Comprehensive Physiology Wiley Online Library

Aging and Heart Failure with Preserved Ejection Fraction

Full Article on Wiley Online Library



Abstract

Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro‐inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 3813–3822, 2022.

Figure 1. Figure 1. Aging, hypertension (HTN), diabetes mellitus (DM), and obesity are associated with an increase in cytokines, which lead to activation of NF‐κB, STAT3, and Smads, as well as an ER stress response. The activation of NF‐κB, STAT3, and Smads could produce a change in contractile and regulatory proteins expression, and thus, produce the cardiac and vascular contractility associated with HFpEF, including diastolic dysfunction and an increase in vascular tone as well as a decrease in vascular sensitivity to NO. An ER stress response includes phosphorylation of inositol requiring enzyme 1 (IRE1α) and alternative mRNA splicing of X‐box protein 1 (XBP1), which decreases mitofusin 2 (Mfn2) expression. Mfn1/Mfn2 complex tethers the mitochondria to the ER, which establishes a microdomain of higher cytosolic Ca2+, which is necessary to activate the mitochondrial Ca2+ uniporter (MCU). The decrease in Mfn2 expression will decrease the proximity of the ER and mitochondria and decrease Ca2+‐activation of the MCU and the influx of Ca2+ into the mitochondria, which will decrease ATP production, which could contribute to the energetic abnormalities associated with HFpEF (see text for details).


Figure 1. Aging, hypertension (HTN), diabetes mellitus (DM), and obesity are associated with an increase in cytokines, which lead to activation of NF‐κB, STAT3, and Smads, as well as an ER stress response. The activation of NF‐κB, STAT3, and Smads could produce a change in contractile and regulatory proteins expression, and thus, produce the cardiac and vascular contractility associated with HFpEF, including diastolic dysfunction and an increase in vascular tone as well as a decrease in vascular sensitivity to NO. An ER stress response includes phosphorylation of inositol requiring enzyme 1 (IRE1α) and alternative mRNA splicing of X‐box protein 1 (XBP1), which decreases mitofusin 2 (Mfn2) expression. Mfn1/Mfn2 complex tethers the mitochondria to the ER, which establishes a microdomain of higher cytosolic Ca2+, which is necessary to activate the mitochondrial Ca2+ uniporter (MCU). The decrease in Mfn2 expression will decrease the proximity of the ER and mitochondria and decrease Ca2+‐activation of the MCU and the influx of Ca2+ into the mitochondria, which will decrease ATP production, which could contribute to the energetic abnormalities associated with HFpEF (see text for details).
References
 1.AbouEzzeddine OF, Kemp BJ, Borlaug BA, Mullan BP, Behfar A, Pislaru SV, Fudim M, Redfield MM, Chareonthaitawee P. Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail 12 (10): e006240, 2019.
 2.Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, Ohba K, Matsubara J, Maeda H, Horibata Y, Sakamoto K, Sugamura K, Yamamuro M, Sumida H, Kaikita K, Iwashita S, Matsui K, Kimura K, Umemura S, Ogawa H. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 60 (18): 1778‐1786, 2012.
 3.Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, Kimura K, Zeller C, George J, Brueckmann M, Zannad F, Packer M, EMPEROR‐Preserved Trial Committees and Investigators. Evaluation of the effects of sodium‐glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: Rationale for and design of the EMPEROR‐Preserved Trial. Eur J Heart Fail 21 (10): 1279‐1287, 2019.
 4.Arabidze GG, Pogrebnaia GN, Todua FI, Sokolova RI, Kozdoba OA. Hypertensive disease and renal hypertension (structural and functional studies of the kidneys using dynamic computerized tomography). Kardiologiia 29 (11): 53‐56, 1989.
 5.Arbab‐Zadeh A, Dijk E, Prasad A, Fu Q, Torres P, Zhang R, Thomas JD, Palmer D, Levine BD. Effect of aging and physical activity on left ventricular compliance. Circulation 110 (13): 1799‐1805, 2004.
 6.Batsis JA, Villareal DT. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 14 (9): 513‐537, 2018.
 7.Beache GM, Herzka DA, Boxerman JL, Post WS, Gupta SN, Faranesh AZ, Solaiyappan M, Bottomley PA, Weiss JL, Shapiro EP, Hill MN. Attenuated myocardial vasodilator response in patients with hypertensive hypertrophy revealed by oxygenation‐dependent magnetic resonance imaging. Circulation 104 (11): 1214‐1217, 2001.
 8.Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, MSV E, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, UKA S, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, LB VW, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics‐2019 update: A report from the American Heart Association. Circulation 139 (10): e56‐e528, 2019.
 9.Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe‐Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, J F. Evidence for cardiomyocyte renewal in humans. Science 324 (5923): 98‐102, 2009.
 10.Bishu K, Hamdani N, Mohammed SF, Kruger M, Ohtani T, Ogut O, Brozovich FV, Burnett JC Jr, Linke WA, Redfield MM. Sildenafil and B‐type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124 (25): 2882‐2891, 2011.
 11.Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ. Cardiomyocyte stiffness in diastolic heart failure. Circulation 111 (6): 774‐781, 2005.
 12.Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11 (9): 507‐515, 2014.
 13.Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 17 (9): 559‐573, 2020.
 14.Borlaug BA, Kass DA. Ventricular‐vascular interaction in heart failure. Cardiol Clin 29 (3): 447‐459, 2011.
 15.Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: Pathophysiology, diagnosis, and treatment. Eur Heart J 32 (6): 670‐679, 2011.
 16.Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54 (5): 410‐418, 2009.
 17.Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3 (5): 588‐595, 2010.
 18.Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, Redfield MM. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 56 (11): 845‐854, 2010.
 19.Borlaug BA, Redfield MM, Melenovsky V, Kane GC, Karon BL, Jacobsen SJ, Rodeheffer RJ. Longitudinal changes in left ventricular stiffness: A community‐based study. Circ Heart Fail 6 (5): 944‐952, 2013.
 20.Borlaug BA, Anstrom KJ, Lewis GD, Shah SJ, Levine JA, Koepp GA, Givertz MM, Felker GM, MM LW, Mann DL, Margulies KB, Smith AL, WHW T, Whellan DJ, Chen HH, Davila‐Roman VG, McNulty S, Desvigne‐Nickens P, Hernandez AF, Braunwald E, Redfield MM, National Heart, Lung, and Blood Institute Heart Failure Clinical Research Network. Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: The INDIE‐HFpEF randomized clinical trial. JAMA 320 (17): 1764‐1773, 2018.
 21.Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, Hillege HL, van Veldhuisen DJ, van Gilst WH. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community‐based cohort: 11‐year follow‐up of PREVEND. Eur Heart J 34 (19): 1424‐1431, 2013.
 22.Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68 (2): 476‐532, 2016.
 23.Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol 8 (3): 131‐136, 2001.
 24.Buford TW. Hypertension and aging. Ageing Res Rev 26: 96‐111, 2016.
 25.Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, Fox J, Chakrabarti S, Sauer AJ, Rich JD, Freed BH, Shah SJ. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail 7 (2): 288‐299, 2014.
 26.Butler J, Hamo CE, Filippatos G, Pocock SJ, Bernstein RA, Brueckmann M, Cheung AK, George JT, Green JB, Januzzi JL, Kaul S, CSP L, GYH L, Marx N, PA MC, Mehta CR, Ponikowski P, Rosenstock J, Sattar N, Salsali A, Scirica BM, Shah SJ, Tsutsui H, Verma S, Wanner C, Woerle HJ, Zannad F, Anker SD, Program ET. The potential role and rationale for treatment of heart failure with sodium‐glucose co‐transporter 2 inhibitors. Eur J Heart Fail 19 (11): 1390‐1400, 2017.
 27.Carbone S, Mauro AG, Mezzaroma E, Kraskauskas D, Marchetti C, Buzzetti R, Van Tassell BW, Abbate A, Toldo S. A high‐sugar and high‐fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol 198: 66‐69, 2015.
 28.Carbone S, Canada JM, Buckley LF, Trankle CR, Billingsley HE, Dixon DL, Mauro AG, Dessie S, Kadariya D, Mezzaroma E, Buzzetti R, Arena R, Van Tassell BW, Toldo S, Abbate A. Dietary fat, sugar consumption, and cardiorespiratory fitness in patients with heart failure with preserved ejection fraction. JACC Basic Transl Sci 2 (5): 513‐525, 2017.
 29.Chen FC, Ogut O, Rhee AY, Hoit BD, Brozovich FV. Captopril prevents myosin light chain phosphatase isoform switching to preserve normal cGMP‐mediated vasodilatation. J Mol Cell Cardiol 41 (3): 488‐495, 2006.
 30.Cheng RK, Cox M, Neely ML, Heidenreich PA, Bhatt DL, Eapen ZJ, Hernandez AF, Butler J, Yancy CW, Fonarow GC. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am Heart J 168 (5): 721‐730, 2014.
 31.Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal‐Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93 (7): 604‐613, 2003.
 32.Cosentino F, Cannon CP, DZI C, Masiukiewicz U, Pratley R, Dagogo‐Jack S, Frederich R, Charbonnel B, Mancuso J, Shih WJ, Terra SG, Cater NB, Gantz I, DK MG, VERTIS CV Investigators. Efficacy of ertugliflozin on heart failure‐related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: Results of the VERTIS CV Trial. Circulation 142 (23): 2205‐2215, 2020.
 33.Coutinho T, Bailey KR, Turner ST, Kullo IJ. Arterial stiffness is associated with increase in blood pressure over time in treated hypertensives. J Am Soc Hypertens 8 (6): 414‐421, 2014.
 34.Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 110 (8): 1109‐1124, 2012.
 35.Dei Cas A, Khan SS, Butler J, Mentz RJ, Bonow RO, Avogaro A, Tschoepe D, Doehner W, Greene SJ, Senni M, Gheorghiade M, Fonarow GC. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail 3 (2): 136‐145, 2015.
 36.Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 93 (2): 97‐110, 2015.
 37.Delmotte P, Sieck GC. Endoplasmic reticulum stress and mitochondrial function in airway smooth muscle. Front Cell Dev Biol 7: 374, 2019.
 38.Dinh W, Futh R, Nickl W, Krahn T, Ellinghaus P, Scheffold T, Bansemir L, Bufe A, Barroso MC, Lankisch M. Elevated plasma levels of TNF‐alpha and interleukin‐6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol 8: 58, 2009.
 39.Dogan M, Han YS, Delmotte P, Sieck GC. TNFalpha enhances force generation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 312 (6): L994‐L1002, 2017.
 40.Echouffo‐Tcheugui JB, Xu H, AD DV, Schulte PJ, Butler J, Yancy CW, Bhatt DL, Hernandez AF, Heidenreich PA, Fonarow GC. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get with the Guidelines‐Heart Failure registry. Am Heart J 182: 9‐20, 2016.
 41.Farrero M, Blanco I, Batlle M, Santiago E, Cardona M, Vidal B, Castel MA, Sitges M, Barbera JA, Perez‐Villa F. Pulmonary hypertension is related to peripheral endothelial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail 7 (5): 791‐798, 2014.
 42.Fleg JL, O'Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, Lakatta EG. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol (1985) 78 (3): 890‐900, 1995.
 43.Fujimoto N, Hastings JL, Bhella PS, Shibata S, Gandhi NK, Carrick‐Ranson G, Palmer D, Levine BD. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J Physiol 590 (8): 1871‐1880, 2012.
 44.Gladden JD, Linke WA, Redfield MM. Heart failure with preserved ejection fraction. Pflugers Arch 466 (6): 1037‐1053, 2014.
 45.Goncalves N, Silva AF, Rodrigues PG, Correia E, Moura C, Eloy C, Roncon‐Albuquerque R Jr, Falcao‐Pires I, Leite‐Moreira AF. Early cardiac changes induced by a hypercaloric Western‐type diet in “subclinical” obesity. Am J Physiol Heart Circ Physiol 310 (6): H655‐H666, 2016.
 46.Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, Willems TP, van Melle JP. Right ventricular dysfunction in heart failure with preserved ejection fraction: A systematic review and meta‐analysis. Eur J Heart Fail 18 (12): 1472‐1487, 2016.
 47.Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, Carson PE. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: Results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I‐PRESERVE) trial. Circ Heart Fail 4 (3): 324‐331, 2011.
 48.Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017‐2018. NCHS Data Brief 360: 1‐8, 2020.
 49.Hamdani N, Bishu KG, von Frieling‐Salewsky M, Redfield MM, Linke WA. Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res 97 (3): 464‐471, 2013.
 50.Han YS, Arteaga GM, Sharain K, Sieck GC, Brozovich FV. A rat model of heart failure with preserved ejection fraction: Changes in contractile proteins regulating Ca2+ cycling and vascular reactivity. Circulation 144 (16): 1355‐1358.
 51.Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13 (4–5): 413‐421, 2002.
 52.Hartshorne DJ, Ito M, Erdödi F. Myosin light chain phosphatase: Subunit composition, interactions and regulation. J Muscle Res Cell Motil 19 (4): 325‐341, 1998.
 53.Haykowsky MJ, Brubaker PH, Morgan TM, Kritchevsky S, Eggebeen J, Kitzman DW. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: Role of lean body mass. J Gerontol A Biol Sci Med Sci 68 (8): 968‐975, 2013.
 54.Haykowsky MJ, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol 113 (7): 1211‐1216, 2014.
 55.Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134 (10): 752‐772, 2016.
 56.Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Pina IL, Trogdon JG, American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ Heart Fail 6 (3): 606‐619, 2013.
 57.Huang QQ, Fisher SA, Brozovich FV. Unzipping the role of myosin light chain phosphatase in smooth muscle cell relaxation. J Biol Chem 279 (1): 597‐603, 2004.
 58.Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age‐associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: Implications for the mitochondrial theory of aging. FASEB J 19 (3): 419‐421, 2005.
 59.Karim SM, Rhee AY, Given AM, Faulx MD, Hoit BD, Brozovich FV. Vascular reactivity in heart failure: Role of myosin light chain phosphatase. Circ Res 95 (6): 612‐618, 2004.
 60.Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, Iguchi K, Nakachi T, Fukui K, Futaki M, Iwasawa T, Kimura K, Umemura S. Impairment of coronary flow reserve evaluated by phase contrast cine‐magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5 (2): e002649, 2016.
 61.Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: Implications for systolic and diastolic reserve limitations. Circulation 107 (5): 714‐720, 2003.
 62.Khatri JJ, Joyce KM, Brozovich FV, Fisher SA. Role of myosin phosphatase isoforms in cGMP‐mediated smooth muscle relaxation. J Biol Chem 276 (40): 37250‐37257, 2001.
 63.Kitzman DW, Shah SJ. The HFpEF obesity phenotype: The elephant in the room. J Am Coll Cardiol 68 (2): 200‐203, 2016.
 64.Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, Eggebeen J, Nicklas BJ. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: A randomized clinical trial. JAMA 315 (1): 36‐46, 2016.
 65.Konik EA, Han YS, Brozovich FV. The role of pulmonary vascular contractile protein expression in pulmonary arterial hypertension. J Mol Cell Cardiol 65: 147‐155, 2013.
 66.Lakatta EG, Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation 107 (1): 139‐146, 2003.
 67.Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, Kass DA, Redfield MM. Cardiac structure and ventricular‐vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation 115 (15): 1982‐1990, 2007.
 68.Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: A community‐based study. J Am Coll Cardiol 53 (13): 1119‐1126, 2009.
 69.Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: From mechanisms to therapies. Eur Heart J 39 (30): 2780‐2792, 2018.
 70.Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA 275 (20): 1557‐1562, 1996.
 71.Löfgren M, Ekblad E, Morano I, Arner A. Nonmuscle myosin motor of smooth muscle. J Gen Physiol 121 (4): 301‐310, 2003.
 72.Lyle MA, Brozovich FV. HFpEF, a disease of the vasculature: A closer look at the other half. Mayo Clin Proc 93 (9): 1305‐1314, 2018.
 73.Lyle MA, Alabdaljabar MS, Han YS, Brozovich FV. The vasculature in HFpEF vs HFrEF: Differences in contractile protein expression produce distinct phenotypes. Heliyon 6 (1): e03129, 2020.
 74.MacLennan DH, Kranias EG. Phospholamban: A crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4 (7): 566‐577, 2003.
 75.Maeder MT, Thompson BR, Brunner‐La Rocca HP, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol 56 (11): 855‐863, 2010.
 76.Marcus Y, Shefer G, Stern N. Adipose tissue renin‐angiotensin‐aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 378 (1–2): 1‐14, 2013.
 77.Marechaux S, Samson R, van Belle E, Breyne J, de Monte J, Dedrie C, Chebai N, Menet A, Banfi C, Bouabdallaoui N, Le Jemtel TH, Ennezat PV. Vascular and microvascular endothelial function in heart failure with preserved ejection fraction. J Card Fail 22 (1): 3‐11, 2016.
 78.Maurer MS, King DL, El‐Khoury Rumbarger L, Packer M, Burkhoff D. Left heart failure with a normal ejection fraction: Identification of different pathophysiologic mechanisms. J Card Fail 11 (3): 177‐187, 2005.
 79.Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: The Cardiovascular Health Study. J Am Coll Cardiol 49 (9): 972‐981, 2007.
 80.McHugh K, AD DV, Wu J, Matsouaka RA, Fonarow GC, Heidenreich PA, Yancy CW, Green JB, Altman N, Hernandez AF. Heart failure with preserved ejection fraction and diabetes: JACC state‐of‐the‐art review. J Am Coll Cardiol 73 (5): 602‐611, 2019.
 81.McTiernan CF, Lemster BH, Frye C, Brooks S, Combes A, Feldman AM. Interleukin‐1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res 81 (4): 493‐503, 1997.
 82.Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. Proinflammatory cytokines, aging, and age‐related diseases. J Am Med Dir Assoc 14 (12): 877‐882, 2013.
 83.Mishra J, Jhun BS, Hurst S, Uchi JO, Csordas G, Sheu S‐S. Pharmacology of mitochondria. Handb Exp Pharmacol 240: 129‐156, 2017.
 84.Morano I, Chai GX, Baltas LG, Lamounier‐Zepter V, Lutsch G, Kott M, Haase H, Bader M. Smooth‐muscle contraction without smooth‐muscle myosin. Nat Cell Biol 2 (6): 371‐375, 2000.
 85.Murphy SP, Kakkar R, CP MC, Januzzi JL Jr. Inflammation in heart failure: JACC state‐of‐the‐art review. J Am Coll Cardiol 75 (11): 1324‐1340, 2020.
 86.Nassif ME, Qintar M, Windsor SL, Jermyn R, Shavelle DM, Tang F, Lamba S, Bhatt K, Brush J, Civitello A, Gordon R, Jonsson O, Lampert B, Pelzel J, Kosiborod MN. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: Results from the EMBRACE‐HF Trial. Circulation 143 (17): 1673‐1686, 2021.
 87.National Center for Health Statistics (NCHS). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey Data. Hyattsville, MD, 2021. https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Questionnaire.
 88.Obokata M, YNV R, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136 (1): 6‐19, 2017.
 89.Obokata M, YNV R, Melenovsky V, Kane GC, Olson TP, Jarolim P, Borlaug BA. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 72 (1): 29‐40, 2018.
 90.Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355 (3): 251‐259, 2006.
 91.Pathak T, Trebak M. Mitochondrial Ca(2+) signaling. Pharmacol Ther 192: 112‐123, 2018.
 92.Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62 (4): 263‐271, 2013.
 93.Persson H, Lonn E, Edner M, Baruch L, Lang CC, Morton JJ, Ostergren J, RS MK, Investigators of the CHARM Echocardiographic Substudy‐CHARMES. Diastolic dysfunction in heart failure with preserved systolic function: Need for objective evidence: Results from the CHARM Echocardiographic Substudy‐CHARMES. J Am Coll Cardiol 49 (6): 687‐694, 2007.
 94.Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, Dwivedi G, Patel K, Steendijk P, Ashrafian H, Henning A, Frenneaux M. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 54 (5): 402‐409, 2009.
 95.Reddy YN, Borlaug BA. Heart failure with preserved ejection fraction. Curr Probl Cardiol 41 (4): 145‐188, 2016.
 96.Reddy YNV, Andersen MJ, Obokata M, Koepp KE, Kane GC, Melenovsky V, Olson TP, Borlaug BA. Arterial stiffening with exercise in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 70 (2): 136‐148, 2017.
 97.Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med 375 (19): 1868‐1877, 2016.
 98.Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA 289 (2): 194‐202, 2003.
 99.Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, MM LW, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O'Connor CM, Felker GM, Goldsmith SR, Bart BA, SE MN, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E, RELAX Trial. Effect of phosphodiesterase‐5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: A randomized clinical trial. JAMA 309 (12): 1268‐1277, 2013.
 100.Sabbah MS, Fayyaz AU, de Denus S, Felker GM, Borlaug BA, Dasari S, Carter RE, Redfield MM. Obese‐inflammatory phenotypes in heart failure with preserved ejection fraction. Circ Heart Fail 13 (8): e006414, 2020.
 101.Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, PPA M, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568 (7752): 351‐356, 2019.
 102.Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell 61 (5): 683‐694, 2016.
 103.Senni M, Tribouilloy CM, Rodeheffer RJ, Jacobsen SJ, Evans JM, Bailey KR, Redfield MM. Congestive heart failure in the community: Trends in incidence and survival in a 10‐year period. Arch Intern Med 159 (1): 29‐34, 1999.
 104.Shah AM, Shah SJ, Anand IS, Sweitzer NK, O'Meara E, Heitner JF, Sopko G, Li G, Assmann SF, SM MK, Pitt B, Pfeffer MA, Solomon SD, TOPCAT Investigators. Cardiac structure and function in heart failure with preserved ejection fraction: Baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail 7 (1): 104‐115, 2014.
 105.Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Phenotype‐specific treatment of heart failure with preserved ejection fraction: A multiorgan roadmap. Circulation 134 (1): 73‐90, 2016.
 106.Shah SJ, CSP L, Svedlund S, Saraste A, Hage C, Tan RS, Beussink‐Nelson L, Ljung Faxen U, Fermer ML, Broberg MA, Gan LM, Lund LH. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS‐HFpEF. Eur Heart J 39 (37): 3439‐3450, 2018.
 107.Siddiqi S, Sussman MA. Cardiac hegemony of senescence. Curr Transl Geriatr Exp Gerontol Rep 2 (4), 2013. DOI: 10.1007/s13670‐013‐0064‐3.
 108.Singh K, Kim AB, Morgan KG. Non‐muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non‐muscle cortical cytoskeleton. J Cell Mol Med 25 (5): 2471‐2483, 2021.
 109.Solomon SD, JJV MM, Anand IS, Ge J, CSP L, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin‐Colet J, Cleland J, Dungen HD, Goncalvesova E, Katova T, Kerr Saraiva JF, Lelonek M, Merkely B, Senni M, Shah SJ, Zhou J, Rizkala AR, Gong J, Shi VC, Lefkowitz MP, PARAGON‐HF Investigators and Committees. Angiotensin‐neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381 (17): 1609‐1620, 2019.
 110.Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, Hernandez AF, Fonarow GC, Get With the Guidelines Scientific Advisory Committee and Investigators. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: Prevalence, therapies, and outcomes. Circulation 126 (1): 65‐75, 2012.
 111.Stratton JR, Levy WC, Cerqueira MD, Schwartz RS, Abrass IB. Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation 89 (4): 1648‐1655, 1994.
 112.Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: Links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 302 (11): H2148‐H2165, 2012.
 113.Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, Csiszar A. Increased mitochondrial H2O2 production promotes endothelial NF‐kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293 (1): H37‐H47, 2007.
 114.Vaduganathan M, Claggett BL, Chatterjee NA, Anand IS, Sweitzer NK, Fang JC, O'Meara E, Shah SJ, Hegde SM, Desai AS, Lewis EF, Rouleau J, Pitt B, Pfeffer MA, Solomon SD. Sudden death in heart failure with preserved ejection fraction: A competing risks analysis from the TOPCAT trial. JACC Heart Fail 6 (8): 653‐661, 2018.
 115.van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113 (16): 1966‐1973, 2006.
 116.Van Tassell BW, Arena R, Biondi‐Zoccai G, Canada JM, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB, Voelkel NF, Dinarello CA, Abbate A. Effects of interleukin‐1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D‐HART pilot study). Am J Cardiol 113 (2): 321‐327, 2014.
 117.Van Tassell BW, Buckley LF, Carbone S, Trankle CR, Canada JM, Dixon DL, Abouzaki N, Oddi‐Erdle C, Biondi‐Zoccai G, Arena R, Abbate A. Interleukin‐1 blockade in heart failure with preserved ejection fraction: Rationale and design of the Diastolic Heart Failure Anakinra Response Trial 2 (D‐HART2). Clin Cardiol 40 (9): 626‐632, 2017.
 118.Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschope C. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4 (1): 44‐52, 2011.
 119.Williams DM, Evans M. Dapagliflozin for heart failure with preserved ejection fraction: Will the DELIVER study deliver? Diabetes Ther 11 (10): 2207‐2219, 2020.
 120.Wohlfahrt P, Redfield MM, Lopez‐Jimenez F, Melenovsky V, Kane GC, Rodeheffer RJ, Borlaug BA. Impact of general and central adiposity on ventricular‐arterial aging in women and men. JACC Heart Fail 2 (5): 489‐499, 2014.
 121.Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, PE MB, JJ MM, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128 (16): e240‐e327, 2013.
 122.Yap J, Chen X, Delmotte P, Sieck GC. TNFalpha selectively activates the IRE1alpha/XBP1 endoplasmic reticulum stress pathway in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 318 (3): L483‐L493, 2020.
 123.Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor‐alpha in the adult mammalian heart. J Clin Invest 92 (5): 2303‐2312, 1993.
 124.Yuen S, Ogut O, Brozovich FV. MYPT1 protein isoforms are differentially phosphorylated by protein kinase G. J Biol Chem 286 (43): 37274‐37279, 2011.
 125.Yuen SL, Ogut O, Brozovich FV. Nonmuscle myosin is regulated during smooth muscle contraction. Am J Physiol Heart Circ Physiol 297 (1): H191‐H199, 2009.
 126.Yuen SL, Ogut O, Brozovich FV. Differential phosphorylation of LZ+/LZ‐ MYPT1 isoforms regulates MLC phosphatase activity. Arch Biochem Biophys 562: 37‐42, 2014.
 127.Zell R, Geck P, Werdan K, Boekstegers P. TNF‐alpha and IL‐1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: Evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177 (1‐2): 61‐67, 1997.
 128.Zhang W, Gunst SJ. Non‐muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction. J Physiol 595 (13): 4279‐4300, 2017.
 129.Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: Diagnosis, prognosis, and measurements of diastolic function. Circulation 105 (11): 1387‐1393, 2002.
 130.Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124 (23): 2491‐2501, 2011.
 131.Zwetsloot KA, Childs TE, Gilpin LT, Booth FW. Non‐passaged muscle precursor cells from 32‐month old rat skeletal muscle have delayed proliferation and differentiation. Cell Prolif 46 (1): 45‐57, 2013.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kathryn F. Larson, Awais Malik, Frank V. Brozovich. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022, 12: 3813-3822. doi: 10.1002/cphy.c210035