Comprehensive Physiology Wiley Online Library

Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues

Full Article on Wiley Online Library



Abstract

Aging is a slow process that affects all organs, and the lung is no exception. At the alveolar level, aging increases the airspace size with thicker and stiffer septal walls and straighter and thickened collagen and elastic fibers. This creates a microenvironment that interferes with the ability of cells in the parenchyma to maintain normal homeostasis and respond to injury. These changes also make the lung more susceptible to disease such as emphysema. Emphysema is characterized by slow but progressive remodeling of the deep alveolar regions that leads to airspace enlargement and increased but disorganized elastin and collagen deposition. This remodeling has been attributed to ongoing inflammation that involves inflammatory cells and the cytokines they produce. Cellular senescence, another consequence of aging, weakens the ability of cells to properly respond to injury, something that also occurs in emphysema. These factors conspire to make alveolar walls more prone to mechanical failure, which can set emphysema in motion by driving inflammation through immune stimulation by protein fragments. Both aging and emphysema are influenced by microenvironmental conditions such as local inflammation, chemical makeup, tissue stiffness, and mechanical stresses. Although aging and emphysema are not equivalent, they have the potential to influence each other in synergistic ways; aging sets up the conditions for emphysema to develop, while emphysema may accelerate cellular senescence and thus aging itself. This article focuses on the similarities and differences between the remodeled microenvironment of the aging and emphysematous lung, with special emphasis on the alveolar septal wall. © 2022 American Physiological Society. Compr Physiol 12:3559‐3574, 2022.

Figure 1. Figure 1. This figure illustrates the alveolar structure in human lungs from (A) a normal 29‐year‐old subject, (B) a 100‐year‐old subject without emphysema, (C) a patient with mild emphysema, and (D) a patient with severe emphysema. The red arrow on panel C indicates a site of rupture. (A, B) Reused, with permission, from Janssens JP, et al., 1999 74,/with permission of The European Respiratory Society. (C, D) Reused, with permission, from Woods JC, et al., 2006 194/with permission from John Wiley & Sons, Inc.
Figure 2. Figure 2. This figure presents the mechanical properties of normal, aging, and emphysematous lung tissue. Stress‐strain curves of lung parenchymal strips and model fits from normal, aged, and emphysematous subjects. (A) Comparison of normal (5 months) and aged (21 months) mouse stress‐strain curves and the corresponding model fits. (B) Stress‐strain curves calculated from the force‐extension data published in Ref. 161 corresponding to lung tissues of a normal 29‐year‐old human subject and an 80‐year‐old patient with obstructive lung disease. (C) Stress‐strain curves from normal and elastase‐treated mice from Ref. 161 together with their corresponding model fits. Data and graphs were obtained with permission. (A) Reused, with permission, from Bou Jawde S, et al., 2020 20 with “20, figure 7 (p. 8)/Frontiers Media S.A/Licensed under CC BY 4.0”. (B) Reused, with permission, from Sugihara T, et al., 1971 161 with “161, figure 1 (p. 875)/American Physiological Society”. (C) Reused, with permission, from Sugihara T, et al., 1971 161.
Figure 3. Figure 3. This figure shows a schematic diagram of the alveolar microenvironment in the healthy young adult lung. Left: A 2‐dimensional representation of the alveolar septal wall network showing alveolar epithelial type I (AEI) and type II (AEII) cells. A set of mechanical forces (F1, F2, …, Fn) acts on the septal wall network, holding it in a prestretched state corresponding to FRC. Right: A zoom into a single septal wall showing various cell types with their nuclei (white circle/ellipse), types I, III, and IV collagen, elastic fibers, proteoglycans, and glycosaminoglycans (GAGs) including hyaluronan.
Figure 4. Figure 4. This figure demonstrates the kind of changes in the septal wall that takes place due to aging. These include thickened walls and basement membrane, thicker and straighter collagen fibers, fragmented elastic fibers, reduced PG and GAG content, aged and possibly senescent cells, and increased mechanical forces.
Figure 5. Figure 5. This figure demonstrates the typical changes in the septal walls due to emphysema. These alterations are superimposed on the aging septal walls including heterogeneous damaged walls, ruptured fibers and exposed fragments, more inflammatory cells, enzymes, cytokines, and heterogeneous forces among the walls.
Figure 6. Figure 6. This figure is a conceptual representation of the interactions between aging and emphysema


Figure 1. This figure illustrates the alveolar structure in human lungs from (A) a normal 29‐year‐old subject, (B) a 100‐year‐old subject without emphysema, (C) a patient with mild emphysema, and (D) a patient with severe emphysema. The red arrow on panel C indicates a site of rupture. (A, B) Reused, with permission, from Janssens JP, et al., 1999 74,/with permission of The European Respiratory Society. (C, D) Reused, with permission, from Woods JC, et al., 2006 194/with permission from John Wiley & Sons, Inc.


Figure 2. This figure presents the mechanical properties of normal, aging, and emphysematous lung tissue. Stress‐strain curves of lung parenchymal strips and model fits from normal, aged, and emphysematous subjects. (A) Comparison of normal (5 months) and aged (21 months) mouse stress‐strain curves and the corresponding model fits. (B) Stress‐strain curves calculated from the force‐extension data published in Ref. 161 corresponding to lung tissues of a normal 29‐year‐old human subject and an 80‐year‐old patient with obstructive lung disease. (C) Stress‐strain curves from normal and elastase‐treated mice from Ref. 161 together with their corresponding model fits. Data and graphs were obtained with permission. (A) Reused, with permission, from Bou Jawde S, et al., 2020 20 with “20, figure 7 (p. 8)/Frontiers Media S.A/Licensed under CC BY 4.0”. (B) Reused, with permission, from Sugihara T, et al., 1971 161 with “161, figure 1 (p. 875)/American Physiological Society”. (C) Reused, with permission, from Sugihara T, et al., 1971 161.


Figure 3. This figure shows a schematic diagram of the alveolar microenvironment in the healthy young adult lung. Left: A 2‐dimensional representation of the alveolar septal wall network showing alveolar epithelial type I (AEI) and type II (AEII) cells. A set of mechanical forces (F1, F2, …, Fn) acts on the septal wall network, holding it in a prestretched state corresponding to FRC. Right: A zoom into a single septal wall showing various cell types with their nuclei (white circle/ellipse), types I, III, and IV collagen, elastic fibers, proteoglycans, and glycosaminoglycans (GAGs) including hyaluronan.


Figure 4. This figure demonstrates the kind of changes in the septal wall that takes place due to aging. These include thickened walls and basement membrane, thicker and straighter collagen fibers, fragmented elastic fibers, reduced PG and GAG content, aged and possibly senescent cells, and increased mechanical forces.


Figure 5. This figure demonstrates the typical changes in the septal walls due to emphysema. These alterations are superimposed on the aging septal walls including heterogeneous damaged walls, ruptured fibers and exposed fragments, more inflammatory cells, enzymes, cytokines, and heterogeneous forces among the walls.


Figure 6. This figure is a conceptual representation of the interactions between aging and emphysema
References
 1.Agusti A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med 381: 1248‐1256, 2019.
 2.Al Jamal R, Roughley PJ, Ludwig MS. Effect of glycosaminoglycan degradation on lung tissue viscoelasticity. Am J Physiol Lung Cell Mol Physiol 280: L306‐L315, 2001.
 3.Alder JK, Guo N, Kembou F, Parry EM, Anderson CJ, Gorgy AI, Walsh MF, Sussan T, Biswal S, Mitzner W, Tuder RM, Armanios M. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med 184: 904‐912, 2011.
 4.Alemany R, Perona JS, Sanchez‐Dominguez JM, Montero E, Canizares J, Bressani R, Escriba PV, Ruiz‐Gutierrez V. G protein‐coupled receptor systems and their lipid environment in health disorders during aging. Biochim Biophys Acta 1768: 964‐975, 2007.
 5.Andreotti L, Bussotti A, Cammelli D, Aiello E, Sampognaro S. Connective tissue in aging lung. Gerontology 29: 377‐387, 1983.
 6.Asano S, Ito S, Takahashi K, Furuya K, Kondo M, Sokabe M, Hasegawa Y. Matrix stiffness regulates migration of human lung fibroblasts. Physiol Rep 5: e13281, 2017.
 7.Astrand I, Astrand PO, Hallback I, Kilbom A. Reduction in maximal oxygen uptake with age. J Appl Physiol 35: 649‐654, 1973.
 8.Aureille J, Buffiere‐Ribot V, Harvey BE, Boyault C, Pernet L, Andersen T, Bacola G, Balland M, Fraboulet S, Van Landeghem L, Guilluy C. Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO Rep 20: e48084, 2019.
 9.Balbin M, Fueyo A, Knauper V, Lopez JM, Alvarez J, Sanchez LM, Quesada V, Bordallo J, Murphy G, Lopez‐Otin C. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP‐1) expressed at sites of embryo implantation. J Biol Chem 276: 10253‐10262, 2001.
 10.Bansode S, Bashtanova U, Li R, Clark J, Muller KH, Puszkarska A, Goldberga I, Chetwood HH, Reid DG, Colwell LJ, Skepper JN, Shanahan CM, Schitter G, Mesquida P, Duer MJ. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci Rep 10: 3397, 2020.
 11.Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123: 3025‐3036, 2013.
 12.Barnes PJ. New concepts in chronic obstructive pulmonary disease. Annu Rev Med 54: 113‐129, 2003.
 13.Bartling B, Rehbein G, Silber RE, Simm A. Senescent fibroblasts induce moderate stress in lung epithelial cells in vitro. Exp Gerontol 41: 532‐539, 2006.
 14.Bartolak‐Suki E, Suki B. Tuning mitochondrial structure and function to criticality by fluctuation‐driven mechanotransduction. Sci Rep 10: 407, 2020.
 15.Bellingham CM, Woodhouse KA, Robson P, Rothstein SJ, Keeley FW. Self‐aggregation characteristics of recombinantly expressed human elastin polypeptides. Biochim Biophys Acta 1550: 6‐19, 2001.
 16.Bellmunt MJ, Portero M, Pamplona R, Muntaner M, Prat J. Age‐related fluorescence in rat lung collagen. Lung 173: 177‐185, 1995.
 17.Berdyyeva TK, Woodworth CD, Sokolov I. Human epithelial cells increase their rigidity with ageing in vitro: Direct measurements. Phys Med Biol 50: 81‐92, 2005.
 18.Bihari‐Varga M, Kadar A, Jacob MP, Robert L. Physicochemical and ultrastructural properties of cholesterol esters bound to elastin. Connective Tissue Res 15: 43‐55, 1986.
 19.Bou Jawde S, Karrobi K, Roblyer D, Vicario F, Herrmann J, Casey D, Lutchen KR, Stamenovic D, Bates JHT, Suki B. Inflation instability in the lung: An analytical model of a thick‐walled alveolus with wavy fibres under large deformations. J R Soc Interface 18: 20210594, 2021.
 20.Bou Jawde S, Takahashi A, Bates JHT, Suki B. An analytical model for estimating alveolar wall elastic moduli from lung tissue uniaxial stress‐strain curves. Front Physiol 11: 121, 2020.
 21.Bradley KH, McConnell SD, Crystal RG. Lung collagen composition and synthesis. Characterization and changes with age. J Biol Chem 249: 2674‐2683, 1974.
 22.Brandsma CA, de Vries M, Costa R, Woldhuis RR, Konigshoff M, Timens W. Lung ageing and COPD: Is there a role for ageing in abnormal tissue repair? Eur Respir Rev 26, 2017.
 23.Briscoe AM, Loring WE, Mc CJ. Changes in human lung collagen and lipids with age. Proc Soc Exp Biol Med Soc Exp Biol Med 102: 71‐74, 1959.
 24.Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ. Evidence for adult lung growth in humans. N Engl J Med 367: 244‐247, 2012.
 25.Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES, Kuroda MJ. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: Implications for understanding lung disease in humans. J Immunol 192: 2821‐2829, 2014.
 26.Calabresi C, Arosio B, Galimberti L, Scanziani E, Bergottini R, Annoni G, Vergani C. Natural aging, expression of fibrosis‐related genes and collagen deposition in rat lung. Exp Gerontol 42: 1003‐1011, 2007.
 27.Cardoso WV, Sekhon HS, Hyde DM, Thurlbeck WM. Collagen and elastin in human pulmonary emphysema. Am Rev Respir Dis 147: 975‐981, 1993.
 28.Cavalcante FS, Ito S, Brewer KK, Sakai H, Alencar AM, Almeida MP, Andrade JS Jr, Majumdar A, Ingenito EP, Suki B. Mechanical Interactions between collagen and proteoglycans: Implications for the stability of lung tissue. J Appl Physiol 98: 672‐679, 2005.
 29.Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289: L834‐L841, 2005.
 30.Chen AC, Burr L, McGuckin MA. Oxidative and endoplasmic reticulum stress in respiratory disease. Clin Transl Immunol 7: e1019, 2018.
 31.Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age‐related disease: From mechanisms to therapy. Nat Med 21: 1424‐1435, 2015.
 32.Chin RC, Guenette JA, Cheng S, Raghavan N, Amornputtisathaporn N, Cortes‐Telles A, Webb KA, O'Donnell DE. Does the respiratory system limit exercise in mild chronic obstructive pulmonary disease? Am J Respir Crit Care Med 187: 1315‐1323, 2013.
 33.Cho SJ, Stout‐Delgado HW. Aging and lung disease. Annu Rev Physiol 82: 433‐459, 2020.
 34.Chuang YC, Chang HM, Li CY, Cui Y, Lee CL, Chen CS. Reactive oxygen species and inflammatory responses of macrophages to substrates with physiological stiffness. ACS Appl Mater Interfaces 12: 48432‐48441, 2020.
 35.Cohn JE, Donoso HD. Mechanical properties of lung in normal men over 60 years old. J Clin Invest 42: 1406‐1410, 1963.
 36.Copley SJ, Wells AU, Hawtin KE, Gibson DJ, Hodson JM, Jacques AE, Hansell DM. Lung morphology in the elderly: Comparative CT study of subjects over 75 years old versus those under 55 years old. Radiology 251: 566‐573, 2009.
 37.Correia‐Melo C, Jurk D, Passos JF. Robust multiparametric assessment of cellular senescence. Methods Mol Biol 965: 409‐419, 2013.
 38.Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD: Role of T cells. Chest 121: 160S‐165S, 2002.
 39.Crystal RG. Lung collagen: Definition, diversity and development. Federation Proc 33: 2248‐2255, 1974.
 40.Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136: 729‐743, 1997.
 41.D'Errico A, Scarani P, Colosimo E, Spina M, Grigioni WF, Mancini AM. Changes in the alveolar connective tissue of the ageing lung. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 415: 137‐144, 1989.
 42.Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507: 190‐194, 2014.
 43.Elliott RJ, McGrath LT. Calcification of the human thoracic aorta during aging. Calcified Tissue Int 54: 268‐273, 1994.
 44.Everaerts S, Lammertyn EJ, Martens DS, De Sadeleer LJ, Maes K, van Batenburg AA, Goldschmeding R, van Moorsel CHM, Dupont LJ, Wuyts WA, Vos R, Gayan‐Ramirez G, Kaminski N, Hogg JC, Janssens W, Verleden GM, Nawrot TS, Verleden SE, McDonough JE, Vanaudenaerde BM. The aging lung: Tissue telomere shortening in health and disease. Respir Res 19: 95, 2018.
 45.Eyre DR, Paz MA, Gallop PM. Cross‐linking in collagen and elastin. Ann Rev Biochem 53: 717‐748, 1984.
 46.Finlay GA, O'Donnell MD, O'Connor CM, Hayes JP, FitzGerald MX. Elastin and collagen remodeling in emphysema. A scanning electron microscopy study. Am J Pathol 149: 1405‐1415, 1996.
 47.Foronjy RF, Okada Y, Cole R, D'Armiento J. Progressive adult‐onset emphysema in transgenic mice expressing human MMP‐1 in the lung. Am J Physiol Lung Cell Mol Physiol 284: L727‐L737, 2003.
 48.Fraga MF, Agrelo R, Esteller M. Cross‐talk between aging and cancer: The epigenetic language. Ann N Y Acad Sci 1100: 60‐74, 2007.
 49.Frank NR, Mead J, Ferris BG Jr. The mechanical behavior of the lungs in healthy elderly persons. J Clin Invest 36: 1680‐1687, 1957.
 50.Fulop T Jr, Douziech N, Jacob MP, Hauck M, Wallach J, Robert L. Age‐related alterations in the signal transduction pathways of the elastin‐laminin receptor. Pathol Biol (Paris) 49: 339‐348, 2001.
 51.Furuyama A, Mochitate K. Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro. J Cell Sci 113 (Pt 5): 859‐868, 2000.
 52.Fust A, LeBellego F, Iozzo RV, Roughley PJ, Ludwig MS. Alterations in lung mechanics in decorin‐deficient mice. Am J Physiol Lung Cell Mol Physiol 288: L159‐L166, 2005.
 53.Goldklang M, Stockley R. Pathophysiology of emphysema and implications. Chronic Obstr Pulm Dis 3: 454‐458, 2016.
 54.Greaves IA, Colebatch HJ. Elastic behavior and structure of normal and emphysematous lungs post mortem. Am Rev Respir Dis 121: 127‐136, 1980.
 55.Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC‐1alpha signaling pathways. Front Genet 10: 435, 2019.
 56.Hadley JC, Meek KM, Malik NS. Glycation changes the charge distribution of type I collagen fibrils. Glycoconj J 15: 835‐840, 1998.
 57.Hance AJ, Crystal RG. The connective tissue of lung. Am Rev Respir Dis 112: 657‐711, 1975.
 58.Hansel C, Jendrossek V, Klein D. Cellular senescence in the lung: The central role of senescent epithelial cells. Int J Mol Sci 21, 2020.
 59.Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 11: 298‐300, 1956.
 60.Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP‐2 release and activation in lung endothelium: Role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 284: L541‐L547, 2003.
 61.Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke‐induced emphysema in mice. Science 277: 2002‐2004, 1997.
 62.Hoffman AM, Shifren A, Mazan MR, Gruntman AM, Lascola KM, Nolen‐Walston RD, Kim CF, Tsai L, Pierce RA, Mecham RP, Ingenito EP. Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice. Am J Physiol Lung Cell Mol Physiol 298: L158‐L168, 2010.
 63.Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, Diemel KD, Branscheid D, Magnussen H, Jorres RA. Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J 24: 575‐579, 2004.
 64.Horton MR, Shapiro S, Bao C, Lowenstein CJ, Noble PW. Induction and regulation of macrophage metalloelastase by hyaluronan fragments in mouse macrophages. J Immunol 162: 4171‐4176, 1999.
 65.Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, Mecham RP, Senior RM, Shapiro SD. Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 116: 753‐759, 2006.
 66.Huang H, Manton KG. The role of oxidative damage in mitochondria during aging: A review. Front Biosci 9: 1100‐1117, 2004.
 67.Huang K, Mitzner W, Rabold R, Schofield B, Lee H, Biswal S, Tankersley CG. Variation in senescent‐dependent lung changes in inbred mouse strains. J Appl Physiol 102: 1632‐1639, 2007.
 68.Huang K, Rabold R, Schofield B, Mitzner W, Tankersley CG. Age‐dependent changes of airway and lung parenchyma in C57BL/6J mice. J Appl Physiol 102: 200‐206, 2007.
 69.Hypothesis CA. Glucose as a mediator of aging. J Am Geriatr Soc 33: 626‐634, 1985.
 70.Imai K, Dalal SS, Chen ES, Downey R, Schulman LL, Ginsburg M, D'Armiento J. Human collagenase (matrix metalloproteinase‐1) expression in the lungs of patients with emphysema. Am J Respir Crit Care Med 163: 786‐791, 2001.
 71.Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest 135: 173‐180, 2009.
 72.Ito S, Ingenito EP, Arold SP, Parameswaran H, Tgavalekos NT, Lutchen KR, Suki B. Tissue heterogeneity in the mouse lung: Effects of elastase treatment. J Appl Physiol 97: 204‐212, 2004.
 73.Ito S, Ingenito EP, Brewer KK, Black LD, Parameswaran H, Lutchen KR, Suki B. Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: Possible role of collagen remodeling. J Appl Physiol 98: 503‐511, 2005.
 74.Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J 13: 197‐205, 1999.
 75.Jesudason R, Sato S, Parameswaran H, Araujo AD, Majumdar A, Allen PG, Bartolak‐Suki E, Suki B. Mechanical forces regulate elastase activity and binding site availability in lung elastin. Biophys J 99: 3076‐3083, 2010.
 76.John R, Thomas J. Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem J 127: 261‐269, 1972.
 77.Johnson TE. Recent results: Biomarkers of aging. Exp Gerontol 41: 1243‐1246, 2006.
 78.Jokhun DS, Shang Y, Shivashankar GV. Actin dynamics couples extracellular signals to the mobility and molecular stability of telomeres. Biophys J 115: 1166‐1179, 2018.
 79.Jones MC, Zha J, Humphries MJ. Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos Trans R Soc Lond B Biol Sci 374: 20180227, 2019.
 80.Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, Zhang W, Zhang W, Zhu X, Zhou Y, Zhang L, Ju Z, Shi L. Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC‐1alpha/TNFAIP3 axis. Cell Rep 22: 3493‐3506, 2018.
 81.Karamichos D, Brown RA, Mudera V. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J Biomed Mater Res A 83: 887‐894, 2007.
 82.Karlinsky JB. Stress‐strain characteristics of normal and emphysematous hamster lung strips. Respir Physiol 90: 251‐260, 1992.
 83.Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 102: 1215‐1230, 2008.
 84.Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci 115: 2817‐2828, 2002.
 85.Kim SJ, Lee J, Park YS, Lee CH, Yoon HI, Lee SM, Yim JJ, Kim YW, Han SK, Yoo CG. Age‐related annual decline of lung function in patients with COPD. Int J Chron Obstruct Pulmon Dis 11: 51‐60, 2016.
 86.Knudsen L, Ochs M. The micromechanics of lung alveoli: Structure and function of surfactant and tissue components. Histochem Cell Biol 150: 661‐676, 2018.
 87.Knudson RJ, Clark DF, Kennedy TC, Knudson DE. Effect of aging alone on mechanical properties of the normal adult human lung. J Appl Physiol: Respirat, Environ Exercise Physiol 43: 1054‐1062, 1977.
 88.Konno K, Arai H, Motomiya M, Nagai H, Ito M, Sato H, Satoh K. A biochemical study on glycosaminoglycans (mucopolysaccharides) in emphysematous and in aged lungs. Am Rev Respir Dis 126: 797‐801, 1982.
 89.Kononov S, Brewer K, Sakai H, Cavalcante FS, Sabayanagam CR, Ingenito EP, Suki B. Roles of mechanical forces and collagen failure in the development of elastase‐induced emphysema. Am J Respir Crit Care Med 164: 1920‐1926, 2001.
 90.Kosmider B, Lin CR, Karim L, Tomar D, Vlasenko L, Marchetti N, Bolla S, Madesh M, Criner GJ, Bahmed K. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine 46: 305‐316, 2019.
 91.Kumari R, Jat P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9: 645593, 2021.
 92.Lai‐Fook SJ, Hyatt RE. Effects of age on elastic moduli of human lungs. J Appl Physiol 89: 163‐168, 2000.
 93.Lalley PM. The aging respiratory system – pulmonary structure, function and neural control. Respir Physiol Neurobiol 187: 199‐210, 2013.
 94.Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin‐1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32: 311‐318, 2005.
 95.Lee KW, Chung SY, Yang I, Lee Y, Ko EY, Park MJ. Correlation of aging and smoking with air trapping at thin‐section CT of the lung in asymptomatic subjects. Radiology 214: 831‐836, 2000.
 96.Lhomme A, Gilbert G, Pele T, Deweirdt J, Henrion D, Baudrimont I, Campagnac M, Marthan R, Guibert C, Ducret T, Savineau JP, Quignard JF. Stretch‐activated Piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am J Respir Cell Mol Biol 60: 650‐658, 2019.
 97.Liu J, Yu W, Liu Y, Chen S, Huang Y, Li X, Liu C, Zhang Y, Li Z, Du J, Tang C, Du J, Jin H. Mechanical stretching stimulates collagen synthesis via down‐regulating SO2/AAT1 pathway. Sci Rep 6: 21112, 2016.
 98.Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J 79: 144‐152, 2000.
 99.Lou Z, Chen J. Cellular senescence and DNA repair. Exp Cell Res 312: 2641‐2646, 2006.
 100.Ludwig MS. Chapter 5 – proteoglycans in the lung. In: Garg HG, Cowman MK, Hales CA, editors. Carbohydrate Chemistry, Biology and Medical Applications. Oxford: Elsevier, 2008, p. 113‐131.
 101.Mac NW. Accelerated lung aging: A novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD). Biochem Soc Trans 37: 819‐823, 2009.
 102.Mahler DA, Rosiello RA, Loke J. The aging lung. Clin Geriatr Med 2: 215‐225, 1986.
 103.Martin CJ, Chihara S, Chang DB. A comparative study of the mechanical properties in aging alveolar wall. Am Rev Respir Dis 115: 981‐988, 1977.
 104.Mays PK, McAnulty RJ, Campa JS, Laurent GJ. Age‐related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. The Biochemical journal 276 (Pt 2): 307‐313, 1991.
 105.McAnulty RJ, Laurent GJ. Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Coll Relat Res 7: 93‐104, 1987.
 106.McDonough JE, Knudsen L, Wright AC, Elliott W, Ochs M, Hogg JC. Regional differences in alveolar density in the human lung are related to lung height. J Appl Physiol 118: 1429‐1434, 2015.
 107.McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, Pare PD, Sin DD, Pierce RA, Woods JC, McWilliams AM, Mayo JR, Lam SC, Cooper JD, Hogg JC. Small‐airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 365: 1567‐1575, 2011.
 108.Mehta S, Young CC, Warren MR, Akhtar S, Shefelbine SJ, Crane JD, Bajpayee AG. Resveratrol and curcumin attenuate ex vivo sugar‐induced cartilage glycation, stiffening, senescence, and degeneration. Cartilage 13 (2_suppl): 1214S‐1228S, 2021.
 109.Mercer RR, Crapo JD. Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69: 756‐765, 1990.
 110.Merrilees MJ, Ching PS, Beaumont B, Hinek A, Wight TN, Black PN. Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease. Respir Res 9: 41, 2008.
 111.Mishima M, Hirai T, Itoh H, Nakano Y, Sakai H, Muro S, Nishimura K, Oku Y, Chin K, Ohi M, Nakamura T, Bates JH, Alencar AM, Suki B. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 96: 8829‐8834, 1999.
 112.Miyata T, Ishikawa N, van Ypersele de Strihou C. Carbonyl stress and diabetic complications. Clin Chem Laboratory Med: CCLM/FESCC 41: 1150‐1158, 2003.
 113.Mondonedo JR, Bartolak‐Suki E, Bou Jawde S, Nelson K, Cao K, Sonnenberg A, Obrochta WP, Imsirovic J, Ram‐Mohan S, Krishnan R, Suki B. A high‐throughput system for cyclic stretching of precision‐cut lung slices during acute cigarette smoke extract exposure. Front Physiol 11: 566, 2020.
 114.Monnier VM. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45: B105‐B111, 1990.
 115.Morimoto RI. Cell‐nonautonomous regulation of proteostasis in aging and disease. Cold Spring Harb Perspect Biol 12: a034074, 2020.
 116.Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, Glick A, Sheppard D. Loss of integrin alpha(v)beta6‐mediated TGF‐beta activation causes Mmp12‐dependent emphysema. Nature 422: 169‐173, 2003.
 117.Muller KC, Welker L, Paasch K, Feindt B, Erpenbeck VJ, Hohlfeld JM, Krug N, Nakashima M, Branscheid D, Magnussen H, Jorres RA, Holz O. Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res 7: 32, 2006.
 118.Napadow VJ, Mai V, Bankier A, Gilbert RJ, Edelman R, Chen Q. Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13: 467‐474, 2001.
 119.Nobukuni S, Watanabe K, Inoue J, Wen FQ, Tamaru N, Yoshida M. Cigarette smoke inhibits the growth of lung fibroblasts from patients with pulmonary emphysema. Respirology 7: 217‐223, 2002.
 120.Nomura Y. Structural change in decorin with skin aging. Connective Tissue Res 47: 249‐255, 2006.
 121.Noordhoek JA, Postma DS, Chong LL, Menkema L, Kauffman HF, Timens W, van Straaten JF, van der Geld YM. Different modulation of decorin production by lung fibroblasts from patients with mild and severe emphysema. COPD 2: 17‐25, 2005.
 122.Nyunoya T, Monick MM, Klingelhutz A, Yarovinsky TO, Cagley JR, Hunninghake GW. Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol 35: 681‐688, 2006.
 123.Parameswaran H, Bartolak‐Suki E, Hamakawa H, Majumdar A, Allen PG, Suki B. Three‐dimensional measurement of alveolar airspace volumes in normal and emphysematous lungs using micro‐CT. J Appl Physiol 107: 583‐592, 2009.
 124.Park S, Jung WH, Pittman M, Chen J, Chen Y. The effects of stiffness, fluid viscosity, and geometry of microenvironment in homeostasis, aging, and diseases: A brief review. J Biomech Eng 142, 2020.
 125.Petr MA, Tulika T, Carmona‐Marin LM, Scheibye‐Knudsen M. Protecting the aging genome. Trends Cell Biol 30: 117‐132, 2020.
 126.Phillip JM, Aifuwa I, Walston J, Wirtz D. The mechanobiology of aging. Annu Rev Biomed Eng 17: 113‐141, 2015.
 127.Picca A, Calvani R, Coelho‐Junior HJ, Landi F, Bernabei R, Marzetti E. Inter‐organelle membrane contact sites and mitochondrial quality control during aging: A geroscience view. Cells 9: 598, 2020.
 128.Pierce JA, Hocott JB. Studies on the collagen and elastin content of the human lung. J Clin Invest 39: 8‐14, 1960.
 129.Pierce JA, Resnick H, Henry PH. Collagen and elastin metabolism in the lungs, skin, and bones of adult rats. J Laborat Clin Med 69: 485‐493, 1967.
 130.Pierre A, Lemaire F, Meghraoui‐Kheddar A, Audonnet S, Hery‐Huynh S, Le Naour R. Impact of aging on inflammatory and immune responses during elastin peptide‐induced murine emphysema. Am J Physiol Lung Cell Mol Physiol 316: L608‐L620, 2019.
 131.Poole A, Myllyla R, Wagner JC, Brown RC. Collagen biosynthesis enzymes in lung tissue and serum of rats with experimental silicosis. Br J Exp Pathol 66: 567‐575, 1985.
 132.Prochniewicz E, Thompson LV, Thomas DD. Age‐related decline in actomyosin structure and function. Exp Gerontol 42: 931‐938, 2007.
 133.Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders (first of two parts). N Engl J Med 301: 13‐23, 1979.
 134.Ranga V, Kleinerman J, Ip MP, Sorensen J. Age‐related changes in elastic fibers and elastin of lung. Am Rev Respir Dis 119: 369‐376, 1979.
 135.Reigle KL, Di Lullo G, Turner KR, Last JA, Chervoneva I, Birk DE, Funderburgh JL, Elrod E, Germann MW, Surber C, Sanderson RD, San Antonio JD. Non‐enzymatic glycation of type I collagen diminishes collagen‐proteoglycan binding and weakens cell adhesion. J Cell Biochem 104: 1684‐1698, 2008.
 136.Reiser KM, Hennessy SM, Last JA. Analysis of age‐associated changes in collagen crosslinking in the skin and lung in monkeys and rats. Biochim Biophys Acta 926: 339‐348, 1987.
 137.Rescan C, Coutant A, Talarmin H, Theret N, Glaise D, Guguen‐Guillouzo C, Baffet G. Mechanism in the sequential control of cell morphology and S phase entry by epidermal growth factor involves distinct MEK/ERK activations. Mol Biol Cell 12: 725‐738, 2001.
 138.Riccetti M, Gokey JJ, Aronow B, Perl AT. The elephant in the lung: Integrating lineage‐tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biol 91‐92: 51‐74, 2020.
 139.Robert L. Mechanisms of aging of the extracellular matrix: Role of the elastin‐laminin receptor. Gerontology 44: 307‐317, 1998.
 140.Roy B, Yuan L, Lee Y, Bharti A, Mitra A, Shivashankar GV. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proc Natl Acad Sci U S A 117: 10131‐10141, 2020.
 141.Ruberti JW, Hallab NJ. Strain‐controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun 336: 483‐489, 2005.
 142.Salazar G. NADPH oxidases and mitochondria in vascular senescence. Int J Mol Sci 19, 2018.
 143.Schachtschabel DO, Wever J. Age‐related decline in the synthesis of glycosaminoglycans by cultured human fibroblasts (WI‐38). Mech Ageing Dev 8: 257‐264, 1978.
 144.Schmid K, Grundboeck‐Jusco J, Kimura A, Tschopp FA, Zollinger R, Binette JP, Lewis W, Hayashi S. The distribution of the glycosaminoglycans in the anatomic components of the lung and the changes in concentration of these macromolecules during development and aging. Biochim Biophys Acta 716: 178‐187, 1982.
 145.Schneider JL, Rowe JH, Garcia‐de‐Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 184: 1990‐2019, 2021.
 146.Schwartz MA, Assoian RK. Integrins and cell proliferation: Regulation of cyclin‐dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553‐2560, 2001.
 147.Sera T, Yokota H, Tanaka G, Uesugi K, Yagi N, Schroter RC. Murine pulmonary acinar mechanics during quasi‐static inflation using synchrotron refraction‐enhanced computed tomography. J Appl Physiol 115: 219‐228, 2013.
 148.Seyer JM, Hutcheson ET, Kang AH. Collagen polymorphism in idiopathic chronic pulmonary fibrosis. J Clin Invest 57: 1498‐1507, 1976.
 149.Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D‐aspartate and nuclear weapons‐related radiocarbon. J Clin Invest 87: 1828‐1834, 1991.
 150.Shapiro SD, Senior RM. Matrix metalloproteinases. Matrix degradation and more. Am J Respir Cell Mol Biol 20: 1100‐1102, 1999.
 151.Sharafkhaneh A, Hanania NA, Kim V. Pathogenesis of emphysema: From the bench to the bedside. Proc Am Thorac Soc 5: 475‐477, 2008.
 152.Shin DM, Kucia M, Ratajczak MZ. Nuclear and chromatin reorganization during cell senescence and aging – a mini‐review. Gerontology 57: 76‐84, 2011.
 153.Shin EY, Park JH, You ST, Lee CS, Won SY, Park JJ, Kim HB, Shim J, Soung NK, Lee OJ, Schwartz MA, Kim EG. Integrin‐mediated adhesions in regulation of cellular senescence. Sci Adv 6: eaay3909, 2020.
 154.Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev 68: 101332, 2021.
 155.Shivashankar GV. Mechanosignaling to the cell nucleus and gene regulation. Annu Rev Biophys 40: 361‐378, 2011.
 156.Sicard D, Haak AJ, Choi KM, Craig AR, Fredenburgh LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol 314: L946‐L955, 2018.
 157.Sobin SS, Fung YC, Tremer HM. Collagen and elastin fibers in human pulmonary alveolar walls. J Appl Physiol 64: 1659‐1675, 1988.
 158.Southern BD, Grove LM, Rahaman SO, Abraham S, Scheraga RG, Niese KA, Sun H, Herzog EL, Liu F, Tschumperlin DJ, Egelhoff TT, Rosenfeld SS, Olman MA. Matrix‐driven myosin II mediates the pro‐fibrotic fibroblast phenotype. J Biol Chem 291: 6083‐6095, 2016.
 159.Starodubtseva MN. Mechanical properties of cells and ageing. Ageing Res Rev 10: 16‐25, 2011.
 160.Stern N, Riklis S, Kalina M, Tietz A. The catabolism of lung surfactant by alveolar macrophages. Biochim Biophys Acta 877: 323‐333, 1986.
 161.Sugihara T, Martin CJ, Hildebrandt J. Length‐tension properties of alveolar wall in man. J Appl Physiol 30: 874‐878, 1971.
 162.Suki B, Bartolák‐Suki E. Biomechanics of the aging lung parenchyma. In: Derby B, Ahktar R, editors. Mechanical Properties of Aging Soft Tissues. Cham: Springer, 2015, p. 95‐133.
 163.Suki B, Lutchen KR, Ingenito EP. On the progressive nature of emphysema: Roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med 168: 516‐521, 2003.
 164.Suki B, Parameswaran H, Alves C, Araújo AD, Bartolák‐Suki E. Cellular and extracellular homeostasis in fluctuating mechanical environments. In: Zhang Y, editor. Multi‐scale Extracellular Matrix Mechanics and Mechanobiology. Cham: Springer International Publishing, 2020, p. 83‐121.
 165.Suki B, Sato S, Parameswaran H, Szabari MV, Takahashi A, Bartolak‐Suki E. Emphysema and mechanical stress‐induced lung remodeling. Physiology (Bethesda) 28: 404‐413, 2013.
 166.Suki B, Stamenovic D, Hubmayr R. Lung parenchymal mechanics. Compr Physiol 1: 1317‐1351, 2011.
 167.Summer R, Shaghaghi H, Schriner D, Roque W, Sales D, Cuevas‐Mora K, Desai V, Bhushan A, Ramirez MI, Romero F. Activation of the mTORC1/PGC‐1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Lung Cell Mol Physiol 316: L1049‐L1060, 2019.
 168.Svensson RB, Smith ST, Moyer PJ, Magnusson SP. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons. Acta Biomater 70: 270‐280, 2018.
 169.Takahashi A, Majumdar A, Parameswaran H, Bartolak‐Suki E, Suki B. Proteoglycans maintain lung stability in an elastase‐treated mouse model of emphysema. Am J Respir Cell Mol Biol 51: 26‐33, 2014.
 170.Teramoto S, Fukuchi Y, Uejima Y, Teramoto K, Oka T, Orimo H. A novel model of senile lung: Senescence‐accelerated mouse (SAM). Am J Respir Crit Care Med 150: 238‐244, 1994.
 171.Thurlbeck WM. The internal surface area of nonemphysematous lungs. Am Rev Respir Dis 95: 765‐773, 1967.
 172.Thurlbeck WM, Angus GE. Growth and aging of the normal human lung. Chest 67: 3S‐6S, 1975.
 173.Toufen C Jr, Costa EL, Hirota AS, Li HY, Amato MB, Carvalho CR. Follow‐up after acute respiratory distress syndrome caused by influenza a (H1N1) virus infection. Clinics (Sao Paulo) 66: 933‐937, 2011.
 174.Tschumperlin DJ. Matrix, mesenchyme, and mechanotransduction. Ann Am Thorac Soc 12 (Suppl 1): S24‐S29, 2015.
 175.Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31: 643‐649, 2004.
 176.Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174: 886‐893, 2006.
 177.Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: An evolutionary perspective. Proc Am Thorac Soc 3: 503‐510, 2006.
 178.Turner JM, Mead J, Wohl ME. Elasticity of human lungs in relation to age. J Appl Physiol 25: 664‐671, 1968.
 179.Uriarte JJ, Uhl FE, Pouliot RA, Bou Jawde S, Rolandsson Enes S, Suki B, Weiss DJ. Nanomechanical assessment of decellularized COPD lung scaffolds (abstract). Am J Respir Crit Care Med 199: A2557, 2019.
 180.Uroz M, Wistorf S, Serra‐Picamal X, Conte V, Sales‐Pardo M, Roca‐Cusachs P, Guimera R, Trepat X. Regulation of cell cycle progression by cell‐cell and cell‐matrix forces. Nat Cell Biol 20: 646‐654, 2018.
 181.Valenca SS, da Hora K, Castro P, Moraes VG, Carvalho L, Porto LC. Emphysema and metalloelastase expression in mouse lung induced by cigarette smoke. Toxicol Pathol 32: 351‐356, 2004.
 182.van Straaten JF, Coers W, Noordhoek JA, Huitema S, Flipsen JT, Kauffman HF, Timens W, Postma DS. Proteoglycan changes in the extracellular matrix of lung tissue from patients with pulmonary emphysema. Mod Pathol 12: 697‐705, 1999.
 183.Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de Woestijne KP. The senile lung. Comparison with normal and emphysematous lungs. 1. Structural aspects. Chest 101: 793‐799, 1992.
 184.Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Van de Woestijne KP. The senile lung. Comparison with normal and emphysematous lungs. 2. Functional aspects. Chest 101: 800‐809, 1992.
 185.Verbeken EK, Cauberghs M, Mertens I, Lauweryns JM, Van de Woestijne KP. Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol 72: 2343‐2353, 1992.
 186.Vlahovic G, Russell ML, Mercer RR, Crapo JD. Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med 160: 2086‐2092, 1999.
 187.von Zglinicki T, Burkle A, Kirkwood TB. Stress, DNA damage and ageing – an integrative approach. Exp Gerontol 36: 1049‐1062, 2001.
 188.Walski M, Pokorski M, Antosiewicz J, Rekawek A, Frontczak‐Baniewicz M, Jernajczyk U, Di Giulio C. Pulmonary surfactant: Ultrastructural features and putative mechanisms of aging. J Physiol Pharmacol 60 (Suppl 5): 121‐125, 2009.
 189.Wang B, Ke W, Wang K, Li G, Ma L, Lu S, Xiang Q, Liao Z, Luo R, Song Y, Hua W, Wu X, Zhang Y, Zeng X, Yang C. Mechanosensitive ion channel piezo1 activated by matrix stiffness regulates oxidative stress‐induced senescence and apoptosis in human intervertebral disc degeneration. Oxid Med Cell Longev 2021: 8884922, 2021.
 190.Wang X, Liu Y, Jia Y, Liu H, Bao X, He Z, Ge W. Proteome profiling of cerebral vessels in rhesus macaques: Dysregulation of antioxidant activity and extracellular matrix proteins contributes to cerebrovascular aging in Rhesus Macaques. Front Aging Neurosci 11: 293, 2019.
 191.Wang Y, Wehling‐Henricks M, Welc SS, Fisher AL, Zuo Q, Tidball JG. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia. FASEB J 33: 1415‐1427, 2019.
 192.White ES. Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc 12 (Suppl 1): S30‐S33, 2015.
 193.Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250: 1266‐1269, 1990.
 194.Woods JC, Choong CK, Yablonskiy DA, Bentley J, Wong J, Pierce JA, Cooper JD, Macklem PT, Conradi MS, Hogg JC. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56: 1293‐1300, 2006.
 195.Yi E, Sato S, Takahashi A, Parameswaran H, Blute TA, Bartolak‐Suki E, Suki B. Mechanical forces accelerate collagen digestion by bacterial collagenase in lung tissue strips. Front Physiol 7: 287, 2016.
 196.Zahn JT, Louban I, Jungbauer S, Bissinger M, Kaufmann D, Kemkemer R, Spatz JP. Age‐dependent changes in microscale stiffness and mechanoresponses of cells. Small 7: 1480‐1487, 2011.
 197.Zhang YH, Zhao CQ, Jiang LS, Dai LY. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells. Matrix Biol 30: 135‐144, 2011.
 198.Zheng Y, Merchant ML, Burke TJ, Ritzenthaler JD, Li M, Gaweda AE, Benz FW, Roman J, Watson WH. Redox states of protein cysteines in pathways of protein turnover and cytoskeleton dynamics are changed with aging and reversed by Slc7a11 restoration in mouse lung fibroblasts. Oxid Med Cell Longev 2020: 2468986, 2020.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Béla Suki, Jason H.T. Bates, Erzsébet Bartolák‐Suki. Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues. Compr Physiol 2022, 12: 3559-3574. doi: 10.1002/cphy.c210033