JJ , Ebner TJ . Climbing fiber afferent modulation during treadmill locomotion in the cat . J Neurophysiol 57 : 787 ‐ 802 , 1987 .
 461. Kim SS , Gomez‐Ramirez M , Thakur PH , Hsiao SS . Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex . Neuron 86 : 555 ‐ 566 , 2015 .
 462. Kjaerulff O , Kiehn O . Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: A lesion study . J Neurosci 16 : 5777 ‐ 5794 , 1996 .
 463. Klein TJ , Lewis MA . A physical model of sensorimotor interactions during locomotion . J Neural Eng 9 : 046011 , 2012 .
 464. Klishko AN , Akyildiz A , Mehta‐Desai R , Prilutsky BI . Common and distinct muscle synergies during level and slope locomotion in the cat . J Neurophysiol 126 : 493 ‐ 515 , 2021 .
 465. Klishko AN , Farrell BJ , Beloozerova IN , Latash ML , Prilutsky BI . Stabilization of cat paw trajectory during locomotion . J Neurophysiol 112 : 1376 ‐ 1391 , 2014 .
 466. Knox CK , Kubota S , Poppele RE . A determination of excitability changes in dorsal spinocerebellar tract neurons from spike‐train analysis . J Neurophysiol 40 : 626 ‐ 646 , 1977 .
 467. Knusel J , Crespi A , Cabelguen JM , Ijspeert AJ , Ryczko D . Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback . Front Neurorobot 14 : 604426 , 2020 .
 468. Kriellaars DJ , Brownstone RM , Noga BR , Jordan LM . Mechanical entrainment of fictive locomotion in the decerebrate cat . J Neurophysiol 71 : 2074 ‐ 2086 , 1994 .
 469. Krinke G , Heid J , Bittiger H , Hess R . Sensory denervation of the plantar lumbrical muscle spindles in pyridoxine neuropathy . Acta Neuropathol 43 : 213 ‐ 216 , 1978 .
 470. Krishnan V , Rosenblatt NJ , Latash ML , Grabiner MD . The effects of age on stabilization of the mediolateral trajectory of the swing foot . Gait Posture 38 : 923 ‐ 928 , 2013 .
 471. Krouchev N , Kalaska JF , Drew T . Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition . J Neurophysiol 96 : 1991 ‐ 2010 , 2006 .
 472. Krylova O , Herreros J , Cleverley KE , Ehler E , Henriquez JP , Hughes SM , Salinas PC . WNT‐3, expressed by motoneurons, regulates terminal arborization of neurotrophin‐3‐responsive spinal sensory neurons . Neuron 35 : 1043 ‐ 1056 , 2002 .
 473. LaBella LA , Niechaj A , Rossignol S . Low‐threshold, short‐latency cutaneous reflexes during fictive locomotion in the "semi‐chronic" spinal cat . Exp Brain Res 91 : 236 ‐ 248 , 1992 .
 474. Lacquaniti F , Terzuolo C , Viviani P . The law relating the kinematic and figural aspects of drawing movements . Acta Psychol 54 : 115 ‐ 130 , 1983 .
 475. Laflamme OD , Akay T . Excitatory and inhibitory crossed reflex pathways in mice . J Neurophysiol 120 : 2897 ‐ 2907 , 2018 .
 476. Lajoie Y , Teasdale N , Cole JD , Burnett M , Bard C , Fleury M , Forget R , Paillard J , Lamarre Y . Gait of a deafferented subject without large myelinated sensory fibers below the neck . Neurology 47 : 109 ‐ 115 , 1996 .
 477. Laliberte AM , Goltash S , Lalonde NR , Bui TV . Propriospinal neurons: Essential elements of locomotor control in the intact and possibly the injured spinal cord . Front Cell Neurosci 13 : 512 , 2019 .
 478. Lam T , Pearson KG . Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats . J Neurophysiol 86 : 1321 ‐ 1332 , 2001 .
 479. Lam T , Pearson KG . Sartorius muscle afferents influence the amplitude and timing of flexor activity in walking decerebrate cats . Exp Brain Res 147 : 175 ‐ 185 , 2002 .
 480. Lamont EV , Zehr EP . Earth‐referenced handrail contact facilitates interlimb cutaneous reflexes during locomotion . J Neurophysiol 98 : 433 ‐ 442 , 2007 .
 481. Larson B , Miller S , Oscarsson O . A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs . J Physiol 203 : 641 ‐ 649 , 1969 .
 482. Latash EM , Lecomte CG , Danner SM , Frigon A , Rybak IA , Molkov YI . On the organization of the locomotor CPG: Insights from split‐belt locomotion and mathematical modeling . Front Neurosci 14 : 598888 , 2020 .
 483. Latash ML , Scholz JP , Schoner G . Toward a new theory of motor synergies . Mot Control 11 : 276 ‐ 308 , 2007 .
 484. Lavoie S , McFadyen B , Drew T . A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat . Exp Brain Res 106 : 39 ‐ 56 , 1995 .
 485. Lavrov I , Courtine G , Dy CJ , van den Brand R , Fong AJ , Gerasimenko Y , Zhong H , Roy RR , Edgerton VR . Facilitation of stepping with epidural stimulation in spinal rats: Role of sensory input . J Neurosci 28 : 7774 ‐ 7780 , 2008 .
 486. Lawson SN , Waddell PJ . Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons . J Physiol 435 : 41 ‐ 63 , 1991 .
 487. Lay AN , Hass CJ , Gregor RJ . The effects of sloped surfaces on locomotion: A kinematic and kinetic analysis . J Biomech 39 : 1621 ‐ 1628 , 2006 .
 488. Leblond H , L'Esperance M , Orsal D , Rossignol S . Treadmill locomotion in the intact and spinal mouse . J Neurosci 23 : 11411 ‐ 11419 , 2003 .
 489. Lechner SG , Lewin GR . Hairy sensation . Physiology (Bethesda) 28 : 142 ‐ 150 , 2013 .
 490. Lemieux M , Josset N , Roussel M , Couraud S , Bretzner F . Speed‐dependent modulation of the locomotor behavior in adult mice reveals attractor and transitional gaits . Front Neurosci 10 : 42 , 2016 .
 491. Lemon RN , Griffiths J . Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 32 : 261 ‐ 279 , 2005 .
 492. Leurs F , Bengoetxea A , Cebolla AM , De SC , Dan B , Cheron G . Planar covariation of elevation angles in prosthetic gait . Gait Posture 35 : 647 ‐ 652 , 2012 .
 493. Li L , Rutlin M , Abraira VE , Cassidy C , Kus L , Gong S , Jankowski MP , Luo W , Heintz N , Koerber HR , Woodbury CJ , Ginty DD . The functional organization of cutaneous low‐threshold mechanosensory neurons . Cell 147 : 1615 ‐ 1627 , 2011 .
 494. Li L , Zhang S , Dobson J . The contribution of small and large sensory afferents to postural control in patients with peripheral neuropathy . J Sport Health Sci 8 : 218 ‐ 227 , 2019 .
 495. Lidierth M , Apps R . Gating in the spino‐olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat . J Physiol 430 : 453 ‐ 469 , 1990 .
 496. Lin CC , Crago PE . Structural model of the muscle spindle . Ann Biomed Eng 30 : 68 ‐ 83 , 2002 .
 497. Liu Q , Tang Z , Surdenikova L , Kim S , Patel KN , Kim A , Ru F , Guan Y , Weng HJ , Geng Y , Undem BJ , Kollarik M , Chen ZF , Anderson DJ , Dong X . Sensory neuron‐specific GPCR Mrgprs are itch receptors mediating chloroquine‐induced pruritus . Cell 139 : 1353 ‐ 1365 , 2009 .
 498. Llinas R , Walton K , Hillman DE , Sotelo C . Inferior olive: Its role in motor learing . Science 190 : 1230 ‐ 1231 , 1975 .
 499. Lloyd DP . Integrative pattern of excitation and inhibition in two‐neuron reflex arcs . J Neurophysiol 9 : 439 ‐ 444 , 1946 .
 500. Loeb GE . Somatosensory unit input to the spinal cord during normal walking . Can J Physiol Pharmacol 59 : 627 ‐ 635 , 1981 .
 501. Loeb GE . The distal hindlimb musculature of the cat: Interanimal variability of locomotor activity and cutaneous reflexes . Exp Brain Res 96 : 125 ‐ 140 , 1993 .
 502. Loeb GE , Bak MJ , Duysens J . Long‐term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat . Science 197 : 1192 ‐ 1194 , 1977 .
 503. Loeb GE , Duysens J . Activity patterns in individual hindlimb primary and secondary muscle spindle afferents during normal movements in unrestrained cats . J Neurophysiol 42 : 420 ‐ 440 , 1979 .
 504. Loeb GE , Hoffer JA . Activity of spindle afferents from cat anterior thigh muscles. II. Effects of fusimotor blockade . J Neurophysiol 54 : 565 ‐ 577 , 1985 .
 505. Loeb GE , Hoffer JA , Marks WB . Activity of spindle afferents from cat anterior thigh muscles. III. Effects of external stimuli . J Neurophysiol 54 : 578 ‐ 591 , 1985 .
 506. Loeb GE , Hoffer JA , Pratt CA . Activity of spindle afferents from cat anterior thigh muscles. I. Identification and patterns during normal locomotion . J Neurophysiol 54 : 549 ‐ 564 , 1985 .
 507. Loeb GE , Tsianos GA , Fishel JA , Wettels N , Schaal S . Understanding haptics by evolving mechatronic systems . Prog Brain Res 192 : 129 ‐ 144 , 2011 .
 508. Lomeli J , Quevedo J , Linares P , Rudomin P . Local control of information flow in segmental and ascending collaterals of single afferents . Nature 395 : 600 ‐ 604 , 1998 .
 509. Loram ID , Maganaris CN , Lakie M . Paradoxical muscle movement in human standing . J Physiol 556 : 683 ‐ 689 , 2004 .
 510. Loutit AJ , Vickery RM , Potas JR . Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub . J Comp Neurol 529 : 187 ‐ 220 , 2020 .
 511. Lovely RG , Gregor RJ , Roy RR , Edgerton VR . Effects of training on the recovery of full‐weight‐bearing stepping in the adult spinal cat . Exp Neurol 92 : 421 ‐ 435 , 1986 .
 512. Lovely RG , Gregor RJ , Roy RR , Edgerton VR . Weight‐bearing hindlimb stepping in treadmill‐exercised adult spinal cats . Brain Res 514 : 206 ‐ 218 , 1990 .
 513. Lund RD , Webster KE . Thalamic afferents from the dorsal column nuclei. An experimental anatomical study in the rat . J Comp Neurol 130 : 301 ‐ 312 , 1967 .
 514. Lund RD , Webster KE . Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat . J Comp Neurol 130 : 313 ‐ 328 , 1967 .
 515. Lundberg A . Function of the ventral spinocerebellar tract. A new hypothesis . Exp Brain Res 12 : 317 ‐ 330 , 1971 .
 516. Lundberg A . Multisensory control of spinal reflex pathways . Prog Brain Res 50 : 11 ‐ 28 , 1979 .
 517. Lundberg A , Malmgren K , Schomburg ED . Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents . J Physiol 284 : 327 ‐ 343 , 1978 .
 518. Lundberg A , Malmgren K , Schomburg ED . Reflex pathways from group II muscle afferents. 2. Functional characteristics of reflex pathways to alpha‐motoneurones . Exp Brain Res 65 : 282 ‐ 293 , 1987 .
 519. Lyle MA , Prilutsky BI , Gregor RJ , Abelew TA , Nichols TR . Self‐reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity . J Neurophysiol 116 : 1055 ‐ 1067 , 2016 .
 520. Lynn B . The form and distribution of the receptive fields of Pacinian corpuscles found in and around the cat's large foot pad . J Physiol 217 : 755 ‐ 771 , 1971 .
 521. Ma Q , Fode C , Guillemot F , Anderson DJ . Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia . Genes Dev 13 : 1717 ‐ 1728 , 1999 .
 522. Maas H , Gregor RJ , Hodson‐Tole EF , Farrell BJ , Prilutsky BI . Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking . J Appl Physiol 106 : 1169 ‐ 1180 , 2009 .
 523. Maas H , Sandercock TG . Are skeletal muscles independent actuators? Force transmission from soleus muscle in the cat . J Appl Physiol (1985) 104 : 1557 ‐ 1567 , 2008 .
 524. MacLeod TD , Hreljac A , Imamura R . Changes in the preferred transition speed with added mass to the foot . J Appl Biomech 30 : 95 ‐ 103 , 2014 .
 525. Macpherson JM . Strategies that simplify the control of quadrupedal stance. I. Forces at the ground . J Neurophysiol 60 : 204 ‐ 217 , 1988 .
 526. Macpherson JM . Strategies that simplify the control of quadrupedal stance. II. Electromyographic activity . J Neurophysiol 60 : 218 ‐ 231 , 1988 .
 527. Macpherson JM , Fung J . Weight support and balance during perturbed stance in the chronic spinal cat . J Neurophysiol 82 : 3066 ‐ 3081 , 1999 .
 528. Macpherson JM , Horak FB , Dunbar DC , Dow RS . Stance dependence of automatic postural adjustments in humans . Exp Brain Res 78 : 557 ‐ 566 , 1989 .
 529. Madey SM , Cole KJ , Brand RA . Sensory innervation of the cat knee articular capsule and cruciate ligament visualised using anterogradely transported wheat germ agglutinin‐horseradish peroxidase . J Anat 190 ( Pt 2 ): 289 ‐ 297 , 1997 .
 530. Maltenfort MG , Burke RE . Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects . J Neurophysiol 89 : 2797 ‐ 2809 , 2003 .
 531. Mann MD . Clarke's column and the dorsal spinocerebellar tract: A review . Brain Behav Evol 7 : 34 ‐ 83 , 1973 .
 532. Mantle‐St John LA , Tracey DJ . Somatosensory nuclei in the brainstem of the rat: Independent projections to the thalamus and cerebellum . J Comp Neurol 255 : 259 ‐ 271 , 1987 .
 533. Manuel M , Chardon M , Tysseling V , Heckman CJ . Scaling of motor output, from mouse to humans . Physiology (Bethesda) 34 : 5 ‐ 13 , 2019 .
 534. Manuel M , Zytnicki D . Alpha, beta and gamma motoneurons: Functional diversity in the motor system's final pathway . J Integr Neurosci 10 : 243 ‐ 276 , 2011 .
 535. Marey É‐J . Le Mouvement . Paris : G. Masson , 1894 .
 536. Margaria R . Positive and negative work performances and their efficiencies in human locomotion . Int Z Angew Physiol 25 : 339 ‐ 351 , 1968 .
 537. Markin SN , Klishko AN , Shevtsova NA , Lemay MA , Prilutsky BI , Rybak IA . A neuromechanical model of spinal control of locomotion . In: Prilutsky BI , Edwards DH , editors. Neuromechanical Modeling of Posture and Locomotion . New York : Springer , 2016 , p. 21 ‐ 68 .
 538. Markin SN , Lemay MA , Prilutsky BI , Rybak IA . Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: A comparison study . J Neurophysiol 107 : 2057 ‐ 2071 , 2012 .
 539. Maro GS , Vermeren M , Voiculescu O , Melton L , Cohen J , Charnay P , Topilko P . Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS . Nat Neurosci 7 : 930 ‐ 938 , 2004 .
 540. Marple‐Horvat DE , Armstrong DM . Central regulation of motor cortex neuronal responses to forelimb nerve inputs during precision walking in the cat . J Physiol 519 ( Pt 1 ): 279 ‐ 299 , 1999 .
 541. Mastinu E , Engels LF , Clemente F , Dione M , Sassu P , Aszmann O , Branemark R , Hakansson B , Controzzi M , Wessberg J , Cipriani C , Ortiz‐Catalan M . Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses . Sci Rep 10 : 11793 , 2020 .
 542. Matsushita M , Xiong G . Projections from the cervical enlargement to the cerebellar nuclei in the rat, studied by anterograde axonal tracing . J Comp Neurol 377 : 251 ‐ 261 , 1997 .
 543. Matsuyama K , Drew T . Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface . J Neurophysiol 84 : 2237 ‐ 2256 , 2000 .
 544. Matsuyama K , Drew T . Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane . J Neurophysiol 84 : 2257 ‐ 2276 , 2000 .
 545. Matthews PB . The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings . Q J Exp Physiol Cogn Med Sci 47 : 324 ‐ 333 , 1962 .
 546. Matthews PB . Muscle spindles and their motor control . Physiol Rev 44 : 219 ‐ 288 , 1964 .
 547. Matthews PB . Mammalian Muscle Receptors and their Central Actions . London : Edward Arnold , 1972 .
 548. Matthews PB . Evolving views on the internal operation and functional role of the muscle spindle . J Physiol 320 : 1 ‐ 30 , 1981 .
 549. Matthews PB . Where anatomy led, physiology followed: A survey of our developing understanding of the muscle spindle, what it does and how it works . J Anat 227 : 104 ‐ 114 , 2015 .
 550. Maunz RA , Pitts NG , Peterson BW . Cat spinoreticular neurons: Locations, responses and changes in responses during repetitive stimulation . Brain Res 148 : 365 ‐ 379 , 1978 .
 551. Maxwell DJ , Soteropoulos DS . The mammalian spinal commissural system: Properties and functions . J Neurophysiol 123 : 4 ‐ 21 , 2020 .
 552. Mayer WP , Akay T . Stumbling corrective reaction elicited by mechanical and electrical stimulation of the saphenous nerve in walking mice . J Exp Biol 221 : 1 ‐ 10 , 2018 .
 553. Mayer WP , Murray AJ , Brenner‐Morton S , Jessell TM , Tourtellotte WG , Akay T . Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice . J Neurophysiol 120 : 2484 ‐ 2497 , 2018 .
 554. McAllister JP , Wells J . The structural organization of the ventral posterolateral nucleus in the rat . J Comp Neurol 197 : 271 ‐ 301 , 1981 .
 555. McAndrew Young PM , Wilken JM , Dingwell JB . Dynamic margins of stability during human walking in destabilizing environments . J Biomech 45 : 1053 ‐ 1059 , 2012 .
 556. McCall AA , Miller DM , DeMayo WM , Bourdages GH , Yates BJ . Vestibular nucleus neurons respond to hindlimb movement in the conscious cat . J Neurophysiol 116 : 1785 ‐ 1794 , 2016 .
 557. McCrea DA . Spinal circuitry of sensorimotor control of locomotion . J Physiol 533 : 41 ‐ 50 , 2001 .
 558. McCrea DA , Perreault MC . PAD and modulation of group II‐evoked flexion reflexes during MLR‐evoked fictive locomotion . In: Rudomin P , Romo R , Mendell L , editors. Presynaptic Inhibition and Neural Control . New York : Oxford University Press , 1997 , p. 366 ‐ 384 .
 559. McCrea DA , Rybak IA . Organization of mammalian locomotor rhythm and pattern generation . Brain Res Rev 57 : 134 ‐ 146 , 2008 .
 560. McCrea DA , Shefchyk SJ , Stephens MJ , Pearson KG . Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat . J Physiol 487 ( Pt 2 ): 527 ‐ 539 , 1995 .
 561. McFadyen BJ , Lavoie S , Drew T . Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion . Exp Brain Res 125 : 502 ‐ 510 , 1999 .
 562. McGuigan MP , Yoo E , Lee DV , Biewener AA . Dynamics of goat distal hind limb muscle‐tendon function in response to locomotor grade . J Exp Biol 212 : 2092 ‐ 2104 , 2009 .
 563. McIntyre AK , Proske U , Tracey DJ . Afferent fibres from muscle receptors in the posterior nerve of the cat's knee joint . Exp Brain Res 33 : 415 ‐ 424 , 1978 .
 564. McVea DA , Donelan JM , Tachibana A , Pearson KG . A role for hip position in initiating the swing‐to‐stance transition in walking cats . J Neurophysiol 94 : 3497 ‐ 3508 , 2005 .
 565. Mears SC , Frank E . Formation of specific monosynaptic connections between muscle spindle afferents and motoneurons in the mouse . J Neurosci 17 : 3128 ‐ 3135 , 1997 .
 566. Mehta R , Prilutsky BI . Task‐dependent inhibition of slow‐twitch soleus and excitation of fast‐twitch gastrocnemius do not require high movement speed and velocity‐dependent sensory feedback . Front Physiol 5 : 410 , 2014 .
 567. Menard A , Leblond H , Gossard JP . The modulation of presynaptic inhibition in single muscle primary afferents during fictive locomotion in the cat . J Neurosci 19 : 391 ‐ 400 , 1999 .
 568. Menard A , Leblond H , Gossard JP . Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat . J Neurophysiol 88 : 163 ‐ 171 , 2002 .
 569. Mendell LM , Taylor JS , Johnson RD , Munson JB . Rescue of motoneuron and muscle afferent function in cats by regeneration into skin. II. Ia‐motoneuron synapse . J Neurophysiol 73 : 662 ‐ 673 , 1995 .
 570. Mendelsohn AI , Simon CM , Abbott LF , Mentis GZ , Jessell TM . Activity regulates the incidence of heteronymous sensory‐motor connections . Neuron 87 : 111 ‐ 123 , 2015 .
 571. Merlet AN , Harnie J , Macovei M , Doelman A , Gaudreault N , Frigon A . Mechanically stimulating the lumbar region inhibits locomotor‐like activity and increases the gain of cutaneous reflexes from the paws in spinal cats . J Neurophysiol 123 : 1026 ‐ 1041 , 2020 .
 572. Merlet AN , Harnie J , Macovei M , Doelman A , Gaudreault N , Frigon A . Cutaneous inputs from perineal region facilitate spinal locomotor activity and modulate cutaneous reflexes from the foot in spinal cats . J Neurosci Res 99 : 1448 ‐ 1473 , 2021 .
 573. Mileusnic MP , Brown IE , Lan N , Loeb GE . Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle . J Neurophysiol 96 : 1772 ‐ 1788 , 2006 .
 574. Mileusnic MP , Loeb GE . Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ . J Neurophysiol 96 : 1789 ‐ 1802 , 2006 .
 575. Miller CT , Hale ME , Okano H , Okabe S , Mitra P . Comparative principles for next‐generation neuroscience . Front Behav Neurosci 13 : 12 , 2019 .
 576. Miller DM , DeMayo WM , Bourdages GH , Wittman SR , Yates BJ , McCall AA . Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth . Exp Brain Res 235 : 1195 ‐ 1207 , 2017 .
 577. Miller S , Reitsma DJ , Van der Meche FG . Functional organization of long ascending propriospinal pathways linking lumbo‐sacral and cervical segments in the cat . Brain Res 62 : 169 ‐ 188 , 1973 .
 578. Miller S , Ruit JB , Van der Meche FG . Reversal of sign of long spinal reflexes dependent on the phase of the step cycle in the high decerebrate cat . Brain Res 128 : 447 ‐ 459 , 1977 .
 579. Minetti AE , Ardigo LP , Saibene F . The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients . Acta Physiol Scand 150 : 315 ‐ 323 , 1994 .
 580. Misiaszek JE . The H‐reflex as a tool in neurophysiology: Its limitations and uses in understanding nervous system function . Muscle Nerve 28 : 144 ‐ 160 , 2003 .
 581. Misiaszek JE . Control of frontal plane motion of the hindlimbs in the unrestrained walking cat . J Neurophysiol 96 : 1816 ‐ 1828 , 2006 .
 582. Misiaszek JE , De Serres SJ , Stein RB , Jiang W , Pearson KG . Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats . J Neurophysiol 83 : 1941 ‐ 1950 , 2000 .
 583. Mitra P , Brownstone RM . An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse . J Neurophysiol 107 : 728 ‐ 741 , 2012 .
 584. Monzee J , Lamarre Y , Smith AM . The effects of digital anesthesia on force control using a precision grip . J Neurophysiol 89 : 672 ‐ 683 , 2003 .
 585. Moraud EM , Capogrosso M , Formento E , Wenger N , DiGiovanna J , Courtine G , Micera S . Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury . Neuron 89 : 814 ‐ 828 , 2016 .
 586. Moraud EM , von Zitzewitz J , Miehlbradt J , Wurth S , Formento E , DiGiovanna J , Capogrosso M , Courtine G , Micera S . Closed‐loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury . Sci Rep 8 : 76 , 2018 .
 587. Mori S , Matsui T , Kuze B , Asanome M , Nakajima K , Matsuyama K . Cerebellar‐induced locomotion: Reticulospinal control of spinal rhythm generating mechanism in cats . Ann N Y Acad Sci 860 : 94 ‐ 105 , 1998 .
 588. Mori S , Matsui T , Kuze B , Asanome M , Nakajima K , Matsuyama K . Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat . J Neurophysiol 82 : 290 ‐ 300 , 1999 .
 589. Mori S , Reynolds PJ , Brookhart JM . Contribution of pedal afferents to postural control in the dog . Am J Phys 218 : 726 ‐ 734 , 1970 .
 590. Morrison KM , Miesegaes GR , Lumpkin EA , Maricich SM . Mammalian Merkel cells are descended from the epidermal lineage . Dev Biol 336 : 76 ‐ 83 , 2009 .
 591. Muir GD , Whishaw IQ . Ground reaction forces in locomoting hemi‐parkinsonian rats: A definitive test for impairments and compensations . Exp Brain Res 126 : 307 ‐ 314 , 1999 .
 592. Muller H , Sternad D . A randomization method for the calculation of covariation in multiple nonlinear relations: Illustrated with the example of goal‐directed movements . Biol Cybern 89 : 22 ‐ 33 , 2003 .
 593. Muniak MA , Ray S , Hsiao SS , Dammann JF , Bensmaia SJ . The neural coding of stimulus intensity: Linking the population response of mechanoreceptive afferents with psychophysical behavior . J Neurosci 27 : 11687 ‐ 11699 , 2007 .
 594. Murphy PR . Tonic and phasic discharge patterns in toe flexor gamma‐motoneurons during locomotion in the decerebrate cat . J Neurophysiol 87 : 286 ‐ 294 , 2002 .
 595. Murphy PR , Hammond GR . Gamma‐motoneurone discharge patterns during fictive locomotion in the decerebrate cat . Exp Physiol 75 : 107 ‐ 110 , 1990 .
 596. Murphy PR , Hammond GR . The role of cutaneous afferents in the control of gamma‐motoneurones during locomotion in the decerebrate cat . J Physiol 434 : 529 ‐ 547 , 1991 .
 597. Murphy PR , Martin HA . Fusimotor neurone responses to medial plantar nerve stimulation in the decerebrate cat . J Physiol 482 ( Pt 1 ): 167 ‐ 177 , 1995 .
 598. Musienko PE , Bogacheva IN , Gerasimenko YP . Significance of peripheral feedback in the generation of stepping movements during epidural stimulation of the spinal cord . Neurosci Behav Physiol 37 : 181 ‐ 190 , 2007 .
 599. Musienko PE , Lyalka VF , Gorskii OV , Merkulyeva N , Gerasimenko YP , Deliagina TG , Zelenin PV . Comparison of operation of spinal locomotor networks activated by supraspinal commands and by epidural stimulation of the spinal cord in cats . J Physiol 598 : 3459 ‐ 3483 , 2020 .
 600. Nardone A , Corna S , Turcato AM , Schieppati M . Afferent control of walking: Are there distinct deficits associated to loss of fibres of different diameter? Clin Neurophysiol 125 : 327 ‐ 335 , 2014 .
 601. Nashner LM . Adapting reflexes controlling the human posture . Exp Brain Res 26 : 59 ‐ 72 , 1976 .
 602. Nichols TR . A biomechanical perspective on spinal mechanisms of coordinated muscular action: An architecture principle . Acta Anat (Basel) 151 : 1 ‐ 13 , 1994 .
 603. Nichols TR . Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat . J Neurophysiol 81 : 467 ‐ 478 , 1999 .
 604. Nichols TR . Distributed force feedback in the spinal cord and the regulation of limb mechanics . J Neurophysiol 119 : 1186 ‐ 1200 , 2018 .
 605. Nichols TR , Cope TC . Cross‐bridge mechanisms underlying the history‐dependent properties of muscle spindles and stretch reflexes . Can J Physiol Pharmacol 82 : 569 ‐ 576 , 2004 .
 606. Nichols TR , Cope TC , Abelew TA . Rapid spinal mechanisms of motor coordination . Exerc Sport Sci Rev 27 : 255 ‐ 284 , 1999 .
 607. Nielsen J , Crone C , Hultborn H . H‐reflexes are smaller in dancers from The Royal Danish Ballet than in well‐trained athletes . Eur J Appl Physiol Occup Physiol 66 : 116 ‐ 121 , 1993 .
 608. Nielsen JB , Sinkjaer T . Afferent feedback in the control of human gait . J Electromyogr Kinesiol 12 : 213 ‐ 217 , 2002 .
 609. Nilsson J , Thorstensson A , Halbertsma J . Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans . Acta Physiol Scand 123 : 457 ‐ 475 , 1985 .
 610. O'Donovan MJ , Bonnot A , Wenner P , Mentis GZ . Calcium imaging of network function in the developing spinal cord . Cell Calcium 37 : 443 ‐ 450 , 2005 .
 611. Ogihara N , Kikuchi T , Ishiguro Y , Makishima H , Nakatsukasa M . Planar covariation of limb elevation angles during bipedal walking in the Japanese macaque . J R Soc Interface 9 : 2181 ‐ 2190 , 2012 .
 612. Ogihara N , Oku T , Andrada E , Blickhan R , Nyakatura JA , Fischer MS . Planar covariation of limb elevation angles during bipedal locomotion in common quails ( Coturnix coturnix ) . J Exp Biol 217 : 3968 ‐ 3973 , 2014 .
 613. Ogihara N , Yamazaki N . Generation of human bipedal locomotion by a bio‐mimetic neuro‐musculo‐skeletal model . Biol Cybern 84 : 1 ‐ 11 , 2001 .
 614. Olausson H , Lamarre Y , Backlund H , Morin C , Wallin BG , Starck G , Ekholm S , Strigo I , Worsley K , Vallbo AB , Bushnell MC . Unmyelinated tactile afferents signal touch and project to insular cortex . Nat Neurosci 5 : 900 ‐ 904 , 2002 .
 615. Oliver KM , Florez‐Paz DM , Badea TC , Mentis GZ , Menon V , de Nooij JC . Molecular correlates of muscle spindle and Golgi tendon organ afferents . Nat Commun 12 : 1451 , 2021 .
 616. Ollivier‐Lanvin K , Krupka AJ , Auyong N , Miller K , Prilutsky BI , Lemay MA . Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat . J Neurophysiol 105 : 2297 ‐ 2308 , 2011 .
 617. Olree KS , Vaughan CL . Fundamental patterns of bilateral muscle activity in human locomotion . Biol Cybern 73 : 409 ‐ 414 , 1995 .
 618. Orlovskii GN . Relations between reticulo‐spinal neurons and locomotor regions of the brain stem . Biofizika 15 : 171 ‐ 178 , 1970 .
 619. Orlovskii GN . Work of reticulo‐spinal neurons during locomotion . Biofizika 15 : 728 ‐ 737 , 1970 .
 620. Orlovskii GN . Activity of Purkinje cells during locomotion . Biofizika 17 : 891 ‐ 896 , 1972 .
 621. Orlovskii GN , Fel'dman AG . Classification of the neurons of the lumbo‐sacral region of the spinal cord in accordance with their discharge patterns during provoked locomotion . Neirofiziologiia 4 : 410 ‐ 417 , 1972 .
 622. Orlovsky GN . Activity of rubrospinal neurons during locomotion . Brain Res 46 : 99 ‐ 112 , 1972 .
 623. Orlovsky GN . Activity of vestibulospinal neurons during locomotion . Brain Res 46 : 85 ‐ 98 , 1972 .
 624. Orlovsky GN . The effect of different descending systems on flexor and extensor activity during locomotion . Brain Res 40 : 359 ‐ 371 , 1972 .
 625. Orlovsky GN , Deliagina TG , Grillner S . Neural control of locomotion: From mollusc to man . New York : Oxford University Press , 1999 .
 626. Osborn CE , Poppele RE . The extent of polysynaptic responses in the dorsal spinocerebellar tract to stimulation of group I afferent fibers in gastrocnemius‐soleus . J Neurosci 8 : 316 ‐ 319 , 1988 .
 627. Oscarsson O . Three ascending tracts activated from group I afferents in forelimb nerves of the cat . Prog Brain Res 12 : 179 ‐ 196 , 1964 .
 628. Oscarsson O . Functional organization of the spino‐ and cuneocerebellar tracts . Physiol Rev 45 : 495 ‐ 522 , 1965 .
 629. Oscarsson O . Termination and functional organization of the dorsal spino‐olivocerebellar path . J Physiol 200 : 129 ‐ 149 , 1969 .
 630. Oscarsson O , Uddenberg N . Identification of a spinocerebellar tract activated from forelimb afferents in the cats . Acta Physiol Scand 62 : 125 ‐ 136 , 1964 .
 631. Ota M , Tateuchi H , Hashiguchi T , Ichihashi N . Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm . Gait Posture 85 : 290 ‐ 297 , 2021 .
 632. Paixao S , Loschek L , Gaitanos L , Alcala MP , Goulding M , Klein R . Identification of spinal neurons contributing to the dorsal column projection mediating fine touch and corrective motor movements . Neuron 104 : 749 ‐ 764 , 2019 .
 633. Pandy MG . Moment arm of a muscle force . Exerc Sport Sci Rev 27 : 79 ‐ 118 , 1999 .
 634. Pandy MG , Kumar V , Berme N , Waldron KJ . The dynamics of quadrupedal locomotion . J Biomech Eng 110 : 230 ‐ 237 , 1988 .
 635. Pantall A , Hodson‐Tole EF , Gregor RJ , Prilutsky BI . Increased intensity and reduced frequency of EMG signals from feline self‐reinnervated ankle extensors during walking do not normalize excessive lengthening . J Neurophysiol 115 : 2406 ‐ 2420 , 2016 .
 636. Park H , Latash EM , Molkov YI , Klishko AN , Frigon A , DeWeerth SP , Prilutsky BI . Cutaneous sensory feedback from paw pads affects lateral balance control during split‐belt locomotion in the cat . J Exp Biol 222 : 1 ‐ 14 , 2019 .
 637. Patterson MM , Cegavske CF , Thompson RF . Effects of a classical conditioning paradigm on hind‐limb flexor nerve response in immobilized spinal cats . J Comp Physiol Psychol 84 : 88 ‐ 97 , 1973 .
 638. Pearcey GEP , Zehr EP . We are upright‐walking cats: human limbs as sensory antennae during locomotion . Physiology (Bethesda) 34 : 354 ‐ 364 , 2019 .
 639. Pearcey GEP , Zehr EP . What lies beneath the brain: Neural circuits involved in human locomotion . In: Whelan PJ , Sharples SA , editors. The Neural Control of Movement . London : Academic Press , 2020 , p. 385 ‐ 418 .
 640. Pearson K , Ekeberg O , Buschges A . Assessing sensory function in locomotor systems using neuro‐mechanical simulations . Trends Neurosci 29 : 625 ‐ 631 , 2006 .
 641. Pearson KG . Generating the walking gait: Role of sensory feedback . Prog Brain Res 143 : 123 ‐ 129 , 2004 .
 642. Pearson KG . Role of sensory feedback in the control of stance duration in walking cats . Brain Res Rev 57 : 222 ‐ 227 , 2008 .
 643. Pearson KG , Acharya H , Fouad K . A new electrode configuration for recording electromyographic activity in behaving mice . J Neurosci Methods 148 : 36 ‐ 42 , 2005 .
 644. Pearson KG , Collins DF . Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity . J Neurophysiol 70 : 1009 ‐ 1017 , 1993 .
 645. Pearson KG , Fouad K , Misiaszek JE . Adaptive changes in motor activity associated with functional recovery following muscle denervation in walking cats . J Neurophysiol 82 : 370 ‐ 381 , 1999 .
 646. Pearson KG , Misiaszek JE , Fouad K . Enhancement and resetting of locomotor activity by muscle afferents . Ann N Y Acad Sci 860 : 203 ‐ 215 , 1998 .
 647. Pearson KG , Misiaszek JE , Hulliger M . Chemical ablation of sensory afferents in the walking system of the cat abolishes the capacity for functional recovery after peripheral nerve lesions . Exp Brain Res 150 : 50 ‐ 60 , 2003 .
 648. Pearson KG , Rossignol S . Fictive motor patterns in chronic spinal cats . J Neurophysiol 66 : 1874 ‐ 1887 , 1991 .
 649. Pedotti A . A study of motor coordination and neuromuscular activities in human locomotion . Biol Cybern 26 : 53 ‐ 62 , 1977 .
 650. Perciavalle V , Bosco G , Poppele R . Correlated activity in the spinocerebellum is related to spinal timing generators . Brain Res 695 : 293 ‐ 297 , 1995 .
 651. Perell KL , Gregor RJ , Buford JA , Smith JL . Adaptive control for backward quadrupedal walking. IV. Hindlimb kinetics during stance and swing . J Neurophysiol 70 : 2226 ‐ 2240 , 1993 .
 652. Perez MA , Lundbye‐Jensen J , Nielsen JB . Task‐specific depression of the soleus H‐reflex after cocontraction training of antagonistic ankle muscles . J Neurophysiol 98 : 3677 ‐ 3687 , 2007 .
 653. Perreault MC , Angel MJ , Guertin P , McCrea DA . Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat . J Physiol 487 ( Pt 1 ): 211 ‐ 220 , 1995 .
 654. Perreault MC , Drew T , Rossignol S . Activity of medullary reticulospinal neurons during fictive locomotion . J Neurophysiol 69 : 2232 ‐ 2247 , 1993 .
 655. Perreault MC , Enriquez‐Denton M , Hultborn H . Proprioceptive control of extensor activity during fictive scratching and weight support compared to fictive locomotion . J Neurosci 19 : 10966 ‐ 10976 , 1999 .
 656. Perreault MC , Rossignol S , Drew T . Microstimulation of the medullary reticular formation during fictive locomotion . J Neurophysiol 71 : 229 ‐ 245 , 1994 .
 657. Perreault MC , Shefchyk SJ , Jimenez I , McCrea DA . Depression of muscle and cutaneous afferent‐evoked monosynaptic field potentials during fictive locomotion in the cat . J Physiol 521 ( Pt 3 ): 691 ‐ 703 , 1999 .
 658. Perret C , Berthoz A . Evidence of static and dynamic fusimotor actions on the spindle response to sinusoidal stretch during locomotor activity in the cat . Exp Brain Res 18 : 178 ‐ 188 , 1973 .
 659. Perret C , Buser P . Static and dynamic fusimotor activity during locomotor movements in the cat . Brain Res 40 : 165 ‐ 169 , 1972 .
 660. Perret C , Cabelguen JM . Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles . Brain Res 187 : 333 ‐ 352 , 1980 .
 661. Perret C , Cabelguen JM , Orsal D . Analysis of the pattern of activity in “knee flexor” motoneurons during locomotion in the cat . In: Gurfinkel VS , Ioffe ME , Massion J , Roll JP , editors. Stance and Motion: Facts and Concepts . New York : Plenum Press , 1988 , p. 133 ‐ 141 .
 662. Perret C , Millanvoye M , Cabelguen JM . Ascending spinal messages during fictitious locomotion in curarized cats . J Physiol Paris 65 ( Suppl ): 153A , 1972 .
 663. Peterson BW , Franck JI , Daunton NG . Changes in responses of medial pontomedullary reticular neurons during repetitive cutaneous, vestibular, cortical, and tectal stimulation . J Neurophysiol 39 : 564 ‐ 581 , 1976 .
 664. Petit D , Burgess PR . Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers . J Neurophysiol 31 : 849 ‐ 855 , 1968 .
 665. Petras JM . Spinocerebellar neurons in the rhesus monkey . Brain Res 130 : 146 ‐ 151 , 1977 .
 666. Petras JM , Cummings JF . The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord . J Comp Neurol 173 : 693 ‐ 716 , 1977 .
 667. Pfau T , Hinton E , Whitehead C , Wiktorowicz‐Conroy A , Hutchinson JR . Temporal gait parameters in the alpaca and the evolution of pacing and trotting locomotion in the Camelidae . J Zool 283 : 193 ‐ 202 , 2011 .
 668. Pham QC , Hicheur H , Arechavaleta G , Laumond JP , Berthoz A . The formation of trajectories during goal‐oriented locomotion in humans. II. A maximum smoothness model . Eur J Neurosci 26 : 2391 ‐ 2403 , 2007 .
 669. Philippson M . L'autonomie et la centralisation dans le système nerveux des animaux . Trav Lab Physiol Inst Solvay (Bruxelles) 7 : 1 ‐ 208 , 1905 .
 670. Pierotti DJ , Roy RR , Gregor RJ , Edgerton VR . Electromyographic activity of cat hindlimb flexors and extensors during locomotion at varying speeds and inclines . Brain Res 481 : 57 ‐ 66 , 1989 .
 671. Pietravalle P , Morano S , Cristina G , Mancuso M , Valle E , Annulli MA , Tomaselli M , Pozzessere G , Di MU . Early complications in type 1 diabetes: Central nervous system alterations preceded kidney abnormalities . Diabetes Res Clin Pract 21 : 143 ‐ 154 , 1993 .
 672. Pijpers A , Winkelman BH , Bronsing R , Ruigrok TJ . Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step‐dependent modulation of cutaneous reflexes . J Neurosci 28 : 2179 ‐ 2189 , 2008 .
 673. Piliavskii AI , Iakhnitsa IA , Bulgakova NV . Antidromic impulsation of the dorsal roots at the time of real locomotion in rats . Neirofiziologiia 20 : 579 ‐ 585 , 1988 .
 674. Pillai S , Wang Y , Wolpaw JR , Chen XY . Effects of H‐reflex up‐conditioning on GABAergic terminals on rat soleus motoneurons . Eur J Neurosci 28 : 668 ‐ 674 , 2008 .
 675. Pires NJ , Lay BS , Rubenson J . Joint‐level mechanics of the walk‐to‐run transition in humans . J Exp Biol 217 : 3519 ‐ 3527 , 2014 .
 676. Pompeiano O , Brodal A . Spinovestibular fibers in the cat; an experimental study . J Comp Neurol 108 : 353 ‐ 381 , 1957 .
 677. Pompeiano O , Swett JE . Actions of graded cutaneous and muscular afferent volleys on brain stem units in the decrebrate, cerebellectomized cat . Arch Ital Biol 101 : 552 ‐ 583 , 1963 .
 678. Pratt CA , Chanaud CM , Loeb GE . Functionally complex muscles of the cat hindlimb. IV. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles . Exp Brain Res 85 : 281 ‐ 299 , 1991 .
 679. Pratt CA , Loeb GE . Functionally complex muscles of the cat hindlimb. I. Patterns of activation across sartorius . Exp Brain Res 85 : 243 ‐ 256 , 1991 .
 680. Prilutsky BI . Coordination of two‐ and one‐joint muscles: Functional consequences and implications for motor control . Mot Control 4 : 1 ‐ 44 , 2000 .
 681. Prilutsky BI . Muscle coordination: The discussion continues . Mot Control 4 : 97 ‐ 116 , 2000 .
 682. Prilutsky BI , Gregor RJ . Swing‐ and support‐related muscle actions differentially trigger human walk‐run and run‐walk transitions . J Exp Biol 204 : 2277 ‐ 2287 , 2001 .
 683. Prilutsky BI , Gregor RJ , Ryan MM . Coordination of two‐joint rectus femoris and hamstrings during the swing phase of human walking and running . Exp Brain Res 120 : 479 ‐ 486 , 1998 .
 684. Prilutsky BI , Herzog W , Allinger TL . Force‐sharing between cat soleus and gastrocnemius muscles during walking: Explanations based on electrical activity, properties, and kinematics . J Biomech 27 : 1223 ‐ 1235 , 1994 .
 685. Prilutsky BI , Isaka T , Albrecht AM , Gregor RJ . Is coordination of two‐joint leg muscles during load lifting consistent with the strategy of minimum fatigue? J Biomech 31 : 1025 ‐ 1034 , 1998 .
 686. Prilutsky BI , Klishko AN , Weber DJ , Lemay MA . Computing motion dependent afferent activity during cat locomotion using a forward dynamics musculoskeletal model . In: Prilutsky BI , Edwards DH , editors. Neuromechanical Modeling of Posture and Locomotion . New York : Springer , 2016 , p. 273 ‐ 307 .
 687. Prilutsky BI , Maas H , Bulgakova M , Hodson‐Tole EF , Gregor RJ . Short‐term motor compensations to denervation of feline soleus and lateral gastrocnemius result in preservation of ankle mechanical output during locomotion . Cells Tissues Organs 193 : 310 ‐ 324 , 2011 .
 688. Prilutsky BI , Zatsiorsky VM . Optimization‐based models of muscle coordination . Exerc Sport Sci Rev 30 : 32 ‐ 38 , 2002 .
 689. Prochazka A . Sensorimotor gain control: A basic strategy of motor systems? Prog Neurobiol 33 : 281 ‐ 307 , 1989 .
 690. Prochazka A . Quantifying proprioception . Prog Brain Res 123 : 133 ‐ 142 , 1999 .
 691. Prochazka A , Ellaway P . Sensory systems in the control of movement . Compr Physiol 2 : 2615 ‐ 2627 , 2012 .
 692. Prochazka A , Gorassini M . Ensemble firing of muscle afferents recorded during normal locomotion in cats . J Physiol 507 ( Pt 1 ): 293 ‐ 304 , 1998 .
 693. Prochazka A , Gorassini M . Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats . J Physiol 507 ( Pt 1 ): 277 ‐ 291 , 1998 .
 694. Prochazka A , Hulliger M , Trend P , Llewellyn M , Durmuller N . Muscle afferent contribution to control of paw shakes in normal cats . J Neurophysiol 61 : 550 ‐ 562 , 1989 .
 695. Prochazka A , Hulliger M , Zangger P , Appenteng K . 'Fusimotor set': New evidence for alpha‐independent control of gamma‐motoneurones during movement in the awake cat . Brain Res 339 : 136 ‐ 140 , 1985 .
 696. Prochazka A , Trend P , Hulliger M , Vincent S . Ensemble proprioceptive activity in the cat step cycle: Towards a representative look‐up chart . Prog Brain Res 80 : 61 ‐ 74 , 1989 .
 697. Prochazka A , Westerman RA , Ziccone SP . Discharges of single hindlimb afferents in the freely moving cat . J Neurophysiol 39 : 1090 ‐ 1104 , 1976 .
 698. Prochazka A , Westerman RA , Ziccone SP . Ia afferent activity during a variety of voluntary movements in the cat . J Physiol 268 : 423 ‐ 448 , 1977 .
 699. Proske U , Gandevia SC . The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force . Physiol Rev 92 : 1651 ‐ 1697 , 2012 .
 700. Proske U , Morgan DL , Gregory JE . Muscle history dependence of responses to stretch of primary and secondary endings of cat soleus muscle spindles . J Physiol 445 : 81 ‐ 95 , 1992 .
 701. Proske U , Tsay A , Allen T . Muscle thixotropy as a tool in the study of proprioception . Exp Brain Res 232 : 3397 ‐ 3412 , 2014 .
 702. Putnam CA . Sequential motions of body segments in striking and throwing skills: Descriptions and explanations . J Biomech 26 ( Suppl 1 ): 125 ‐ 135 , 1993 .
 703. Quevedo J , Fedirchuk B , Gosgnach S , DA MC . Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion . J Physiol 525 ( Pt 2 ): 549 ‐ 564 , 2000 .
 704. Quevedo J , Stecina K , Gosgnach S , McCrea DA . Stumbling corrective reaction during fictive locomotion in the cat . J Neurophysiol 94 : 2045 ‐ 2052 , 2005 .
 705. Quevedo J , Stecina K , McCrea DA . Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat . J Neurophysiol 94 : 2053 ‐ 2062 , 2005 .
 706. Raible DW , Ungos JM . Specification of sensory neuron cell fate from the neural crest . Adv Exp Med Biol 589 : 170 ‐ 180 , 2006 .
 707. Ranade SS , Woo SH , Dubin AE , Moshourab RA , Wetzel C , Petrus M , Mathur J , Begay V , Coste B , Mainquist J , Wilson AJ , Francisco AG , Reddy K , Qiu Z , Wood JN , Lewin GR , Patapoutian A . Piezo2 is the major transducer of mechanical forces for touch sensation in mice . Nature 516 : 121 ‐ 125 , 2014 .
 708. Rexed B . A cytoarchitectonic atlas of the spinal cord in the cat . J Comp Neurol 100 : 297 ‐ 379 , 1954 .
 709. Rho MJ , Lavoie S , Drew T . Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: A comparison with the motor cortex . J Neurophysiol 81 : 2297 ‐ 2315 , 1999 .
 710. Richmond FJ , Abrahams VC . What are the proprioceptors of the neck? Prog Brain Res 50 : 245 ‐ 254 , 1979 .
 711. Riddell JS , Hadian M . Interneurones in pathways from group II muscle afferents in the lower‐lumbar segments of the feline spinal cord . J Physiol 522 ( Pt 1 ): 109 ‐ 123 , 2000 .
 712. Riener R , Edrich T . Identification of passive elastic joint moments in the lower extremities . J Biomech 32 : 539 ‐ 544 , 1999 .
 713. Rifkin JT , Todd VJ , Anderson LW , Lefcort F . Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation . Dev Biol 227 : 465 ‐ 480 , 2000 .
 714. Robinson FR , Houk JC , Gibson AR . Limb specific connections of the cat magnocellular red nucleus . J Comp Neurol 257 : 553 ‐ 577 , 1987 .
 715. Romanes GJ . The motor cell columns of the lumbo‐sacral spinal cord of the cat . J Comp Neurol 94 : 313 ‐ 363 , 1951 .
 716. Romanes GJ . The motor pools of the spinal cord . Prog Brain Res 11 : 93 ‐ 119 , 1964 .
 717. Ross KT , Nichols TR . Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat . J Neurophysiol 101 : 184 ‐ 197 , 2009 .
 718. Rossignol S , Dubuc R , Gossard JP . Dynamic sensorimotor interactions in locomotion . Physiol Rev 86 : 89 ‐ 154 , 2006 .
 719. Rossignol S , Frigon A . Recovery of locomotion after spinal cord injury: Some facts and mechanisms . Annu Rev Neurosci 34 : 413 ‐ 440 , 2011 .
 720. Rossignol S , Saltiel P , Perreault MC , Drew T , Pearson K , Belanger M . Intralimb and interlimb coordination in the cat during real and fictive rhythmic motor programs . Semin Neurosci 5 : 67 ‐ 75 , 1993 .
 721. Rotterman TM , Nardelli P , Cope TC , Alvarez FJ . Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury . J Neurosci 34 : 3475 ‐ 3492 , 2014 .
 722. Rudjord T . A second order mechanical model of muscle spindle primary endings . Kybernetika 6 : 205 ‐ 213 , 1970 .
 723. Rudomin P , Jimenez I , Solodkin M , Duenas S . Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia‐ and Ib‐afferent fibers in cat spinal cord . J Neurophysiol 50 : 743 ‐ 769 , 1983 .
 724. Rudomin P , Lomeli J , Quevedo J . Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord . Exp Brain Res 159 : 239 ‐ 250 , 2004 .
 725. Rudomin P , Schmidt RF . Presynaptic inhibition in the vertebrate spinal cord revisited . Exp Brain Res 129 : 1 ‐ 37 , 1999 .
 726. Rudomin P , Solodkin M , Jimenez I . PAD and PAH response patterns of group Ia‐ and Ib‐fibers to cutaneous and descending inputs in the cat spinal cord . J Neurophysiol 56 : 987 ‐ 1006 , 1986 .
 727. Rushmer DS , Roberts WJ , Augter GK . Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw . Brain Res 106 : 1 ‐ 20 , 1976 .
 728. Rushmer DS , Woollacott MH , Robertson LT , Laxer KD . Somatotopic organization of climbing fiber projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat . Brain Res 181 : 17 ‐ 30 , 1980 .
 729. Rybak IA , Shevtsova NA , Lafreniere‐Roula M , McCrea DA . Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion . J Physiol 577 : 617 ‐ 639 , 2006 .
 730. Rybak IA , Stecina K , Shevtsova NA , McCrea DA . Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation . J Physiol 577 : 641 ‐ 658 , 2006 .
 731. Ryczko D , Dubuc R . The multifunctional mesencephalic locomotor region . Curr Pharm Des 19 : 4448 ‐ 4470 , 2013 .
 732. Saal HP , Bensmaia SJ . Touch is a team effort: Interplay of submodalities in cutaneous sensibility . Trends Neurosci 37 : 689 ‐ 697 , 2014 .
 733. Sainburg RL , Ghez C , Kalakanis D . Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms . J Neurophysiol 81 : 1045 ‐ 1056 , 1999 .
 734. Sainburg RL , Ghilardi MF , Poizner H , Ghez C . Control of limb dynamics in normal subjects and patients without proprioception . J Neurophysiol 73 : 820 ‐ 835 , 1995 .
 735. Saltiel P , Rossignol S . Critical points in the forelimb fictive locomotor cycle and motor coordination: Effects of phasic retractions and protractions of the shoulder in the cat . J Neurophysiol 92 : 1342 ‐ 1356 , 2004 .
 736. Sandercock TG , Heckman CJ . Force from cat soleus muscle during imposed locomotor‐like movements: Experimental data versus Hill‐type model predictions . J Neurophysiol 77 : 1538 ‐ 1552 , 1997 .
 737. Sandkuhler J , Chen JG , Cheng G , Randic M . Low‐frequency stimulation of afferent Adelta‐fibers induces long‐term depression at primary afferent synapses with substantia gelatinosa neurons in the rat . J Neurosci 17 : 6483 ‐ 6491 , 1997 .
 738. Sandkuhler J , Liu X . Induction of long‐term potentiation at spinal synapses by noxious stimulation or nerve injury . Eur J Neurosci 10 : 2476 ‐ 2480 , 1998 .
 739. Santuz A , Akay T , Mayer WP , Wells TL , Schroll A , Arampatzis A . Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles . J Physiol 597 : 3147 ‐ 3165 , 2019 .
 740. Schaafsma A , Otten E , Van Willigen JD . A muscle spindle model for primary afferent firing based on a simulation of intrafusal mechanical events . J Neurophysiol 65 : 1297 ‐ 1312 , 1991 .
 741. Schieppati M , Schmid M , Sozzi S . Rapid processing of haptic cues for postural control in blind subjects . Clin Neurophysiol 125 : 1427 ‐ 1439 , 2014 .
 742. Schillings AM , Van Wezel BM , Duysens J . Mechanically induced stumbling during human treadmill walking . J Neurosci Methods 67 : 11 ‐ 17 , 1996 .
 743. Schmidt A , Fischer MS . Arboreal locomotion in rats ‐ the challenge of maintaining stability . J Exp Biol 213 : 3615 ‐ 3624 , 2010 .
 744. Scholz JP , Schoner G . The uncontrolled manifold concept: Identifying control variables for a functional task . Exp Brain Res 126 : 289 ‐ 306 , 1999 .
 745. Schomburg ED , Behrends HB . The possibility of phase‐dependent monosynaptic and polysynaptic is excitation to homonymous motoneurones during fictive locomotion . Brain Res 143 : 533 ‐ 537 , 1978 .
 746. Schomburg ED , Meinck HM , Haustein J , Roesler J . Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat . Brain Res 139 : 21 ‐ 33 , 1978 .
 747. Schomburg ED , Petersen N , Barajon I , Hultborn H . Flexor reflex afferents reset the step cycle during fictive locomotion in the cat . Exp Brain Res 122 : 339 ‐ 350 , 1998 .
 748. Schomburg ED , Roesler J , Meinck HM . Phase‐dependent transmission in the excitatory propriospinal reflex pathway from forelimb afferents to lumbar motoneurones during fictive locomotion . Neurosci Lett 4 : 249 ‐ 252 , 1977 .
 749. Schomburg ED , Steffens H , Warneke G . Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat. II. Conditions of the interneuronal connections . Brain Res 375 : 280 ‐ 290 , 1986 .
 750. Segers V , Lenoir M , Aerts P , De CD . Influence of M. tibialis anterior fatigue on the walk‐to‐run and run‐to‐walk transition in non‐steady state locomotion . Gait Posture 25 : 639 ‐ 647 , 2007 .
 751. Segundo JP , Takenaka T , Encabo H . Somatic sensory properties of bulbar reticular neurons . J Neurophysiol 30 : 1221 ‐ 1238 , 1967 .
 752. Seki K , Yamaguchi T . Cutaneous reflex activity of the cat forelimb during fictive locomotion . Brain Res 753 : 56 ‐ 62 , 1997 .
 753. Serbedzija GN , Fraser SE , Bronner‐Fraser M . Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling . Development 108 : 605 ‐ 612 , 1990 .
 754. Serrano‐Gotarredona R , Oster M , Lichtsteiner P , Linares‐Barranco A , Paz‐Vicente R , Gomez‐Rodriguez F , Camunas‐Mesa L , Berner R , Rivas‐Perez M , Delbruck T , Liu SC , Douglas R , Hafliger P , Jimenez‐Moreno G , Civit BA , Serrano‐Gotarredona T , Acosta‐Jimenez AJ , Linares‐Barranco B . CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory‐processing‐ learning‐actuating system for high‐speed visual object recognition and tracking . IEEE Trans Neural Netw 20 : 1417 ‐ 1438 , 2009 .
 755. Severin FV . Role of the gamma‐motor system in activation of extensor alpha‐motor neurons during controlled locomotion . Biofizika 15 : 1096 ‐ 1102 , 1970 .
 756. Severin FV , Orlovskii GN , Shik ML . Work of muscle receptors during controlled locomotion . Biofizika 12 : 502 ‐ 511 , 1967 .
 757. Shakya SS , Bannatyne BA , Jankowska E , Hammar I , Nilsson E , Maxwell DJ . Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord . Neuroscience 226 : 253 ‐ 269 , 2012 .
 758. Shefchyk SJ , Jordan LM . Excitatory and inhibitory postsynaptic potentials in alpha‐motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region . J Neurophysiol 53 : 1345 ‐ 1355 , 1985 .
 759. Shefchyk SJ , Stein RB , Jordan LM . Synaptic transmission from muscle afferents during fictive locomotion in the mesencephalic cat . J Neurophysiol 51 : 986 ‐ 997 , 1984 .
 760. Sherrington CS . The Integrative Action of the Nervous System . New Haven, CT : Yale University Press , 1906 .
 761. Sherrington CS . Flexion‐reflex of the limb, crossed extension‐reflex, and reflex stepping and standing . J Physiol 40 : 28 ‐ 121 , 1910 .
 762. Shevtsova NA , Talpalar AE , Markin SN , Harris‐Warrick RM , Kiehn O , Rybak IA . Organization of left‐right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling . J Physiol 594 : 6117 ‐ 6131 , 2016 .
 763. Shik ML , Severin FV , Orlovskii GN . Control of walking and running by means of electric stimulation of the midbrain . Biofizika 11 : 659 ‐ 666 , 1966 .
 764. Shimamura M , Akert K . Peripheral nervous relations of propriospinal and spino‐bulbo‐spinal reflex systems . Jap J Physiol 15 : 638 ‐ 647 , 1965 .
 765. Shimamura M , Aoki M . Effects of spino‐bulbo‐spinal reflex volleys on flexor motoneurons of hindlimb in the cat . Brain Res 16 : 333 ‐ 349 , 1969 .
 766. Shimamura M , Kogure I . Discharge patterns of reticulospinal neurons corresponding with quadrupedal leg movements in thalamic cats . Brain Res 260 : 27 ‐ 34 , 1983 .
 767. Shimamura M , Kogure I , Wada S . Three types of reticular neurons involved in the spino‐bulbo‐spinal reflex of cats . Brain Res 186 : 99 ‐ 113 , 1980 .
 768. Shin HC , Chapin JK . Movement induced modulation of afferent transmission to single neurons in the ventroposterior thalamus and somatosensory cortex in rat . Exp Brain Res 81 : 515 ‐ 522 , 1990 .
 769. Shin HC , Park HJ , Chapin JK . Differential phasic modulation of short and long latency afferent sensory transmission to single neurons in the ventroposterolateral thalamus in behaving rats . Neurosci Res 17 : 117 ‐ 125 , 1993 .
 770. Shin HC , Park HJ , Chapin JK . Differential phasic modulation of short and long latency afferent sensory transmission to single neurons in the primary somatosensory cortex in behaving rats . Neurosci Res 19 : 419 ‐ 425 , 1994 .
 771. Shrestha SS , Bannatyne BA , Jankowska E , Hammar I , Nilsson E , Maxwell DJ . Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco‐lumbar spinal cord . J Physiol 590 : 1737 ‐ 1755 , 2012 .
 772. Shroyer NF , Helmrath MA , Wang VY , Antalffy B , Henning SJ , Zoghbi HY . Intestine‐specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis . Gastroenterology 132 : 2478 ‐ 2488 , 2007 .
 773. Siegel JM , Tomaszewski KS . Behavioral organization of reticular formation: Studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements . J Neurophysiol 50 : 696 ‐ 716 , 1983 .
 774. Silverman J , Garnett NL , Giszter SF , Heckman CJ , Kulpa‐Eddy JA , Lemay MA , Perry CK , Pinter M . Decerebrate mammalian preparations: Unalleviated or fully alleviated pain? A review and opinion . Contemp Top Lab Anim Sci 44 : 34 ‐ 36 , 2005 .
 775. Simonsen EB , Dyhre‐Poulsen P . Amplitude of the human soleus H reflex during walking and running . J Physiol 515 ( Pt 3 ): 929 ‐ 939 , 1999 .
 776. Sinkjaer T , Andersen JB , Ladouceur M , Christensen LO , Nielsen JB . Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man . J Physiol 523 ( Pt 3 ): 817 ‐ 827 , 2000 .
 777. Sinkjaer T , Andersen JB , Larsen B . Soleus stretch reflex modulation during gait in humans . J Neurophysiol 76 : 1112 ‐ 1120 , 1996 .
 778. Sirois J , Frigon A , Gossard JP . Independent control of presynaptic inhibition by reticulospinal and sensory inputs at rest and during rhythmic activities in the cat . J Neurosci 33 : 8055 ‐ 8067 , 2013 .
 779. Sjostrom A , Zangger P . Muscle spindle control during locomotor movements generated by the deafferented spinal cord . Acta Physiol Scand 97 : 281 ‐ 291 , 1976 .
 780. Skoglund S . Anatomical and physiological studies of knee joint innervation in the cat . Acta Physiol Scand Suppl 36 : 1 ‐ 101 , 1956 .
 781. Slawinska U , Majczynski H , Dai Y , Jordan LM . The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats . J Physiol 590 : 1721 ‐ 1736 , 2012 .
 782. Smith JL , Betts B , Edgerton VR , Zernicke RF . Rapid ankle extension during paw shakes: Selective recruitment of fast ankle extensors . J Neurophysiol 43 : 612 ‐ 620 , 1980 .
 783. Smith JL , Carlson‐Kuhta P , Trank TV . Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking . J Neurophysiol 79 : 1702 ‐ 1716 , 1998 .
 784. Smith JL , Chung SH , Zernicke RF . Gait‐related motor patterns and hindlimb kinetics for the cat trot and gallop . Exp Brain Res 94 : 308 ‐ 322 , 1993 .
 785. Smith JL , Smith LA , Zernicke RF , Hoy M . Locomotion in exercised and nonexercised cats cordotomized at two or twelve weeks of age . Exp Neurol 76 : 393 ‐ 413 , 1982 .
 786. Smith SS , Chapin JK . The estrous cycle and the olivo‐cerebellar circuit. II. Enhanced selective sensory gating of responses from the rostral dorsal accessory olive . Exp Brain Res 111 : 385 ‐ 392 , 1996 .
 787. Song Z , Banks RW , Bewick GS . Modelling the mechanoreceptor's dynamic behaviour . J Anat 227 : 243 ‐ 254 , 2015 .
 788. Spagna JC , Goldman DI , Lin PC , Koditschek DE , Full RJ . Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain . Bioinspir Biomim 2 : 9 ‐ 18 , 2007 .
 789. Srinivasan M , Ruina A . Computer optimization of a minimal biped model discovers walking and running . Nature 439 : 72 ‐ 75 , 2006 .
 790. Stantcheva KK , Iovino L , Dhandapani R , Martinez C , Castaldi L , Nocchi L , Perlas E , Portulano C , Pesaresi M , Shirlekar KS , de Castro RF , Paparountas T , Bilbao D , Heppenstall PA . A subpopulation of itch‐sensing neurons marked by Ret and somatostatin expression . EMBO Rep 17 : 585 ‐ 600 , 2016 .
 791. Stapley PJ , Ting LH , Hulliger M , Macpherson JM . Automatic postural responses are delayed by pyridoxine‐induced somatosensory loss . J Neurosci 22 : 5803 ‐ 5807 , 2002 .
 792. Stecina K , Fedirchuk B , Hultborn H . Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract . J Physiol 591 : 5433 ‐ 5443 , 2013 .
 793. Stecina K , Quevedo J , McCrea DA . Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat . J Physiol 569 : 275 ‐ 290 , 2005 .
 794. Stenum J , Choi JT . Neuromuscular effort predicts walk‐run transition speed in normal and adapted human gaits . J Exp Biol 219 : 2809 ‐ 2813 , 2016 .
 795. Stuart DG , Goslow GE , Mosher CG , Reinking RM . Stretch responsiveness of Golgi tendon organs . Exp Brain Res 10 : 463 ‐ 476 , 1970 .
 796. Stuart DG , Hultborn H . Thomas Graham Brown (1882‐‐1965), Anders Lundberg (1920‐), and the neural control of stepping . Brain Res Rev 59 : 74 ‐ 95 , 2008 .
 797. Stuart DG , Pierce PA . The academic lineage of Sir John Carew Eccles (1903‐1997) . Prog Neurobiol 78 : 136 ‐ 155 , 2006 .
 798. Stubbs PW , Mrachacz‐Kersting N . Short‐latency crossed inhibitory responses in the human soleus muscle . J Neurophysiol 102 : 3596 ‐ 3605 , 2009 .
 799. Surmeli G , Akay T , Ippolito GC , Tucker PW , Jessell TM . Patterns of spinal sensory‐motor connectivity prescribed by a dorsoventral positional template . Cell 147 : 653 ‐ 665 , 2011 .
 800. Suzuki S , Kano T , Ijspeert AJ , Ishiguro A . Sprawling quadruped robot driven by decentralized control with cross‐coupled sensory feedback between legs and trunk . Front Neurorobot 14 : 607455 , 2020 .
 801. Szczecinski NS , Bockemuhl T , Chockley AS , Buschges A . Static stability predicts the continuum of interleg coordination patterns in Drosophila . J Exp Biol 221 : 1 ‐ 14 , 2018 .
 802. Takeoka A , Arber S . Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury . Cell Rep 27 : 71 ‐ 85 , 2019 .
 803. Takeoka A , Vollenweider I , Courtine G , Arber S . Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury . Cell 159 : 1626 ‐ 1639 , 2014 .
 804. Talbot WH , Darian‐Smith I , Kornhuber HH , Mountcastle VB . The sense of flutter‐vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand . J Neurophysiol 31 : 301 ‐ 334 , 1968 .
 805. Talpalar AE , Bouvier J , Borgius L , Fortin G , Pierani A , Kiehn O . Dual‐mode operation of neuronal networks involved in left‐right alternation . Nature 500 : 85 ‐ 88 , 2013 .
 806. Taylor A , Durbaba R , Ellaway PH , Rawlinson S . Static and dynamic gamma‐motor output to ankle flexor muscles during locomotion in the decerebrate cat . J Physiol 571 : 711 ‐ 723 , 2006 .
 807. Thompson AK , Chen XY , Wolpaw JR . Acquisition of a simple motor skill: Task‐dependent adaptation plus long‐term change in the human soleus H‐reflex . J Neurosci 29 : 5784 ‐ 5792 , 2009 .
 808. Thompson AK , Pomerantz FR , Wolpaw JR . Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans . J Neurosci 33 : 2365 ‐ 2375 , 2013 .
 809. Thompson AK , Wolpaw JR . Restoring walking after spinal cord injury: Operant conditioning of spinal reflexes can help . Neuroscientist 21 : 203 ‐ 215 , 2015 .
 810. Thornell LE , Carlsson L , Eriksson PO , Liu JX , Osterlund C , Stal P , Pedrosa‐Domellof F . Fibre typing of intrafusal fibres . J Anat 227 : 136 ‐ 156 , 2015 .
 811. Thorstensson A , Roberthson H . Adaptations to changing speed in human locomotion: Speed of transition between walking and running . Acta Physiol Scand 131 : 211 ‐ 214 , 1987 .
 812. Ting LH , Macpherson JM . Ratio of shear to load ground‐reaction force may underlie the directional tuning of the automatic postural response to rotation and translation . J Neurophysiol 92 : 808 ‐ 823 , 2004 .
 813. Ting LH , Macpherson JM . A limited set of muscle synergies for force control during a postural task . J Neurophysiol 93 : 609 ‐ 613 , 2005 .
 814. Todd AJ , Hughes DI , Polgar E , Nagy GG , Mackie M , Ottersen OP , Maxwell DJ . The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn . Eur J Neurosci 17 : 13 ‐ 27 , 2003 .
 815. Tokuhiro A , Nagashima H , Takechi H . Electromyographic kinesiology of lower extremity muscles during slope walking . Arch Phys Med Rehabil 66 : 610 ‐ 613 , 1985 .
 816. Torres‐Oviedo G , Macpherson JM , Ting LH . Muscle synergy organization is robust across a variety of postural perturbations . J Neurophysiol 96 : 1530 ‐ 1546 , 2006 .
 817. Tourtellotte WG , Milbrandt J . Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3 . Nat Genet 20 : 87 ‐ 91 , 1998 .
 818. Tresch MC , Saltiel P , Bizzi E . The construction of movement by the spinal cord . Nat Neurosci 2 : 162 ‐ 167 , 1999 .
 819. Tripodi M , Stepien AE , Arber S . Motor antagonism exposed by spatial segregation and timing of neurogenesis . Nature 479 : 61 ‐ 66 , 2011 .
 820. Tsianos GA , Rustin C , Loeb GE . Mammalian muscle model for predicting force and energetics during physiological behaviors . IEEE Trans Neural Syst Rehabil Eng 20 : 117 ‐ 133 , 2012 .
 821. Turksen K , Kupper T , Degenstein L , Williams I , Fuchs E . Interleukin 6: Insights to its function in skin by overexpression in transgenic mice . Proc Natl Acad Sci U S A 89 : 5068 ‐ 5072 , 1992 .
 822. Tuthill JC , Azim E . Proprioception . Curr Biol 28 : R194 ‐ R203 , 2018 .
 823. Udo M , Matsukawa K , Kamei H , Minoda K , Oda Y . Simple and complex spike activities of Purkinje cells during locomotion in the cerebellar vermal zones of decerebrate cats . Exp Brain Res 41 : 292 ‐ 300 , 1981 .
 824. Usoskin D , Furlan A , Islam S , Abdo H , Lonnerberg P , Lou D , Hjerling‐Leffler J , Haeggstrom J , Kharchenko O , Kharchenko PV , Linnarsson S , Ernfors P . Unbiased classification of sensory neuron types by large‐scale single‐cell RNA sequencing . Nat Neurosci 18 : 145 ‐ 153 , 2015 .
 825. Vallbo AB , Hagbarth KE , Torebjork HE , Wallin BG . Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves . Physiol Rev 59 : 919 ‐ 957 , 1979 .
 826. van der Zouwen CI , Boutin J , Fougere M , Flaive A , Vivancos M , Santuz A , Akay T , Sarret P , Ryczko D . Freely behaving mice can brake and turn during optogenetic stimulation of the mesencephalic locomotor region . Front Neural Circuits 15 : 639900 , 2021 .
 827. van Deursen RW , Simoneau GG . Foot and ankle sensory neuropathy, proprioception, and postural stability . J Orthop Sports Phys Ther 29 : 718 ‐ 726 , 1999 .
 828. van Kan PL , Gibson AR , Houk JC . Movement‐related inputs to intermediate cerebellum of the monkey . J Neurophysiol 69 : 74 ‐ 94 , 1993 .
 829. Van Wezel BM , Ottenhoff FA , Duysens J . Dynamic control of location‐specific information in tactile cutaneous reflexes from the foot during human walking . J Neurosci 17 : 3804 ‐ 3814 , 1997 .
 830. VanderHorst VG , Holstege G . Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat . J Comp Neurol 382 : 46 ‐ 76 , 1997 .
 831. Varoqui H , Schafer MK , Zhu H , Weihe E , Erickson JD . Identification of the differentiation‐associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses . J Neurosci 22 : 142 ‐ 155 , 2002 .
 832. Vaughan C , Davis B , O'Connor J . Dynamics of Human Gait . Cape Town : Kiboho Publishers , 1999 .
 833. Viala G , Buser P . Inhibition of spinal locomotor activity by a special method of somatic stimulation in rabbits . Exp Brain Res 21 : 275 ‐ 284 , 1974 .
 834. Viala G , Orsal D , Buser P . Cutaneous fiber groups involved in the inhibition of fictive locomotion in the rabbit . Exp Brain Res 33 : 257 ‐ 267 , 1978 .
 835. Vincent JA , Gabriel HM , Deardorff AS , Nardelli P , Fyffe REW , Burkholder T , Cope TC . Muscle proprioceptors in adult rat: Mechanosensory signaling and synapse distribution in spinal cord . J Neurophysiol 118 : 2687 ‐ 2701 , 2017 .
 836. Vincent JA , Wieczerzak KB , Gabriel HM , Nardelli P , Rich MM , Cope TC . A novel path to chronic proprioceptive disability with oxaliplatin: Distortion of sensory encoding . Neurobiol Dis 95 : 54 ‐ 65 , 2016 .
 837. Voorhoeve PE , van Kanten R . Reflex behaviour of fusimotor neurones of the cat upon electrical stimulation of various afferent fibers . Acta Physiol Pharmacol Neerl 10 : 391 ‐ 407 , 1962 .
 838. Vrieseling E , Arber S . Target‐induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3 . Cell 127 : 1439 ‐ 1452 , 2006 .
 839. Wagner FB , Mignardot JB , Le Goff‐Mignardot CG , Demesmaeker R , Komi S , Capogrosso M , Rowald A , Seanez I , Caban M , Pirondini E , Vat M , McCracken LA , Heimgartner R , Fodor I , Watrin A , Seguin P , Paoles E , Van Den Keybus K , Eberle G , Schurch B , Pralong E , Becce F , Prior J , Buse N , Buschman R , Neufeld E , Kuster N , Carda S , von Zitzewitz J , Delattre V , Denison T , Lambert H , Minassian K , Bloch J , Courtine G . Targeted neurotechnology restores walking in humans with spinal cord injury . Nature 563 : 65 ‐ 71 , 2018 .
 840. Wakeling JM , Tijs C , Konow N , Biewener AA . Modeling muscle function using experimentally determined subject‐specific muscle properties . J Biomech 117 : 110242 , 2021 .
 841. Wand P , Prochazka A , Sontag KH . Neuromuscular responses to gait perturbations in freely moving cats . Exp Brain Res 38 : 109 ‐ 114 , 1980 .
 842. Wang Y , Pillai S , Wolpaw JR , Chen XY . Motor learning changes GABAergic terminals on spinal motoneurons in normal rats . Eur J Neurosci 23 : 141 ‐ 150 , 2006 .
 843. Wang Y , Pillai S , Wolpaw JR , Chen XY . H‐reflex down‐conditioning greatly increases the number of identifiable GABAergic interneurons in rat ventral horn . Neurosci Lett 452 : 124 ‐ 129 , 2009 .
 844. Watson AH , Bazzaz AA . GABA and glycine‐like immunoreactivity at axoaxonic synapses on 1a muscle afferent terminals in the spinal cord of the rat . J Comp Neurol 433 : 335 ‐ 348 , 2001 .
 845. Weber DJ , Stein RB , Everaert DG , Prochazka A . Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion . IEEE Trans Neural Syst Rehabil Eng 14 : 240 ‐ 243 , 2006 .
 846. Weber DJ , Stein RB , Everaert DG , Prochazka A . Limb‐state feedback from ensembles of simultaneously recorded dorsal root ganglion neurons . J Neural Eng 4 : S168 ‐ S180 , 2007 .
 847. Wercberger R , Basbaum AI . Spinal cord projection neurons: A superficial, and also deep, analysis . Curr Opin Physiol 11 : 109 ‐ 115 , 2019 .
 848. Westling G , Johansson RS . Factors influencing the force control during precision grip . Exp Brain Res 53 : 277 ‐ 284 , 1984 .
 849. Wetzel MC , Atwater AE , Wait JV , Stuart DG . Kinematics of locomotion by cats with a single hindlimb deafferented . J Neurophysiol 39 : 667 ‐ 678 , 1976 .
 850. Whelan PJ . Control of locomotion in the decerebrate cat . Prog Neurobiol 49 : 481 ‐ 515 , 1996 .
 851. Whelan PJ , Hiebert GW , Pearson KG . Stimulation of the group I extensor afferents prolongs the stance phase in walking cats . Exp Brain Res 103 : 20 ‐ 30 , 1995 .
 852. Whelan PJ , Pearson KG . Comparison of the effects of stimulating extensor group I afferents on cycle period during walking in conscious and decerebrate cats . Exp Brain Res 117 : 444 ‐ 452 , 1997 .
 853. Whelan PJ , Pearson KG . Plasticity in reflex pathways controlling stepping in the cat . J Neurophysiol 78 : 1643 ‐ 1650 , 1997 .
 854. Wilmink RJ , Nichols TR . Distribution of heterogenic reflexes among the quadriceps and triceps surae muscles of the cat hind limb . J Neurophysiol 90 : 2310 ‐ 2324 , 2003 .
 855. Wilshin S , Reeve MA , Haynes GC , Revzen S , Koditschek DE , Spence AJ . Longitudinal quasi‐static stability predicts changes in dog gait on rough terrain . J Exp Biol 220 : 1864 ‐ 1874 , 2017 .
 856. Wilson RJ , Chersa T , Whelan PJ . Tissue PO 2 and the effects of hypoxia on the generation of locomotor‐like activity in the in vitro spinal cord of the neonatal mouse . Neuroscience 117 : 183 ‐ 196 , 2003 .
 857. Wilson VJ . Ipsilateral excitation of extensor motoneurones . Nature 198 : 290 ‐ 291 , 1963 .
 858. Wilson VJ , Kato M , Peterson BW , Wylie RM . A single‐unit analysis of the organization of Deiters' nucleus . J Neurophysiol 30 : 603 ‐ 619 , 1967 .
 859. Wilson VJ , Kato M , Thomas RC , Peterson BW . Excitation of lateral vestibular neurons by peripheral afferent fibers . J Neurophysiol 29 : 508 ‐ 529 , 1966 .
 860. Windhorst U . Muscle proprioceptive feedback and spinal networks . Brain Res Bull 73 : 155 ‐ 202 , 2007 .
 861. Winter DA . Moments of force and mechanical power in jogging . J Biomech 16 : 91 ‐ 97 , 1983 .
 862. Winter DA . Biomechanics and Motor Control of Human Movement . Wiley , 2009 .
 863. Wisleder D , Zernicke RF , Smith JL . Speed‐related changes in hindlimb intersegmental dynamics during the swing phase of cat locomotion . Exp Brain Res 79 : 651 ‐ 660 , 1990 .
 864. Wolpaw JR . What can the spinal cord teach us about learning and memory? Neuroscientist 16 : 532 ‐ 549 , 2010 .
 865. Wolpaw JR . The negotiated equilibrium model of spinal cord function . J Physiol 596 : 3469 ‐ 3491 , 2018 .
 866. Wolpaw JR , Lee CL . Memory traces in primate spinal cord produced by operant conditioning of H‐reflex . J Neurophysiol 61 : 563 ‐ 572 , 1989 .
 867. Wolpaw JR , Tennissen AM . Activity‐dependent spinal cord plasticity in health and disease . Annu Rev Neurosci 24 : 807 ‐ 843 , 2001 .
 868. Woo SH , Lumpkin EA , Patapoutian A . Merkel cells and neurons keep in touch . Trends Cell Biol 25 : 74 ‐ 81 , 2015 .
 869. Woo SH , Ranade S , Weyer AD , Dubin AE , Baba Y , Qiu Z , Petrus M , Miyamoto T , Reddy K , Lumpkin EA , Stucky CL , Patapoutian A . Piezo2 is required for Merkel‐cell mechanotransduction . Nature 509 : 622 ‐ 626 , 2014 .
 870. Wu H , Petitpre C , Fontanet P , Sharma A , Bellardita C , Quadros RM , Jannig PR , Wang Y , Heimel JA , Cheung KKY , Wanderoy S , Xuan Y , Meletis K , Ruas J , Gurumurthy CB , Kiehn O , Hadjab S , Lallemend F . Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice . Nat Commun 12 : 1026 , 2021 .
 871. Wu SX , Koshimizu Y , Feng YP , Okamoto K , Fujiyama F , Hioki H , Li YQ , Kaneko T , Mizuno N . Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle‐spindle afferents . Brain Res 1011 : 247 ‐ 251 , 2004 .
 872. Xerri C , Benelhadj M , Harlay F . Deficits and recovery of body stabilization during acrobatic locomotion after focal lesion to the somatosensory cortex: A kinematic analysis combined with cortical mapping . Arch Ital Biol 142 : 217 ‐ 236 , 2004 .
 873. Xu Y , Sladky JT , Brown MJ . Dose‐dependent expression of neuronopathy after experimental pyridoxine intoxication . Neurology 39 : 1077 ‐ 1083 , 1989 .
 874. Yakovenko S , Gritsenko V , Prochazka A . Contribution of stretch reflexes to locomotor control: A modeling study . Biol Cybern 90 : 146 ‐ 155 , 2004 .
 875. Yakovenko S , McCrea DA , Stecina K , Prochazka A . Control of locomotor cycle durations . J Neurophysiol 94 : 1057 ‐ 1065 , 2005 .
 876. Yakovenko S , Mushahwar V , VanderHorst V , Holstege G , Prochazka A . Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle . J Neurophysiol 87 : 1542 ‐ 1553 , 2002 .
 877. Yamaguchi T . The central pattern generator for forelimb locomotion in the cat . Prog Brain Res 143 : 115 ‐ 122 , 2004 .
 878. Yang JF , Lam T , Pang MY , Lamont E , Musselman K , Seinen E . Infant stepping: A window to the behaviour of the human pattern generator for walking . Can J Physiol Pharmacol 82 : 662 ‐ 674 , 2004 .
 879. Yang JF , Stein RB , James KB . Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans . Exp Brain Res 87 : 679 ‐ 687 , 1991 .
 880. Yang Q , Logan D , Giszter SF . Motor primitives are determined in early development and are then robustly conserved into adulthood . Proc Natl Acad Sci U S A 116 : 12025 ‐ 12034 , 2019 .
 881. Yang X , Arber S , William C , Li L , Tanabe Y , Jessell TM , Birchmeier C , Burden SJ . Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation . Neuron 30 : 399 ‐ 410 , 2001 .
 882. Young RP , Scott SH , Loeb GE . The distal hindlimb musculature of the cat: Multiaxis moment arms at the ankle joint . Exp Brain Res 96 : 141 ‐ 151 , 1993 .
 883. Zajac FE . Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control . Crit Rev Biomed Eng 17 : 359 ‐ 411 , 1989 .
 884. Zatsiorsky VM . Kinetics of Human Motion . Human Kinetics : Champaign , 2002 .
 885. Zehr EP . Considerations for use of the Hoffmann reflex in exercise studies . Eur J Appl Physiol 86 : 455 ‐ 468 , 2002 .
 886. Zehr EP , Barss TS , Dragert K , Frigon A , Vasudevan EV , Haridas C , Hundza S , Kaupp C , Klarner T , Klimstra M , Komiyama T , Loadman PM , Mezzarane RA , Nakajima T , Pearcey GE , Sun Y . Neuromechanical interactions between the limbs during human locomotion: An evolutionary perspective with translation to rehabilitation . Exp Brain Res 234 : 3059 ‐ 3081 , 2016 .
 887. Zehr EP , Komiyama T , Stein RB . Cutaneous reflexes during human gait: Electromyographic and kinematic responses to electrical stimulation . J Neurophysiol 77 : 3311 ‐ 3325 , 1997 .
 888. Zehr EP , Loadman PM . Persistence of locomotor‐related interlimb reflex networks during walking after stroke . Clin Neurophysiol 123 : 796 ‐ 807 , 2012 .
 889. Zehr EP , Stein RB . What functions do reflexes serve during human locomotion? Prog Neurobiol 58 : 185 ‐ 205 , 1999 .
 890. Zeisel A , Hochgerner H , Lonnerberg P , Johnsson A , Memic F , van der Zwan J , Haring M , Braun E , Borm LE , La MG , Codeluppi S , Furlan A , Lee K , Skene N , Harris KD , Hjerling‐Leffler J , Arenas E , Ernfors P , Marklund U , Linnarsson S . Molecular architecture of the mouse nervous system . Cell 174 : 999 ‐ 1014 , 2018 .
 891. Zelenin PV , Deliagina TG , Grillner S , Orlovsky GN . Postural control in the lamprey: A study with a neuro‐mechanical model . J Neurophysiol 84 : 2880 ‐ 2887 , 2000 .

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Alain Frigon, Turgay Akay, Boris I. Prilutsky. Control of Mammalian Locomotion by Somatosensory Feedback. Compr Physiol 2021, 12: 2877-2947. doi: 10.1002/cphy.c210020