Comprehensive Physiology Wiley Online Library

Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb

Full Article on Wiley Online Library



Abstract

The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+, Mg2+, and acid‐base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal‐sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1‐21, 2022.

Figure 1. Figure 1. Anatomy of short and long nephrons based on a sagittal kidney section. The TALH is longer in shorter nephrons than in longer nephrons but the thin limbs are much shorter. Abbreviations: IS, inner stripe; OS, outer stripe.
Figure 2. Figure 2. Cell types lining the epithelium of the loop of Henle. (A to D) Cell types in tDLH and tALH. Type I and IV cells are characterized by a flattened and elongated appearance, a low number of organelles (especially in the case of type IV cells), and short apical microvilli (also in the case of type IV cells more strikingly). Type I cells are also known to rest on a thin basement membrane and type IV cells to interdigitate. Type II cells are taller than the other cell types in the thin loop of Henle and form extensive (labyrinthine) interdigitations between each other. They are also characterized by an abundance of microvilli and mitochondria. Type III cells resemble type I cells except that they are taller and that their basolateral membrane forms more regular infoldings. (E, F) Cell types in TALH. S and R cells are characterized by an elongate appearance, large basolateral infoldings, and a high number of bulky mitochondria. S cells are also characterized by a substantial height, a relatively smooth apical surface, and a high number of cytoplasmic vesicles while R cells are characterized by a lower height than S cells and a rough, microvilli‐containing surface. Not shown in this figure, MD cells that are similar to type II cells except for exhibiting a much greater height (even greater than S cells), larger nuclei, and a higher number of microvilli.
Figure 3. Figure 3. Ion transport systems involved in NaCl reabsorption by the TALH. Are shown: (a) NKCC2A (SLC12A1A) or NKCC2F (SLC12A1F), (b) ROMK2 or ROMK3 (KCNJ1) on the apical membrane, (c) claudin 10, 16, or 19 in the tight junctions, (d) CLCNKA or CLCNKB, (e) BSND, (f) K+ channels (see list in Table 1), and (g) a Na+/K+‐ATPase on the basolateral membrane. Red arrows are used to indicate that there is net reabsorption of these solutes. Note that NKCC2, ROMK, and CLCNK all come as more than one variant along the ALH: (1) NKCC2 as three variants (NKCC2F; NKCC2A; NKCC2B) that differ in localization (F in OMIS; A in OMOS, cortex, and MD; B in periglomerular cortex and MD), (2) CLCNK as two variants (CLCNKA; CLCNKB) that also differ in localization (A in tALH; B in TALH), and (3) ROMK as two variants (ROMK2; ROMK3) that share a similar distribution. Model of ion transport. The apical step of NaCl reabsorption is mediated by NKCC2 and the basolateral step by a Na+/K+‐ATPase, CLCNKA/Barttin, and CLCNKB/Barttin. The Na+/K+‐ATPase acts as the main driving force of NaCl reabsorption by maintaining [Na] at low levels and allowing this ion to be transported passively through NKCC2. Both the Na+/K+‐ATPase and NKCC2 are provided extracellularly with a constant supply of K+ (from the presence of nearby K+ channels) to sustain their activities. A large fraction of Na+ is also reabsorbed paracellularly via claudin 10 down a favorable electrical potential (see text).
Figure 4. Figure 4. Transport of Ca2+ and Mg2+ by the TALH. Are shown: (a) a Ca2+ channel, (b) TRPM7 on the apical membrane, (c) claudin 14, 16, or 19 in the tight junction, (d) a Na+/Ca2+ exchanger (NCX1.3), (e) a Ca2+‐ATPase (PMCA1 or PMCA4B), and (f) CNNM2 on the basolateral membrane. Red arrows are used to indicate that there is net reabsorption of these solutes. Model of ion transport. Ca2+ and Mg2+ are reabsorbed paracellularly via claudins 14, 16, and 19 down a favorable electrochemical potential (see text). A smaller fraction of Ca2+ and Mg2+ could also be reabsorbed transcellularly through channels on the apical side and additional ion transport systems on the basolateral side. Note that the role of CNNM2 as an actual Mg2+ transporter is still the subject of debate even though this protein has been linked to a hereditary form of renal Mg2+ wasting disorder.
Figure 5. Figure 5. Transport of HCO3 by the TALH. Are shown: (a) a Na+/H+ exchanger (NHE2 or NHE3) on the apical membrane and (b) a K+‐HCO3 cotransporter, (c) a Cl/HCO3 exchanger (AE1 or AE2), and (d) a Na+‐HCO3 cotransporter (NBCn1) on the basolateral membrane. Are also shown, different CAs including, (e) GPI‐anchored CAIV and (f) GPI‐anchored CAXIV on the apical membrane, (e) GPI‐anchored CAIV and (g) GPI‐anchored CAXII on the basolateral membrane, and (h) cytosolic CAII in the cytosol. As shown in Table 1, some investigators have also identified a Cl/HCO3 exchanger on the apical membrane (AE1) and a Na+/H+ exchanger on the basolateral membrane (NHE1 or NHE4). Model of ion transport. A fraction of the HCO3 ions that is not reclaimed by the proximal tubule is recycled by the TALH. While this process is ensured on the apical side by Na+/H+ exchangers through which H+ ions are secreted and buffered by HCO3 in the lumen, the resulting decrease in intracellular H+ concentration promotes the intracellular production of HCO3 with the assistance of CAs. HCO3 recycling is completed on the basolateral side through Cl/HCO3 exchangers and facilitated by the presence of nearby extrusion mechanisms for Cl such as KCC4 and Cl channels (not shown). Note that the Na+‐HCO3 cotransporter present in the TALH is unlikely to contribute to this process as it contains only one transport site for either substrate.
Figure 6. Figure 6. Renal ammoniogenesis. The breakdown of one glutamine molecule by the renal proximal tubule leads to the production of two NH4+ and two HCO3. One of these substrates (NH4+) is secreted into the lumen via a Na+/H+ exchanger (mainly NHE3) and directed afterward to the lumen of the collecting tubule in the form of NH3 while the other substrate (HCO3) is reabsorbed into blood through the basolateral membrane. This whole process should thus lead to the production of four HCO3 for each glutamine that is broken down. However, a fraction of the filtered HCO3 should no longer be recycled through NHE3 due to the absence of available H+ sites. If this fraction fails to be reabsorbed through other transport pathways or compensatory mechanisms, the breakdown of one glutamine would then generate two HCO3.
Figure 7. Figure 7. Regulation of ion transport in TALH cells. (A) Domains of WNK1. Phosphoacceptor residues are present in the kinase as well as autoinhibitory domains. A Cl‐binding pocket and Mg2+‐sensitive residue site are also present in the kinase domain. (B) Putative model of NKCC2 regulation. In TALH cells, the same or a similar model probably could very well apply to many other ion transport systems given that the signaling intermediates or factors at play can act on many targets. As explained in the main text, UMOD has also been shown to play a role in ion transport by the TALH (not shown in the figure). Abbreviations: CaBP39, calcium‐binding protein 39; CUL3, cullin 3, KLHL3, kelch‐like 3; OSR1, oxidative stress‐responsive kinase 1; SORLA, sorting‐protein‐related receptor with A‐type repeats; SPAK, SPS1‐related proline alanine‐rich kinase; WNK, with no lysine kinase.


Figure 1. Anatomy of short and long nephrons based on a sagittal kidney section. The TALH is longer in shorter nephrons than in longer nephrons but the thin limbs are much shorter. Abbreviations: IS, inner stripe; OS, outer stripe.


Figure 2. Cell types lining the epithelium of the loop of Henle. (A to D) Cell types in tDLH and tALH. Type I and IV cells are characterized by a flattened and elongated appearance, a low number of organelles (especially in the case of type IV cells), and short apical microvilli (also in the case of type IV cells more strikingly). Type I cells are also known to rest on a thin basement membrane and type IV cells to interdigitate. Type II cells are taller than the other cell types in the thin loop of Henle and form extensive (labyrinthine) interdigitations between each other. They are also characterized by an abundance of microvilli and mitochondria. Type III cells resemble type I cells except that they are taller and that their basolateral membrane forms more regular infoldings. (E, F) Cell types in TALH. S and R cells are characterized by an elongate appearance, large basolateral infoldings, and a high number of bulky mitochondria. S cells are also characterized by a substantial height, a relatively smooth apical surface, and a high number of cytoplasmic vesicles while R cells are characterized by a lower height than S cells and a rough, microvilli‐containing surface. Not shown in this figure, MD cells that are similar to type II cells except for exhibiting a much greater height (even greater than S cells), larger nuclei, and a higher number of microvilli.


Figure 3. Ion transport systems involved in NaCl reabsorption by the TALH. Are shown: (a) NKCC2A (SLC12A1A) or NKCC2F (SLC12A1F), (b) ROMK2 or ROMK3 (KCNJ1) on the apical membrane, (c) claudin 10, 16, or 19 in the tight junctions, (d) CLCNKA or CLCNKB, (e) BSND, (f) K+ channels (see list in Table 1), and (g) a Na+/K+‐ATPase on the basolateral membrane. Red arrows are used to indicate that there is net reabsorption of these solutes. Note that NKCC2, ROMK, and CLCNK all come as more than one variant along the ALH: (1) NKCC2 as three variants (NKCC2F; NKCC2A; NKCC2B) that differ in localization (F in OMIS; A in OMOS, cortex, and MD; B in periglomerular cortex and MD), (2) CLCNK as two variants (CLCNKA; CLCNKB) that also differ in localization (A in tALH; B in TALH), and (3) ROMK as two variants (ROMK2; ROMK3) that share a similar distribution. Model of ion transport. The apical step of NaCl reabsorption is mediated by NKCC2 and the basolateral step by a Na+/K+‐ATPase, CLCNKA/Barttin, and CLCNKB/Barttin. The Na+/K+‐ATPase acts as the main driving force of NaCl reabsorption by maintaining [Na] at low levels and allowing this ion to be transported passively through NKCC2. Both the Na+/K+‐ATPase and NKCC2 are provided extracellularly with a constant supply of K+ (from the presence of nearby K+ channels) to sustain their activities. A large fraction of Na+ is also reabsorbed paracellularly via claudin 10 down a favorable electrical potential (see text).


Figure 4. Transport of Ca2+ and Mg2+ by the TALH. Are shown: (a) a Ca2+ channel, (b) TRPM7 on the apical membrane, (c) claudin 14, 16, or 19 in the tight junction, (d) a Na+/Ca2+ exchanger (NCX1.3), (e) a Ca2+‐ATPase (PMCA1 or PMCA4B), and (f) CNNM2 on the basolateral membrane. Red arrows are used to indicate that there is net reabsorption of these solutes. Model of ion transport. Ca2+ and Mg2+ are reabsorbed paracellularly via claudins 14, 16, and 19 down a favorable electrochemical potential (see text). A smaller fraction of Ca2+ and Mg2+ could also be reabsorbed transcellularly through channels on the apical side and additional ion transport systems on the basolateral side. Note that the role of CNNM2 as an actual Mg2+ transporter is still the subject of debate even though this protein has been linked to a hereditary form of renal Mg2+ wasting disorder.


Figure 5. Transport of HCO3 by the TALH. Are shown: (a) a Na+/H+ exchanger (NHE2 or NHE3) on the apical membrane and (b) a K+‐HCO3 cotransporter, (c) a Cl/HCO3 exchanger (AE1 or AE2), and (d) a Na+‐HCO3 cotransporter (NBCn1) on the basolateral membrane. Are also shown, different CAs including, (e) GPI‐anchored CAIV and (f) GPI‐anchored CAXIV on the apical membrane, (e) GPI‐anchored CAIV and (g) GPI‐anchored CAXII on the basolateral membrane, and (h) cytosolic CAII in the cytosol. As shown in Table 1, some investigators have also identified a Cl/HCO3 exchanger on the apical membrane (AE1) and a Na+/H+ exchanger on the basolateral membrane (NHE1 or NHE4). Model of ion transport. A fraction of the HCO3 ions that is not reclaimed by the proximal tubule is recycled by the TALH. While this process is ensured on the apical side by Na+/H+ exchangers through which H+ ions are secreted and buffered by HCO3 in the lumen, the resulting decrease in intracellular H+ concentration promotes the intracellular production of HCO3 with the assistance of CAs. HCO3 recycling is completed on the basolateral side through Cl/HCO3 exchangers and facilitated by the presence of nearby extrusion mechanisms for Cl such as KCC4 and Cl channels (not shown). Note that the Na+‐HCO3 cotransporter present in the TALH is unlikely to contribute to this process as it contains only one transport site for either substrate.


Figure 6. Renal ammoniogenesis. The breakdown of one glutamine molecule by the renal proximal tubule leads to the production of two NH4+ and two HCO3. One of these substrates (NH4+) is secreted into the lumen via a Na+/H+ exchanger (mainly NHE3) and directed afterward to the lumen of the collecting tubule in the form of NH3 while the other substrate (HCO3) is reabsorbed into blood through the basolateral membrane. This whole process should thus lead to the production of four HCO3 for each glutamine that is broken down. However, a fraction of the filtered HCO3 should no longer be recycled through NHE3 due to the absence of available H+ sites. If this fraction fails to be reabsorbed through other transport pathways or compensatory mechanisms, the breakdown of one glutamine would then generate two HCO3.


Figure 7. Regulation of ion transport in TALH cells. (A) Domains of WNK1. Phosphoacceptor residues are present in the kinase as well as autoinhibitory domains. A Cl‐binding pocket and Mg2+‐sensitive residue site are also present in the kinase domain. (B) Putative model of NKCC2 regulation. In TALH cells, the same or a similar model probably could very well apply to many other ion transport systems given that the signaling intermediates or factors at play can act on many targets. As explained in the main text, UMOD has also been shown to play a role in ion transport by the TALH (not shown in the figure). Abbreviations: CaBP39, calcium‐binding protein 39; CUL3, cullin 3, KLHL3, kelch‐like 3; OSR1, oxidative stress‐responsive kinase 1; SORLA, sorting‐protein‐related receptor with A‐type repeats; SPAK, SPS1‐related proline alanine‐rich kinase; WNK, with no lysine kinase.
References
 1.Acuna R, Martinez‐de‐la‐Maza L, Ponce‐Coria J, Vazquez N, Ortal‐Vite P, Pacheco‐Alvarez D, Bobadilla NA, Gamba G. Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters. J Hypertens 29: 475‐483, 2011.
 2.Alexander RT, Beggs MR, Zamani R, Marcussen N, Frische S, Dimke H. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+‐ATPase 4 in Ca2+‐transporting epithelia. Am J Physiol Renal Physiol 309: F604‐F616, 2015.
 3.Allen F, Tisher CC. Morphology of the ascending thick limb of Henle. Kidney Int 9: 8‐22, 1976.
 4.Allison SJ. Renal physiology: MAGED2 mutations in transient antenatal Bartter syndrome. Nat Rev Nephrol 12: 377, 2016.
 5.Alvarez‐Guerra M, Lou M, Garay RP. Role of nitric oxide in the NKCC2 hyperactivity of Dahl “salt‐sensitive” rats. Arch Mal Coeur Vaiss 97: 731‐733, 2004.
 6.Angelow S, El‐Husseini R, Kanzawa SA, Yu AS. Renal localization and function of the tight junction protein, claudin‐19. Am J Physiol Renal Physiol 293: F166‐F177, 2007.
 7.Araujo M, Welch WJ, Zhou X, Sullivan K, Walsh S, Pasternak A, Wilcox CS. Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats. Am J Physiol Renal Physiol 312: F1120‐F1127, 2017.
 8.Ares GR. cGMP induces degradation of NKCC2 in the thick ascending limb via the ubiquitin‐proteasomal system. Am J Physiol Renal Physiol 316: F838‐F846, 2019.
 9.Ares GR, Caceres P, Alvarez‐Leefmans FJ, Ortiz PA. cGMP decreases surface NKCC2 levels in the thick ascending limb: Role of phosphodiesterase 2 (PDE2). Am J Physiol Renal Physiol 295: F877‐F887, 2008.
 10.Attmane‐Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC, Bichara M. Stimulation by in vivo and in vitro metabolic acidosis of expression of rBSC‐1, the Na+‐K+(NH4+)‐2Cl‐ cotransporter of the rat medullary thick ascending limb. J Biol Chem 273: 33681‐33691, 1998.
 11.Aviv A, Hollenberg NK, Weder A. Urinary potassium excretion and sodium sensitivity in blacks. Hypertension 43: 707‐713, 2004.
 12.Bachmann S, Kriz W. Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tissue Res 225: 111‐127, 1982.
 13.Bailly C. Transducing pathways involved in the control of NaCl reabsorption in the thick ascending limb of Henle's loop. Kidney Int Suppl 65: S29‐S35, 1998.
 14.Bailly C. Effect of luminal atrial natriuretic peptide on chloride reabsorption in mouse cortical thick ascending limb: Inhibition by endothelin. J Am Soc Nephrol 11: 1791‐1797, 2000.
 15.Bankir L, Chen K, Yang B. Lack of UT‐B in vasa recta and red blood cells prevents urea‐induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol 286: F144‐F151, 2004.
 16.Beeuwkes R 3rd. The vascular organization of the kidney. Annu Rev Physiol 42: 531‐542, 1980.
 17.Beguin P, Beggah A, Cotecchia S, Geering K. Adrenergic, dopaminergic, and muscarinic receptor stimulation leads to PKA phosphorylation of Na‐K‐ATPase. Am J Physiol 270: C131‐C137, 1996.
 18.Bell PD, Lapointe JY. Characteristics of membrane transport processes of macula densa cells. Clin Exp Pharmacol Physiol 24: 541‐547, 1997.
 19.Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti‐Peterdi J, Manabe K, Kovacs G, Okada Y. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A 100: 4322‐4327, 2003.
 20.Beutler JJ, Boer WH, Koomans HA, Dorhout Mees EJ. Comparative study of the effects of furosemide, ethacrynic acid and bumetanide on the lithium clearance and diluting segment reabsorption in humans. J Pharmacol Exp Ther 260: 768‐772, 1992.
 21.Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier‐Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29: 310‐314, 2001.
 22.Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456: 339‐343, 2008.
 23.Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid‐base balance. Semin Nephrol 26: 334‐344, 2006.
 24.Bohman SO. The ultrastructure of the rat renal medulla as observed after improved fixation methods. J Ultrastruct Res 47: 329‐360, 1974.
 25.Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC. ROMK inwardly rectifying ATP‐sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 268: F1132‐F1140, 1995.
 26.Borensztein P, Froissart M, Laghmani K, Bichara M, Paillard M. RT‐PCR analysis of Na+/H+ exchanger mRNAs in rat medullary thick ascending limb. Am J Physiol 268: F1224‐F1228, 1995.
 27.Bourgeois S, Masse S, Paillard M, Houillier P. Basolateral membrane Cl(‐)‐, Na(+)‐, and K(+)‐coupled base transport mechanisms in rat MTALH. Am J Physiol Renal Physiol 282: F655‐F668, 2002.
 28.Bourgeois S, Meer LV, Wootla B, Bloch‐Faure M, Chambrey R, Shull GE, Gawenis LR, Houillier P. NHE4 is critical for the renal handling of ammonia in rodents. J Clin Invest 120: 1895‐1904, 2010.
 29.Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Muller D. Deletion of claudin‐10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A 109: 14241‐14246, 2012.
 30.Brokl OH, Dantzler WH. Amino acid fluxes in rat thin limb segments of Henle's loop during in vitro microperfusion. Am J Physiol 277: F204‐F210, 1999.
 31.Brunet GM, Gagnon E, Simard CF, Daigle ND, Caron L, Noel M, Lefoll MH, Bergeron MJ, Isenring P. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+‐K+‐Cl2 cotransporter (NKCC2s) splice variants. J Gen Physiol 126: 325‐337, 2005.
 32.Brunette MG, Chan M, Ferriere C, Roberts KD. Site of 1,25(OH)2 vitamin D3 synthesis in the kidney. Nature 276: 287‐289, 1978.
 33.Burg M, Good D. Sodium chloride coupled transport in mammalian nephrons. Annu Rev Physiol 45: 533‐547, 1983.
 34.Burg M, Stoner L, Cardinal J, Green N. Furosemide effect on isolated perfused tubules. Am J Physiol 225: 119‐124, 1973.
 35.Burg MB, Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol 224: 659‐668, 1973.
 36.Caceres PS, Ares GR, Ortiz PA. cAMP stimulates apical exocytosis of the renal Na(+)‐K(+)‐2Cl(‐) cotransporter NKCC2 in the thick ascending limb: Role of protein kinase A. J Biol Chem 284: 24965‐24971, 2009.
 37.Cangiotti AM, Lorenzi T, Zingaretti MC, Fabri M, Morroni M. Polarized ends of human macula densa cells: Ultrastructural investigation and morphofunctional correlations. Anat Rec (Hoboken) 301: 922‐931, 2018.
 38.Capasso G, Unwin R, Ciani F, De Santo NG, De Tommaso G, Russo F, Giebisch G. Bicarbonate transport along the loop of Henle. II. Effects of acid‐base, dietary, and neurohumoral determinants. J Clin Invest 94: 830‐838, 1994.
 39.Caride AJ, Chini EN, Yamaki M, Dousa TP, Penniston JT. Unique localization of mRNA encoding plasma membrane Ca2+ pump isoform 3 in rat thin descending loop of Henle. Am J Physiol 269: F681‐F685, 1995.
 40.Carranza ML, Rousselot M, Chibalin AV, Bertorello AM, Favre H, Feraille E. Protein kinase A induces recruitment of active Na+,K+‐ATPase units to the plasma membrane of rat proximal convoluted tubule cells. J Physiol 511 (Pt 1): 235‐243, 1998.
 41.Carroll MA, Sala A, Dunn CE, McGiff JC, Murphy RC. Structural identification of cytochrome P450‐dependent arachidonate metabolites formed by rabbit medullary thick ascending limb cells. J Biol Chem 266: 12306‐12312, 1991.
 42.Casarini DE, Boim MA, Stella RC, Krieger‐Azzolini MH, Krieger JE, Schor N. Angiotensin I‐converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol 272: F405‐F409, 1997.
 43.Castrop H, Schiessl IM. Physiology and pathophysiology of the renal Na‐K‐2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 307: F991‐F1002, 2014.
 44.Castrop H, Schnermann J. Isoforms of renal Na‐K‐2Cl cotransporter NKCC2: Expression and functional significance. Am J Physiol Renal Physiol 295: F859‐F866, 2008.
 45.Chen Y, Burnett JC. Particulate guanylyl cyclase A/cGMP signaling pathway in the kidney: Physiologic and therapeutic indications. Int J Mol Sci 19: 1006, 2018.
 46.Chen Y, Fry BC, Layton AT. Modeling glucose metabolism in the kidney. Bull Math Biol 78: 1318‐1336, 2016.
 47.Cheng CJ, Truong T, Baum M, Huang CL. Kidney‐specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb. Am J Physiol Renal Physiol 303: F667‐F673, 2012.
 48.Choi I, Aalkjaer C, Boulpaep EL, Boron WF. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405: 571‐575, 2000.
 49.Chou CL, Knepper MA. In vitro perfusion of chinchilla thin limb segments: Urea and NaCl permeabilities. Am J Physiol 264: F337‐F343, 1993.
 50.Clausen G, Hope A, Kirkebo A, Tyssebotn I, Aukland K. Distribution of blood flow in the dog kidney. I. Saturation rates for inert diffusible tracers, 125I‐iodoantipyrine and tritiated water, versus uptake of microspheres under control conditions. Acta Physiol Scand 107: 69‐81, 1979.
 51.Clausen MV, Hilbers F, Poulsen H. The structure and function of the Na,K‐ATPase isoforms in health and disease. Front Physiol 8: 371, 2017.
 52.Cruz AJ, Castro A. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation. BMJ Case Rep: 2013, 2013. DOI: 10.1136/bcr‐2012‐007929.
 53.Cushny AR. The Secretion of Urine. London: Longmans, Green and Co., 1916/1926.
 54.Dahan K, Devuyst O, Smaers M, Vertommen D, Loute G, Poux JM, Viron B, Jacquot C, Gagnadoux MF, Chauveau D, Buchler M, Cochat P, Cosyns JP, Mougenot B, Rider MH, Antignac C, Verellen‐Dumoulin C, Pirson Y. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol 14: 2883‐2893, 2003.
 55.Dai LJ, Ritchie G, Bapty B, Raymond L, Quamme GA. Na+/Ca2+ exchanger in epithelial cells of the porcine cortical thick ascending limb. Am J Physiol 270: F411‐F418, 1996.
 56.de Jesus Ferreira MC, Helies‐Toussaint C, Imbert‐Teboul M, Bailly C, Verbavatz JM, Bellanger AC, Chabardes D. Co‐expression of a Ca2+‐inhibitable adenylyl cyclase and of a Ca2+‐sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone‐dependent cAMP accumulation by extracellular Ca2+. J Biol Chem 273: 15192‐15202, 1998.
 57.Di Stefano A, Roinel N, de Rouffignac C, Wittner M. Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse is a voltage‐dependent process. Ren Physiol Biochem 16: 157‐166, 1993.
 58.Dieterich HJ, Barrett JM, Kriz W, Bulhoff JP. The ultrastructure of the thin loop limbs of the mouse kidney. Anat Embryol (Berl) 147: 1‐18, 1975.
 59.Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT. Activation of the Ca(2+)‐sensing receptor increases renal claudin‐14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol 304: F761‐F769, 2013.
 60.Dimke H, Schnermann J. Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb. Acta Physiol (Oxf) 223: e13057, 2018.
 61.Doucet A, Katz AI. High‐affinity Ca‐Mg‐ATPase along the rabbit nephron. Am J Physiol 242: F346‐F352, 1982.
 62.DuBose TD Jr, Good DW. Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat. J Clin Invest 90: 1443‐1449, 1992.
 63.Eknoyan G, Sawa H, Hyde S 3rd, Wood JM, Schwartz A, Suki W. Effect of diuretics on oxidative phosphorylation of dog kidney mitochondria. J Pharmacol Exp Ther 194: 614‐623, 1975.
 64.Eladari D, Blanchard A, Leviel F, Paillard M, Stuart‐Tilley AK, Alper SL, Podevin RA. Functional and molecular characterization of luminal and basolateral Cl‐/HCO‐3 exchangers of rat thick limbs. Am J Physiol 275: F334‐F342, 1998.
 65.Emma F, Pizzini C, Tessa A, Di Giandomenico S, Onetti‐Muda A, Santorelli FM, Bertini E, Rizzoni G. “Bartter‐like” phenotype in Kearns‐Sayre syndrome. Pediatr Nephrol 21: 355‐360, 2006.
 66.Emma F, Salviati L. Mitochondrial cytopathies and the kidney. Nephrol Ther 13 (Suppl 1): S23‐S28, 2017.
 67.Escalante B, Erlij D, Falck JR, McGiff JC. Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science 251: 799‐802, 1991.
 68.Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl‐ channel beta‐subunit crucial for renal Cl‐ reabsorption and inner ear K+ secretion. Nature 414: 558‐561, 2001.
 69.Evans KK, Nawata CM, Pannabecker TL. Isolation and perfusion of rat inner medullary vasa recta. Am J Physiol Renal Physiol 309: F300‐F304, 2015.
 70.Eveloff J, Bayerdorffer E, Silva P, Kinne R. Sodium‐chloride transport in the thick ascending limb of Henle's loop. Oxygen consumption studies in isolated cells. Pflugers Arch 389: 263‐270, 1981.
 71.Feraille E, Doucet A. Sodium‐potassium‐adenosinetriphosphatase‐dependent sodium transport in the kidney: Hormonal control. Physiol Rev 81: 345‐418, 2001.
 72.Ferdaus MZ, Miller LN, Agbor LN, Saritas T, Singer JD, Sigmund CD, McCormick JA. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight 2: e96700, 2017.
 73.Fernandes PL, Ferreira HG. A mathematical model of rabbit cortical thick ascending limb of the Henle's loop. Biochim Biophys Acta 1064: 111‐123, 1991.
 74.Ferreri NR, An SJ, McGiff JC. Cyclooxygenase‐2 expression and function in the medullary thick ascending limb. Am J Physiol 277: F360‐F368, 1999.
 75.Ferreri NR, Schwartzman M, Ibraham NG, Chander PN, McGiff JC. Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J Pharmacol Exp Ther 231: 441‐448, 1984.
 76.Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai‐Treiman L, Landau D. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr 142: 318‐323, 2003.
 77.Fisone G, Cheng SX, Nairn AC, Czernik AJ, Hemmings HC Jr, Hoog JO, Bertorello AM, Kaiser R, Bergman T, Jornvall H, et al. Identification of the phosphorylation site for cAMP‐dependent protein kinase on Na+,K(+)‐ATPase and effects of site‐directed mutagenesis. J Biol Chem 269: 9368‐9373, 1994.
 78.Flatman PW. Cotransporters, WNKs and hypertension: An update. Curr Opin Nephrol Hypertens 17: 186‐192, 2008.
 79.Fowler BC, Chang YS, Laamarti A, Higdon M, Lapointe JY, Bell PD. Evidence for apical sodium proton exchange in macula densa cells. Kidney Int 47: 746‐751, 1995.
 80.Frenette‐Cotton R, Marcoux AA, Garneau AP, Noel M, Isenring P. Phosphoregulation of K(+) ‐Cl(‐) cotransporters during cell swelling: Novel insights. J Cell Physiol 233: 396‐408, 2018.
 81.Friedlander G, Amiel C. Extracellular nucleotides as modulators of renal tubular transport. Kidney Int 47: 1500‐1506, 1995.
 82.Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147: 891‐903, 1999.
 83.Gagnon E, Forbush B, Caron L, Isenring P. Functional comparison of renal Na‐K‐Cl cotransporters between distant species. Am J Physiol Cell Physiol 284: C365‐C370, 2003.
 84.Gamba G, Friedman PA. Thick ascending limb: The Na(+):K (+):2Cl (‐) co‐transporter, NKCC2, and the calcium‐sensing receptor, CaSR. Pflugers Arch 458: 61‐76, 2009.
 85.Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium‐(potassium)‐chloride cotransporter family expressed in kidney. J Biol Chem 269: 17713‐17722, 1994.
 86.Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am J Physiol 240: F536‐F544, 1981.
 87.Garg LC, Mackie S, Tisher CC. Effect of low potassium‐diet on Na‐K‐ATPase in rat nephron segments. Pflugers Arch 394: 113‐117, 1982.
 88.Garneau AP, Marcoux AA, Slimani S, Tremblay LE, Frenette‐Cotton R, Mac‐Way F, Isenring P. Physiological roles and molecular mechanisms of K(+) ‐Cl(‐) cotransport in the mammalian kidney and cardiovascular system: Where are we? J Physiol 597: 1451‐1465, 2019.
 89.Garzon‐Muvdi T, Pacheco‐Alvarez D, Gagnon KB, Vazquez N, Ponce‐Coria J, Moreno E, Delpire E, Gamba G. WNK4 kinase is a negative regulator of K+‐Cl‐ cotransporters. Am J Physiol Renal Physiol 292: F1197‐F1207, 2007.
 90.Gimenez I, Forbush B. The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian renal Na‐K‐Cl cotransporter (NKCC2). J Biol Chem 282: 6540‐6547, 2007.
 91.Gimenez I, Isenring P, Forbush B. Spatially distributed alternative splice variants of the renal Na‐K‐Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 277: 8767‐8770, 2002.
 92.Glover M, Ware JS, Henry A, Wolley M, Walsh R, Wain LV, Xu S, Van't Hoff WG, Tobin MD, Hall IP, Cook S, Gordon RD, Stowasser M, O'Shaughnessy KM. Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon's syndrome). Clin Sci (Lond) 126: 721‐726, 2014.
 93.Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J. Claudin‐14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31: 1999‐2012, 2012.
 94.Gonzalez E, Salomonsson M, Muller‐Suur C, Persson AE. Measurements of macula densa cell volume changes in isolated and perfused rabbit cortical thick ascending limb. I. Isosmotic and anisosmotic cell volume changes. Acta Physiol Scand 133: 149‐157, 1988.
 95.Gonzalez‐Villalobos RA, Satou R, Ohashi N, Semprun‐Prieto LC, Katsurada A, Kim C, Upchurch GM, Prieto MC, Kobori H, Navar LG. Intrarenal mouse renin‐angiotensin system during ANG II‐induced hypertension and ACE inhibition. Am J Physiol Renal Physiol 298: F150‐F157, 2010.
 96.Good DW. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Physiol 248: F821‐F829, 1985.
 97.Good DW. Ammonium transport by the thick ascending limb of Henle's loop. Annu Rev Physiol 56: 623‐647, 1994.
 98.Good DW, Burg MB. Ammonia production by individual segments of the rat nephron. J Clin Invest 73: 602‐610, 1984.
 99.Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8: 93‐102, 1986.
 100.Gottschalk CW, Mylle M. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am J Physiol 196: 927‐936, 1959.
 101.Graham LA, Dominiczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiol Genomics 49: 261‐276, 2017.
 102.Graham LA, Padmanabhan S, Fraser NJ, Kumar S, Bates JM, Raffi HS, Welsh P, Beattie W, Hao S, Leh S, Hultstrom M, Ferreri NR, Dominiczak AF, Graham D, McBride MW. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63: 551‐558, 2014.
 103.Greger R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 390: 30‐37, 1981.
 104.Greger R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65: 760‐797, 1985.
 105.Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 392: 92‐94, 1981.
 106.Gu RM, Yang L, Zhang Y, Wang L, Kong S, Zhang C, Zhai Y, Wang M, Wu P, Liu L, Gu F, Zhang J, Wang WH. CYP‐omega‐hydroxylation‐dependent metabolites of arachidonic acid inhibit the basolateral 10 pS chloride channel in the rat thick ascending limb. Kidney Int 76: 849‐856, 2009.
 107.Guinamard R, Chraibi A, Teulon J. A small‐conductance Cl‐ channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J Physiol 485 (Pt 1): 97‐112, 1995.
 108.Guinamard R, Paulais M, Lourdel S, Teulon J. A calcium‐permeable non‐selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim Biophys Acta 1818: 1135‐1141, 2012.
 109.Gunaratne R, Braucht DW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA. Quantitative phosphoproteomic analysis reveals cAMP/vasopressin‐dependent signaling pathways in native renal thick ascending limb cells. Proc Natl Acad Sci U S A 107: 15653‐15658, 2010.
 110.Guyton AC. Physiologic regulation of arterial pressure. Am J Cardiol 8: 401‐407, 1961.
 111.Guyton AC. Dominant role of the kidneys and accessory role of whole‐body autoregulation in the pathogenesis of hypertension. Am J Hypertens 2: 575‐585, 1989.
 112.Hackenthal E, Paul M, Ganten D, Taugner R. Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70: 1067‐1116, 1990.
 113.Hadchouel J, Ellison DH, Gamba G. Regulation of renal electrolyte transport by WNK and SPAK‐OSR1 kinases. Annu Rev Physiol 78: 367‐389, 2016.
 114.Hamilton KL, Devor DC. Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 302: F1069‐F1081, 2012.
 115.Hamm LL, Gillespie C, Klahr S. NH4Cl inhibition of transport in the rabbit cortical collecting tubule. Am J Physiol 248: F631‐F637, 1985.
 116.Han KH. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. Electrolyte Blood Press 9: 45‐49, 2011.
 117.Hanner F, Chambrey R, Bourgeois S, Meer E, Mucsi I, Rosivall L, Shull GE, Lorenz JN, Eladari D, Peti‐Peterdi J. Increased renal renin content in mice lacking the Na+/H+ exchanger NHE2. Am J Physiol Renal Physiol 294: F937‐F944, 2008.
 118.Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD. Cyclooxygenase‐2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94: 2504‐2510, 1994.
 119.He J, Yang B. Aquaporins in renal diseases. Int J Mol Sci 20: 366, 2019.
 120.Hebert SC. Calcium and salinity sensing by the thick ascending limb: A journey from mammals to fish and back again. Kidney Int Suppl 91: S28‐S33, 2004.
 121.Hebert SC, Andreoli TE. Control of NaCl transport in the thick ascending limb. Am J Physiol 246: F745‐F756, 1984.
 122.Hebert SC, Andreoli TE. Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl‐ absorption. J Gen Physiol 87: 567‐590, 1986.
 123.Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)‐sensing receptor in divalent mineral ion homeostasis. J Exp Biol 200: 295‐302, 1997.
 124.Hebert SC, Culpepper RM, Andreoli TE. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Physiol 241: F432‐F442, 1981.
 125.Henle J. Handbuch der Eingeweidelehre des Menschen. Braunschweig: F. Vieweg und Sohn, 1866.
 126.Hennings JC, Andrini O, Picard N, Paulais M, Huebner AK, Cayuqueo IK, Bignon Y, Keck M, Corniere N, Bohm D, Jentsch TJ, Chambrey R, Teulon J, Hubner CA, Eladari D. The ClC‐K2 chloride channel is critical for salt handling in the distal nephron. J Am Soc Nephrol 28: 209‐217, 2017.
 127.Herrera M, Garvin JL. Endothelin stimulates endothelial nitric oxide synthase expression in the thick ascending limb. Am J Physiol Renal Physiol 287: F231‐F235, 2004.
 128.Hervy S, Thomas SR. Inner medullary lactate production and urine‐concentrating mechanism: A flat medullary model. Am J Physiol Renal Physiol 284: F65‐F81, 2003.
 129.Himmerkus N, Shan Q, Goerke B, Hou J, Goodenough DA, Bleich M. Salt and acid‐base metabolism in claudin‐16 knockdown mice: Impact for the pathophysiology of FHHNC patients. Am J Physiol Renal Physiol 295: F1641‐F1647, 2008.
 130.Holden S, Cox J, Raymond FL. Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3). Gene 335: 109‐119, 2004.
 131.Hoorn EJ, Ellison DH. WNK kinases and the kidney. Exp Cell Res 318: 1020‐1026, 2012.
 132.Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 22: 605‐614, 2011.
 133.Hou J, Paul DL, Goodenough DA. Paracellin‐1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118: 5109‐5118, 2005.
 134.Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106: 15350‐15355, 2009.
 135.Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interact and form a cation‐selective tight junction complex. J Clin Invest 118: 619‐628, 2008.
 136.Huang CL, Yang SS, Lin SH. Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 17: 519‐525, 2008.
 137.Hurst AM, Duplain M, Lapointe JY. Basolateral membrane potassium channels in rabbit cortical thick ascending limb. Am J Physiol 263: F262‐F267, 1992.
 138.Igarashi P, Vanden Heuvel GB, Payne JA, Forbush B 3rd. Cloning, embryonic expression, and alternative splicing of a murine kidney‐specific Na‐K‐Cl cotransporter. Am J Physiol 269: F405‐F418, 1995.
 139.Imai M, Kokko JP. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53: 393‐402, 1974.
 140.Itoh K, Izumi Y, Inoue T, Inoue H, Nakayama Y, Uematsu T, Fukuyama T, Yamazaki T, Yasuoka Y, Makino T, Nagaba Y, Tomita K, Kobayashi N, Kawahara K, Mukoyama M, Nonoguchi H. Expression of three isoforms of Na‐K‐2Cl cotransporter (NKCC2) in the kidney and regulation by dehydration. Biochem Biophys Res Commun 453: 356‐361, 2014.
 141.Jamison RL. Short and long loop nephrons. Kidney Int 31: 597‐605, 1987.
 142.Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton‐Cheh C, State MW, Levy D, Lifton RP. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40: 592‐599, 2008.
 143.Jin XH, Siragy HM, Carey RM. Renal interstitial cGMP mediates natriuresis by direct tubule mechanism. Hypertension 38: 309‐316, 2001.
 144.Jones DH, Li TY, Arystarkhova E, Barr KJ, Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH, Kidder GM. Na,K‐ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 280: 19003‐19011, 2005.
 145.Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl‐ permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension. Proc Natl Acad Sci U S A 101: 14877‐14882, 2004.
 146.Kaplan MR, Plotkin MD, Lee WS, Xu ZC, Lytton J, Hebert SC. Apical localization of the Na‐K‐Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49: 40‐47, 1996.
 147.Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A 91: 6943‐6947, 1994.
 148.Kim GH, Ecelbarger C, Knepper MA, Packer RK. Regulation of thick ascending limb ion transporter abundance in response to altered acid/base intake. J Am Soc Nephrol 10: 935‐942, 1999.
 149.Kim WY, Lee HW, Han KH, Nam SA, Choi A, Kim YK, Kim J. Descending thin limb of the intermediate loop expresses both aquaporin 1 and urea transporter A2 in the mouse kidney. Histochem Cell Biol 146: 1‐12, 2016.
 150.Kirchner KA. Increased loop chloride uptake precedes hypertension in Dahl salt‐sensitive rats. Am J Physiol 262: R263‐R268, 1992.
 151.Kjolby M, Bie P. Chronic activation of plasma renin is log‐linearly related to dietary sodium and eliminates natriuresis in response to a pulse change in total body sodium. Am J Physiol Regul Integr Comp Physiol 294: R17‐R25, 2008.
 152.Klein JD, Blount MA, Sands JM. Urea transport in the kidney. Compr Physiol 1: 699‐729, 2011.
 153.Knepper MA, Kim GH, Fernandez‐Llama P, Ecelbarger CA. Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol 10: 628‐634, 1999.
 154.Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 86: 896‐904, 2014.
 155.Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91: 1‐77, 2011.
 156.Kokko JP. Sodium chloride and water transport in the descending limb of Henle. J Clin Invest 49: 1838‐1846, 1970.
 157.Komlosi P, Fintha A, Bell PD. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 70: 865‐871, 2006.
 158.Komlosi P, Frische S, Fuson AL, Fintha A, Zsembery A, Peti‐Peterdi J, Bell PD. Characterization of basolateral chloride/bicarbonate exchange in macula densa cells. Am J Physiol Renal Physiol 288: F380‐F386, 2005.
 159.Kondo Y, Kudo K, Igarashi Y, Kuba Y, Arima S, Tada K, Abe K. Functions of ascending thin limb of Henle's loop with special emphasis on mechanism of NaCl transport. Tohoku J Exp Med 166: 75‐84, 1992.
 160.Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez‐Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S. Mutations in the tight‐junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949‐957, 2006.
 161.Koulouridis E, Koulouridis I. The loop of Henle as the milestone of mammalian kindey concentrating ability: A historical review. Acta Med Hist Adriat 12: 413‐428, 2014.
 162.Kovacs G, Peti‐Peterdi J, Rosivall L, Bell PD. Angiotensin II directly stimulates macula densa Na‐2Cl‐K cotransport via apical AT(1) receptors. Am J Physiol Renal Physiol 282: F301‐F306, 2002.
 163.Kramer BK, Bergler T, Stoelcker B, Waldegger S. Mechanisms of disease: The kidney‐specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nat Clin Pract Nephrol 4: 38‐46, 2008.
 164.Laghmani K, Beck BB, Yang SS, Seaayfan E, Wenzel A, Reusch B, Vitzthum H, Priem D, Demaretz S, Bergmann K, Duin LK, Gobel H, Mache C, Thiele H, Bartram MP, Dombret C, Altmuller J, Nurnberg P, Benzing T, Levtchenko E, Seyberth HW, Klaus G, Yigit G, Lin SH, Timmer A, de Koning TJ, Scherjon SA, Schlingmann KP, Bertrand MJ, Rinschen MM, de Backer O, Konrad M, Komhoff M. Polyhydramnios, transient antenatal Bartter's syndrome, and MAGED2 mutations. N Engl J Med 374: 1853‐1863, 2016.
 165.Lai EY, Patzak A, Steege A, Mrowka R, Brown R, Spielmann N, Persson PB, Fredholm BB, Persson AE. Contribution of adenosine receptors in the control of arteriolar tone and adenosine‐angiotensin II interaction. Kidney Int 70: 690‐698, 2006.
 166.Lai FJ, Hsieh MC, Hsin SC, Lin SR, Guh JY, Chen HC, Shin SJ. The cellular localization of increased atrial natriuretic peptide mRNA and immunoreactivity in diabetic rat kidneys. J Histochem Cytochem 50: 1501‐1508, 2002.
 167.Layton AT. Modeling transport and flow regulatory mechanisms of the kidney. ISRN Biomath 2012: 170594, 2012.
 168.Layton AT, Dantzler WH, Pannabecker TL. Urine concentrating mechanism: Impact of vascular and tubular architecture and a proposed descending limb urea‐Na+ cotransporter. Am J Physiol Renal Physiol 302: F591‐F605, 2012.
 169.Lazrak A, Liu Z, Huang CL. Antagonistic regulation of ROMK by long and kidney‐specific WNK1 isoforms. Proc Natl Acad Sci U S A 103: 1615‐1620, 2006.
 170.Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment‐specific transcriptomes. J Am Soc Nephrol 26: 2669‐2677, 2015.
 171.Li H, Bangchen W, Wang‐France J, Bayles C, Verlander JW, Sansom SC. The 70 pS inward rectifying K channel is identified as renal outer medullary K channels (ROMK) on rough, but not smooth, thick ascending limb cells (TAL). FASEB J. 31: 857.15, 2017a.
 172.Li Y, Wang W, Jiang T, Yang B. Aquaporins in urinary system. Adv Exp Med Biol 969: 131‐148, 2017b.
 173.Limmer F, Schinner E, Castrop H, Vitzthum H, Hofmann F, Schlossmann J. Regulation of the Na(+)‐K(+)‐2Cl(‐) cotransporter by cGMP/cGMP‐dependent protein kinase I after furosemide administration. FEBS J 282: 3786‐3798, 2015.
 174.Lin CM, Cheng CJ, Yang SS, Tseng MH, Yen MT, Sung CC, Lin SH. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 33: 1051‐1061, 2019.
 175.Lin CM, Tsai JD, Lo YF, Yan MT, Yang SS, Lin SH. Chronic renal failure in a boy with classic Bartter's syndrome due to a novel mutation in CLCNKB coding for the chloride channel. Eur J Pediatr 168: 1129‐1133, 2009.
 176.Lopez‐Gonzalez Z, Padilla‐Flores T, Leon‐Aparicio D, Gutierrez‐Vasquez E, Salvador C, Leon‐Contreras JC, Hernandez‐Pando R, Escobar LI. Metabolic acidosis and hyperkalemia differentially regulate cation HCN3 channel in the rat nephron. J Mol Histol 51: 701‐716, 2020.
 177.Lorenz JN, Weihprecht H, Schnermann J, Skott O, Briggs JP. Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260: F486‐F493, 1991.
 178.Louis‐Dit‐Picard H, Barc J, Trujillano D, Miserey‐Lenkei S, Bouatia‐Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal‐Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood Pressure (ICBP), Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44 (456‐460): S451‐S453, 2012.
 179.Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. PTH‐independent regulation of blood calcium concentration by the calcium‐sensing receptor. J Clin Invest 122: 3355‐3367, 2012.
 180.Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, Vandewalle A, Teulon J. An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: Similarities with Kir4‐Kir5.1 heteromeric channels. J Physiol 538: 391‐404, 2002.
 181.Lu M, Wang T, Yan Q, Wang W, Giebisch G, Hebert SC. ROMK is required for expression of the 70‐pS K channel in the thick ascending limb. Am J Physiol Renal Physiol 286: F490‐F495, 2004.
 182.Lu M, Wang X, Wang W. Nitric oxide increases the activity of the apical 70‐pS K+ channel in TAL of rat kidney. Am J Physiol 274: F946‐F950, 1998.
 183.Maack T. Role of atrial natriuretic factor in volume control. Kidney Int 49: 1732‐1737, 1996.
 184.Magyar CE, White KE, Rojas R, Apodaca G, Friedman PA. Plasma membrane Ca2+‐ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am J Physiol Renal Physiol 283: F29‐F40, 2002.
 185.Majack RA, Larsen WJ. The bicellular and reflexive membrane junctions of renomedullary interstitial cells: Functional implications of reflexive gap junctions. Am J Anat 157: 181‐189, 1980.
 186.Mannstadt M, Harris M, Bravenboer B, Chitturi S, Dreijerink KM, Lambright DG, Lim ET, Daly MJ, Gabriel S, Juppner H. Germline mutations affecting Galpha11 in hypoparathyroidism. N Engl J Med 368: 2532‐2534, 2013.
 187.Manz F, Scharer K, Janka P, Lombeck J. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr 128: 67‐79, 1978.
 188.Marcoux AA, Garneau AP, Frenette‐Cotton R, Slimani S, Mac‐Way F, Isenring P. Molecular features and physiological roles of K(+)‐Cl(‐) cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 1861: 3154‐3166, 2017.
 189.Marcoux AA, Slimani S, Tremblay LE, Frenette‐Cotton R, Garneau AP, Isenring P. Endocytic recycling of Na(+) ‐K(+) ‐Cl(‐) cotransporter type 2: Importance of exon 4. J Physiol., 2019a.
 190.Marcoux AA, Slimani S, Tremblay LE, Frenette‐Cotton R, Garneau AP, Isenring P. Regulation of Na(+)‐K(+)‐Cl(‐) cotransporter type 2 by the with no lysine kinase‐dependent signaling pathway. Am J Physiol Cell Physiol 317: C20‐C30, 2019b.
 191.Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na(+) ‐K(+) ‐Cl(‐) cotransporter 2. J Cell Physiol 236: 1712‐1729, 2021.
 192.Marsh DJ, Segel LA. Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla. Am J Physiol 221: 817‐828, 1971.
 193.Maruyama H, Taguchi A, Nishikawa Y, Guili C, Mikame M, Nameta M, Yamaguchi Y, Ueno M, Imai N, Ito Y, Nakagawa T, Narita I, Ishii S. Medullary thick ascending limb impairment in the Gla(tm)Tg(CAG‐A4GALT) Fabry model mice. FASEB J 32: 4544‐4559, 2018.
 194.Mayan H, Vered I, Mouallem M, Tzadok‐Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: Marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 87: 3248‐3254, 2002.
 195.McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, Yarbrough B, Meermeier NP, Park HJ, McCully B, West M, Borschewski A, Himmerkus N, Bleich M, Bachmann S, Mutig K, Argaiz ER, Gamba G, Singer JD, Ellison DH. Hyperkalemic hypertension‐associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest 124: 4723‐4736, 2014.
 196.McNicholas CM, Yang Y, Giebisch G, Hebert SC. Molecular site for nucleotide binding on an ATP‐sensitive renal K+ channel (ROMK2). Am J Physiol 271: F275‐F285, 1996.
 197.Meade P, Hoover RS, Plata C, Vazquez N, Bobadilla NA, Gamba G, Hebert SC. cAMP‐dependent activation of the renal‐specific Na+‐K+‐2Cl‐ cotransporter is mediated by regulation of cotransporter trafficking. Am J Physiol Renal Physiol 284: F1145‐F1154, 2003.
 198.Mercer RW, Biemesderfer D, Bliss DP Jr, Collins JH, Forbush B 3rd. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na, K‐ATPase. J Cell Biol 121: 579‐586, 1993.
 199.Mezzogiorno A, Mezzogiorno V, Esposito V. History of the nephron. Am J Nephrol 22: 213‐219, 2002.
 200.Moffat DB, Fourman J. The vascular pattern of the rat kidney. J Anat 97: 543‐553, 1963.
 201.Monette MY, Rinehart J, Lifton RP, Forbush B. Rare mutations in the human Na‐K‐Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol 300: F840‐F847, 2011.
 202.Morel F. The loop of Henle, a turning‐point in the history of kidney physiology. Nephrol Dial Transplant 14: 2510‐2515, 1999.
 203.Munkacsi I, Palkovits M. Measurements on the kidneys and vasa recta of various mammals in relation to urine concentrating capacity. Acta Anat (Basel) 98: 456‐468, 1977.
 204.Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille C, Dosche C, Kumar S, Castaneda‐Bueno M, Gamba G, Bachmann S. Activation of the bumetanide‐sensitive Na+,K+,2Cl‐ cotransporter (NKCC2) is facilitated by Tamm‐Horsfall protein in a chloride‐sensitive manner. J Biol Chem 286: 30200‐30210, 2011.
 205.Nagami GT. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81: 159‐164, 1988.
 206.Nanami M, Pham TD, Kim YH, Yang B, Sutliff RL, Staub O, Klein JD, Lopez‐Cayuqueo KI, Chambrey R, Park AY, Wang X, Pech V, Verlander JW, Wall SM. The role of intercalated cell Nedd4‐2 in BP regulation, ion transport, and transporter expression. J Am Soc Nephrol 29: 1706‐1719, 2018.
 207.Nawata CM, Dantzler WH, Pannabecker TL. Alternative channels for urea in the inner medulla of the rat kidney. Am J Physiol Renal Physiol 309: F916‐F924, 2015.
 208.Nawata CM, Evans KK, Dantzler WH, Pannabecker TL. Transepithelial water and urea permeabilities of isolated perfused Munich‐Wistar rat inner medullary thin limbs of Henle's loop. Am J Physiol Renal Physiol 306: F123‐F129, 2014.
 209.Nawata CM, Pannabecker TL. Mammalian urine concentration: A review of renal medullary architecture and membrane transporters. J Comp Physiol B 188: 899‐918, 2018.
 210.Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, Rust N, Hobbs MR, Heath H 3rd, Thakker RV. Mutations affecting G‐protein subunit alpha11 in hypercalcemia and hypocalcemia. N Engl J Med 368: 2476‐2486, 2013.
 211.Neuwirt H, Burtscher A, Cherney D, Mayer G, Ebenbichler C. Tubuloglomerular feedback in renal glucosuria: Mimicking long‐term SGLT‐2 inhibitor therapy. Kidney Med 2: 76‐79, 2020.
 212.Nielsen S, Maunsbach AB, Ecelbarger CA, Knepper MA. Ultrastructural localization of Na‐K‐2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am J Physiol 275: F885‐F893, 1998.
 213.Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB. Aquaporin‐1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268: F1023‐F1037, 1995.
 214.Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide‐induced hypocalciuria and hypomagnesemia. J Clin Invest 115: 1651‐1658, 2005.
 215.Nosek T. Essentials of Human Physiology. Tampa,FL: Gold Standard Multimedia Incorporated, 1998.
 216.Nusing RM, Pantalone F, Grone HJ, Seyberth HW, Wegmann M. Expression of the potassium channel ROMK in adult and fetal human kidney. Histochem Cell Biol 123: 553‐559, 2005.
 217.Odgaard E, Jakobsen JK, Frische S, Praetorius J, Nielsen S, Aalkjaer C, Leipziger J. Basolateral Na+‐dependent HCO3‐ transporter NBCn1‐mediated HCO3‐ influx in rat medullary thick ascending limb. J Physiol 555: 205‐218, 2004.
 218.O'Grady SM, Palfrey HC, Field M. Characteristics and functions of Na‐K‐Cl cotransport in epithelial tissues. Am J Physiol 253: C177‐C192, 1987.
 219.Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T. The CUL3‐KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: Disease‐causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451: 111‐122, 2013.
 220.Omata K, Carretero OA, Scicli AG, Jackson BA. Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron. Kidney Int 22: 602‐607, 1982.
 221.Oppermann M, Mizel D, Huang G, Li C, Deng C, Theilig F, Bachmann S, Briggs J, Schnermann J, Castrop H. Macula densa control of renin secretion and preglomerular resistance in mice with selective deletion of the B isoform of the Na,K,2Cl co‐transporter. J Am Soc Nephrol 17: 2143‐2152, 2006.
 222.Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber‐Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H. Renal function in mice with targeted disruption of the A isoform of the Na‐K‐2Cl co‐transporter. J Am Soc Nephrol 18: 440‐448, 2007.
 223.Orstavvik TB, Inagami T. Localization of kallikrein in the rat kidney and its anatomical relationship to renin. J Histochem Cytochem 30: 385‐390, 1982.
 224.Ortiz PA. cAMP increases surface expression of NKCC2 in rat thick ascending limbs: Role of VAMP. Am J Physiol Renal Physiol 290: F608‐F616, 2006.
 225.Ortiz PA, Garvin JL. Autocrine effects of nitric oxide on HCO(3)(‐) transport by rat thick ascending limb. Kidney Int 58: 2069‐2074, 2000.
 226.O'Shaughnessy KM. Gordon syndrome: A continuing story. Pediatr Nephrol 30: 1903‐1908, 2015.
 227.Packer RK, Desai SS, Hornbuckle K, Knepper MA. Role of countercurrent multiplication in renal ammonium handling: Regulation of medullary ammonium accumulation. J Am Soc Nephrol 2: 77‐83, 1991.
 228.Paillard M. H+ and HCO3‐ transporters in the medullary thick ascending limb of the kidney: Molecular mechanisms, function and regulation. Kidney Int Suppl 65: S36‐S41, 1998.
 229.Pallone TL. Transport of sodium chloride and water in rat ascending vasa recta. Am J Physiol 261: F519‐F525, 1991.
 230.Pallone TL. Characterization of the urea transporter in outer medullary descending vasa recta. Am J Physiol 267: R260‐R267, 1994.
 231.Pallone TL, Kishore BK, Nielsen S, Agre P, Knepper MA. Evidence that aquaporin‐1 mediates NaCl‐induced water flux across descending vasa recta. Am J Physiol 272: F587‐F596, 1997.
 232.Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284: R1153‐R1175, 2003.
 233.Pannabecker TL. Structure and function of the thin limbs of the loop of Henle. Compr Physiol 2: 2063‐2086, 2012.
 234.Pannabecker TL, Dahlmann A, Brokl OH, Dantzler WH. Mixed descending‐ and ascending‐type thin limbs of Henle's loop in mammalian renal inner medulla. Am J Physiol Renal Physiol 278: F202‐F208, 2000.
 235.Pao AC, Bhargava A, Di Sole F, Quigley R, Shao X, Wang J, Thomas S, Zhang J, Shi M, Funder JW, Moe OW, Pearce D. Expression and role of serum and glucocorticoid‐regulated kinase 2 in the regulation of Na+/H+ exchanger 3 in the mammalian kidney. Am J Physiol Renal Physiol 299: F1496‐F1506, 2010.
 236.Park F, Mattson DL, Roberts LA, Cowley AW Jr. Evidence for the presence of smooth muscle alpha‐actin within pericytes of the renal medulla. Am J Physiol 273: R1742‐R1748, 1997.
 237.Paulais M, Lourdel S, Teulon J. Properties of an inwardly rectifying K(+) channel in the basolateral membrane of mouse TAL. Am J Physiol Renal Physiol 282: F866‐F876, 2002.
 238.Payne JA, Forbush B 3rd. Alternatively spliced isoforms of the putative renal Na‐K‐Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91: 4544‐4548, 1994.
 239.Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J 15: 2980‐2987, 1996.
 240.Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus GG, Konrad M, Seyberth HW. Clinical presentation of genetically defined patients with hypokalemic salt‐losing tubulopathies. Am J Med 112: 183‐190, 2002.
 241.Peti‐Peterdi J, Bebok Z, Lapointe JY, Bell PD. Novel regulation of cell [Na(+)] in macula densa cells: Apical Na(+) recycling by H‐K‐ATPase. Am J Physiol Renal Physiol 282: F324‐F329, 2002a.
 242.Peti‐Peterdi J, Chambrey R, Bebok Z, Biemesderfer D, St John PL, Abrahamson DR, Warnock DG, Bell PD. Macula densa Na(+)/H(+) exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am J Physiol Renal Physiol 278: F452‐F463, 2000.
 243.Peti‐Peterdi J, Morishima S, Bell PD, Okada Y. Two‐photon excitation fluorescence imaging of the living juxtaglomerular apparatus. Am J Physiol Renal Physiol 283: F197‐F201, 2002b.
 244.Peti‐Peterdi J, Warnock DG, Bell PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J Am Soc Nephrol 13: 1131‐1135, 2002c.
 245.Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7: ra41, 2014.
 246.Piechotta K, Garbarini N, England R, Delpire E. Characterization of the interaction of the stress kinase SPAK with the Na+‐K+‐2Cl‐ cotransporter in the nervous system: Evidence for a scaffolding role of the kinase. J Biol Chem 278: 52848‐52856, 2003.
 247.Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR, Gehring C, Rahn HP, Wolburg H, Blasig IE. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 68: 3903‐3918, 2011.
 248.Plata C, Meade P, Vazquez N, Hebert SC, Gamba G. Functional properties of the apical Na+‐K+‐2Cl‐ cotransporter isoforms. J Biol Chem 277: 11004‐11012, 2002.
 249.Polzin D, Kaminski HJ, Kastner C, Wang W, Kramer S, Gambaryan S, Russwurm M, Peters H, Wu Q, Vandewalle A, Bachmann S, Theilig F. Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int 78: 650‐659, 2010.
 250.Ponce‐Coria J, San‐Cristobal P, Kahle KT, Vazquez N, Pacheco‐Alvarez D, de Los HP, Juarez P, Munoz E, Michel G, Bobadilla NA, Gimenez I, Lifton RP, Hebert SC, Gamba G. Regulation of NKCC2 by a chloride‐sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A 105: 8458‐8463, 2008.
 251.Praga M, Vara J, Gonzalez‐Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47: 1419‐1425, 1995.
 252.Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int 71: 103‐115, 2007.
 253.Qu C, Liang F, Hu W, Shen Z, Spicer SS, Schulte BA. Expression of CLC‐K chloride channels in the rat cochlea. Hear Res 213: 79‐87, 2006.
 254.Quamme GA. Effect of furosemide on calcium and magnesium transport in the rat nephron. Am J Physiol 241: F340‐F347, 1981.
 255.Quentin F, Eladari D, Frische S, Cambillau M, Nielsen S, Alper SL, Paillard M, Chambrey R. Regulation of the Cl‐/HCO3‐ exchanger AE2 in rat thick ascending limb of Henle's loop in response to changes in acid‐base and sodium balance. J Am Soc Nephrol 15: 2988‐2997, 2004.
 256.Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O. The rediscovery of uromodulin (Tamm‐Horsfall protein): From tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80: 338‐347, 2011.
 257.Reiche J, Theilig F, Rafiqi FH, Carlo AS, Militz D, Mutig K, Todiras M, Christensen EI, Ellison DH, Bader M, Nykjaer A, Bachmann S, Alessi D, Willnow TE. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)‐K(+)‐Cl(‐) cotransporter 2. Mol Cell Biol 30: 3027‐3037, 2010.
 258.Ren Y, Liu R, Carretero OA, Garvin JL. Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback. Kidney Int 64: 1348‐1355, 2003.
 259.Renigunta A, Mutig K, Rottermann K, Schlichthorl G, Preisig‐Muller R, Daut J, Waldegger S, Renigunta V. The glycolytic enzymes glyceraldehyde 3‐phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function. Cell Physiol Biochem 28: 663‐672, 2011a.
 260.Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S. Tamm‐Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem 286: 2224‐2235, 2011b.
 261.Riccardi D, Brown EM. Physiology and pathophysiology of the calcium‐sensing receptor in the kidney. Am J Physiol Renal Physiol 298: F485‐F499, 2010.
 262.Richards AN. Urine formation in the Amphibian kidney. Harvey Lect 30, 1934.
 263.Richards AN. The Croonian lecture – processes of urine formation. Proc Roy Soc B 126: 398‐432, 1938.
 264.Rinehart J, Kahle KT, de Los HP, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation‐Cl‐ cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci U S A 102: 16777‐16782, 2005.
 265.San‐Cristobal P, de los Heros P, Ponce‐Coria J, Moreno E, Gamba G. WNK kinases, renal ion transport and hypertension. Am J Nephrol 28: 860‐870, 2008.
 266.Sands JM. The thick ascending limb and water channels: Half‐full or half‐empty. Am J Physiol Renal Physiol 303: F619‐F620, 2012.
 267.Sassone‐Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol 4: a011148, 2012.
 268.Schiessl IM, Rosenauer A, Kattler V, Minuth WW, Oppermann M, Castrop H. Dietary salt intake modulates differential splicing of the Na‐K‐2Cl cotransporter NKCC2. Am J Physiol Renal Physiol 305: F1139‐F1148, 2013.
 269.Schiffer TA, Gustafsson H, Palm F. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment. Am J Physiol Renal Physiol 315: F677‐F681, 2018.
 270.Schiller A, Taugner R. Junctions between interstitial cells of the renal medulla: A freeze‐fracture study. Cell Tissue Res 203: 231‐240, 1979.
 271.Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350: 1314‐1319, 2004.
 272.Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T. TRPM6 and TRPM7‐‐Gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772: 813‐821, 2007.
 273.Schnermann J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: A quantitative assessment. Annu Rev Physiol 77: 301‐322, 2015.
 274.Schnermann J, Ploth DW, Hermle M. Activation of tubulo‐glomerular feedback by chloride transport. Pflugers Arch 362: 229‐240, 1976.
 275.Scholl U, Hebeisen S, Janssen AG, Muller‐Newen G, Alekov A, Fahlke C. Barttin modulates trafficking and function of ClC‐K channels. Proc Natl Acad Sci U S A 103: 11411‐11416, 2006.
 276.Seys E, Andrini O, Keck M, Mansour‐Hendili L, Courand PY, Simian C, Deschenes G, Kwon T, Bertholet‐Thomas A, Bobrie G, Borde JS, Bourdat‐Michel G, Decramer S, Cailliez M, Krug P, Cozette P, Delbet JD, Dubourg L, Chaveau D, Fila M, Jourde‐Chiche N, Knebelmann B, Lavocat MP, Lemoine S, Djeddi D, Llanas B, Louillet F, Merieau E, Mileva M, Mota‐Vieira L, Mousson C, Nobili F, Novo R, Roussey‐Kesler G, Vrillon I, Walsh SB, Teulon J, Blanchard A, Vargas‐Poussou R. Clinical and genetic spectrum of bartter syndrome type 3. J Am Soc Nephrol 28: 2540‐2552, 2017.
 277.Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab 25: 285‐299, 2017.
 278.Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch‐like 3 and cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A 110: 7838‐7843, 2013.
 279.Simon DB, Bindra RS, Mansfield TA, Nelson‐Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez‐Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17: 171‐178, 1997.
 280.Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na‐K‐2Cl cotransporter NKCC2. Nat Genet 13: 183‐188, 1996a.
 281.Simon DB, Karet FE, Rodriguez‐Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14: 152‐156, 1996b.
 282.Simon DB, Lu Y, Choate KA, Velazquez H, Al‐Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez‐Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin‐1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103‐106, 1999.
 283.Simon EE, Hamm LL. Ammonia entry along rat proximal tubule in vivo: Effects of luminal pH and flow rate. Am J Physiol 253: F760‐F766, 1987.
 284.Smith HW. The fate of sodium and water in the renal tubules. Bull N Y Acad Med 35: 293‐316, 1959.
 285.Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ. Mutations in the human Na‐K‐2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 14: 1419‐1426, 2003.
 286.Stephenson JL, Tewarson RP, Mejia R. Quantitative analysis of mass and energy balance in non‐ideal models of the renal counterflow system. Proc Natl Acad Sci U S A 71: 1618‐1622, 1974.
 287.Stokes JB. Consequences of potassium recycling in the renal medulla. Effects of ion transport by the medullary thick ascending limb of Henle's loop. J Clin Invest 70: 219‐229, 1982.
 288.Stuiver M, Lainez S, Will C, Terryn S, Gunzel D, Debaix H, Sommer K, Kopplin K, Thumfart J, Kampik NB, Querfeld U, Willnow TE, Nemec V, Wagner CA, Hoenderop JG, Devuyst O, Knoers NV, Bindels RJ, Meij IC, Muller D. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet 88: 333‐343, 2011.
 289.Subramanya AR, Yang CL, McCormick JA, Ellison DH. WNK kinases regulate sodium chloride and potassium transport by the aldosterone‐sensitive distal nephron. Kidney Int 70: 630‐634, 2006.
 290.Sun A, Grossman EB, Lombardi M, Hebert SC. Vasopressin alters the mechanism of apical Cl‐ entry from Na+:Cl‐ to Na+:K+:2Cl‐ cotransport in mouse medullary thick ascending limb. J Membr Biol 120: 83‐94, 1991.
 291.Sun AM. Expression of Cl‐/HCO3‐ exchanger in the basolateral membrane of mouse medullary thick ascending limb. Am J Physiol 274: F358‐F364, 1998.
 292.Syren ML. Effect of atrial natriuretic factor and fate of cyclic‐guanosine‐monophosphate in the rat kidney. Acta Physiol Scand 160: 1‐7, 1997.
 293.Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter's syndrome. Proc Natl Acad Sci U S A 97: 5434‐5439, 2000.
 294.Tan H, Bungert‐Plumke S, Fahlke C, Stolting G. Reduced membrane insertion of CLC‐K by V33L Barttin results in loss of hearing, but leaves kidney function intact. Front Physiol 8: 269, 2017.
 295.Theilig F, Goranova I, Hirsch JR, Wieske M, Unsal S, Bachmann S, Veh RW, Derst C. Cellular localization of THIK‐1 (K(2P)13.1) and THIK‐2 (K(2P)12.1) K channels in the mammalian kidney. Cell Physiol Biochem 21: 63‐74, 2008.
 296.Toka HR, Al‐Romaih K, Koshy JM, DiBartolo S 3rd, Kos CH, Quinn SJ, Curhan GC, Mount DB, Brown EM, Pollak MR. Deficiency of the calcium‐sensing receptor in the kidney causes parathyroid hormone‐independent hypocalciuria. J Am Soc Nephrol 23: 1879‐1890, 2012.
 297.Tomilin VN, Pochynyuk O. A peek into Epac physiology in the kidney. Am J Physiol Renal Physiol 317: F1094‐F1097, 2019.
 298.Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, Citterio L, Demaretz S, Trevisani F, Ristagno G, Glaudemans B, Laghmani K, Dell, Antonio G, SKIPOGH Team, Loffing J, Rastaldi MP, Manunta P, Devuyst O, Rampoldi L. Common noncoding UMOD gene variants induce salt‐sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19: 1655‐1660, 2013.
 299.Tsuji S, Yamashita M, Unishi G, Takewa R, Kimata T, Isobe K, Chiga M, Uchida S, Kaneko K. A young child with pseudohypoaldosteronism type II by a mutation of cullin 3. BMC Nephrol 14: 166, 2013.
 300.Tsuruoka S, Koseki C, Muto S, Tabei K, Imai M. Axial heterogeneity of potassium transport across hamster thick ascending limb of Henle's loop. Am J Physiol 267: F121‐F129, 1994.
 301.Uchida S, Rai T, Yatsushige H, Matsumura Y, Kawasaki M, Sasaki S, Marumo F. Isolation and characterization of kidney‐specific ClC‐K1 chloride channel gene promoter. Am J Physiol 274: F602‐F610, 1998.
 302.Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268: 3821‐3824, 1993.
 303.Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 269: 19192, 1994.
 304.Uchida S, Sasaki S, Nitta K, Uchida K, Horita S, Nihei H, Marumo F. Localization and functional characterization of rat kidney‐specific chloride channel, ClC‐K1. J Clin Invest 95: 104‐113, 1995.
 305.Valinsky WC, Touyz RM, Shrier A. Characterization of constitutive and acid‐induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells. Biochim Biophys Acta Gen Subj 1861: 2007‐2019, 2017.
 306.Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 16: 317‐336, 2020.
 307.Vargas‐Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L, van den Heuvel LP, Tebourbi L, Brandis M, Karolyi L, Hebert SC, Lemmink HH, Deschenes G, Hildebrandt F, Seyberth HW, Guay‐Woodford LM, Knoers NV, Antignac C. Novel molecular variants of the Na‐K‐2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 62: 1332‐1340, 1998.
 308.Velazquez H, Silva T. Cloning and localization of KCC4 in rabbit kidney: Expression in distal convoluted tubule. Am J Physiol Renal Physiol 285: F49‐F58, 2003.
 309.Verlander JW. Normal ultrastructure of the kidney and lower urinary tract. Toxicol Pathol 26: 1‐17, 1998.
 310.Vilardaga JP, Romero G, Friedman PA, Gardella TJ. Molecular basis of parathyroid hormone receptor signaling and trafficking: A family B GPCR paradigm. Cell Mol Life Sci 68: 1‐13, 2011.
 311.Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 397: 223‐231, 2006.
 312.Vitzthum H, Abt I, Einhellig S, Kurtz A. Gene expression of prostanoid forming enzymes along the rat nephron. Kidney Int 62: 1570‐1581, 2002.
 313.Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, Kim GH, Knepper MA. UT‐A2: A 55‐kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol 278: F52‐F62, 2000.
 314.Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S. Impaired KLHL3‐mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3: 858‐868, 2013.
 315.Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW. Barttin increases surface expression and changes current properties of ClC‐K channels. Pflugers Arch 444: 411‐418, 2002.
 316.Wang H, D'Ambrosio MA, Ren Y, Monu SR, Leung P, Kutskill K, Garvin JL, Janic B, Peterson EL, Carretero OA. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron. Am J Physiol Renal Physiol 308: F1026‐F1031, 2015a.
 317.Wang HR, Liu Z, Huang CL. Domains of WNK1 kinase in the regulation of ROMK1. Am J Physiol Renal Physiol 295: F438‐F445, 2008.
 318.Wang T, Hropot M, Aronson PS, Giebisch G. Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol Renal Physiol 281: F1117‐F1122, 2001.
 319.Wang W, Lu M. Effect of arachidonic acid on activity of the apical K+ channel in the thick ascending limb of the rat kidney. J Gen Physiol 106: 727‐743, 1995.
 320.Wang Y, Zhu J, DeLuca HF. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1alpha,25‐dihydroxyvitamin D(3). Am J Physiol Endocrinol Metab 308: E201‐E205, 2015b.
 321.Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T. Association between activating mutations of calcium‐sensing receptor and Bartter's syndrome. Lancet 360: 692‐694, 2002.
 322.Watts BA 3rd, Good DW. Effects of ammonium on intracellular pH in rat medullary thick ascending limb: Mechanisms of apical membrane NH4+ transport. J Gen Physiol 103: 917‐936, 1994.
 323.Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz‐Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M. Novel paracellin‐1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12: 1872‐1881, 2001.
 324.Weidemann MJ, Krebs HA. The fuel of respiration of rat kidney cortex. Biochem J 112: 149‐166, 1969.
 325.Weihprecht H, Lorenz JN, Briggs JP, Schnermann J. Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol 266: F227‐F239, 1994.
 326.Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol 3: 201‐220, 2013.
 327.Wetzel RK, Sweadner KJ. Immunocytochemical localization of Na‐K‐ATPase alpha‐ and gamma‐subunits in rat kidney. Am J Physiol Renal Physiol 281: F531‐F545, 2001.
 328.Wexler AS, Kalaba RE, Marsh DJ. Passive, one‐dimensional countercurrent models do not simulate hypertonic urine formation. Am J Physiol 253: F1020‐F1030, 1987.
 329.Wilms V, Koppl C, Soffgen C, Hartmann AM, Nothwang HG. Molecular bases of K(+) secretory cells in the inner ear: Shared and distinct features between birds and mammals. Sci Rep 6: 34203, 2016.
 330.Wilson FH, Disse‐Nicodeme S, Choate KA, Ishikawa K, Nelson‐Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 293: 1107‐1112, 2001.
 331.Winters CJ, Zimniak L, Mikhailova MV, Reeves WB, Andreoli TE. Cl(‐) channels in basolateral TAL membranes XV. Molecular heterogeneity between cortical and medullary channels. J Membr Biol 177: 221‐230, 2000.
 332.Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275: 16795‐16801, 2000.
 333.Xu BE, Min X, Stippec S, Lee BH, Goldsmith EJ, Cobb MH. Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem 277: 48456‐48462, 2002.
 334.Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC. Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Physiol 273: F739‐F748, 1997a.
 335.Xu Y, Olives B, Bailly P, Fischer E, Ripoche P, Ronco P, Cartron JP, Rondeau E. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 51: 138‐146, 1997b.
 336.Xu ZC, Yang Y, Hebert SC. Phosphorylation of the ATP‐sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP‐dependent protein kinase. J Biol Chem 271: 9313‐9319, 1996.
 337.Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S. Disease‐causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci U S A 101: 4690‐4694, 2004.
 338.Yang T, Huang YG, Singh I, Schnermann J, Briggs JP. Localization of bumetanide‐ and thiazide‐sensitive Na‐K‐Cl cotransporters along the rat nephron. Am J Physiol 271: F931‐F939, 1996.
 339.Yoshitomi K, Kondo Y, Imai M. Evidence for conductive Cl‐ pathways across the cell membranes of the thin ascending limb of Henle's loop. J Clin Invest 82: 866‐871, 1988.
 340.Yuan J, Pannabecker TL. Architecture of inner medullary descending and ascending vasa recta: Pathways for countercurrent exchange. Am J Physiol Renal Physiol 299: F265‐F272, 2010.
 341.Zhang C, Wang L, Su XT, Lin DH, Wang WH. KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb. Am J Physiol Renal Physiol 308: F1288‐F1296, 2015.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Andrée‐Anne Marcoux, Laurence E. Tremblay, Samira Slimani, Marie‐Jeanne Fiola, Fabrice Mac‐Way, Ludwig Haydock, Alexandre P. Garneau, Paul Isenring. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021, 12: 3119-3139. doi: 10.1002/cphy.c210021