Comprehensive Physiology Wiley Online Library

Cell‐To‐Cell Communication in the Resistance Vasculature

Full Article on Wiley Online Library



Abstract

The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial‐derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 3833–3867, 2022.

Figure 1. Figure 1. The contractile state of the resistance arteries is important in determining systemic blood pressure.
Figure 2. Figure 2. In the resistance vasculature, a number of signaling pathways become integrated to produce the final response.
Figure 3. Figure 3. Cells of the resistance vascular wall are directly coupled to one another through connexin comprised gap junctions.
Figure 4. Figure 4. Pannexin‐1 has been demonstrated to function as a purine release channel (ATP and UTP). Adapted, with permission, from Lohman AW, et al., 2015 338.
Figure 5. Figure 5. Nitric oxide (NO) is a primary regulator of vascular tone.
Figure 6. Figure 6. A key regulator of transmembrane Ca2+ flux is change in the transmembrane potential (Em). “?” indicates that while voltage‐gated potassium channels (Kv) are present it is unclear which specific isoforms are expressed in endothelial cells.
Figure 7. Figure 7. A key component in the regulation of vascular tone is an alteration in free cytosolic/intracellular Ca2+.


Figure 1. The contractile state of the resistance arteries is important in determining systemic blood pressure.


Figure 2. In the resistance vasculature, a number of signaling pathways become integrated to produce the final response.


Figure 3. Cells of the resistance vascular wall are directly coupled to one another through connexin comprised gap junctions.


Figure 4. Pannexin‐1 has been demonstrated to function as a purine release channel (ATP and UTP). Adapted, with permission, from Lohman AW, et al., 2015 338.


Figure 5. Nitric oxide (NO) is a primary regulator of vascular tone.


Figure 6. A key regulator of transmembrane Ca2+ flux is change in the transmembrane potential (Em). “?” indicates that while voltage‐gated potassium channels (Kv) are present it is unclear which specific isoforms are expressed in endothelial cells.


Figure 7. A key component in the regulation of vascular tone is an alteration in free cytosolic/intracellular Ca2+.
References
 1.Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Kramer R, Guidotti G, Cantiello HF. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A 90: 312‐316, 1993.
 2.Adkins CE, Taylor CW. Lateral inhibition of inositol 1,4,5‐trisphosphate receptors by cytosolic Ca(2+). Curr Biol 9: 1115‐1118, 1999.
 3.Aguilar‐Bryan L, Nichols CG, Rajan AS, Parker C, Bryan J. Co‐expression of sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. Evidence for direct association of the receptor with the channel. J Biol Chem 267: 14934‐14940, 1992.
 4.Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I. Inwardly rectifying K+ channels are major contributors to flow‐induced vasodilatation in resistance arteries. J Physiol 595: 2339‐2364, 2017.
 5.Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J 357: 593‐615, 2001.
 6.Alevizaki M, Shiraishi A, Rassool FV, Ferrier GJ, MacIntyre I, Legon S. The calcitonin‐like sequence of the beta CGRP gene. FEBS Lett 206: H1046‐H1055, 1986.
 7.Allagnat F, Dubuis C, Lambelet M, Le Gal L, Alonso F, Corpataux JM, Déglise S, Haefliger JA. Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation. Cardiovasc Res 113: 805‐816, 2017.
 8.Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5‐trisphosphate. Science 258: 1812‐1815, 1992.
 9.Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene‐related peptide. Science (New York, NY) 229: 1094‐1097, 1985.
 10.Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240‐244, 1982.
 11.Ambudkar IS, de Souza LB, Ong HL. TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium 63: 33‐39, 2017.
 12.Ammala C, Moorhouse A, Gribble F, Ashfield R, Proks P, Smith PA, Sakura H, Coles B, Ashcroft SJ, Ashcroft FM. Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 379: 545‐548, 1996.
 13.Anumonwo JM, Taffet SM, Gu H, Chanson M, Moreno AP, Delmar M. The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels. Circ Res 88: 666‐673, 2001.
 14.Arikkath J, Campbell KP. Auxiliary subunits: Essential components of the voltage‐gated calcium channel complex. Curr Opin Neurobiol 13: 298‐307, 2003.
 15.Arkless K, Argunhan F, Brain SD. CGRP discovery and timeline. Handb Exp Pharmacol 255: 1‐12, 2019.
 16.Aulak KS, Barnes JW, Tian L, Mellor NE, Haque MM, Willard B, Li L, Comhair SC, Stuehr DJ, Dweik RA. Specific O‐GlcNAc modification at Ser‐615 modulates eNOS function. Redox Biol 36: 101625, 2020.
 17.Avila MA, Sell SL, Hawkins BE, Hellmich HL, Boone DR, Crookshanks JM, Prough DS, DeWitt DS. Cerebrovascular connexin expression: Effects of traumatic brain injury. J Neurotrauma 28: 1803‐1811, 2011.
 18.Avila‐Medina J, Calderon‐Sanchez E, Gonzalez‐Rodriguez P, Monje‐Quiroga F, Rosado JA, Castellano A, Ordonez A, Smani T. Orai1 and TRPC1 proteins co‐localize with CaV1.2 channels to form a signal complex in vascular smooth muscle cells. J Biol Chem 291: 21148‐21159, 2016.
 19.Avila‐Medina J, Mayoral‐Gonzalez I, Dominguez‐Rodriguez A, Gallardo‐Castillo I, Ribas J, Ordonez A, Rosado JA, Smani T. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol 9: 257, 2018.
 20.Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem 281: 16727‐16739, 2006.
 21.Aziz Q, Li Y, Anderson N, Ojake L, Tsisanova E, Tinker A. Molecular and functional characterization of the endothelial ATP‐sensitive potassium channel. J Biol Chem 292: 17587‐17597, 2017.
 22.Bagher P, Beleznai T, Kansui Y, Mitchell R, Garland CJ, Dora KA. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc Natl Acad Sci U S A 109: 18174‐18179, 2012.
 23.Bagher P, Garland CJ. Scaffolding builds to reduce blood pressure. Sci Signal 7: pe16, 2014.
 24.Bagher P, Segal SS. Regulation of blood flow in the microcirculation: Role of conducted vasodilation. Acta Physiol (Oxf) 202: 271‐284, 2011.
 25.Bancroft J. Human Sexuality and Its Problems (3rd ed). London: Churchill Livingstone, 2009, p. 20‐54.
 26.Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol 287: C1389‐C1395, 2004.
 27.Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 271: C1424‐C1437, 1996.
 28.Beech DJ, Bolton TB. The effects of tetraethylammonium ions, 4‐aminopyridine or quinidine on K+‐currents in single smooth muscle cells of the rabbit portal vein. Biomed Biochim Acta 46: S673‐S676, 1987.
 29.Begandt D, Good ME, Keller AS, DeLalio LJ, Rowley C, Isakson BE, Figueroa XF. Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 18: 2, 2017.
 30.Behdad A, Sun X, Khalpey Z, Enjyoji K, Wink M, Wu Y, Usheva A, Robson SC. Vascular smooth muscle cell expression of ectonucleotidase CD39 (ENTPD1) is required for neointimal formation in mice. Purinergic Signal 5: 335‐342, 2009.
 31.Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation 24: e12328, 2017. DOI: 10.1111/micc.12328.
 32.Behringer EJ, Segal SS. Spreading the signal for vasodilatation: Implications for skeletal muscle blood flow control and the effects of ageing. J Physiol 590: 6277‐6284, 2012.
 33.Behringer EJ, Segal SS. Tuning electrical conduction along endothelial tubes of resistance arteries through Ca(2+)‐activated K(+) channels. Circ Res 110: 1311‐1321, 2012.
 34.Behringer EJ, Segal SS. Membrane potential governs calcium influx into microvascular endothelium: Integral role for muscarinic receptor activation. J Physiol 593: 4531‐4548, 2015.
 35.Beleznai TZ, Yarova PL, Yuill KH, Dora KA. Smooth muscle Ca(2+)‐activated and voltage‐gated K+ channels modulate conducted dilation in rat isolated small mesenteric arteries. Microcirculation 18: 487‐500, 2011. DOI: 10.1111/j.1549‐8719.2011.00109.x.
 36.Bény JL, Connat JL. An electron‐microscopic study of smooth muscle cell dye coupling in the pig coronary arteries. Role of gap junctions. Circ Res 70: 49‐55, 1992.
 37.Beny JL, Nguyen MN, Marino M, Matsui M. Muscarinic receptor knockout mice confirm involvement of M3 receptor in endothelium‐dependent vasodilatation in mouse arteries. J Cardiovasc Pharmacol 51: 505‐512, 2008.
 38.Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward‐rectifier K(+) channels. Nat Rev Neurosci 4: 957‐967, 2003.
 39.Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells. Sci Signal 8: ra17, 2015.
 40.Billaud M, Johnstone SR, Isakson BE. Loss of compliance in small arteries, but not in conduit arteries, after 6 weeks exposure to high fat diet. J Cardiovasc Transl Res 5: 256‐263, 2012.
 41.Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft‐Wilson R, Sonkusare SK, Isakson BE. Non‐endoplasmic reticulum‐based calr (Calreticulin) can coordinate heterocellular calcium signaling and vascular function. Arterioscler Thromb Vasc Biol 38: 120‐130, 2018.
 42.Biwer LA, Taddeo EP, Kenwood BM, Hoehn KL, Straub AC, Isakson BE. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. Biochim Biophys Acta: 671‐679, 1861, 2016.
 43.Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L‐type calcium channel in the heart: The beat goes on. J Clin Invest 115: 3306‐3317, 2005.
 44.Bodin P, Bailey D, Burnstock G. Increased flow‐induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 103: 1203‐1205, 1991.
 45.Bodin P, Burnstock G. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38: 900‐908, 2001.
 46.Bodin P, Milner P, Winter R, Burnstock G. Chronic hypoxia changes the ratio of endothelin to ATP release from rat aortic endothelial cells exposed to high flow. Proc Biol Sci 247: 131‐135, 1992.
 47.Bootman MD, Berridge MJ, Lipp P. Cooking with calcium: The recipes for composing global signals from elementary events. Cell 91: 367‐373, 1997.
 48.Bossu JL, Elhamdani A, Feltz A. Voltage‐dependent calcium entry in confluent bovine capillary endothelial cells. FEBS Lett 299: 239‐242, 1992.
 49.Bossu JL, Feltz A, Rodeau JL, Tanzi F. Voltage‐dependent transient calcium currents in freshly dissociated capillary endothelial cells. FEBS Lett 255: 377‐380, 1989.
 50.Bowden JJ, Baluk P, Lefevre PM, Vigna SR, McDonald DM. Substance P (NK1) receptor immunoreactivity on endothelial cells of the rat tracheal mucosa. Am J Physiol 270: L404‐L414, 1996.
 51.Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER, Nelson MT, Horowitz B. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515 (Pt 3): 639‐651, 1999.
 52.Brahler S, Kaistha A, Schmidt VJ, Wolfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Kohler R. Genetic deficit of SK3 and IK1 channels disrupts the endothelium‐derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119: 2323‐2332, 2009.
 53.Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene‐related peptide is a potent vasodilator. Nature 313: 54‐56, 1985.
 54.Brayden JE, Li Y, Tavares MJ. Purinergic receptors regulate myogenic tone in cerebral parenchymal arterioles. J Cereb Blood Flow Metab 33: 293‐299, 2013.
 55.Buckley JF, Singer M, Clapp LH. Role of KATP channels in sepsis. Cardiovasc Res 72: 220‐230, 2006.
 56.Bunker CB, Reavley C, O'Shaughnessy DJ, Dowd PM. Calcitonin gene‐related peptide in treatment of severe peripheral vascular insufficiency in Raynaud's phenomenon. Lancet 342: 80‐83, 1993.
 57.Burns WR, Cohen KD, Jackson WF. K+‐induced dilation of hamster cremasteric arterioles involves both the Na+/K+‐ATPase and inward‐rectifier K+ channels. Microcirculation 11: 279‐293, 2004.
 58.Burnstock G. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194 (Pt 3): 335‐342, 1999.
 59.Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87: 659‐797, 2007.
 60.Burnstock G. Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 167: 238‐255, 2012.
 61.Burnstock G. Purinergic signaling in the cardiovascular system. Circ Res 120: 207‐228, 2017.
 62.Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 195: 415‐447, 2009.
 63.Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: Bringing the concepts together. Trends Pharmacol Sci 23: 374‐380, 2002.
 64.Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin alpha in the blood vessel wall. Free Radic Biol Med 73: 136‐142, 2014.
 65.Campbell JD, Sansom MS, Ashcroft FM. Potassium channel regulation. EMBO Rep 4: 1038‐1042, 2003.
 66.Catterall WA. Voltage‐gated calcium channels. Cold Spring Harb Perspect Biol 3: a003947, 2011.
 67.Cavelier C, Ohnsorg PM, Rohrer L, von Eckardstein A. The beta‐chain of cell surface F(0)F(1) ATPase modulates apoA‐I and HDL transcytosis through aortic endothelial cells. Arterioscler Thromb Vasc Biol 32: 131‐139, 2012.
 68.Chanson M, Scerri I, Suter S. Defective regulation of gap junctional coupling in cystic fibrosis pancreatic duct cells. J Clin Invest 103: 1677‐1684, 1999.
 69.Chapal J, Loubatieres‐Mariani MM. Evidence for purinergic receptors on vascular smooth muscle in rat pancreas. Eur J Pharmacol 87: 423‐430, 1983.
 70.Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL. S‐glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468: 1115‐1118, 2010.
 71.Chen CH, Mayo JN, Gourdie RG, Johnstone SR, Isakson BE, Bearden SE. The connexin 43/ZO‐1 complex regulates cerebral endothelial F‐actin architecture and migration. Am J Physiol Cell Physiol 309: C600‐C607, 2015.
 72.Chen X, Bründl M, Friesacher T, Stary‐Weinzinger A. Computational insights into voltage dependence of polyamine block in a strong inwardly rectifying K. Front Pharmacol 11: 721, 2020.
 73.Chen X, Bründl M, Friesacher T, Stary‐Weinzinger A. Computational insights into voltage dependence of polyamine block in a strong inwardly rectifying K+ channel. Front Pharmacol 11: 721, 2020.
 74.Cheng H, Lederer WJ, Cannell MB. Calcium sparks: Elementary events underlying excitation‐contraction coupling in heart muscle. Science 262: 740‐744, 1993.
 75.Cheong A, Dedman AM, Beech DJ. Expression and function of native potassium channel [K(V)alpha1] subunits in terminal arterioles of rabbit. J Physiol 534: 691‐700, 2001.
 76.Cobine CA, Callaghan BP, Keef KD. Role of L‐type calcium channels and PKC in active tone development in rabbit coronary artery. Am J Physiol Heart Circ Physiol 292: H3079‐H3088, 2007.
 77.Cole WC, Malcolm T, Walsh MP, Light PE. Inhibition by protein kinase C of the K(NDP) subtype of vascular smooth muscle ATP‐sensitive potassium channel. Circ Res 87: 112‐117, 2000.
 78.Corda S, Spurgeon HA, Lakatta EG, Capogrossi MC, Ziegelstein RC. Endoplasmic reticulum Ca2+ depletion unmasks a caffeine‐induced Ca2+ influx in human aortic endothelial cells. Circ Res 77: 927‐935, 1995.
 79.Corriden R, Insel PA. Basal release of ATP: An autocrine‐paracrine mechanism for cell regulation. Sci Signal 3: re1, 2010.
 80.Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M. Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18: 2520‐2537, 1998.
 81.Cottrell GT, Burt JM. Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol Cell Physiol 281: C1559‐C1567, 2001.
 82.Cox RH, Fromme S. Functional expression profile of voltage‐gated K(+) channel subunits in rat small mesenteric arteries. Cell Biochem Biophys 74: 263‐276, 2016.
 83.Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 25: 81‐88, 2011.
 84.Crane GJ, Gallagher N, Dora KA, Garland CJ. Small‐ and intermediate‐conductance calcium‐activated K+ channels provide different facets of endothelium‐dependent hyperpolarization in rat mesenteric artery. J Physiol 553: 183‐189, 2003.
 85.Crane GJ, Walker SD, Dora KA, Garland CJ. Evidence for a differential cellular distribution of inward rectifier K channels in the rat isolated mesenteric artery. J Vasc Res 40: 159‐168, 2003.
 86.Crecelius AR, Kirby BS, Richards JC, Garcia LJ, Voyles WF, Larson DG, Luckasen GJ, Dinenno FA. Mechanisms of ATP‐mediated vasodilation in humans: Modest role for nitric oxide and vasodilating prostaglandins. Am J Physiol Heart Circ Physiol 301: H1302‐H1310, 2011.
 87.Cserne Szappanos H, Vincze J, Bodnar D, Dienes B, Schneider MF, Csernoch L, Szentesi P. High time resolution analysis of voltage‐dependent and voltage‐independent calcium sparks in frog skeletal muscle fibers. Front Physiol 11: 599822, 2020.
 88.Cuevas P, Gutierrez‐Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI. Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berl) 170: 155‐159, 1984.
 89.Daneva Z, Ottolini M, Chen YL, Klimentova E, Kuppusamy M, Shah SA, Minshall RD, Seye CI, Laubach VE, Isakson BE, Sonkusare SK. Endothelial pannexin 1‐TRPV4 channel signaling lowers pulmonary arterial pressure in mice. elife 10: e67777, 2021.
 90.de Wit C. Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85: 604‐613, 2010.
 91.de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U. Impaired conduction of vasodilation along arterioles in connexin40‐deficient mice. Circ Res 86: 649‐655, 2000.
 92.DeLalio LJ, Keller AS, Chen J, Boyce AKJ, Artamonov MV, Askew‐Page HR, Keller TCS, Johnstone SR, Weaver RB, Good ME, Murphy SA, Best AK, Mintz EL, Penuela S, Greenwood IA, Machado RF, Somlyo AV, Swayne LA, Minshall RD, Isakson BE. Interaction between pannexin 1 and caveolin‐1 in smooth muscle can regulate blood pressure. Arterioscler Thromb Vasc Biol 38: 2065‐2078, 2018.
 93.Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81: 533‐559, 2012.
 94.Dessy C, Feron O, Balligand JL. The regulation of endothelial nitric oxide synthase by caveolin: A paradigm validated in vivo and shared by the 'endothelium‐derived hyperpolarizing factor'. Pflugers Arch 459: 817‐827, 2010.
 95.Dewey MM, Barr L. Intercellular connection between smooth muscle cells: The nexus. Science 137: 670‐672, 1962.
 96.Dewey MM, Barr L. A study of the structure and distribution of the nexus. J Cell Biol 23: 553‐585, 1964.
 97.Didolkar SM, Koontz C, Schimberg PI. Phleborheography in pregnancy. Obstet Gynecol 61: 363‐366, 1983.
 98.Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG Jr. Mechanism of ATP‐induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 46: 253‐264, 2009.
 99.Diezmos EF, Bertrand PP, Liu L. Purinergic signaling in gut inflammation: The role of connexins and pannexins. Front Neurosci 10: 311, 2016.
 100.Dittrich M, Daut J. Voltage‐dependent K(+) current in capillary endothelial cells isolated from guinea pig heart. Am J Physiol 277: H119‐H127, 1999.
 101.Dora KA, Doyle MP, Duling BR. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci U S A 94: 6529‐6534, 1997.
 102.Dora KA, Garland CJ. Properties of smooth muscle hyperpolarization and relaxation to K+ in the rat isolated mesenteric artery. Am J Physiol Heart Circ Physiol 280: H2424‐H2429, 2001.
 103.Dora KA, Hinton JM, Walker SD, Garland CJ. An indirect influence of phenylephrine on the release of endothelium‐derived vasodilators in rat small mesenteric artery. Br J Pharmacol 129: 381‐387, 2000.
 104.Dora KA, Xia J, Duling BR. Endothelial cell signaling during conducted vasomotor responses. Am J Physiol Heart Circ Physiol 285: H119‐H126, 2003.
 105.D'Orleans‐Juste P, Labonte J, Bkaily G, Choufani S, Plante M, Honore JC. Function of the endothelin(B) receptor in cardiovascular physiology and pathophysiology. Pharmacol Ther 95: 221‐238, 2002.
 106.Drummond GR, Sobey CG. Endothelial NADPH oxidases: Which NOX to target in vascular disease? Trends Endocrinol Metab 25: 452‐463, 2014.
 107.Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig 108: 1341‐1348, 2001.
 108.Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J. Plasma membrane expression of T‐type calcium channel alpha(1) subunits is modulated by high voltage‐activated auxiliary subunits. J Biol Chem 279: 29263‐29269, 2004.
 109.Duffy HS, Sorgen PL, Girvin ME, O'Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC. pH‐dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277: 36706‐36714, 2002.
 110.Duling BR, Berne RM. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res 26: 163‐170, 1970.
 111.Duncker DJ, Oei HH, Hu F, Stubenitsky R, Verdouw PD. Role of K(ATP)(+) channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine. Am J Physiol Heart Circ Physiol 280: H22‐H33, 2001.
 112.Earley S. TRPA1 channels in the vasculature. Br J Pharmacol 167: 13‐22, 2012.
 113.Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 95: 645‐690, 2015.
 114.Earley S, Resta TC, Walker BR. Disruption of smooth muscle gap junctions attenuates myogenic vasoconstriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 287: H2677‐H2686, 2004.
 115.Eberhardt M, Stueber T, de la Roche J, Herzog C, Leffler A, Reeh PW, Kistner K. TRPA1 and TRPV1 are required for lidocaine‐evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons. PLoS One 12: E0188008, 2017.
 116.Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine's vascular mechanisms of action. J Vasc Med 2010: 834060, 2010.
 117.Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium‐derived hyperpolarizing factor in rat arteries. Nature 396: 269‐272, 1998.
 118.Emerson GG, Segal SS. Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 86: 94‐100, 2000.
 119.Endo M, Tanaka M, Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34‐36, 1970.
 120.Enkvist MO, McCarthy KD. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J Neurochem 62: 489‐495, 1994.
 121.Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1: 789‐803, 2012.
 122.Erwin PA, Lin AJ, Golan DE, Michel T. Receptor‐regulated dynamic S‐nitrosylation of endothelial nitric‐oxide synthase in vascular endothelial cells. J Biol Chem 280: 19888‐19894, 2005.
 123.Evangelista AM, Thompson MD, Weisbrod RM, Pimental DR, Tong X, Bolotina VM, Cohen RA. Redox regulation of SERCA2 is required for vascular endothelial growth factor‐induced signaling and endothelial cell migration. Antioxid Redox Signal 17: 1099‐1108, 2012.
 124.Faigle M, Seessle J, Zug S, El Kasmi KC, Eltzschig HK. ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS One 3: e2801, 2008.
 125.Fancher IS, Ahn SJ, Adamos C, Osborn C, Oh MJ, Fang Y, Reardon CA, Getz GS, Phillips SA, Levitan I. Hypercholesterolemia‐induced loss of flow‐induced vasodilation and lesion formation in apolipoprotein E‐deficient mice critically depend on inwardly rectifying K(+) channels. J Am Heart Assoc 7: e007430, 2018.
 126.Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J. Calmodulin mediates calcium‐dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274: 5746‐5754, 1999.
 127.Faraci FM, Heistad DD. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev 78: 53‐97, 1998.
 128.Farouque HM, Meredith IT. Inhibition of vascular ATP‐sensitive K+ channels does not affect reactive hyperemia in human forearm. Am J Physiol Heart Circ Physiol 284: H711‐H718, 2003.
 129.Feng MG, Navar LG. Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Ren Physiol 299: F310‐F315, 2010.
 130.Figueroa XF, Duling BR. Dissection of two Cx37‐independent conducted vasodilator mechanisms by deletion of Cx40: Electrotonic versus regenerative conduction. Am J Physiol Heart Circ Physiol 295: H2001‐H2007, 2008.
 131.Fleming I. Myoendothelial gap junctions: The gap is there, but does EDHF go through it? Circ Res 86: 249‐250, 2000.
 132.Folkow B. The vasodilator action of adenosine triphosphate. Acta Physiol Scand 17: 311‐316, 1949.
 133.Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N, Tsuruo T, Sessa WC. Domain mapping studies reveal that the M domain of Hsp90 serves as a molecular scaffold to regulate Akt‐dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90: 866‐873, 2002.
 134.Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, McEntegart M, Maguire JJ, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sattar N, Hsu LY, Arai AE, Oldroyd KG, Touyz RM, Davenport AP, Berry C. Genetic dysregulation of endothelin‐1 is implicated in coronary microvascular dysfunction. Eur Heart J 41: 3239‐3252, 2020.
 135.Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J, Mills S, Nomura N, Rosen H, Rosenbach M, Shei GJ, Singer II, Tian M, West S, White V, Xie J, Proia RL, Mandala S. Immune cell regulation and cardiovascular effects of sphingosine 1‐phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 309: 758‐768, 2004.
 136.Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 113: 1708‐1714, 2006.
 137.von Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol 72: 74‐87, 1931.
 138.Forstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 33: 829‐837, 837a‐837d, 2012.
 139.Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593‐658, 2007.
 140.Foster MN, Coetzee WA. KATP channels in the cardiovascular system. Physiol Rev 96: 177‐252, 2016.
 141.Fuentes E, Palomo I. Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro‐thrombotic and anti‐thrombotic molecules. Vasc Pharmacol 75: 1‐6, 2015.
 142.Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circ Res 53: 557‐573, 1983.
 143.Furchgott RF, Vanhoutte PM. Endothelium‐derived relaxing and contracting factors. FASEB J 3: 2007‐2018, 1989.
 144.Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373‐376, 1980.
 145.Gabella G. Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. J Cell Sci 8: 601‐609, 1971.
 146.Gabriels JE, Paul DL. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83: 636‐643, 1998.
 147.Garcia‐Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392: 821‐824, 1998.
 148.Garland CJ, Dora KA. EDH: Endothelium‐dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf) 219: 152‐161, 2017.
 149.Garland CJ, Hiley CR, Dora KA. EDHF: Spreading the influence of the endothelium. Br J Pharmacol 164: 839‐852, 2011.
 150.Gebhart V, Reiss K, Kollau A, Mayer B, Gorren ACF. Site and mechanism of uncoupling of nitric‐oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide 89: 14‐21, 2019.
 151.Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+‐binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37: 260‐266, 2005.
 152.Geppetti P, Maggi CA, Zecchi‐Orlandini S, Santicioli P, Meli A, Frilli S, Spillantini MG, Amenta F. Substance P‐like immunoreactivity in capsaicin‐sensitive structures of the rat thymus. Regul Pept 18: 321‐329, 1987.
 153.Gericke A, Sniatecki JJ, Mayer VG, Goloborodko E, Patzak A, Wess J, Pfeiffer N. Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene‐targeted mice. Am J Physiol Heart Circ Physiol 300: H1602‐H1608, 2011.
 154.Gericke A, Steege A, Manicam C, Böhmer T, Wess J, Pfeiffer N. Role of the M3 muscarinic acetylcholine receptor subtype in murine ophthalmic arteries after endothelial removal. Invest Ophthalmol Vis Sci 55: 625‐631, 2014.
 155.Ghatnekar GS, Grek CL, Armstrong DG, Desai SC, Gourdie RG. The effect of a connexin43‐based peptide on the healing of chronic venous leg ulcers: A multicenter, randomized trial. J Invest Dermatol 135: 289‐298, 2015.
 156.Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves‐Cintron M, Navedo MF. Calcium channels in vascular smooth muscle. Adv Pharmacol 78: 49‐87, 2017.
 157.Gilbert G, Courtois A, Dubois M, Cussac LA, Ducret T, Lory P, Marthan R, Savineau JP, Quignard JF. T‐type voltage gated calcium channels are involved in endothelium‐dependent relaxation of mice pulmonary artery. Biochem Pharmacol 138: 61‐72, 2017.
 158.Gilman AG. G proteins: Transducers of receptor‐generated signals. Annu Rev Biochem 56: 615‐649, 1987.
 159.Goldberg GS, Lampe PD, Nicholson BJ. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1: 457‐459, 1999.
 160.Goligorsky MS, Colflesh D, Gordienko D, Moore LC. Branching points of renal resistance arteries are enriched in L‐type calcium channels and initiate vasoconstriction. Am J Physiol 268: F251‐F257, 1995.
 161.González‐Alonso J, Olsen DB, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of circulating ATP. Circ Res 91: 1046‐1055, 2002.
 162.Good ME, Ek‐Vitorín JF, Burt JM. Extracellular loop cysteine mutant of cx37 fails to suppress proliferation of rat insulinoma cells. J Membr Biol 245: 369‐380, 2012.
 163.Good ME, Eucker SA, Li J, Bacon HM, Lang SM, Butcher JT, Johnson TJ, Gaykema RP, Patel MK, Zuo Z, Isakson BE. Endothelial cell Pannexin1 modulates severity of ischemic stroke by regulating cerebral inflammation and myogenic tone. JCI Insight 3: e96272, 2018. DOI: 10.1172/jci.insight.96272.
 164.Goto K, Rummery NM, Grayson TH, Hill CE. Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: Role of inwardly rectifying potassium channels. J Physiol 561: 215‐231, 2004.
 165.Govindan S, Taylor EJ, Taylor CW. Ca(2+) signalling by P2Y receptors in cultured rat aortic smooth muscle cells. Br J Pharmacol 160: 1953‐1962, 2010.
 166.Graham RM, Perez DM, Hwa J, Piascik MT. Alpha 1‐adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 78: 737‐749, 1996.
 167.Graier WF, Paltauf‐Doburzynska J, Hill BJ, Fleischhacker E, Hoebel BG, Kostner GM, Sturek M. Submaximal stimulation of porcine endothelial cells causes focal Ca2+ elevation beneath the cell membrane. J Physiol 506 (Pt 1): 109‐125, 1998.
 168.Grandaw PP, Purdy RE. Serotonin‐induced vasoconstriction in rabbit femoral artery: Mediation by both 5‐HT2 serotonergic and alpha 1‐adrenoceptors. J Cardiovasc Pharmacol 27: 854‐860, 1996.
 169.Gratton JP, Fontana J, O'Connor DS, Garcia‐Cardena G, McCabe TJ, Sessa WC. Reconstitution of an endothelial nitric‐oxide synthase (eNOS), Hsp90, and caveolin‐1 complex in vitro. Evidence that Hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin‐1. J Biol Chem 275: 22268‐22272, 2000.
 170.Grgic I, Kaistha BP, Hoyer J, Kohler R. Endothelial Ca+‐activated K+ channels in normal and impaired EDHF‐dilator responses—relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 157: 509‐526, 2009.
 171.Gueguinou M, Harnois T, Crottes D, Uguen A, Deliot N, Gambade A, Chantome A, Haelters JP, Jaffres PA, Jourdan ML, Weber G, Soriani O, Bougnoux P, Mignen O, Bourmeyster N, Constantin B, Lecomte T, Vandier C, Potier‐Cartereau M. SK3/TRPC1/Orai1 complex regulates SOCE‐dependent colon cancer cell migration: A novel opportunity to modulate anti‐EGFR mAb action by the alkyl‐lipid Ohmline. Oncotarget 7: 36168‐36184, 2016.
 172.Gurnett CA, De Waard M, Campbell KP. Dual function of the voltage‐dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 16: 431‐440, 1996.
 173.Hakim CH, Jackson WF, Segal SS. Connexin isoform expression in smooth muscle cells and endothelial cells of hamster cheek pouch arterioles and retractor feed arteries. Microcirculation 15: 503‐514, 2008.
 174.Hakim MA, Buchholz JN, Behringer EJ. Electrical dynamics of isolated cerebral and skeletal muscle endothelial tubes: Differential roles of G‐protein‐coupled receptors and K(+) channels. Pharmacol Res Perspect 6: e00391, 2018.
 175.Hald BO, Jacobsen JC, Sandow SL, Holstein‐Rathlou NH, Welsh DG. Less is more: Minimal expression of myoendothelial gap junctions optimizes cell‐cell communication in virtual arterioles. J Physiol 592: 3243‐3255, 2014.
 176.Hald BO, Welsh DG. Conceptualizing conduction as a pliant electrical response: Impact of gap junctions and ion channels. Am J Physiol Heart Circ Physiol 319: H1276‐H1289, 2020.
 177.Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508: 55‐60, 2014.
 178.Hamada K, Terauchi A, Mikoshiba K. Three‐dimensional rearrangements within inositol 1,4,5‐trisphosphate receptor by calcium. J Biol Chem 278: 52881‐52889, 2003.
 179.Harraz OF, Abd El‐Rahman RR, Bigdely‐Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115: 650‐661, 2014.
 180.Harraz OF, Brett SE, Zechariah A, Romero M, Puglisi JL, Wilson SM, Welsh DG. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR‐BKCa axis. Arterioscler Thromb Vasc Biol 35: 1843‐1851, 2015.
 181.Harraz OF, Longden TA, Dabertrand F, Hill‐Eubanks D, Nelson MT. Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP2 depletion. Proc Natl Acad Sci U S A 115: E3569‐E3577, 2018.
 182.Harraz OF, Visser F, Brett SE, Goldman D, Zechariah A, Hashad AM, Menon BK, Watson T, Starreveld Y, Welsh DG. CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries. J Gen Physiol 145: 405‐418, 2015.
 183.Harrington LS, Evans RJ, Wray J, Norling L, Swales KE, Vial C, Ali F, Carrier MJ, Mitchell JA. Purinergic 2X1 receptors mediate endothelial dependent vasodilation to ATP. Mol Pharmacol 72: 1132‐1136, 2007.
 184.Harrington LS, Mitchell JA. Novel role for P2X receptor activation in endothelium‐dependent vasodilation. Br J Pharmacol 143: 611‐617, 2004.
 185.Hartmann DA, Berthiaume AA, Grant RI, Harrill SA, Koski T, Tieu T, McDowell KP, Faino AV, Kelly AL, Shih AY. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci 24: 633‐645, 2021.
 186.Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing‐Implications in hypertension. J Mol Cell Cardiol 83: 112‐121, 2015.
 187.Hassessian H, Bodin P, Burnstock G. Blockade by glibenclamide of the flow‐evoked endothelial release of ATP that contributes to vasodilatation in the pulmonary vascular bed of the rat. Br J Pharmacol 109: 466‐472, 1993.
 188.Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin‐1 to basal vascular tone. Lancet 344: 852‐854, 1994.
 189.Hayoz S, Pettis J, Bradley V, Segal SS, Jackson WF. Increased amplitude of inward rectifier K(+)currents with advanced age in smooth muscle cells of murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 312: H1203‐H1214, 2017.
 190.He P, Curry FE. Measurement of membrane potential of endothelial cells in single perfused microvessels. Microvasc Res 50: 183‐198, 1995.
 191.He X, Deng J, Yu XJ, Yang S, Yang Y, Zang WJ. Activation of M3AChR (Type 3 muscarinic acetylcholine receptor) and Nrf2 (nuclear factor erythroid 2‐related factor 2) signaling by choline alleviates vascular smooth muscle cell phenotypic switching and vascular remodeling. Arterioscler Thromb Vasc Biol 40: 2649‐2664, 2020.
 192.Heberlein KR, Straub AC, Isakson BE. The myoendothelial junction: Breaking through the matrix? Microcirculation 16: 307‐322, 2009.
 193.Hedison TM, Hay S, Scrutton NS. A perspective on conformational control of electron transfer in nitric oxide synthases. Nitric Oxide 63: 61‐67, 2017.
 194.Heilbrunn LV, Wiercinski FJ. The action of various cations on muscle protoplasm. J Cell Comp Physiol 29: 15‐32, 1947.
 195.Hein TW, Belardinelli L, Kuo L. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: Role of nitric oxide and ATP‐sensitive potassium channels. J Pharmacol Exp Ther 291: 655‐664, 1999.
 196.Hein TW, Kuo L. cAMP‐independent dilation of coronary arterioles to adenosine: Role of nitric oxide, G proteins, and K(ATP) channels. Circ Res 85: 634‐642, 1999.
 197.Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L. Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol 33: 271‐282, 2001.
 198.Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 20: 3503‐3513, 2014.
 199.Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590: 6297‐6305, 2012.
 200.Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Zaccolo M, Pantano S, Mammano F. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods 4: 353‐358, 2007.
 201.Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 202.Hilgemann DW, Ball R. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273: 956‐959, 1996.
 203.Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001: re19, 2001.
 204.Hill CE. Inward rectification and vascular function: As it was in the beginning. J Physiol 586: 1465‐1467, 2008.
 205.Hill‐Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: Performing under pressure and going with the flow. Physiology (Bethesda) 29: 343‐360, 2014.
 206.Hill‐Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 3: a004549, 2011.
 207.Hill‐Eubanks DC, Werner ME, Nelson MT. Local elementary purinergic‐induced Ca2+ transients: From optical mapping of nerve activity to local Ca2+ signaling networks. J Gen Physiol 136: 149‐154, 2010.
 208.Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K, Marumo F. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91: 1367‐1373, 1993.
 209.Hirst GD, Edwards FR. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69: 546‐604, 1989.
 210.Hogg DS, McMurray G, Kozlowski RZ. Endothelial cells freshly isolated from small pulmonary arteries of the rat possess multiple distinct K+ current profiles. Lung 180: 203‐214, 2002.
 211.Hogg RC, Wang Q, Helliwell RM, Large WA. Properties of spontaneous inward currents in rabbit pulmonary artery smooth muscle cells. Pflugers Arch 425: 233‐240, 1993.
 212.Hojs N, Strucl M, Cankar K. The effect of glibenclamide on acetylcholine and sodium nitroprusside induced vasodilatation in human cutaneous microcirculation. Clin Physiol Funct Imaging 29: 38‐44, 2009.
 213.Hökfelt T, Pernow B, Wahren J. Substance P: A pioneer amongst neuropeptides. J Intern Med 249: 27‐40, 2001.
 214.Holdsworth CT, Copp SW, Ferguson SK, Sims GE, Poole DC, Musch TI. Acute inhibition of ATP‐sensitive K+ channels impairs skeletal muscle vascular control in rats during treadmill exercise. Am J Physiol Heart Circ Physiol 308: H1434‐H1442, 2015.
 215.Holland WC, Dunn CE. Role of the cell membrane and mitochondria in the phenomenon of ion transport in cardiac muscle. Am J Physiol 179: 486‐490, 1954.
 216.Holzer P. Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol 30: 5‐11, 1998.
 217.Holzer P. Peptidergic sensory neurons in the control of vascular functions: Mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol 121: 49‐146, 1992.
 218.Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (transient receptor potential vanilloid 4) channel‐dependent negative feedback mechanism regulates G. Arterioscler Thromb Vasc Biol 38: 542‐554, 2018.
 219.Hrometz SL, Edelmann SE, McCune DF, Olges JR, Hadley RW, Perez DM, Piascik MT. Expression of multiple alpha1‐adrenoceptors on vascular smooth muscle: Correlation with the regulation of contraction. J Pharmacol Exp Ther 290: 452‐463, 1999.
 220.Hulme EC, Birdsall NJ, Buckley NJ. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30: 633‐673, 1990.
 221.Hung TC, Lu SK, Su CH, Wu YJ, Hsieh CL, Lee WH, Tsai CH, Yeh HI. Remodeling of rabbit abdominal aorta and Cx43 gap junctions after stent placement: Effect of balloon injury plus cholesterol‐enriched diet. Int Angiol 31: 62‐69, 2012.
 222.Hüttner I, Boutet M, More RH. Gap junctions in arterial endothelium. J Cell Biol 57: 247‐252, 1973.
 223.Hyndman KA, Ho DH, Sega MF, Pollock JS. Histone deacetylase 1 reduces NO production in endothelial cells via lysine deacetylation of NO synthase 3. Am J Physiol Heart Circ Physiol 307: H803‐H809, 2014.
 224.Igarashi J, Michel T. Agonist‐modulated targeting of the EDG‐1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1‐phosphate and the role of caveolin‐1 in sphingolipid signal transduction. J Biol Chem 275: 32363‐32370, 2000.
 225.Ignarro LJ. Biosynthesis and metabolism of endothelium‐derived nitric oxide. Annu Rev Pharmacol Toxicol 30: 535‐560, 1990.
 226.Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 41: 485‐490, 1991.
 227.Iino M, Tsukioka M. Feedback control of inositol trisphosphate signalling bycalcium. Mol Cell Endocrinol 98: 141‐146, 1994.
 228.Inscho EW, Cook AK, Mui V, Imig JD. Calcium mobilization contributes to pressure‐mediated afferent arteriolar vasoconstriction. Hypertension 31: 421‐428, 1998.
 229.Isakson BE. Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication. J Cell Sci 121: 3664‐3673, 2008.
 230.Isakson BE, Best AK, Duling BR. Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am J Physiol Heart Circ Physiol 294: H2898‐H2904, 2008.
 231.Isakson BE, Damon DN, Day KH, Liao Y, Duling BR. Connexin40 and connexin43 in mouse aortic endothelium: Evidence for coordinated regulation. Am J Physiol Heart Circ Physiol 290: H1199‐H1205, 2006.
 232.Isakson BE, Duling BR. Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 97: 44‐51, 2005.
 233.Isakson BE, Ramos SI, Duling BR. Ca2+ and inositol 1,4,5‐trisphosphate‐mediated signaling across the myoendothelial junction. Circ Res 100: 246‐254, 2007.
 234.Ishihara K, Mitsuiye T, Noma A, Takano M. The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea‐pig cardiac myocytes. J Physiol 419: 297‐320, 1989.
 235.Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Hamada H, Ueno K, Kataoka T. Evidence for centrally induced cholinergic vasodilatation in skeletal muscle during voluntary one‐legged cycling and motor imagery in humans. Physiol Rep 1: e00092, 2013.
 236.Ishikawa T, Hume JR, Keef KD. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res 73: 1128‐1137, 1993.
 237.Jackson WF. Arteriolar tone is determined by activity of ATP‐sensitive potassium channels. Am J Physiol 265: H1797‐H1803, 1993.
 238.Jackson WF. Boosting the signal: Endothelial inward rectifier K(+) channels. Microcirculation 24 (3): e12319, 2017. DOI: 10.1111/micc.12319.
 239.Jackson WF. KV channels and the regulation of vascular smooth muscle tone. Microcirculation 25: 12421, 2018.
 240.Jackson WF. Myogenic tone in peripheral resistance arteries and arterioles: The pressure is on! Front Physiol 12: 699517, 2021.
 241.Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol 78: 89‐144, 2017.
 242.Jackson WF. Potassium channels in the peripheral microcirculation. Microcirculation 12: 113‐127, 2005.
 243.Jackson WF, Boerman EM, Lange EJ, Lundback SS, Cohen KD. Smooth muscle alpha1D‐adrenoceptors mediate phenylephrine‐induced vasoconstriction and increases in endothelial cell Ca2+ in hamster cremaster arterioles. Br J Pharmacol 155: 514‐524, 2008.
 244.Jacobson KA, Costanzi S, Joshi BV, Besada P, Shin DH, Ko H, Ivanov AA, Mamedova L. Agonists and antagonists for P2 receptors. Novartis Found Symp 276: 58‐68; discussion 68‐72, 107‐112, 275‐181, 2006.
 245.Jaggar JH, Nelson MT. Differential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279: C1528‐C1539, 2000.
 246.Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, Knot HJ, Bonev AD, Nelson MT. Ca2+ channels, ryanodine receptors and Ca(2+)‐activated K+ channels: A functional unit for regulating arterial tone. Acta Physiol Scand 164: 577‐587, 1998.
 247.Janigro D, West GA, Gordon EL, Winn HR. ATP‐sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol 265: C812‐C821, 1993.
 248.Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond EJ, Welsh DG. Inward rectifying potassium channels facilitate cell‐to‐cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 291: H1319‐H1328, 2006.
 249.Jardin I, Dionisio N, Lopez JJ, Salido GM, Rosado JA. Pharmacology of TRP channels in the vasculature. Curr Vasc Pharmacol 11: 480‐489, 2013.
 250.Jobs A, Schmidt K, Schmidt VJ, Lubkemeier I, van Veen TA, Kurtz A, Willecke K, de Wit C. Defective Cx40 maintains Cx37 expression but intact Cx40 is crucial for conducted dilations irrespective of hypertension. Hypertension 60: 1422‐1429, 2012.
 251.Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278: 69‐118, 2009.
 252.Johnstone SR, Kroncke BM, Straub AC, Best AK, Dunn CA, Mitchell LA, Peskova Y, Nakamoto RK, Koval M, Lo CW, Lampe PD, Columbus L, Isakson BE. MAPK phosphorylation of connexin 43 promotes binding of cyclin E and smooth muscle cell proliferation. Circ Res 111: U201‐U205, 2012.
 253.Johnstone SR, Ross J, Rizzo MJ, Straub AC, Lampe PD, Leitinger N, Isakson BE. Oxidized phospholipid species promote in vivo differential cx43 phosphorylation and vascular smooth muscle cell proliferation. Am J Pathol 175: 916‐924, 2009.
 254.Joyner MJ, Dietz NM. Sympathetic vasodilation in human muscle. Acta Physiol Scand 177: 329‐336, 2003.
 255.Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T. Flow‐regulated endothelial S1P receptor‐1 signaling sustains vascular development. Dev Cell 23: 600‐610, 2012.
 256.Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I, Hoffman TA, Cole MP, Kumar A, Dericco JS, Jeon BH, Irani K. Histone deacetylase 3 antagonizes aspirin‐stimulated endothelial nitric oxide production by reversing aspirin‐induced lysine acetylation of endothelial nitric oxide synthase. Circ Res 107: 877‐887, 2010.
 257.Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle‐extrinsic process. Circ Res 98: 682‐689, 2006.
 258.Kam Y, Kim DY, Koo SK, Joe CO. Transfer of second messengers through gap junction connexin 43 channels reconstituted in liposomes. Biochim Biophys Acta 1372: 384‐388, 1998.
 259.Kameritsch P, Khandoga N, Nagel W, Hundhausen C, Lidington D, Pohl U. Nitric oxide specifically reduces the permeability of Cx37‐containing gap junctions to small molecules. J Cell Physiol 203: 233‐242, 2005.
 260.Kang KT, Sullivan JC, Sasser JM, Imig JD, Pollock JS. Novel nitric oxide synthase—dependent mechanism of vasorelaxation in small arteries from hypertensive rats. Hypertension 49: 893‐901, 2007.
 261.Kang KT, Sullivan JC, Spradley FT, d'Uscio LV, Katusic ZS, Pollock JS. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II‐infused hypertensive rats. Am J Physiol Heart Circ Physiol 300: H718‐H724, 2011.
 262.Kansui Y, Garland CJ, Dora KA. Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 44: 135‐146, 2008.
 263.Kapela A, Behringer EJ, Segal SS, Tsoukias NM. Biophysical properties of microvascular endothelium: Requirements for initiating and conducting electrical signals. Microcirculation 25: e12429, 2018. DOI: 10.1111/micc.12429.
 264.Kauffenstein G, Drouin A, Thorin‐Trescases N, Bachelard H, Robaye B, D'Orleans‐Juste P, Marceau F, Thorin E, Sevigny J. NTPDase1 (CD39) controls nucleotide‐dependent vasoconstriction in mouse. Cardiovasc Res 85: 204‐213, 2010.
 265.Kauffenstein G, Tamareille S, Prunier F, Roy C, Ayer A, Toutain B, Billaud M, Isakson BE, Grimaud L, Loufrani L, Rousseau P, Abraham P, Procaccio V, Monyer H, de Wit C, Boeynaems JM, Robaye B, Kwak BR, Henrion D. Central role of P2Y6 UDP receptor in arteriolar myogenic tone. Arterioscler Thromb Vasc Biol 36: 1598‐1606, 2016.
 266.Kawai Y, Yokoyama Y, Kaidoh M, Ohhashi T. Shear stress‐induced ATP‐mediated endothelial constitutive nitric oxide synthase expression in human lymphatic endothelial cells. Am J Physiol Cell Physiol 298: C647‐C655, 2010.
 267.Keebler MV, Taylor CW. Endogenous signalling pathways and caged IP. J Cell Sci 130: 3728‐3739, 2017.
 268.Keech MK. Electron microscope study of the normal rat aorta. J Biophys Biochem Cytol 7: 533‐538, 1960.
 269.Keller TC, Butcher JT, Broseghini‐Filho GB, Marziano C, DeLalio LJ, Rogers S, Ning B, Martin JN, Chechova S, Cabot M, Shu X, Best AK, Good ME, Simao Padilha A, Purdy M, Yeager M, Peirce SM, Hu S, Doctor A, Barrett E, Le TH, Columbus L, Isakson BE. Modulating vascular hemodynamics with an alpha globin mimetic peptide (HbalphaX). Hypertension 68: 1494‐1503, 2016.
 270.Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1411: 273‐289, 1999.
 271.Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ. The beta3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II‐infused C57BL/6 mice. Hypertension 61: 137‐142, 2013.
 272.Kim M, Hennig GW, Smith TK, Perrino BA. Phospholamban knockout increases CaM kinase II activity and intracellular Ca2+ wave activity and alters contractile responses of murine gastric antrum. Am J Physiol Cell Physiol 294: C432‐C441, 2008.
 273.King DR, Padget RL, Perry J, Hoeker G, Smyth JW, Brown DA, Poelzing S. Elevated perfusate [Na(+)] increases contractile dysfunction during ischemia and reperfusion. Sci Rep 10: 17289, 2020.
 274.King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of connexin regulating peptides. Int J Mol Sci 22: 10186, 2021.
 275.Kirby BS, Crecelius AR, Voyles WF, Dinenno FA. Vasodilatory responsiveness to adenosine triphosphate in ageing humans. J Physiol 588: 4017‐4027, 2010.
 276.Kirkpatrick CJ, Bittinger F, Nozadze K, Wessler I. Expression and function of the non‐neuronal cholinergic system in endothelial cells. Life Sci 72: 2111‐2116, 2003.
 277.Klein MG, Cheng H, Santana LF, Jiang YH, Lederer WJ, Schneider MF. Two mechanisms of quantized calcium release in skeletal muscle. Nature 379: 455‐458, 1996.
 278.Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508 (Pt 1): 199‐209, 1998.
 279.Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44: 65‐81, 2008.
 280.Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science 273: 1709‐1714, 1996.
 281.Köhler R, Brakemeier S, Kühn M, Degenhardt C, Buhr H, Pries A, Hoyer J. Expression of ryanodine receptor type 3 and TRP channels in endothelial cells: Comparison of in situ and cultured human endothelial cells. Cardiovasc Res 51: 160‐168, 2001.
 282.Köhler R, Degenhardt C, Kühn M, Runkel N, Paul M, Hoyer J. Expression and function of endothelial Ca(2+)‐activated K(+) channels in human mesenteric artery: A single‐cell reverse transcriptase‐polymerase chain reaction and electrophysiological study in situ. Circ Res 87: 496‐503, 2000.
 283.Kohler R, Ruth P. Endothelial dysfunction and blood pressure alterations in K+‐channel transgenic mice. Pflugers Arch 459: 969‐976, 2010.
 284.Komine H, Matsukawa K, Tsuchimochi H, Nakamoto T, Murata J. Sympathetic cholinergic nerve contributes to increased muscle blood flow at the onset of voluntary static exercise in conscious cats. Am J Physiol Regul Integr Comp Physiol 295: R1251‐R1262, 2008.
 285.Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 414: 441‐452, 2008.
 286.Koss KL, Kranias EG. Phospholamban: A prominent regulator of myocardial contractility. Circ Res 79: 1059‐1063, 1996.
 287.Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt‐Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science (New York, NY) 281: 1640‐1645, 1998.
 288.Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve‐evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 306: H981‐H988, 2014.
 289.Krishnamurty VS, Kadowitz PJ. Influence of adenosine triphosphate on the isolated perfused mesenteric artery of the rabbit. Can J Physiol Pharmacol 61: 1409‐1417, 1983.
 290.Kroetsch JT, Levy AS, Zhang H, Aschar‐Sobbi R, Lidington D, Offermanns S, Nedospasov SA, Backx PH, Heximer SP, Bolz SS. Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nat Commun 8: 14805, 2017.
 291.Krogh A, Harrop GA, Rehberg PB. Studies on the physiology of capillaries: III. The innervation of the blood vessels in the hind legs of the frog. J Physiol 56: 179‐189, 1922.
 292.Kshatri AS, Gonzalez‐Hernandez A, Giraldez T. Physiological roles and therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci 11: 258, 2018.
 293.Kumari R, Goh G, Ng LL, Boarder MR. ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: Dominance of P2Y2 receptors. Br J Pharmacol 140: 1169‐1176, 2003.
 294.Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C. Lack of connexin 40 causes displacement of renin‐producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol 18: 1103‐1111, 2007.
 295.Kwan HY, Huang Y, Yao X. Store‐operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G‐dependent mechanism. J Biol Chem 275: 6758‐6763, 2000.
 296.Lagaud G, Karicheti V, Knot HJ, Christ GJ, Laher I. Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries. Am J Physiol Heart Circ Physiol 283: H2177‐H2186, 2002.
 297.Lamboley M, Pittet P, Koenigsberger M, Sauser R, Bény JL, Meister JJ. Evidence for signaling via gap junctions from smooth muscle to endothelial cells in rat mesenteric arteries: Possible implication of a second messenger. Cell Calcium 37: 311‐320, 2005.
 298.Lamont C, Vainorius E, Wier WG. Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries. J Physiol 549: 801‐808, 2003.
 299.Lamont C, Vial C, Evans RJ, Wier WG. P2X1 receptors mediate sympathetic postjunctional Ca2+ transients in mesenteric small arteries. Am J Physiol Heart Circ Physiol 291: H3106‐H3113, 2006.
 300.Lamont C, Wier WG. Evoked and spontaneous purinergic junctional Ca2+ transients (jCaTs) in rat small arteries. Circ Res 91: 454‐456, 2002.
 301.Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2: a003996, 2010.
 302.Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4,5‐bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 45: 574‐582, 2009.
 303.Larson DM, Haudenschild CC, Beyer EC. Gap junction messenger RNA expression by vascular wall cells. Circ Res 66: 1074‐1080, 1990.
 304.Lazrak A, Peracchia C. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys J 65: 2002‐2012, 1993.
 305.Lazrak A, Peres A, Giovannardi S, Peracchia C. Ca‐mediated and independent effects of arachidonic acid on gap junctions and Ca‐independent effects of oleic acid and halothane. Biophys J 67: 1052‐1059, 1994.
 306.Le Gal L, Alonso F, Mazzolai L, Meda P, Haefliger JA. Interplay between connexin40 and nitric oxide signaling during hypertension. Hypertension 65: 910‐915, 2015.
 307.Ledoux J, Bonev AD, Nelson MT. Ca2+‐activated K+ channels in murine endothelial cells: Block by intracellular calcium and magnesium. J Gen Physiol 131: 125‐135, 2008.
 308.Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT. Functional architecture of inositol 1,4,5‐trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105: 9627‐9632, 2008.
 309.Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium‐activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21: 69‐78, 2006.
 310.Lee US, Cui J. BK channel activation: Structural and functional insights. Trends Neurosci 33: 415‐423, 2010.
 311.Leo F, Suvorava T, Heuser SK, Li J, LoBue A, Barbarino F, Piragine E, Schneckmann R, Hutzler B, Good ME, Fernandez BO, Vornholz L, Rogers S, Doctor A, Grandoch M, Stegbauer J, Weitzberg E, Feelisch M, Lundberg JO, Isakson BE, Kelm M, Cortese‐Krott MM. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation 144: 870‐889, 2021.
 312.Lesh RE, Marks AR, Somlyo AV, Fleischer S, Somlyo AP. Anti‐ryanodine receptor antibody binding sites in vascular and endocardial endothelium. Circ Res 72: 481‐488, 1993.
 313.Leung FP, Yung LM, Yao X, Laher I, Huang Y. Store‐operated calcium entry in vascular smooth muscle. Br J Pharmacol 153: 846‐857, 2008.
 314.Levin RM, Jacoby R, Wein AJ. Effect of adenosine triphosphate on contractility and adenosine triphosphatase activity of the rabbit urinary bladder. Mol Pharmacol 19: 525‐528, 1981.
 315.Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M. High‐density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110: 3355‐3359, 2004.
 316.Lew MJ, Duling BR. Access of blood‐borne vasoconstrictors to the arteriolar smooth muscle. J Vasc Res 29: 341‐346, 1992.
 317.Lewis O. Stephen Hales and the measurement of blood pressure. J Hum Hypertens 8: 865‐871, 1994.
 318.Leybaert L. IP3, still on the move but now in the slow lane. Sci Signal 9: fs17, 2016.
 319.Li Y, Baylie RL, Tavares MJ, Brayden JE. TRPM4 channels couple purinergic receptor mechanoactivation and myogenic tone development in cerebral parenchymal arterioles. J Cereb Blood Flow Metab 34: 1706‐1714, 2014.
 320.Li Y, Lucas‐Osma AM, Black S, Bandet MV, Stephens MJ, Vavrek R, Sanelli L, Fenrich KK, Di Narzo AF, Dracheva S, Winship IR, Fouad K, Bennett DJ. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 23: 733‐741, 2017.
 321.Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion‐exchange mechanism of the sodium/calcium exchanger. Science 335: 686‐690, 2012.
 322.Liao P, Yu D, Li G, Yong TF, Soon JL, Chua YL, Soong TW. A smooth muscle Cav1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state‐dependent inhibition by nifedipine. J Biol Chem 282: 35133‐35142, 2007.
 323.Liao Y, Duling BR. Blockade of connexin 43 expression by stable transfection of antisense cDNA in cultured vascular smooth muscle cells. Antisense Nucleic Acid Drug Dev 10: 275‐281, 2000.
 324.Lillo MA, Gaete PS, Puebla M, Ardiles NM, Poblete I, Becerra A, Simon F, Figueroa XF. Critical contribution of Na(+)‐Ca(2+) exchanger to the Ca(2+)‐mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J 32: 2137‐2147, 2018.
 325.Lim To WK, Kumar P, Marshall JM. Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein endothelial cells. Placenta 36: 759‐766, 2015.
 326.Lin D, Sterling H, Lerea KM, Giebisch G, Wang WH. Protein kinase C (PKC)‐induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J Biol Chem 277: 44278‐44284, 2002.
 327.Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, Jing R, Liu J, Lederer WJ, Chen J, Ouyang K. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight 1: e89402, 2016.
 328.Lin Z, Witschas K, Garcia T, Chen RS, Hansen JP, Sellers ZM, Kuzmenkina E, Herzig S, Best PM. A critical GxxxA motif in the gamma6 calcium channel subunit mediates its inhibitory effect on Cav3.1 calcium current. J Physiol 586: 5349‐5366, 2008.
 329.Lindsey SH, Tribe RM, Songu‐Mize E. Cyclic stretch decreases TRPC4 protein and capacitative calcium entry in rat vascular smooth muscle cells. Life Sci 83: 29‐34, 2008.
 330.Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268: H729‐H739, 1995.
 331.Little TL, Xia J, Duling BR. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res 76: 498‐504, 1995.
 332.Liu J, Garcia‐Cardena G, Sessa WC. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: Mutagenesis of palmitoylation sites, cysteines‐15 and/or ‐26, argues against depalmitoylation‐induced translocation of the enzyme. Biochemistry 34: 12333‐12340, 1995.
 333.Liu J, Sessa WC. Identification of covalently bound amino‐terminal myristic acid in endothelial nitric oxide synthase. J Biol Chem 269: 11691‐11694, 1994.
 334.Liu X, Xu X, Shang R, Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide 78: 113‐120, 2018.
 335.Loffler M, Morote‐Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK. Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 27: 1004‐1013, 2007.
 336.Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95: 269‐280, 2012.
 337.Lohman AW, Billaud M, Straub AC, Johnstone SR, Best AK, Lee M, Barr K, Penuela S, Koval M, Laird DW, Isakson BE. Expression of pannexin isoforms in the systemic murine arterial network. J Vasc Res 49: 405‐416, 2012.
 338.Lohman AW, Leskov IL, Butcher JT, Johnstone SR, Stokes TA, Begandt D, DeLalio LJ, Best AK, Penuela S, Leitinger N, Ravichandran KS, Stokes KY, Isakson BE. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat Commun 6: 7965, 2015.
 339.Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill‐Eubanks D, Nelson MT. Capillary K(+)‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20: 717‐726, 2017.
 340.Longden TA, Mughal A, Hennig GW, Harraz OF, Shui B, Lee FK, Lee JC, Reining S, Kotlikoff MI, König GM, Kostenis E, Hill‐Eubanks D, Nelson MT. Local IP3 receptor‐mediated Ca2+ signals compound to direct blood flow in brain capillaries. Sci Adv 7: eabh0101, 2021.
 341.Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 22: 183‐196, 2015.
 342.Looft‐Wilson RC, Haug SJ, Neufer PD, Segal SS. Independence of connexin expression and vasomotor conduction from sympathetic innervation in hamster feed arteries. Microcirculation 11: 397‐408, 2004.
 343.Looft‐Wilson RC, Payne GW, Segal SS. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol (1985) 97: 1152‐1158, 2004.
 344.Lu P, Zhang CH, Lifshitz LM, ZhuGe R. Extraoral bitter taste receptors in health and disease. J Gen Physiol 149: 181‐197, 2017.
 345.Lu Y, Zhang R, Ge Y, Carlstrom M, Wang S, Fu Y, Cheng L, Wei J, Roman RJ, Wang L, Gao X, Liu R. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Ren Physiol 308: F1020‐F1025, 2015.
 346.Luttrell DK, Luttrell LM. Not so strange bedfellows: G‐protein‐coupled receptors and Src family kinases. Oncogene 23: 7969‐7978, 2004.
 347.Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267: 14483‐14489, 1992.
 348.Ma X, Cheng KT, Wong CO, O'Neil RG, Birnbaumer L, Ambudkar IS, Yao X. Heteromeric TRPV4‐C1 channels contribute to store‐operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 50: 502‐509, 2011.
 349.Maier‐Begandt D, Comstra HS, Molina SA, Krüger N, Ruddiman CA, Chen YL, Chen X, Biwer LA, Johnstone SR, Lohman AW, Good ME, DeLalio LJ, Hong K, Bacon HM, Yan Z, Sonkusare SK, Koval M, Isakson BE. A venous‐specific purinergic signaling cascade initiated by Pannexin 1 regulates TNFα‐induced increases in endothelial permeability. Sci Signal 14: eaba2940, 2021.
 350.Maimon N, Titus PA, Sarelius IH. Pre‐exposure to adenosine, acting via A(2A) receptors on endothelial cells, alters the protein kinase A dependence of adenosine‐induced dilation in skeletal muscle resistance arterioles. J Physiol 592: 2575‐2590, 2014.
 351.Mair KM, Robinson E, Kane KA, Pyne S, Brett RR, Pyne NJ, Kennedy S. Interaction between anandamide and sphingosine‐1‐phosphate in mediating vasorelaxation in rat coronary artery. Br J Pharmacol 161: 176‐192, 2010.
 352.Mak DO, McBride S, Foskett JK. Inositol 1,4,5‐trisphosphate activation of inositol trisphosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci U S A 95: 15821‐15825, 1998.
 353.Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, Hendricks‐Munoz KD, Coetzee WA. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: Effects on coronary flow and endothelin‐1 secretion. FASEB J 21: 2162‐2172, 2007.
 354.Mantyh PW. Neurobiology of substance P and the NK1 receptor. J Clin Psychiatry 11 (63 Suppl): 381434, 2002.
 355.Marasciulo FL, Montagnani M, Potenza MA. Endothelin‐1: The yin and yang on vascular function. Curr Med Chem 13: 1655‐1665, 2006.
 356.Martell M, Coll M, Ezkurdia N, Raurell I, Genescà J. Physiopathology of splanchnic vasodilation in portal hypertension. World J Hepatol 2: 208‐220, 2010.
 357.Marziano C, Hong K, Cope EL, Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric oxide‐dependent feedback loop regulates transient receptor potential vanilloid 4 (TRPV4) channel cooperativity and endothelial function in small pulmonary arteries. J Am Heart Assoc 6: e007157, 2017.
 358.Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 73: 4249‐4264, 2016.
 359.Matsuki T, Hynes MR, Duling BR. Comparison of conduit vessel and resistance vessel reactivity: Influence of intimal permeability. Am J Physiol 264: h1251‐h1258, 1993.
 360.Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K. SIRT1 promotes endothelium‐dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104: 14855‐14860, 2007.
 361.McCarron JG, Chalmers S, MacMillan D, Olson ML. Agonist‐evoked Ca(2+) wave progression requires Ca(2+) and IP(3). J Cell Physiol 224: 334‐344, 2010.
 362.McCarron JG, Olson ML, Currie S, Wright AJ, Anderson KI, Girkin JM. Elevations of intracellular calcium reflect normal voltage‐dependent behavior, and not constitutive activity, of voltage‐dependent calcium channels in gastrointestinal and vascular smooth muscle. J Gen Physiol 133: 439‐457, 2009.
 363.McCullough WT, Collins DM, Ellsworth ML. Arteriolar responses to extracellular ATP in striated muscle. Am J Physiol 272: H1886‐H1891, 1997.
 364.Meens MJ, Alonso F, Le Gal L, Kwak BR, Haefliger JA. Endothelial Connexin37 and Connexin40 participate in basal but not agonist‐induced NO release. Cell Commun Signal 13: 34, 2015.
 365.Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 149: 1065‐1089, 2017.
 366.Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi‐process calcium‐buffering chaperone of the endoplasmic reticulum. Biochem J 417: 651‐666, 2009.
 367.Michelotti GA, Price DT, Schwinn DA. Alpha 1‐adrenergic receptor regulation: Basic science and clinical implications. Pharmacol Ther 88: 281‐309, 2000.
 368.Miike T, Shirahase H, Kanda M, Kunishiro K, Kurahashi K. NK1 receptor‐mediated endothelium‐dependent relaxation and contraction with different sensitivity to post‐receptor signaling in pulmonary arteries. Vasc Pharmacol 51: 147‐153, 2009.
 369.Milner P, Bodin P, Loesch A, Burnstock G. Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 170: 649‐656, 1990.
 370.Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson J, Burnstock G. Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc Biol Sci 241: 245‐248, 1990.
 371.Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 153: e202012754, 2021.
 372.Minami K, Fukuzawa K, Nakaya Y, Zeng XR, Inoue I. Mechanism of activation of the Ca(2+)‐activated K+ channel by cyclic AMP in cultured porcine coronary artery smooth muscle cells. Life Sci 53: 1129‐1135, 1993.
 373.Minneman KP. Alpha 1‐adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40: 87‐119, 1988.
 374.Mistrova E, Kruzliak P, Chottova DM. Role of substance P in the cardiovascular system. Neuropeptides 58: 41‐51, 2016.
 375.Mitchell DA, Michel T, Marleta MA. Effects of S‐nitrosation of nitric oxide synthase. Adv Exp Biol 1: 151‐456, 2007.
 376.Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM. Connexins and pannexins in vascular function and disease. Int J Mol Sci 19: 1663, 2018.
 377.Moncada S. Nitric oxide in the vasculature: Physiology and pathophysiology. Ann N Y Acad Sci 811: 60‐67; discussion 67‐69, 1997.
 378.Moncada S, Bolanos JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97: 1676‐1689, 2006.
 379.Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3: 214‐220, 2002.
 380.Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L‐type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22: 6027‐6034, 2003.
 381.Mortensen SP, Gonzalez‐Alonso J, Bune LT, Saltin B, Pilegaard H, Hellsten Y. ATP‐induced vasodilation and purinergic receptors in the human leg: Roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol Regul Integr Comp Physiol 296: R1140‐R1148, 2009.
 382.Mortensen SP, Nyberg M, Thaning P, Saltin B, Hellsten Y. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension 53: 993‐999, 2009.
 383.Morton SK, Chaston DJ, Howitt L, Heisler J, Nicholson BJ, Fairweather S, Bröer S, Ashton AW, Matthaei KI, Hill CE. Loss of functional endothelial connexin40 results in exercise‐induced hypertension in mice. Hypertension 65: 662‐669, 2015.
 384.Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1‐F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98: 6656‐6661, 2001.
 385.Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 96: 2811‐2816, 1999.
 386.Mueller CF, Laude K, McNally JS, Harrison DG. ATVB in focus: Redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25: 274‐278, 2005.
 387.Mulderry PK, Ghatei MA, Bishop AE, Allen YS, Polak JM, Bloom SR. Distribution and chromatographic characterisation of CGRP‐like immunoreactivity in the brain and gut of the rat. Regul Pept 12: 133‐143, 1985.
 388.Muñoz M, Coveñas R. Safety of neurokinin‐1 receptor antagonists. Expert Opin Drug Saf 12: 673‐685, 2013.
 389.Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 19: 133‐154, 1999.
 390.Mylecharane EJ. Mechanisms involved in serotonin‐induced vasodilatation. Blood Vessels 27: 116‐126, 1990.
 391.Naik JS, Osmond JM, Walker BR, Kanagy NL. Hydrogen sulfide‐induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol 311: H1437‐H1444, 2016.
 392.Narahari AK, Kreutzberger AJ, Gaete PS, Chiu YH, Leonhardt SA, Medina CB, Jin X, Oleniacz PW, Kiessling V, Barrett PQ, Ravichandran KS, Yeager M, Contreras JE, Tamm LK, Bayliss DA. ATP and large signaling metabolites flux through caspase‐activated Pannexin 1 channels. elife 10: e64787, 2021.
 393.Nausch LW, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 302: H594‐H602, 2012.
 394.Navarro G, Cordomí A, Casadó‐Anguera V, Moreno E, Cai NS, Cortés A, Canela EI, Dessauer CW, Casadó V, Pardo L, Lluís C, Ferré S. Evidence for functional pre‐coupled complexes of receptor heteromers and adenylyl cyclase. Nat Commun 9: 1242, 2018.
 395.Navedo MF, Amberg GC, Votaw VS, Santana LF. Constitutively active L‐type Ca2+ channels. Proc Natl Acad Sci U S A 102: 11112‐11117, 2005.
 396.Navedo MF, Nieves‐Cintrón M, Amberg GC, Yuan C, Votaw VS, Lederer WJ, McKnight GS, Santana LF. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II‐induced hypertension. Circ Res 102: e1‐e11, 2008.
 397.Navedo MF, Takeda Y, Nieves‐Cintrón M, Molkentin JD, Santana LF. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. Am J Physiol Cell Physiol 298: C211‐C220, 2010.
 398.Neely A, Hidalgo P. Structure‐function of proteins interacting with the alpha1 pore‐forming subunit of high‐voltage‐activated calcium channels. Front Physiol 5: 209, 2014.
 399.Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633‐637, 1995.
 400.Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268: C799‐C822, 1995.
 401.Newby DE, Sciberras DG, Ferro CJ, Gertz BJ, Sommerville D, Majumdar A, Lowry RC, Webb DJ. Substance P‐induced vasodilatation is mediated by the neurokinin type 1 receptor but does not contribute to basal vascular tone in man. Br J Clin Pharmacol 48: 336‐344, 1999.
 402.Ngai AC, Coyne EF, Meno JR, West GA, Winn HR. Receptor subtypes mediating adenosine‐induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol 280: H2329‐H2335, 2001.
 403.Nichols CM, Povstyan OV, Albert AP, Gordienko DV, Khan O, Vasilikostas G, Khong TK, Wan A, Reddy M, Harhun MI. Vascular smooth muscle cells from small human omental arteries express P2X1 and P2X4 receptor subunits. Purinergic Signal 10: 565‐572, 2014.
 404.North RA. Molecular physiology of P2X receptors. Physiol Rev 82: 1013‐1067, 2002.
 405.Norton CE, Boerman EM, Segal SS. Differential hyperpolarization to substance P and calcitonin gene‐related peptide in smooth muscle versus endothelium of mouse mesenteric artery. Microcirculation 28: e12733, 2021. DOI: 10.1111/micc.12733.
 406.Norwood N, Moore TM, Dean DA, Bhattacharjee R, Li M, Stevens T. Store‐operated calcium entry and increased endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 279: L815‐L824, 2000.
 407.Nyberg M, Mortensen SP, Thaning P, Saltin B, Hellsten Y. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle. Hypertension 56: 1102‐1108, 2010.
 408.O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315‐328, 1994.
 409.Obert E, Strauss R, Brandon C, Grek C, Ghatnekar G, Gourdie R, Rohrer B. Targeting the tight junction protein, zonula occludens‐1, with the connexin43 mimetic peptide, alphaCT1, reduces VEGF‐dependent RPE pathophysiology. J Mol Med (Berl) 95: 535‐552, 2017.
 410.Oishi H, Schuster A, Lamboley M, Stergiopulos N, Meister JJ, Bény JL. Role of membrane potential in vasomotion of isolated pressurized rat arteries. Life Sci 71: 2239‐2248, 2002.
 411.Okabe K, Kitamura K, Kuriyama H. Features of 4‐aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflugers Arch 409: 561‐568, 1987.
 412.Okamoto T, Akita N, Hayashi T, Shimaoka M, Suzuki K. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell‐cell interaction with activated cells. Atherosclerosis 236: 430‐437, 2014.
 413.Okamoto T, Akiyama M, Takeda M, Gabazza EC, Hayashi T, Suzuki K. Connexin32 is expressed in vascular endothelial cells and participates in gap‐junction intercellular communication. Biochem Biophys Res Commun 382: 264‐268, 2009.
 414.Okamoto T, Kawamoto E, Takagi Y, Akita N, Hayashi T, Park EJ, Suzuki K, Shimaoka M. Gap junction‐mediated regulation of endothelial cellular stiffness. Sci Rep 7: 6134, 2017.
 415.Oliveira CL. Metabolic consequences of craniopharyingioma and their management. Endocrinol Nutr 60: 529‐534, 2013.
 416.Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Structural analysis of the voltage‐dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron 42: 387‐399, 2004.
 417.Orie NN, Thomas AM, Perrino BA, Tinker A, Clapp LH. Ca2+/calcineurin regulation of cloned vascular K ATP channels: Crosstalk with the protein kinase A pathway. Br J Pharmacol 157: 554‐564, 2009.
 418.Ota H, Beutz MA, Ito M, Abe K, Oka M, McMurtry IF. S1P(4) receptor mediates S1P‐induced vasoconstriction in normotensive and hypertensive rat lungs. Pulm Circ 1: 399‐404, 2011.
 419.Ottolini M, Daneva Z, Chen YL, Cope EL, Kasetti RB, Zode GS, Sonkusare SK. Mechanisms underlying selective coupling of endothelial Ca(2+) signals with eNOS vs. IK/SK channels in systemic and pulmonary arteries. J Physiol 598: 3577‐3596, 2020.
 420.Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. Wiley Interdiscip Rev Syst Biol Med 11: e1448, 2019.
 421.Park JY, Hwang EM, Yarishkin O, Seo JH, Kim E, Yoo J, Yi GS, Kim DG, Park N, Ha CM, La JH, Kang D, Han J, Oh U, Hong SG. TRPM4b channel suppresses store‐operated Ca2+ entry by a novel protein‐protein interaction with the TRPC3 channel. Biochem Biophys Res Commun 368: 677‐683, 2008.
 422.Parker I, Choi J, Yao Y. Elementary events of InsP3‐induced Ca2+ liberation in Xenopus oocytes: Hot spots, puffs and blips. Cell Calcium 20: 105‐121, 1996.
 423.Parnavelas JG, Kelly W, Burnstock G. Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature 316: 724‐725, 1985.
 424.Payne LB, Darden J, Suarez‐Martinez AD, Zhao H, Hendricks A, Hartland C, Chong D, Kushner EJ, Murfee WL, Chappell JC. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol (Camb) 13: 31‐43, 2021.
 425.Pediani JD, McGrath JC, Wilson SM. P2Y receptor‐mediated Ca2+ signalling in cultured rat aortic smooth muscle cells. Br J Pharmacol 126: 1660‐1666, 1999.
 426.Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443: 700‐704, 2006.
 427.Perez DM. α 1‐Adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front Pharmacol 11: 581098, 2020.
 428.Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: Reversal of arginine steal? Cardiovasc Res 98: 334‐343, 2013.
 429.Pesic A, Madden JA, Pesic M, Rusch NJ. High blood pressure upregulates arterial L‐type Ca2+ channels: Is membrane depolarization the signal? Circ Res 94: e97‐e104, 2004.
 430.Pires PW, Sullivan MN, Pritchard HA, Robinson JJ, Earley S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium‐dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 309: H2031‐H2041, 2015.
 431.Pogoda K, Füller M, Pohl U, Kameritsch P. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun Signal 12: 33, 2014.
 432.Pogoda K, Mannell H, Blodow S, Schneider H, Schubert KM, Qiu J, Schmidt A, Imhof A, Beck H, Tanase LI, Pfeifer A, Pohl U, Kameritsch P. NO augments endothelial reactivity by reducing myoendothelial calcium signal spreading: A novel role for Cx37 (connexin 37) and the protein tyrosine phosphatase SHP‐2. Arterioscler Thromb Vasc Biol 37: 2280‐2290, 2017.
 433.Pollock DM. Contrasting pharmacological ETB receptor blockade with genetic ETB deficiency in renal responses to big ET‐1. Physiol Genomics 6: 39‐43, 2001.
 434.Poucher SM. The role of the A(2A) adenosine receptor subtype in functional hyperaemia in the hindlimb of anaesthetized cats. J Physiol 492 (Pt 2): 495‐503, 1996.
 435.Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. Regulation of acetylcholine synthesis and storage. Neurochem Int 41: 291‐299, 2002.
 436.Puzserova A, Bernatova I. Blood pressure regulation in stress: Focus on nitric oxide‐dependent mechanisms. Physiol Res 65: s309‐s342, 2016.
 437.Qu Y, Dahl G. Function of the voltage gate of gap junction channels: Selective exclusion of molecules. Proc Natl Acad Sci U S A 99: 697‐702, 2002.
 438.Quallo T, Gentry C, Bevan S, Broad LM, Mogg AJ. Activation of transient receptor potential ankyrin 1 induces CGRP release from spinal cord synaptosomes. Pharmacol Res Perspect 3: e00191, 2015.
 439.Quayle JM, Nelson MT, Standen NB. ATP‐sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77: 1165‐1232, 1997.
 440.Quednau BD, Nicoll DA, Philipson KD. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272: C1250‐C1261, 1997.
 441.Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP‐sensitive K+ channel. Circ Res 94: 1359‐1366, 2004.
 442.Rader F, Victor RG. The slow evolution of blood pressure monitoring: But wait, not so fast! JACC Basic Transl Sci 2: 643‐645, 2017.
 443.Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino‐Watkins C, Jobbagy S, Carew NT, Cantu‐Medellin N, Wood KC, Baty CJ, Schopfer FJ, Kelley EE, Gladwin MT, Martin E, Straub AC. Cytochrome b5 reductase 3 modulates soluble guanylate cyclase redox state and cGMP signaling. Circ Res 121: 137‐148, 2017.
 444.Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem 176: 1243‐1251, 1948.
 445.Ravi K, Brennan LA, Levic S, Ross PA, Black SM. S‐Nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc Natl Acad Sci U S A 101: 2619‐2624, 2004.
 446.Ray CJ, Abbas MR, Coney AM, Marshall JM. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia‐induced vasodilatation: In vivo and in vitro studies. J Physiol 544: 195‐209, 2002.
 447.Ray CJ, Marshall JM. Elucidation in the rat of the role of adenosine and A2A‐receptors in the hyperaemia of twitch and tetanic contractions. J Physiol 587: 1565‐1578, 2009.
 448.Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271: 1876‐1879, 1996.
 449.Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 269: 20584‐20591, 1994.
 450.Ren X, Philipson KD. The topology of the cardiac Na(+)/Ca(2)(+) exchanger, NCX1. J Mol Cell Cardiol 57: 68‐71, 2013.
 451.Revel JP, Karnovsky MJ. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33: C7‐C12, 1967.
 452.Rhett JM, Veeraraghavan R, Poelzing S, Gourdie RG. The perinexus: Sign‐post on the path to a new model of cardiac conduction? Trends Cardiovasc Med 23: 222‐228, 2013.
 453.Rhodin JA. The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18: 181‐223, 1967.
 454.Rizzoni D, Rizzoni M, Nardin M, Chiarini G, Agabiti‐Rosei C, Aggiusti C, Paini A, Salvetti M, Muiesan ML. Vascular aging and disease of the small vessels. High Blood Press Cardiovasc Prev 26: 183‐189, 2019.
 455.Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265: C299‐C303, 1993.
 456.Robertson JD. The occurrence of a subunit pattern in the unit membranes of club endings in mauthner cell synapses in goldfish brains. J Cell Biol 19: 201‐221, 1963.
 457.Robertson JL, Palmer LG, Roux B. Long‐pore electrostatics in inward‐rectifier potassium channels. J Gen Physiol 132: 613‐632, 2008.
 458.Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I‐glucagon. J Biol Chem 246: 1872‐1876, 1971.
 459.Rongen GA, Smits P, Thien T. Characterization of ATP‐induced vasodilation in the human forearm vascular bed. Circulation 90: 1891‐1898, 1994.
 460.Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G‐protein‐coupled receptors. Nature 459: 356‐363, 2009.
 461.Rosenmeier JB, Hansen J, Gonzalez‐Alonso J. Circulating ATP‐induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 558: 351‐365, 2004.
 462.Rummery NM, Brock JA, Pakdeechote P, Ralevic V, Dunn WR. ATP is the predominant sympathetic neurotransmitter in rat mesenteric arteries at high pressure. J Physiol 582: 745‐754, 2007.
 463.Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene‐related peptide: Physiology and pathophysiology. Physiol Rev 94: 1099‐1142, 2014.
 464.Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y. Sphingosine‐1‐phosphate, a platelet‐derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90: 325‐332, 2002.
 465.Saez JC, Connor JA, Spray DC, Bennett MV. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5‐trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A 86: 2708‐2712, 1989.
 466.Saito H, Yoshizawa H, Yoshimori K, Katakami N, Katsumata N, Kawahara M, Eguchi K. Efficacy and safety of single‐dose fosaprepitant in the prevention of chemotherapy‐induced nausea and vomiting in patients receiving high‐dose cisplatin: A multicentre, randomised, double‐blind, placebo‐controlled phase 3 trial. Ann Oncol 24: 1067‐1073, 2013.
 467.Saito Y, McKay M, Eraslan A, Hester RL. Functional hyperemia in striated muscle is reduced following blockade of ATP‐sensitive potassium channels. Am J Physiol 270: H1649‐H1654, 1996.
 468.Salas MM, Hargreaves KM, Akopian AN. TRPA1‐mediated responses in trigeminal sensory neurons: Interaction between TRPA1 and TRPV1. Eur J Neurosci 29: 1568‐1578, 2009.
 469.Salazar NC, Chen J, Rockman HA. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768: 1006‐1018, 2007.
 470.Saleh SN, Albert AP, Peppiatt CM, Large WA. Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577: 479‐495, 2006.
 471.Salomone S, Potts EM, Tyndall S, Ip PC, Chun J, Brinkmann V, Waeber C. Analysis of sphingosine 1‐phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 153: 140‐147, 2008.
 472.Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J Cell Biochem 92: 913‐922, 2004.
 473.Sancho M, Samson NC, Hald BO, Hashad AM, Marrelli SP, Brett SE, Welsh DG. KIR channels tune electrical communication in cerebral arteries. J Cereb Blood Flow Metab 37: 2171‐2184, 2017.
 474.Sandoval A, Oviedo N, Andrade A, Felix R. Glycosylation of asparagines 136 and 184 is necessary for the alpha2delta subunit‐mediated regulation of voltage‐gated Ca2+ channels. FEBS Lett 576: 21‐26, 2004.
 475.Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F. What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36: 67‐76, 2009.
 476.Sandow SL, Hill CE. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium‐derived hyperpolarizing factor‐mediated responses. Circ Res 86: 341‐346, 2000.
 477.Sandow SL, Looft‐Wilson R, Doran B, Grayson TH, Segal SS, Hill CE. Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovasc Res 60: 643‐653, 2003.
 478.Sandow SL, Neylon CB, Chen MX, Garland CJ. Spatial separation of endothelial small‐ and intermediate‐conductance calcium‐activated potassium channels (K(Ca)) and connexins: Possible relationship to vasodilator function? J Anat 209: 689‐698, 2006.
 479.Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M. Myoendothelial contacts, gap junctions, and microdomains: Anatomical links to function? Microcirculation 19: 403‐415, 2012.
 480.Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC. Involvement of myoendothelial gap junctions in the actions of endothelium‐derived hyperpolarizing factor. Circ Res 90: 1108‐1113, 2002.
 481.Santana LF, Chase EG, Votaw VS, Nelson MT, Greven R. Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes. J Physiol 544: 57‐69, 2002.
 482.Saria A. The tachykinin NK1 receptor in the brain: Pharmacology and putative functions. Eur J Pharmacol 375: 51‐60, 1999.
 483.Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 288: H1633‐H1640, 2005.
 484.Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y. Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105: 5683‐5686, 2008.
 485.Scemes E, Dermietzel R, Spray DC. Calcium waves between astrocytes from Cx43 knockout mice. Glia 24: 65‐73, 1998.
 486.Scemes E, Suadicani SO, Dahl G, Spray DC. Connexin and pannexin mediated cell‐cell communication. Neuron Glia Biol 3: 199‐208, 2007.
 487.Schmidt VJ, Jobs A, von Maltzahn J, Wörsdörfer P, Willecke K, de Wit C. Connexin45 is expressed in vascular smooth muscle but its function remains elusive. PLoS One 7: e42287, 2012.
 488.Schneider JC, El Kebir D, Chereau C, Mercier JC, Dall'Ava‐Santucci J, Dinh‐Xuan AT. Involvement of Na(+)/Ca(2+) exchanger in endothelial NO production and endothelium‐dependent relaxation. Am J Physiol Heart Circ Physiol 283: H837‐H844, 2002.
 489.Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47: 731‐759, 2007.
 490.Schumacher MA, Rivard AF, Bachinger HP, Adelman JP. Structure of the gating domain of a Ca2+‐activated K+ channel complexed with Ca2+/calmodulin. Nature 410: 1120‐1124, 2001.
 491.Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81: 1063‐1073, 1995.
 492.Segal SS. Integration and modulation of intercellular signaling underlying blood flow control. J Vasc Res 52: 136‐157, 2015.
 493.Segal SS, Bény JL. Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol 263: H1‐H7, 1992.
 494.Segal SS, Duling BR. Conduction of vasomotor responses in arterioles: A role for cell‐to‐cell coupling? Am J Physiol 256: H838‐H845, 1989.
 495.Segal SS, Duling BR. Flow control among microvessels coordinated by intercellular conduction. Science 234: 868‐870, 1986.
 496.Seitz BM, Demireva EY, Xie H, Fink GD, Krieger‐Burke T, Burke WM, Watts SW. 5‐HT does not lower blood pressure in the 5‐HT 7 knockout rat. Physiol Genomics 51: 302‐310, 2019.
 497.Seitz BM, Fink GD, Watts SW. Activation of the 5‐HT 7 receptor but not nitric oxide synthase is necessary for chronic 5‐hydroxytryptamine‐induced hypotension. Exp Physiol 105: 2025‐2032, 2020.
 498.Seitz BM, Watts SW, Fink GD. Reduction in hindquarter vascular resistance supports 5‐HT 7 receptor mediated hypotension. Front Physiol 12: 679809, 2021.
 499.Sessa WC, Barber CM, Lynch KR. Mutation of N‐myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res 72: 921‐924, 1993.
 500.Sforna L, Megaro A, Pessia M, Franciolini F, Catacuzzeno L. Structure, gating and basic functions of the Ca2+‐activated K channel of intermediate conductance. Curr Neuropharmacol 16: 608‐617, 2018.
 501.Shang S, Zhu F, Liu B, Chai Z, Wu Q, Hu M, Wang Y, Huang R, Zhang X, Wu X, Sun L, Wang Y, Wang L, Xu H, Teng S, Liu B, Zheng L, Zhang C, Zhang F, Feng X, Zhu D, Wang C, Liu T, Zhu MX, Zhou Z. Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. J Cell Biol 215: 369‐381, 2016.
 502.Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin 1 channels on endothelial cells mediate vascular inflammation during lung ischemia‐reperfusion injury. Am J Physiol Lung Cell Mol Physiol 315: L301‐L312, 2018.
 503.Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T. Acylation targets emdothelial nitric‐oxide synthase to plasmalemmal caveolae. J Biol Chem 271: 6518‐6522, 1996.
 504.Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol 10: 17‐28, 2018.
 505.Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93: 13176‐13181, 1996.
 506.Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP. TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: Comparative study of wild‐type and TRPC1‐/‐ mice. FASEB J 26: 409‐419, 2012.
 507.Shi WW, Yang Y, Shi Y, Jiang C. K(ATP) channel action in vascular tone regulation: From genetics to diseases. Sheng Li Xue Bao 64: 1‐13, 2012.
 508.Shimizu T, Rosenblum WI, Nelson GH. M3 and M1 receptors in cerebral arterioles in vivo: Evidence for downregulated or ineffective M1 when endothelium is intact. Am J Physiol 264: H665‐H669, 1993.
 509.Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium‐dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28: 703‐711, 1996.
 510.Shu X, Ruddiman CA, Keller TCS, Keller AS, Yang Y, Good ME, Best AK, Columbus L, Isakson BE. Heterocellular contact can dictate arterial function. Circ Res 124: 1473‐1481, 2019.
 511.Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Kohler R. Impaired endothelium‐derived hyperpolarizing factor‐mediated dilations and increased blood pressure in mice deficient of the intermediate‐conductance Ca2+‐activated K+ channel. Circ Res 99: 537‐544, 2006.
 512.Simionescu N, Siminoescu M, Palade GE. Permeability of muscle capillaries to small heme‐peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64: 586‐607, 1975.
 513.Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261: 13333‐13341, 1986.
 514.Simon AM, McWhorter AR. Decreased intercellular dye‐transfer and downregulation of non‐ablated connexins in aortic endothelium deficient in connexin37 or connexin40. J Cell Sci 116: 2223‐2236, 2003.
 515.Sirko P, Gale JE, Ashmore JF. Intercellular Ca2+ signalling in the adult mouse cochlea. J Physiol 597: 303‐317, 2018. DOI: 10.1113/JP276400.
 516.Smillie SJ, Brain SD. Calcitonin gene‐related peptide (CGRP) and its role in hypertension. Neuropeptides 45: 93‐104, 2011.
 517.Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, Vigmond EJ, Welsh DG. KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol 586: 1147‐1160, 2008.
 518.Somlyo AP, Somlyo AV. The sarcoplasmic reticulum: Then and now. Novartis Found Symp 246: 258‐268; discussion 268‐271, 272‐276, 2002.
 519.Somlyo AV, Somlyo AP. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174: 955‐958, 1971.
 520.Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill‐Eubanks DC, Nelson MT. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597‐601, 2012.
 521.Sonkusare SK, Dalsgaard T, Bonev AD, Hill‐Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150‐dependent cooperative TRPV4 channel gating is central to endothelium‐dependent vasodilation and is disrupted in hypertension. Sci Signal 7: ra66, 2014.
 522.Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators. J Physiol 594: 3271‐3285, 2016.
 523.Sonkusare SK, Fraer M, Marsh JD, Rusch NJ. Disrupting calcium channel expression to lower blood pressure: New targeting of a well‐known channel. Mol Interv 6: 304‐310, 2006.
 524.Sonkusare SK, Palade PT, Marsh JD, Telemaque S, Pesic A, Rusch NJ. Vascular calcium channels and high blood pressure: Pathophysiology and therapeutic implications. Vasc Pharmacol 44: 131‐142, 2006.
 525.Sowa G, Pypaert M, Sessa WC. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A 98: 14072‐14077, 2001.
 526.Spinelli T, Moresino C, Baumann S, Timmer W, Schultz A. Effects of combined netupitant and palonosetron (NEPA), a cancer supportive care antiemetic, on the ECG of healthy subjects: An ICH E14 thorough QT trial. Springerplus 3: 389, 2014.
 527.Sriram K, Insel PA. G protein‐coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol Pharmacol 93: 251‐258, 2018.
 528.Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP‐sensitive K+ channels in arterial smooth muscle. Science 245: 177‐180, 1989.
 529.Steenbergh PH, Höppener JW, Zandberg J, Visser A, Lips CJ, Jansz HS. Structure and expression of the human calcitonin/CGRP genes. FEBS Lett 209: 97‐103, 1986.
 530.Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft‐Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE. Compartmentalized connexin 43 s‐nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31: 399‐407, 2011.
 531.Straub AC, Johnstone SR, Heberlein KR, Rizzo MJ, Best AK, Boitano S, Isakson BE. Site‐specific connexin phosphorylation is associated with reduced heterocellular communication between smooth muscle and endothelium. J Vasc Res 47: 277‐286, 2010.
 532.Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, Isakson BE. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature 491: 473‐477, 2012.
 533.Straub AC, Zeigler AC, Isakson BE. The myoendothelial junction: Connections that deliver the message. Physiology (Bethesda) 29: 242‐249, 2014.
 534.Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature 306: 67‐69, 1983.
 535.Sullivan MN, Earley S. TRP channel Ca(2+) sparklets: Fundamental signals underlying endothelium‐dependent hyperpolarization. Am J Physiol Cell Physiol 305: C999‐C1008, 2013.
 536.Sullivan MN, Gonzales AL, Pires PW, Bruhl A, Leo MD, Li W, Oulidi A, Boop FA, Feng Y, Jaggar JH, Welsh DG, Earley S. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal 8: ra2, 2015.
 537.Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol 71: 333‐359, 2009.
 538.Sutliff RL, Hoying JB, Kadambi VJ, Kranias EG, Paul RJ. Phospholamban is present in endothelial cells and modulates endothelium‐dependent relaxation. Evidence from phospholamban gene‐ablated mice. Circ Res 84: 360‐364, 1999.
 539.Taglialatela M, Wible BA, Caporaso R, Brown AM. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264: 844‐847, 1994.
 540.Takacs L, Vajda V. Effect of serotonin on cardiac output and organ blood flow of rats. Am J Physiol 204: 301‐303, 1963.
 541.Takahashi N, Hamada‐Nakahara S, Itoh Y, Takemura K, Shimada A, Ueda Y, Kitamata M, Matsuoka R, Hanawa‐Suetsugu K, Senju Y, Mori MX, Kiyonaka S, Kohda D, Kitao A, Mori Y, Suetsugu S. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 5: 4994, 2014.
 542.Takano H, Dora KA, Spitaler MM, Garland CJ. Spreading dilatation in rat mesenteric arteries associated with calcium‐independent endothelial cell hyperpolarization. J Physiol 556: 887‐903, 2004.
 543.Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N. Sphingosine‐1‐phosphate signaling in physiology and diseases. Biofactors 38: 329‐337, 2012.
 544.Tangsucharit P, Takatori S, Zamami Y, Goda M, Pakdeechote P, Kawasaki H, Takayama F. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine‐induced endothelium‐independent vasodilatation in rat mesenteric arteries. J Pharmacol Sci 130: 24‐32, 2016.
 545.Tao S, Yamazaki D, Komazaki S, Zhao C, Iida T, Kakizawa S, Imaizumi Y, Takeshima H. Facilitated hyperpolarization signaling in vascular smooth muscle‐overexpressing TRIC‐A channels. J Biol Chem 288: 15581‐15589, 2013.
 546.Taylor CW, da Fonseca PC, Morris EP. IP(3) receptors: The search for structure. Trends Biochem Sci 29: 210‐219, 2004.
 547.Taylor CW, Laude AJ. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32: 321‐334, 2002.
 548.Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT. Altered expression of small‐conductance Ca2+‐activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93: 124‐131, 2003.
 549.Teramoto N. Physiological roles of ATP‐sensitive K+ channels in smooth muscle. J Physiol 572: 617‐624, 2006.
 550.Teubl M, Groschner K, Kohlwein SD, Mayer B, Schmidt K. Na(+)/Ca(2+) exchange facilitates Ca(2+)‐dependent activation of endothelial nitric‐oxide synthase. J Biol Chem 274: 29529‐29535, 1999.
 551.Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N. Receptor‐operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 204: 320‐328, 2005.
 552.Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B. High‐density lipoproteins and their constituent, sphingosine‐1‐phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114: 1403‐1409, 2006.
 553.Thijssen DH, Carter SE, Green DJ. Arterial structure and function in vascular ageing: Are you as old as your arteries? J Physiol 594: 2275‐2284, 2016.
 554.Todorov LD, Mihaylova‐Todorova ST, Bjur RA, Westfall DP. Differential cotransmission in sympathetic nerves: Role of frequency of stimulation and prejunctional autoreceptors. J Pharmacol Exp Ther 290: 241‐246, 1999.
 555.Tolle M, Klockl L, Wiedon A, Zidek W, van der Giet M, Schuchardt M. Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3. Biochem Biophys Res Commun 476: 627‐634, 2016.
 556.Tong X, Aoyama H, Sudhakar S, Chen H, Shilton BH, Bai D. The first extracellular domain plays an important role in unitary channel conductance of Cx50 gap junction channels. PLoS One 10: e0143876, 2015.
 557.Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY. Calcium green FlAsH as a genetically targeted small‐molecule calcium indicator. Nat Chem Biol 3: 423‐431, 2007.
 558.Toussaint F, Charbel C, Blanchette A, Ledoux J. CaMKII regulates intracellular Ca(2)(+) dynamics in native endothelial cells. Cell Calcium 58: 275‐285, 2015.
 559.Tran CH, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG. Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302: C1226‐C1242, 2012.
 560.Tsugorka A, Ríos E, Blatter LA. Imaging elementary events of calcium release in skeletal muscle cells. Science 269: 1723‐1726, 1995.
 561.Tu J, Le G, Ballard HJ. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis‐induced efflux of ATP from rat skeletal muscle. J Physiol 588: 4563‐4578, 2010.
 562.Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7: 485‐581, 2017.
 563.Uddman R, Edvinsson L, Ekblad E, Håkanson R, Sundler F. Calcitonin gene‐related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 15: 1‐23, 1986.
 564.Uddman R, Edvinsson L, Owman C, Sundler F. Perivascular substance P: Occurrence and distribution in mammalian pial vessels. J Cereb Blood Flow Metab 1: 227‐232, 1981.
 565.Ueda K, Inagaki N, Seino S. MgADP antagonism to Mg2+‐independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 272: 22983‐22986, 1997.
 566.Ullmer C, Schmuck K, Kalkman HO, Lubbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370: 215‐221, 1995.
 567.Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res 123: 849‐867, 2018.
 568.Urakami‐Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium‐derived hyperpolarizing factor in human arteries. J Clin Invest 100: 2793‐2799, 1997.
 569.Vaithianathan T, Narayanan D, Asuncion‐Chin MT, Jeyakumar LH, Liu J, Fleischer S, Jaggar JH, Dopico AM. Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 299: C264‐C278, 2010.
 570.van Ginneken EE, Meijer P, Verkaik N, Smits P, Rongen GA. ATP‐induced vasodilation in human skeletal muscle. Br J Pharmacol 141: 842‐850, 2004.
 571.Van Nueten JM, Janssens WJ, Vanhoutte PM. Serotonin and vascular reactivity. Pharmacol Res Commun 17: 585‐608, 1985.
 572.Vanhoutte PM. Serotonin: A forgotten signal from the blood. In: Muller CP, Cunningham KA, editors. Handbook of Behavioural Neuroscience. London, UK: Elsevier, 2020, Chapter 22, p. 393‐409. DOI: 10.1016/B978‐0‐444‐64125‐0.00022‐0.
 573.Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: Sources, fate, actions, and misfortunes of the endothelium‐derived vasodilator mediator. Circ Res 119: 375‐396, 2016.
 574.Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85: 201‐279, 2005.
 575.Villarreal D, Reams G, Freeman R. Calcitonin gene‐related peptide and the kidney. Curr Opin Nephrol Hypertens 3: 453‐458, 1994.
 576.Wagner C, de Wit C, Kurtz L, Grünberger C, Kurtz A, Schweda F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100: 556‐563, 2007.
 577.Wagner C, Jobs A, Schweda F, Kurtz L, Kurt B, Lopez ML, Gomez RA, van Veen TA, de Wit C, Kurtz A. Selective deletion of connexin 40 in renin‐producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney Int 78: 762‐768, 2010.
 578.Walch L, Brink C, Norel X. The muscarinic receptor subtypes in human blood vessels. Therapie 56: 223‐226, 2001.
 579.Wang X, Ponoran TA, Rasmusson RL, Ragsdale DS, Peterson BZ. Amino acid substitutions in the pore of the Ca(V)1.2 calcium channel reduce barium currents without affecting calcium currents. Biophys J 89: 1731‐1743, 2005.
 580.Wang X, Wu J, Li L, Chen F, Wang R, Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res 92: 1225‐1232, 2003.
 581.Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol 18: 684‐696, 2019.
 582.Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 64: 359‐388, 2012.
 583.Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant‐pore affinities. Biophys J 87: 958‐973, 2004.
 584.Wellman GC, Bevan JA. Barium inhibits the endothelium‐dependent component of flow but not acetylcholine‐induced relaxation in isolated rabbit cerebral arteries. J Pharmacol Exp Ther 274: 47‐53, 1995.
 585.Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+‐sensitive ion channels. Cell Calcium 34: 211‐229, 2003.
 586.Welsh DG, Segal SS. Coactivation of resistance vessels and muscle fibers with acetylcholine release from motor nerves. Am J Physiol 273: H156‐H163, 1997.
 587.Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M. M1‐M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels 9: 279‐290, 2003.
 588.West GA, Meno JR, Nguyen TS, Ngai AC, Simard JM, Winn HR. cGMP‐dependent and not cAMP‐dependent kinase is required for adenosine‐induced dilation of intracerebral arterioles. J Cardiovasc Pharmacol 41: 444‐451, 2003.
 589.Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 300: H1616‐H1630, 2011.
 590.Wible BA, Taglialatela M, Ficker E, Brown AM. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371: 246‐249, 1994.
 591.Wilson AJ, Jabr RI, Clapp LH. Calcium modulation of vascular smooth muscle ATP‐sensitive K(+) channels: Role of protein phosphatase‐2B. Circ Res 87: 1019‐1025, 2000.
 592.Wilson C, Lee MD, McCarron JG. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation. J Physiol 594: 7267‐7307, 2016.
 593.Wolfle SE, Schmidt VJ, Hoepfl B, Gebert A, Alcolea S, Gros D, de Wit C. Connexin45 cannot replace the function of connexin40 in conducting endothelium‐dependent dilations along arterioles. Circ Res 101: 1292‐1299, 2007.
 594.Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12: 950‐954, 2006.
 595.Wootten D, Christopoulos A, Marti‐Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein‐coupled receptors. Nat Rev Mol Cell Biol 19: 638‐653, 2018.
 596.Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90: 113‐178, 2010.
 597.Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium 38: 397‐407, 2005.
 598.Wu KD, Bungard D, Lytton J. Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. Am J Physiol Cell Physiol 280: C843‐C851, 2001.
 599.Xia XM, Fakler B, Rivard A, Wayman G, Johnson‐Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP. Mechanism of calcium gating in small‐conductance calcium‐activated potassium channels. Nature 395: 503‐507, 1998.
 600.Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J. Visualization of flow‐induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci 124: 3477‐3483, 2011.
 601.Yamamoto K, Shimizu N, Obi S, Kumagaya S, Taketani Y, Kamiya A, Ando J. Involvement of cell surface ATP synthase in flow‐induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 293: H1646‐H1653, 2007.
 602.Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J. Endogenously released ATP mediates shear stress‐induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 285: H793‐H803, 2003.
 603.Yamazaki D, Tabara Y, Kita S, Hanada H, Komazaki S, Naitou D, Mishima A, Nishi M, Yamamura H, Yamamoto S, Kakizawa S, Miyachi H, Miyata T, Kawano Y, Kamide K, Ogihara T, Hata A, Umemura S, Soma M, Takahashi N, Imaizumi Y, Miki T, Iwamoto T, Takeshima H. TRIC‐A channels in vascular smooth muscle contribute to blood pressure maintenance. Cell Metab 14: 231‐241, 2011.
 604.Yanagida K, Hla T. Vascular and immunobiology of the circulatory sphingosine 1‐phosphate gradient. Annu Rev Physiol 79: 67‐91, 2017.
 605.Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda S, Clouthier DE, Yanagisawa M. Disruption of ECE‐1 and ECE‐2 reveals a role for endothelin‐converting enzyme‐2 in murine cardiac development. J Clin Invest 105: 1373‐1382, 2000.
 606.Yanagisawa M, Inoue A, Ishikawa T, Kasuya Y, Kimura S, Kumagaye S, Nakajima K, Watanabe TX, Sakakibara S, Goto K. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium‐derived vasoconstrictor peptide. Proc Natl Acad Sci U S A 85: 6964‐6967, 1988.
 607.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411‐415, 1988.
 608.Yang J, Jian R, Yu J, Zhi X, Liao X, Yu J, Zhou P. CD73 regulates vascular smooth muscle cell functions and facilitates atherosclerotic plaque formation. IUBMB Life 67: 853‐860, 2015.
 609.Yang Y, Delalio LJ, Best AK, Macal E, Milstein J, Donnelly I, Miller AM, McBride M, Shu X, Koval M, Isakson BE, Johnstone SR. Endothelial pannexin 1 channels control inflammation by regulating intracellular calcium. J Immunol 204: 2995‐3007, 2020.
 610.Yang Y, Sohma Y, Nourian Z, Ella SR, Li M, Stupica A, Korthuis RJ, Davis MJ, Braun AP, Hill MA. Mechanisms underlying regional differences in the Ca2+ sensitivity of BK(Ca) current in arteriolar smooth muscle. J Physiol 591: 1277‐1293, 2013.
 611.Yap FC, Weber DS, Taylor MS, Townsley MI, Comer BS, Maylie J, Adelman JP, Lin MT. Endothelial SK3 channel‐associated Ca2+ microdomains modulate blood pressure. Am J Physiol Heart Circ Physiol 310: H1151‐H1163, 2016.
 612.Yashiro Y, Duling BR. Integrated Ca(2+) signaling between smooth muscle and endothelium of resistance vessels. Circ Res 87: 1048‐1054, 2000.
 613.Yashiro Y, Duling BR. Participation of intracellular Ca2+ stores in arteriolar conducted responses. Am J Physiol Heart Circ Physiol 285: H65‐H73, 2003.
 614.Yegutkin G, Bodin P, Burnstock G. Effect of shear stress on the release of soluble ecto‐enzymes ATPase and 5'‐nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol 129: 921‐926, 2000.
 615.Yoast RE, Emrich SM, Zhang X, Xin P, Johnson MT, Fike AJ, Walter V, Hempel N, Yule DI, Sneyd J, Gill DL, Trebak M. The native ORAI channel trio underlies the diversity of Ca. Nat Commun 11: 2444, 2020.
 616.Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: Methodological perspectives. Eur Biophys J 45: 779‐805, 2016.
 617.Yuan D, Sun G, Zhang R, Luo C, Ge M, Luo G, Hei Z. Connexin 43 expressed in endothelial cells modulates monocyte‐endothelial adhesion by regulating cell adhesion proteins. Mol Med Rep 12: 7146‐7152, 2015.
 618.Yuyun MF, Ng LL, Ng GA. Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5‐methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvasc Res 119: 7‐12, 2018.
 619.Zaidi M, Breimer LH, MacIntyre I. Biology of peptides from the calcitonin genes. Q J Exp Physiol 72: 371‐408, 1987.
 620.Zapka J, Lemon SC, Estabrook BB, Jolicoeur DG. Keeping a step ahead: Formative phase of a workplace intervention trial to prevent obesity. Obesity 15: 27S‐36S, 2007.
 621.Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)‐mediated vasodilation. Circ Res 87: 160‐166, 2000.
 622.Zhang J, Wang Y, Chen L, Wier WG, Blaustein MP. Na(+)/Ca(2+) exchanger overexpression in smooth muscle augments cytosolic Ca(2+) in femoral arteries of living mice. Am J Physiol Heart Circ Physiol 316: H298‐H310, 2019.
 623.Zhang X, Xin P, Yoast RE, Emrich SM, Johnson MT, Pathak T, Benson JC, Azimi I, Gill DL, Monteith GR, Trebak M. Distinct pharmacological profiles of ORAI1, ORAI2, and ORAI3 channels. Cell Calcium 91: 102281, 2020.
 624.Zhang Y, Inoue M, Tsutsumi A, Watanabe S, Nishizawa T, Nagata K, Kikkawa M, Inaba K. Cryo‐EM structures of SERCA2b reveal the mechanism of regulation by the luminal extension tail. Sci Adv 6: eabb0147, 2020.
 625.Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20: 6008‐6016, 2001.
 626.Zholos AV, Curtis TM. TRP channels in vascular disorders. Curr Top Med Chem 13: 295‐309, 2013.
 627.Zhou JZ, Jiang JX. Gap junction and hemichannel‐independent actions of connexins on cell and tissue functions—an update. FEBS Lett 588: 1186‐1192, 2014.
 628.Zhou Z, Rajamani U, Labazi H, Tilley SL, Ledent C, Teng B, Mustafa SJ. Involvement of NADPH oxidase in A2A adenosine receptor‐mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal 11: 263‐273, 2015.
 629.Ziegelstein RC, Spurgeon HA, Pili R, Passaniti A, Cheng L, Corda S, Lakatta EG, Capogrossi MC. A functional ryanodine‐sensitive intracellular Ca2+ store is present in vascular endothelial cells. Circ Res 74: 151‐156, 1994.
 630.Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ. Imaging Ca(2+) entering the cytoplasm through a single opening of a plasma membrane cation channel. J Gen Physiol 114: 575‐588, 1999.
 631.Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ. Using total fluorescence increase (signal mass) to determine the Ca2+ current underlying localized Ca2+ events. J Gen Physiol 124: 259‐272, 2004.
 632.Burnstock G. Purinergic nerves. Pharmacol Rev 24 (3): 509‐581, 1972. PMID: 4404211.
 633.Veratti E. Investigations on the fine structure of striated muscle fiber read before the Reale Istituto Lombardo. J Biophys Biochem Cytol 10 (4): 1‐59. doi: 10.1083/jcb.10.4.1. PMID: 13780770; PMCID: PMC2225099.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

D. Ryan King, Meghan W. Sedovy, Xinyan Eaton, Luke S. Dunaway, Miranda E. Good, Brant E. Isakson, Scott R. Johnstone. Cell‐To‐Cell Communication in the Resistance Vasculature. Compr Physiol 2022, 12: 3833-3867. doi: 10.1002/cphy.c210040