Comprehensive Physiology Wiley Online Library

Interactions between the Autonomic Nervous System and the Immune System after Stroke

Full Article on Wiley Online Library



Abstract

Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke‐induced immune‐inflammatory response occurs in the perilesion areas and the periphery. Although stroke‐induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune‐inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune‐inflammatory response increases the risk of life‐threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke‐induced immune‐inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune‐inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune‐inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune‐inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune‐inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665‐3704, 2022.

Figure 1. Figure 1. Autonomic innervation of the immune organs. The SNS preganglionic neurons are located in the lateral gray matter of the thoracic and lumbar spinal cord (Th1‐Th12 and L1‐L2). In contrast, the PNS preganglionic neurons, including the dorsal nucleus of the vagus nerve, are parasympathetic nuclei in the brainstem and lateral horn of the sacral cord (S2‐S4). The SNS postganglionic neurons are located in the sympathetic trunk, while the PNS postganglionic neurons are located in the organs' intramural ganglions that the postganglionic fibers innervate. The origin of postganglionic SNS fibers, which innervates the thymus, is currently known (the meaning of the first “?” symbol in this figure). The SNS fibers that innervate the spleen and liver originate from the celiac ganglion and superior mesenteric ganglion, while the postganglionic SNS fibers that innervate the intestine originate from superior mesenteric ganglion and inferior mesenteric ganglion. Whether the thymus receives PNS innervation is uncertain, whereas the spleen, liver, and intestine all receive vagus nerve innervation. In addition, the PNS from the lateral horn of S2 to S4 innervates the anus and rectum. The SNS may innervate the bone marrow of the femur from T8 to T12 and L1 and the PNS from parasympathetic neurons in the middle lateral column of the sacral spinal cord in mice, while knowledge about the SNS ganglion of postganglionic fibers that innervate the bone marrow is lacking (the meaning of the second “?” symbol in this figure). The preganglionic fibers of both the SNS and the PNS secrete ACh as the neurotransmitter. However, the SNS postganglionic fibers mainly secrete NE as the neurotransmitter, while postganglionic fibers of the PNS secrete ACh as the neurotransmitter. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; NE, norepinephrine.
Figure 2. Figure 2. Changes in spleen‐related immune function modulated by ANS after stroke. Stroke induces SNS activation and alterations in PNS activation. Stroke also leads to spleen atrophy. α1‐ARs expressed in the splenic capsule may cause spleen contraction when NE activates it after acute stroke. SNS activation leads to changes in cellular and molecular immune constituents in the spleen, including an increase in splenocyte apoptosis, a decrease in T lymphocyte proliferation, an increase in Treg cell numbers, a decrease in CD69 expression, and IFN‐γ concentration through β‐ARs after acute stroke. Subsequently, these alterations in the spleen may lead to changes in the peripheral cellular and molecular immune components after acute stroke. SNS overactivation also resulted in B‐cell deficiency in the marginal zone of the spleen and decreased the circulating IgM levels after stroke. Cholinergic nerves also play an anti‐inflammatory role after stroke. PNS activation may inhibit macrophage activation and reduce proinflammatory cytokines, including TNF‐α, IFN‐γ, and IL‐6 in the spleen. Furthermore, increased NE release in the spleen may promote ACh release from splenic lymphocytes through β2‐ARs on the surface of splenic lymphocytes. However, research on the immune modulation of PNS in the spleen after acute stroke is scarce. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; E, epinephrine; NE, norepinephrine; ARs, adrenergic receptors; nAChRs, nicotinic acetylcholine receptors; TNF, tumor necrosis factor; IFN, interferon; IL‐6, interleukin‐6.
Figure 3. Figure 3. Changes in intestine‐related immune function modulated by ANS after stroke. There is bidirectional communication between the CNS and the gut intestinal tract. Stroke can lead to microbiota dysbiosis, reduction in intestinal motility, disruption of the mucosal barrier, and intestinal immune dysfunction through cytokines released from the brain or by stimulation of the neurotransmitters of the ANS. On the contrary, microbiota dysbiosis and intestinal immune dysfunction can enhance the neuroinflammatory response and severity of brain injury and worsen the functional outcomes of stroke. Stroke may also induce commensal bacterial translocation and dissemination, increase commensal bacteria in the blood, and increase the incidence of infectious complications. In this double‐acting process, efferent SNS may promote, whereas efferent PNS may inhibit, mucosal barrier disruption, commensal bacterial translocation and dissemination, and intestinal immune dysfunction after acute stroke. However, as a negative feedback, microbiota metabolites such as LPS and SCFAs and intestinal GEC activation may inhibit the neuroinflammatory response and alleviate brain injury severity through activating the afferent PNS after stroke. Finally, acute stroke leads to increased adrenergic neurons and decreased cholinergic neurons in the intestine. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; BBB, blood‐brain barrier; LPS, lipopolysaccharide; SCFAs, short‐chain fatty acids; GEC, intestinal endocrine cell.
Figure 4. Figure 4. Changes in the function of immunocytes modulated by ANS after stroke. SNS overactivation induces B‐cell deficiency and increases the apoptosis of lymphocytes and NK cells through β2‐ARs. In contrast, it promotes the proliferation and migration of Treg cells through β2‐ARs and β3‐ARs, respectively, after stroke. Meanwhile, it inhibits the activation of iNKT cells and causes lymphocytes to shift from T helper (Th)1 to Th2 cytokine production after stroke. As for other immunocytes, α2‐AR or β2‐AR stimulation enhances BMDC endocytosis activity, inhibits the chemotactic response, reverses the increased IL12/IL23 ratio of LPS‐stimulated DCs, and decreases DC‐mediated Th1 cell differentiation in vitro. SNS overactivation promotes Treg cell proliferation and migration by regulating BMDC's function via β2‐ARs and β3‐ARs after stroke. However, overactivated SNS decreases neutrophil chemotaxis and phagocytosis, inhibits neutrophil activity and migration, promotes neutrophil differentiation toward the N2 phenotype, and decreases the expression of proinflammatory genes such as Fas, MyD88, and MMP9 after acute stroke. β2‐AR and α7‐nAChR stimulation on neutrophils, monocytes/macrophages, and microglia/astrocytes also alleviate the inflammatory response after acute stroke. All the above changes lead to immunosuppression in the early stage and an elevated risk of infection. ARs and AChRs are also present on the surfaces of mast cells. The impact of stimulation of the ANS on mast cells after stroke warrants exploration. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; NK cells, natural killer cells; iNKT cells, invariant natural killer T cells; Treg cells, regulatory T cells; DC, dendritic cells; BMDCs, bone marrow‐derived dendritic cells; CCL, chemokine C legend; NE, norepinephrine; ARs, adrenergic receptors; α7‐nAChRs, α7‐nicotinic acetylcholine receptors; MDMs, monocytes‐derived macrophages.
Figure 5. Figure 5. Changes in molecular immune system modulated by ANS after stroke. Through ANS, acute stroke induces a reduction in proinflammatory cytokines in peripheral blood, injured brain tissues, and organs, including the spleen, liver, heart, and intestine. Conversely, acute stroke also increases anti‐inflammatory cytokines in peripheral blood and the lesioned brain through the ANS. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; TNF, tumor necrosis factor; MCAO, middle cerebral artery occlusion; IFN, interferon; HMGB1, high‐mobility group box‐1 protein; TGF‐β, transforming growth factor‐β.
Figure 6. Figure 6. The potential mechanisms that underlie stroke‐associated infection complications are associated with the dysfunction of the ANS after stroke. Stroke induces a decrease in immune defense by reducing the immunocyte activity, promoting lymphocyte apoptosis, and reducing the ratio of pro‐/anti‐inflammatory cytokines in peripheral blood, immune organs, and lungs through the ANS and its neurotransmitters after acute stroke. Stroke also leads to an impaired immune response by inducing atrophy of immune organs, including the spleen and thymus, in the acute phase of stroke. Moreover, stroke‐induced ANS dysfunction may promote commensal bacterial translocation and dissemination, increase bacteria burden in blood and organs such as the lungs, and result in infectious complications after acute stroke. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; E, epinephrine; NE, norepinephrine; Treg/Th17, the ratio of regulatory T cells to T‐helper 17 cells.


Figure 1. Autonomic innervation of the immune organs. The SNS preganglionic neurons are located in the lateral gray matter of the thoracic and lumbar spinal cord (Th1‐Th12 and L1‐L2). In contrast, the PNS preganglionic neurons, including the dorsal nucleus of the vagus nerve, are parasympathetic nuclei in the brainstem and lateral horn of the sacral cord (S2‐S4). The SNS postganglionic neurons are located in the sympathetic trunk, while the PNS postganglionic neurons are located in the organs' intramural ganglions that the postganglionic fibers innervate. The origin of postganglionic SNS fibers, which innervates the thymus, is currently known (the meaning of the first “?” symbol in this figure). The SNS fibers that innervate the spleen and liver originate from the celiac ganglion and superior mesenteric ganglion, while the postganglionic SNS fibers that innervate the intestine originate from superior mesenteric ganglion and inferior mesenteric ganglion. Whether the thymus receives PNS innervation is uncertain, whereas the spleen, liver, and intestine all receive vagus nerve innervation. In addition, the PNS from the lateral horn of S2 to S4 innervates the anus and rectum. The SNS may innervate the bone marrow of the femur from T8 to T12 and L1 and the PNS from parasympathetic neurons in the middle lateral column of the sacral spinal cord in mice, while knowledge about the SNS ganglion of postganglionic fibers that innervate the bone marrow is lacking (the meaning of the second “?” symbol in this figure). The preganglionic fibers of both the SNS and the PNS secrete ACh as the neurotransmitter. However, the SNS postganglionic fibers mainly secrete NE as the neurotransmitter, while postganglionic fibers of the PNS secrete ACh as the neurotransmitter. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; NE, norepinephrine.


Figure 2. Changes in spleen‐related immune function modulated by ANS after stroke. Stroke induces SNS activation and alterations in PNS activation. Stroke also leads to spleen atrophy. α1‐ARs expressed in the splenic capsule may cause spleen contraction when NE activates it after acute stroke. SNS activation leads to changes in cellular and molecular immune constituents in the spleen, including an increase in splenocyte apoptosis, a decrease in T lymphocyte proliferation, an increase in Treg cell numbers, a decrease in CD69 expression, and IFN‐γ concentration through β‐ARs after acute stroke. Subsequently, these alterations in the spleen may lead to changes in the peripheral cellular and molecular immune components after acute stroke. SNS overactivation also resulted in B‐cell deficiency in the marginal zone of the spleen and decreased the circulating IgM levels after stroke. Cholinergic nerves also play an anti‐inflammatory role after stroke. PNS activation may inhibit macrophage activation and reduce proinflammatory cytokines, including TNF‐α, IFN‐γ, and IL‐6 in the spleen. Furthermore, increased NE release in the spleen may promote ACh release from splenic lymphocytes through β2‐ARs on the surface of splenic lymphocytes. However, research on the immune modulation of PNS in the spleen after acute stroke is scarce. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; E, epinephrine; NE, norepinephrine; ARs, adrenergic receptors; nAChRs, nicotinic acetylcholine receptors; TNF, tumor necrosis factor; IFN, interferon; IL‐6, interleukin‐6.


Figure 3. Changes in intestine‐related immune function modulated by ANS after stroke. There is bidirectional communication between the CNS and the gut intestinal tract. Stroke can lead to microbiota dysbiosis, reduction in intestinal motility, disruption of the mucosal barrier, and intestinal immune dysfunction through cytokines released from the brain or by stimulation of the neurotransmitters of the ANS. On the contrary, microbiota dysbiosis and intestinal immune dysfunction can enhance the neuroinflammatory response and severity of brain injury and worsen the functional outcomes of stroke. Stroke may also induce commensal bacterial translocation and dissemination, increase commensal bacteria in the blood, and increase the incidence of infectious complications. In this double‐acting process, efferent SNS may promote, whereas efferent PNS may inhibit, mucosal barrier disruption, commensal bacterial translocation and dissemination, and intestinal immune dysfunction after acute stroke. However, as a negative feedback, microbiota metabolites such as LPS and SCFAs and intestinal GEC activation may inhibit the neuroinflammatory response and alleviate brain injury severity through activating the afferent PNS after stroke. Finally, acute stroke leads to increased adrenergic neurons and decreased cholinergic neurons in the intestine. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; BBB, blood‐brain barrier; LPS, lipopolysaccharide; SCFAs, short‐chain fatty acids; GEC, intestinal endocrine cell.


Figure 4. Changes in the function of immunocytes modulated by ANS after stroke. SNS overactivation induces B‐cell deficiency and increases the apoptosis of lymphocytes and NK cells through β2‐ARs. In contrast, it promotes the proliferation and migration of Treg cells through β2‐ARs and β3‐ARs, respectively, after stroke. Meanwhile, it inhibits the activation of iNKT cells and causes lymphocytes to shift from T helper (Th)1 to Th2 cytokine production after stroke. As for other immunocytes, α2‐AR or β2‐AR stimulation enhances BMDC endocytosis activity, inhibits the chemotactic response, reverses the increased IL12/IL23 ratio of LPS‐stimulated DCs, and decreases DC‐mediated Th1 cell differentiation in vitro. SNS overactivation promotes Treg cell proliferation and migration by regulating BMDC's function via β2‐ARs and β3‐ARs after stroke. However, overactivated SNS decreases neutrophil chemotaxis and phagocytosis, inhibits neutrophil activity and migration, promotes neutrophil differentiation toward the N2 phenotype, and decreases the expression of proinflammatory genes such as Fas, MyD88, and MMP9 after acute stroke. β2‐AR and α7‐nAChR stimulation on neutrophils, monocytes/macrophages, and microglia/astrocytes also alleviate the inflammatory response after acute stroke. All the above changes lead to immunosuppression in the early stage and an elevated risk of infection. ARs and AChRs are also present on the surfaces of mast cells. The impact of stimulation of the ANS on mast cells after stroke warrants exploration. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; NK cells, natural killer cells; iNKT cells, invariant natural killer T cells; Treg cells, regulatory T cells; DC, dendritic cells; BMDCs, bone marrow‐derived dendritic cells; CCL, chemokine C legend; NE, norepinephrine; ARs, adrenergic receptors; α7‐nAChRs, α7‐nicotinic acetylcholine receptors; MDMs, monocytes‐derived macrophages.


Figure 5. Changes in molecular immune system modulated by ANS after stroke. Through ANS, acute stroke induces a reduction in proinflammatory cytokines in peripheral blood, injured brain tissues, and organs, including the spleen, liver, heart, and intestine. Conversely, acute stroke also increases anti‐inflammatory cytokines in peripheral blood and the lesioned brain through the ANS. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; TNF, tumor necrosis factor; MCAO, middle cerebral artery occlusion; IFN, interferon; HMGB1, high‐mobility group box‐1 protein; TGF‐β, transforming growth factor‐β.


Figure 6. The potential mechanisms that underlie stroke‐associated infection complications are associated with the dysfunction of the ANS after stroke. Stroke induces a decrease in immune defense by reducing the immunocyte activity, promoting lymphocyte apoptosis, and reducing the ratio of pro‐/anti‐inflammatory cytokines in peripheral blood, immune organs, and lungs through the ANS and its neurotransmitters after acute stroke. Stroke also leads to an impaired immune response by inducing atrophy of immune organs, including the spleen and thymus, in the acute phase of stroke. Moreover, stroke‐induced ANS dysfunction may promote commensal bacterial translocation and dissemination, increase bacteria burden in blood and organs such as the lungs, and result in infectious complications after acute stroke. Abbreviations: ANS, autonomic nervous system; SNS, sympathetic nervous system; PNS, parasympathetic nervous system; ACh, acetylcholine; E, epinephrine; NE, norepinephrine; Treg/Th17, the ratio of regulatory T cells to T‐helper 17 cells.
References
 1.Abe N, Toyama H, Ejima Y, Saito K, Tamada T, Yamauchi M, Kazama I. alpha 1‐Adrenergic receptor blockade by prazosin synergistically stabilizes rat peritoneal mast cells. Biomed Res Int 2020: 3214186, 2020.
 2.Aboud R, Shafii M, Docherty JR. Investigation of the subtypes of alpha 1‐adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109: 80‐87, 1993.
 3.Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 46: 2616‐2627, 2015.
 4.Adiguzel A, Arsava EM, Topcuoglu MA. Temporal course of peripheral inflammation markers and indexes following acute ischemic stroke: Prediction of mortality, functional outcome, and stroke‐associated pneumonia. Neurol Res 1‐8, 2021.
 5.Ajmo CT Jr, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, Cuevas J, Willing AE, Pennypacker KR. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol 218: 47‐55, 2009.
 6.Akil E, Tamam Y, Akil MA, Kaplan I, Bilik MZ, Acar A, Tamam B. Identifying autonomic nervous system dysfunction in acute cerebrovascular attack by assessments of heart rate variability and catecholamine levels. J Neurosci Rural Pract 6: 145‐150, 2015.
 7.Anrather J, Iadecola C. Inflammation and stroke: An overview. Neurotherapeutics 13: 661‐670, 2016.
 8.Arac A, Grimbaldeston MA, Galli SJ, Bliss TM, Steinberg GK. Meningeal mast cells as key effectors of stroke pathology. Front Cell Neurosci 13: 126, 2019.
 9.Aslanyan S, Weir CJ, Diener HC, Kaste M, Lees KR. Pneumonia and urinary tract infection after acute ischaemic stroke: A tertiary analysis of the GAIN International trial. Eur J Neurol 11: 49‐53, 2004.
 10.Ay I, Napadow V, Ay H. Electrical stimulation of the vagus nerve dermatome in the external ear is protective in rat cerebral ischemia. Brain Stimul 8: 7‐12, 2015.
 11.Babol K, Blasiak J. Beta3‐adrenergic receptor. Postepy Biochem 51: 80‐87, 2005.
 12.Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar‐Namdar M, Zallone A, Kovacs KJ, Yirmiya R, Bab I. Skeletal parasympathetic innervation communicates central IL‐1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A 109: 15455‐15460, 2012.
 13.Balch MHH, Nimjee SM, Rink C, Hannawi Y. Beyond the brain: The systemic pathophysiological response to acute ischemic stroke. J Stroke 22: 159‐172, 2020.
 14.Bang OY, Chung JW, Kim SK, Kim SJ, Lee MJ, Hwang J, Seo WK, Ha YS, Sung SM, Kim EG, Sohn SI, Han MK. Therapeutic‐induced hypertension in patients with noncardioembolic acute stroke. Neurology 93: e1955‐e1963, 2019.
 15.Barugh AJ, Gray P, Shenkin SD, MacLullich AMJ, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: A systematic review. J Neurol 261: 533‐545, 2014.
 16.Bassi A, Colivicchi F, Santini M, Caltagirone C. Cardiac autonomic dysfunction and functional outcome after ischaemic stroke. Eur J Neurol 14: 917‐922, 2007.
 17.Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 112: 363‐373, 2020.
 18.Battaglini D, Pimentel‐Coelho PM, Robba C, Dos Santos CC, Cruz FF, Pelosi P, Rocco PRM. Gut microbiota in acute ischemic stroke: From pathophysiology to therapeutic implications. Front Neurol 11: 598, 2020.
 19.Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22: 516‐523, 2016.
 20.Benmamar‐Badel A, Owens T, Wlodarczyk A. Protective microglial subset in development, aging, and disease: Lessons from transcriptomic studies. Front Immunol 11: 430, 2020.
 21.Berchtold D, Priller J, Meisel C, Meisel A. Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 30: 1208‐1218, 2020.
 22.Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota‐gut‐brain axis. Front Neurosci 12: 49, 2018.
 23.Bonaz B, Sinniger V, Pellissier S. Anti‐inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J Physiol 594: 5781‐5790, 2016.
 24.Bonifacic D, Toplak A, Benjak I, Tokmadzic VS, Lekic A, Kucic N. Monocytes and monocyte chemoattractant protein 1 (MCP‐1) as early predictors of disease outcome in patients with cerebral ischemic stroke. Wien Klin Wochenschr 128: 20‐27, 2016.
 25.Bornstein NM, Saver JL, Diener HC, Gorelick PB, Shuaib A, Solberg Y, Devlin T, Leung T, Molina CA, Imp ACTAI. Sphenopalatine ganglion stimulation to augment cerebral blood flow: A randomized, Sham‐controlled trial. Stroke 50: 2108‐2117, 2019.
 26.Bornstein NM, Saver JL, Diener HC, Gorelick PB, Shuaib A, Solberg Y, Thackeray L, Savic M, Janelidze T, Zarqua N, Yarnitsky D, Molina CA, Imp ACTBi. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT‐24B): An international, randomised, double‐blind, sham‐controlled, pivotal trial. Lancet 394: 219‐229, 2019.
 27.Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458‐462, 2000.
 28.Brodde OE, Bruck H, Leineweber K, Seyfarth T. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96: 528‐538, 2001.
 29.Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP. Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10: 286‐296, 2013.
 30.Brunetti V, Vollono C, Testani E, Pilato F, Della Marca G. Autonomic nervous system modifications during wakefulness and sleep in a cohort of patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 28: 1455‐1462, 2019.
 31.Cai W, Liu S, Hu M, Huang F, Zhu Q, Qiu W, Hu X, Colello J, Zheng SG, Lu Z. Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res 11: 108‐121, 2020.
 32.Cakir T, Evcik FD, Subasi V, Demirdal US, Kavuncu V. Investigation of the H reflexes, F waves and sympathetic skin response with electromyography (EMG) in patients with stroke and the determination of the relationship with functional capacity. Acta Neurol Belg 115: 295‐301, 2015.
 33.Campbell BCV, Khatri P. Stroke. Lancet 396: 129‐142, 2020.
 34.Carandina A, Lazzeri G, Villa D, Di Fonzo A, Bonato S, Montano N, Tobaldini E. Targeting the autonomic nervous system for risk stratification, outcome prediction and neuromodulation in ischemic stroke. Int J Mol Sci 22: 2357, 2021.
 35.Carlson AB, Kraus GP. Physiology, Cholinergic Receptors. Treasure Island (FL): StatPearls, 2021.
 36.Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: A manifestation of brain‐induced immunodepression. Stroke 38: 1097‐1103, 2007.
 37.Chen AL, Sun X, Wang W, Liu JF, Zeng X, Qiu JF, Liu XJ, Wang Y. Activation of the hypothalamic‐pituitary‐adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J Neuroinflammation 13: 266, 2016.
 38.Chen C, Ai QD, Chu SF, Zhang Z, Chen NH. NK cells in cerebral ischemia. Biomed Pharmacother 109: 547‐554, 2019.
 39.Chen M, Zhou X, Yu L, Liu Q, Sheng X, Wang Z, Wang S, Jiang H, Zhou S. Low‐Level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antiapoptosis reactions in canines. J Cardiovasc Electrophysiol 27: 224‐231, 2016.
 40.Chen X, He X, Luo S, Feng Y, Liang F, Shi T, Huang R, Pei Z, Li Z. Vagus nerve stimulation attenuates cerebral microinfarct and colitis‐induced cerebral microinfarct aggravation in mice. Front Neurol 9: 798, 2018.
 41.Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H. Intrastriatal B‐cell administration limits infarct size after stroke in B‐cell deficient mice. Metab Brain Dis 27: 487‐493, 2012.
 42.Chen Y, Liang J, Ouyang F, Chen X, Lu T, Jiang Z, Li J, Li Y, Zeng J. Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys. Front Neurol 10: 661, 2019.
 43.Cheng Y, Zan J, Song Y, Yang G, Shang H, Zhao W. Evaluation of intestinal injury, inflammatory response and oxidative stress following intracerebral hemorrhage in mice. Int J Mol Med 42: 2120‐2128, 2018.
 44.Chen‐Roetling J, Kamalapathy P, Cao Y, Song W, Schipper HM, Regan RF. Astrocyte heme oxygenase‐1 reduces mortality and improves outcome after collagenase‐induced intracerebral hemorrhage. Neurobiol Dis 102: 140‐146, 2017.
 45.Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab 31: 1187‐1195, 2011.
 46.Cheyuo C, Wu R, Zhou M, Jacob A, Coppa G, Wang P. Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve. Shock 35: 258‐265, 2011.
 47.Chi L, Du K, Liu D, Bo Y, Li W. Electroacupuncture brain protection during ischemic stroke: A role for the parasympathetic nervous system. J Cereb Blood Flow Metab 38: 479‐491, 2018.
 48.Cho KJ, Cheon SY, Kim GW. Statins promote long‐term recovery after ischemic stroke by reconnecting noradrenergic neuronal circuitry. Neural Plast 2015: 585783, 2015.
 49.Chong LK, Chess‐Williams R, Peachell PT. Pharmacological characterisation of the beta‐adrenoceptor expressed by human lung mast cells. Eur J Pharmacol 437: 1‐7, 2002.
 50.Colivicchi F, Bassi A, Santini M, Caltagirone C. Prognostic implications of right‐sided insular damage, cardiac autonomic derangement, and arrhythmias after acute ischemic stroke. Stroke 36: 1710‐1715, 2005.
 51.Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10: 735‐742, 2012.
 52.Courties G, Frodermann V, Honold L, Zheng Y, Herisson F, Schloss MJ, Sun Y, Presumey J, Severe N, Engblom C, Hulsmans M, Cremer S, Rohde D, Pittet MJ, Scadden DT, Swirski FK, Kim DE, Moskowitz MA, Nahrendorf M. Glucocorticoids regulate bone marrow B lymphopoiesis after stroke. Circ Res 124: 1372‐1385, 2019.
 53.Cryan JF, Dinan TG. Mind‐altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13: 701‐712, 2012.
 54.Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long‐Smith CM, Lyte JM, Martin JA, Molinero‐Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz‐Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura‐Silva AP, Wallace‐Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The microbiota‐gut‐brain axis. Physiol Rev 99: 1877‐2013, 2019.
 55.Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARgamma agonist rosiglitazone. Stroke 44: 3498‐3508, 2013.
 56.Dasari R, Bonsack F, Sukumari‐Ramesh S. Brain injury and repair after intracerebral hemorrhage: The role of microglia and brain‐infiltrating macrophages. Neurochem Int 142: 104923, 2021.
 57.Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O'Dell MW, Pierce D, Prudente CN, Redgrave J, Turner DL, Engineer ND, Kimberley TJ. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS‐REHAB): A randomised, blinded, pivotal, device trial. Lancet 397: 1545‐1553, 2021.
 58.De Fazio L, Cavazza E, Spisni E, Strillacci A, Centanni M, Candela M, Pratico C, Campieri M, Ricci C, Valerii MC. Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium‐induced colitis in mice. World J Gastroenterol 20: 2051‐2061, 2014.
 59.de Haan JJ, Windsant IV, Lubbers T, Hanssen SJ, Hadfoune M, Prinzen FW, Greve JW, Buurman WA. Prevention of hemolysis‐induced organ damage by nutritional activation of the vagal anti‐inflammatory reflex*. Crit Care Med 41: e361‐e367, 2013.
 60.De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: An underexplored therapeutic area? J Neurol Sci 348: 24‐34, 2015.
 61.De Raedt S, Haentjens P, De Smedt A, Brouns R, Uyttenboogaart M, Luijckx GJ, De Keyser J. Pre‐stroke use of beta‐blockers does not affect ischaemic stroke severity and outcome. Eur J Neurol 19: 234‐240, 2012.
 62.Dénes A, Boldogkoi Z, Uhereczky G, Hornyák A, Rusvai M, Palkovits M, Kovács KJ. Central autonomic control of the bone marrow: Multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134: 947‐963, 2005.
 63.Denes A, Mccoll BW, Leowdyke SF, Chapman KZ, Humphreys NE, Grencis RK, Allan SM, Rothwell NJ. Experimental stroke‐induced changes in the bone marrow reveal complex regulation of leukocyte responses. J Cereb Blood Flow Metab 31: 1036‐1050, 2011.
 64.Deng QW, Yang H, Yan FL, Wang H, Xing FL, Zuo L, Zhang HQ. Blocking sympathetic nervous system reverses partially stroke‐induced immunosuppression but does not aggravate functional outcome after experimental stroke in rats. Neurochem Res 41: 1877‐1886, 2016.
 65.Devi S, Alexandre YO, Loi JK, Gillis R, Ghazanfari N, Creed SJ, Holz LE, Shackleford D, Mackay LK, Heath WR, Sloan EK, Mueller SN. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54: 1219‐1230.e7, 2021.
 66.Dietel B, Cicha I, Kallmunzer B, Tauchi M, Yilmaz A, Daniel WG, Schwab S, Garlichs CD, Kollmar R. Suppression of dendritic cell functions contributes to the anti‐inflammatory action of granulocyte‐colony stimulating factor in experimental stroke. Exp Neurol 237: 379‐387, 2012.
 67.Ding YX, Eerduna GW, Duan SJ, Li T, Liu RX, Zhang LM, Wang T, Fu FH. Escin ameliorates the impairments of neurological function and blood brain barrier by inhibiting systemic inflammation in intracerebral hemorrhagic mice. Exp Neurol 337: 113554, 2021.
 68.Docherty JR. Subtypes of functional α1‐ and α2‐adrenoceptors. Cell Mol Life Sci 361: 1‐15, 1998.
 69.Dorrance AM, Fink G. Effects of stroke on the autonomic nervous system. Compr Physiol 5: 1241‐1263, 2015.
 70.Dos Santos IRC, Dias MNC, Gomes‐Leal W. Microglial activation and adult neurogenesis after brain stroke. Neural Regen Res 16: 456‐459, 2021.
 71.Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler‐Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, Schneider JA, Malenka RC, Buckwalter MS. B‐lymphocyte‐mediated delayed cognitive impairment following stroke. J Neurosci 35: 2133‐2145, 2015.
 72.Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the autonomic nervous system on intestine. Front Physiol 12: 700129, 2021.
 73.Duan L, Chen J, Razavi M, Wei Y, Tao Y, Rao X, Zhong J. alpha2B‐adrenergic receptor regulates neutrophil recruitment in MSU‐induced peritoneal inflammation. Front Immunol 10: 501, 2019.
 74.ElAli A, Jean LeBlanc N. The role of monocytes in ischemic stroke pathobiology: New avenues to explore. Front Aging Neurosci 8: 29, 2016.
 75.Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve‐‐an integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev 52: 595‐638, 2000.
 76.Elkind MSV, Boehme AK, Smith CJ, Meisel A, Buckwalter MS. Infection as a stroke risk factor and determinant of outcome after stroke. Stroke 51: 3156‐3168, 2020.
 77.Engel O, Akyüz L, Goncalves ACDC, Winek K, Meisel A. Cholinergic pathway suppresses pulmonary innate immunity facilitating pneumonia after stroke. Stroke 46: 3232‐3240, 2015.
 78.Faura J, Bustamante A, Miro‐Mur F, Montaner J. Stroke‐induced immunosuppression: Implications for the prevention and prediction of post‐stroke infections. J Neuroinflammation 18: 127, 2021.
 79.Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd‐Allah F, Abejas AN, Abyu GY, Ademi Z, Agarwal G, Ahmed MB, Akinyemi RO, Al‐Raddadi R, Aminde LN, Amlie‐Lefond C, Ansari H, Asayesh H, Asgedom SW, Atey TM, Ayele HT, Banach M, Banerjee A, Barac A, Barker‐Collo SL, Barnighausen T, Barregard L, Basu S, Bedi N, Behzadifar M, Bejot Y, Bennett DA, Bensenor IM, Berhe DF, Boneya DJ, Brainin M, Campos‐Nonato IR, Caso V, Castaneda‐Orjuela CA, Rivas JC, Catala‐Lopez F, Christensen H, Criqui MH, Damasceno A, Dandona L, Dandona R, Davletov K, de Courten B, de Veber G, Dokova K, Edessa D, Endres M, Faraon EJA, Farvid MS, Fischer F, Foreman K, Forouzanfar MH, Gall SL, Gebrehiwot TT, Geleijnse JM, Gillum RF, Giroud M, Goulart AC, Gupta R, Hachinski V, Hamadeh RR, Hankey GJ, Hareri HA, Havmoeller R, Hay SI, Hegazy MI, Hibstu DT, James SL, Jeemon P, John D, Jonas JB, Jozwiak J, Kalani R, Kandel A, Kasaeian A, Kengne AP, Khader YS, Khan AR, Khang YH, Khubchandani J, Kim D, Kim YJ, Kivimaki M, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kravchenko M, Krishnamurthi R, Kumar GA, Lafranconi A, Lavados PM, Legesse Y, Li Y, Liang X, Lo WD, Lorkowski S, Lotufo PA, Loy CT, Mackay MT, Abd El Razek HM, Mahdavi M, Majeed A, Malekzadeh R, Malta DC, Mamun AA, Mantovani LG, Martins SCO, Mate KK, Mazidi M, Mehata S, Meier T, Melaku YA, Mendoza W, Mensah GA, Meretoja A, Mezgebe HB, Miazgowski T, Miller TR, Ibrahim NM, Mohammed S, Mokdad AH, Moosazadeh M, Moran AE, Musa KI, Negoi RI, Nguyen M, Nguyen QL, Nguyen TH, Tran TT, Nguyen TT, Anggraini Ningrum DN, Norrving B, Noubiap JJ, O'Donnell MJ, Olagunju AT, Onuma OK, Owolabi MO, Parsaeian M, Patton GC, Piradov M, Pletcher MA, Pourmalek F, Prakash V, Qorbani M, Rahman M, Rahman MA, Rai RK, Ranta A, Rawaf D, Rawaf S, Renzaho AM, Robinson SR, Sahathevan R, Sahebkar A, Salomon JA, Santalucia P, Santos IS, Sartorius B, Schutte AE, Sepanlou SG, Shafieesabet A, Shaikh MA, Shamsizadeh M, Sheth KN, Sisay M, Shin MJ, Shiue I, Silva DAS, Sobngwi E, Soljak M, Sorensen RJD, Sposato LA, Stranges S, Suliankatchi RA, Tabares‐Seisdedos R, Tanne D, Nguyen CT, Thakur JS, Thrift AG, Tirschwell DL, Topor‐Madry R, Tran BX, Nguyen LT, Truelsen T, Tsilimparis N, Tyrovolas S, Ukwaja KN, Uthman OA, Varakin Y, Vasankari T, Venketasubramanian N, Vlassov VV, Wang W, Werdecker A, CDA W, Xu G, Yano Y, Yonemoto N, Yu C, Zaidi Z, El Sayed Zaki M, Zhou M, Ziaeian B, Zipkin B, Vos T, Naghavi M, Murray CJL, Roth GA. Global, regional, and country‐specific lifetime risks of stroke, 1990 and 2016. N Engl J Med 379: 2429‐2437, 2018.
 80.Fujii YX, Fujigaya H, Moriwaki Y, Misawa H, Kasahara T, Grando SA, Kawashima K. Enhanced serum antigen‐specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. J Neuroimmunol 189: 69‐74, 2007.
 81.Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9: 286‐294, 2012.
 82.Galvez I, Martin‐Cordero L, Hinchado MD, Alvarez‐Barrientos A, Ortega E. Anti‐inflammatory effect of beta2 adrenergic stimulation on circulating monocytes with a pro‐inflammatory state in high‐fat diet‐induced obesity. Brain Behav Immun 80: 564‐572, 2019.
 83.Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, Wang Y, Chen J, La Cava A, Poursine‐Laurent J, Yokoyama W, Shi FD. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A 111: 2704‐2709, 2014.
 84.Garcia‐Culebras A, Duran‐Laforet V, Pena‐Martinez C, Moraga A, Ballesteros I, Cuartero MI, de la Parra J, Palma‐Tortosa S, Hidalgo A, Corbi AL, Moro MA, Lizasoain I. Role of TLR4 (toll‐like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke 50: 2922‐2932, 2019.
 85.Gates P. Duus' Diencephalon and autonomic nervous system. In: Baehr M, Frotscher M, editors. Topical Diagnosis in Neurology: Anatomy, Physiology, Signs, Symptoms (4th ed). Stuttgart New York: Thieme, 2005, p. 289‐307. Int Med J 36, 2006. ISBN 3‐13‐612804‐4 (GTV); 1‐58890‐215‐3 (YNY).
 86.Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40: 1849‐1857, 2009.
 87.Ghelani DP, Kim HA, Zhang SR, Drummond GR, Sobey CG, De Silva TM. Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochem Pharmacol 193: 114768, 2021.
 88.Gong WH. Coexistence of hyperlipidemia and acute cerebral ischemia/reperfusion induces severe liver damage in a rat model. World J Gastroenterol 18: 4934, 2012.
 89.Gori S, Alcain J, Vanzulli S, Moreno Ayala MA, Candolfi M, Jancic C, Geffner J, Vermeulen M, Salamone G. Acetylcholine‐treated murine dendritic cells promote inflammatory lung injury. PLoS One 14: e0212911, 2019.
 90.Griton M, Konsman JP. Neural pathways involved in infection‐induced inflammation: Recent insights and clinical implications. Clin Auton Res 28: 289‐299, 2018.
 91.Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, Rossello FJ, Simmons R, Buckberry S, Landin DV, Pflueger J, Vandekolk TH, Abay Z, Zhou Y, Liu X, Chen J, Larcombe M, Haynes JM, McLean C, Williams S, Chai SY, Wilson T, Lister R, Pouton CW, Purcell AW, Rackham OJL, Petretto E, Polo JM. Transcriptional signature in microglia associated with Abeta plaque phagocytosis. Nat Commun 12: 3015, 2021.
 92.Guan YZ, Jin XD, Guan LX, Yan HC, Wang P, Gong Z, Li SJ, Cao X, Xing YL, Gao TM. Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol 51: 1480‐1488, 2015.
 93.Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, Reis VO, Keller AC, Brum PC, Basso AS. Beta2‐adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA‐dependent manner. Eur J Immunol 43: 1001‐1012, 2013.
 94.Hadidi S, Glenney GW, Welch TJ, Silverstein JT, Wiens GD. Spleen size predicts resistance of rainbow trout to Flavobacterium psychrophilum challenge. J Immunol 180: 4156‐4165, 2008.
 95.Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, Krankel N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Fraccarollo D, Heimesaat MM, Bauersachs J, Wang Z, Zhu W, Bavendiek U, Hazen SL, Endres M, Landmesser U. Gut microbiota‐dependent trimethylamine N‐oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38: 2225‐2235, 2018.
 96.Haley MJ, Mullard G, Hollywood KA, Cooper GJ, Dunn WB, Lawrence CB. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice. Dis Model Mech 10: 1229‐1243, 2017.
 97.Haley MJ, White CS, Roberts D, O'Toole K, Cunningham CJ, Rivers‐Auty J, O'Boyle C, Lane C, Heaney O, Allan SM, Lawrence CB. Stroke induces prolonged changes in lipid metabolism, the liver and body composition in mice. Transl Stroke Res 11: 837‐850, 2019.
 98.Han D, Liu H, Gao Y, Feng J. Targeting brain‐spleen crosstalk after stroke: New insights into stroke pathology and treatment. Curr Neuropharmacol 19: 1590‐1605, 2021.
 99.Han RQ, Ouyang YB, Xu L, Agrawal R, Patterson AJ, Giffard RG. Postischemic brain injury is attenuated in mice lacking the beta2‐adrenergic receptor. Anesth Analg 108: 280‐287, 2009.
 100.Han Z, Shen F, He Y, Degos V, Camus M, Maze M, Young WL, Su H. Activation of alpha‐7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro‐inflammatory macrophages and oxidative stress. PLoS One 9: e105711, 2014.
 101.Harada S, Nozaki Y, Matsuura W, Yamazaki Y, Tokuyama S. Cerebral ischemia‐induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin‐A‐mediated vagus nerve activation. Brain Res 1661: 100‐110, 2017.
 102.Haviv L, Karl S, Ofer P, Yoash C, Itai W, Yonatan S, Alon F, A. DM. Stimulation of the sphenopalatine ganglion induces reperfusion and blood‐brain barrier protection in the photothrombotic stroke model. PLoS One 7: e39636, 2012.
 103.Hays SA, Khodaparast N, Hulsey DR, Ruiz A, Sloan AM, Rennaker RL 2nd, Kilgard MP. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45: 3097‐3100, 2014.
 104.Heinz G, De Angelis K, Dal Corso S, Sousa MHG, Viana A, Dos Santos F, Correa JCF, Correa FI. Effects of transcranial direct current stimulation (tDCS) and exercises treadmill on autonomic modulation of hemiparetic patients due to stroke‐clinic test, controlled, randomized, double‐blind. Front Neurol 10: 1402, 2019.
 105.Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, Scott PA, Selim MH, Woo D, American Heart Association Stroke C, Council on C, Stroke N, and Council on Clinical C. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46: 2032‐2060, 2015.
 106.Herve J, Dubreil L, Tardif V, Terme M, Pogu S, Anegon I, Rozec B, Gauthier C, Bach JM, Blancou P. beta2‐Adrenoreceptor agonist inhibits antigen cross‐presentation by dendritic cells. J Immunol 190: 3163‐3171, 2013.
 107.Herve J, Haurogne K, Bacou E, Pogu S, Allard M, Mignot G, Bach JM, Lieubeau B. beta2‐Adrenergic stimulation of dendritic cells favors IL‐10 secretion by CD4(+) T cells. Immunol Res 65: 1156‐1163, 2017.
 108.Hong JM, Shin DH, Lim TS, Lee JS, Huh K. Galantamine administration in chronic post‐stroke aphasia. J Neurol Neurosurg Psychiatry 83: 675‐680, 2012.
 109.Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 179: 1‐16, 2017.
 110.Hu D, Al‐Shalan HAM, Shi Z, Wang P, Wu Y, Nicholls PK, Greene WK, Ma B. Distribution of nerve fibers and nerve‐immune cell association in mouse spleen revealed by immunofluorescent staining. Sci Rep 10: 9850, 2020.
 111.Hu W, Xu L, Pan J, Zheng X, Chen Z. Effect of cerebral ischemia on brain mast cells in rats. Brain Res 1019: 275‐280, 2004.
 112.Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med 17: 796‐808, 2011.
 113.Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J Clin Invest 130: 2777‐2788, 2020.
 114.Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Norepinephrine regulation of adrenergic receptor expression, 5' AMP‐activated protein kinase activity, and glycogen metabolism and mass in male versus female hypothalamic primary astrocyte cultures. ASN Neuro 12: 1759091420974134, 2020.
 115.Illanes S, Liesz A, Sun L, Dalpke A, Zorn M, Veltkamp R. Hematoma size as major modulator of the cellular immune system after experimental intracerebral hemorrhage. Neurosci Lett 490: 170‐174, 2011.
 116.Ito M, Komai K, Mise‐Omata S, Iizuka‐Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565: 246‐250, 2019.
 117.Jakob MO, Murugan S, Klose CSN. Neuro‐immune circuits regulate immune responses in tissues and organ homeostasis. Front Immunol 11: 308, 2020.
 118.Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation 16: 142, 2019.
 119.Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, Li F, Wang Y, Xu H, Li Q. Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget 8: 3553‐3567, 2017.
 120.Jiang C, Wang J, Wang J, Zhang J, investigators T‐I. Rationale and design of a randomized, double‐blind trial evaluating the efficacy of tranexamic acid on hematoma expansion and peri‐hematomal edema in patients with spontaneous intracerebral hemorrhage within 4.5 h after symptom onset: The THE‐ICH Trial Protocol. J Stroke Cerebrovasc Dis 29: 105136, 2020.
 121.Jiang C, Wang Y, Hu Q, Shou J, Zhu L, Tian N, Sun L, Luo H, Zuo F, Li F, Wang Y, Zhang J, Wang J, Wang J, Zhang J. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB J 34: 2774‐2791, 2020.
 122.Jiang Y, Li L, Ma J, Zhang L, Niu F, Feng T, Li C. Auricular vagus nerve stimulation promotes functional recovery and enhances the post‐ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem Int 97: 73‐82, 2016.
 123.Jin C, Shao Y, Zhang X, Xiang J, Zhang R, Sun Z, Mei S, Zhou J, Zhang J, Shi L. A unique type of highly‐activated microglia evoking brain inflammation via Mif/Cd74 signaling axis in aged mice. Aging Dis 12: 2125‐2139, 2021.
 124.Jin R, Zhu X, Liu L, Nanda A, Granger DN, Li G. Simvastatin attenuates stroke‐induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke 44: 1135‐1143, 2013.
 125.Kalita J, Misra UK, Kumar B. Is beta‐blocker (atenolol) a preferred antihypertensive in acute intracerebral hemorrhage? Neurol Sci 34: 1099‐1104, 2013.
 126.Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K. Non‐neuronal cholinergic system in regulation of immune function with a focus on alpha7 nAChRs. Int Immunopharmacol 29: 127‐134, 2015.
 127.Kay LJ, Peachell PT. Mast cell beta2‐adrenoceptors. Chem Immunol Allergy 87: 145‐153, 2005.
 128.Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol 4: 1177‐1200, 2014.
 129.Kim E, Cho S. Microglia and monocyte‐derived macrophages in stroke. Neurotherapeutics 13: 702‐718, 2016.
 130.Kim JY, Park J, Chang JY, Kim SH, Lee JE. Inflammation after ischemic stroke: The role of leukocytes and glial cells. Exp Neurobiol 25: 241‐251, 2016.
 131.Kim M, Kim SD, Kim KI, Jeon EH, Kim MG, Lim YR, Lkhagva‐Yondon E, Oh Y, Na K, Chung YC, Jin BK, Song YS, Jeon MS. Dynamics of T lymphocyte between the periphery and the brain from the acute to the chronic phase following ischemic stroke in mice. Exp Neurobiol 30: 155‐169, 2021.
 132.Kimberley TJ, Pierce D, Prudente CN, Francisco GE, Yozbatiran N, Smith P, Tarver B, Engineer ND, Alexander Dickie D, Kline DK, Wigginton JG, Cramer SC, Dawson J. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke 49: 2789‐2792, 2018.
 133.Kirstein SL, Insel PA. Autonomic nervous system pharmacogenomics: A progress report. Pharmacol Rev 56: 31‐52, 2004.
 134.Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat Rev Neurol 11: 625‐636, 2015.
 135.Kooijman S, Meurs I, van Beek L, Khedoe PPSJ, Giezekamp A, Pike‐Overzet K, Cailotto C, van der Vliet J, van Harmelen V, Boeckxstaens G. Splenic autonomic denervation increases inflammatory status but does not aggravate atherosclerotic lesion development. Am J Physiol Heart Circ Physiol 309: H646‐H654, 2015.
 136.Korner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, Giera M, Mirakaj V. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun 10: 633, 2019.
 137.Koshimizu TT. Recent progress in alpha 1‐adrenoceptor pharmacology. Pharmacol Ther 98: 235‐244, 2003.
 138.Koton S, Tanne D, Grossman E. Prestroke treatment with beta‐blockers for hypertension is not associated with severity and poor outcome in patients with ischemic stroke: Data from a national stroke registry. J Hypertens 35: 870‐876, 2017.
 139.Krafft PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH. alpha7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK‐3beta inhibition in a mouse model of intracerebral hemorrhage. Stroke 43: 844‐850, 2012.
 140.Krafft PR, McBride D, Rolland WB, Lekic T, Flores JJ, Zhang JH. alpha7 Nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2‐STAT3 activation in murine models of intracerebral hemorrhage. Biomed Res Int 2017: 8134653, 2017.
 141.Kudlak M, Tadi P. Physiology, Muscarinic Receptor. Treasure Island (FL): StatPearls, 2021.
 142.Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics 15: 36‐59, 2018.
 143.Lai YR, Lin YJ, Shih FY, Wang HC, Tsai NW, Kung CT, Lin WC, Cheng BC, Su YJ, Chang YT, Su CM, Hsiao SY, Huang CC, Lu CH. Effect of baroreceptor sensitivity on outcomes in patients with acute spontaneous intracerebral hemorrhage. World Neurosurg 109: e754‐e760, 2018.
 144.Lambertsen KL, Finsen B, Clausen BH. Post‐stroke inflammation‐target or tool for therapy? Acta Neuropathol 137: 693‐714, 2019.
 145.Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 13: 420‐433, 2017.
 146.Lan X, Han X, Liu X, Wang J. Inflammatory responses after intracerebral hemorrhage: From cellular function to therapeutic targets. J Cereb Blood Flow Metab 39: 184‐186, 2019.
 147.Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones L, McAlpine C, Dick F, Taylor GS, Murray G. Medical complications after stroke: A multicenter study. Stroke 31: 1223‐1229, 2000.
 148.Langley JN. On the union of cranial autonomic (visceral) fibres with the nerve cells of the superior cervical ganglion. J Physiol 23: 240‐270, 1898.
 149.Laureys G, Gerlo S, Spooren A, Demol F, De Keyser J, Aerts JL. beta(2)‐adrenergic agonists modulate TNF‐alpha induced astrocytic inflammatory gene expression and brain inflammatory cell populations. J Neuroinflammation 11: 21, 2014.
 150.Lechtenberg KJ, Meyer ST, Doyle JB, Peterson TC, Buckwalter MS. Augmented beta2‐adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. J Neuroinflammation 16: 112, 2019.
 151.Lee ST, Chu K, Jung KH, Kang KM, Kim JH, Bahn JJ, Jeon D, Kim M, Lee SK, Roh JK. Cholinergic anti‐inflammatory pathway in intracerebral hemorrhage. Brain Res 1309: 164‐171, 2010.
 152.Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 4: eaau6085, 2019.
 153.Li C, Sun H, Xu G, McCarter KD, Li J, Mayhan WG. Mito‐Tempo prevents nicotine‐induced exacerbation of ischemic brain damage. J Appl Physiol 125: 49‐57, 2018.
 154.Li HQ, Li Y, Chen ZX, Zhang XG, Zheng XW, Yang WT, Chen S, Zheng GQ. Electroacupuncture exerts neuroprotection through caveolin‐1 mediated molecular pathway in intracerebral hemorrhage of rats. Neural Plast 2016: 7308261, 2016.
 155.Li S, Lv J, Li J, Zhao Z, Guo H, Zhang Y, Cheng S, Sun J, Pan H, Fan S, Li Z. Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve. Neurosci Lett 662: 98‐104, 2018.
 156.Li X, Leung HHW, Xiang YC, Jing HH, Leung TWH, Soo YOY, Chan AYY, Lau AYL, Wong LKS. Comprehensive assessment for autonomic dysfunction in different phases after ischemic stroke. Int J Stroke 8: 645‐651, 2013.
 157.Li Z, Li M, Shi SX, Yao N, Cheng X, Guo A, Zhu Z, Zhang X, Liu Q. Brain transforms natural killer cells that exacerbate brain edema after intracerebral hemorrhage. J Exp Med 17: e20200213, 2020.
 158.Liesz A, Ruger H, Purrucker J, Zorn M, Dalpke A, Mohlenbruch M, Englert S, Nawroth PP, Veltkamp R. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS One 8: e74839, 2013.
 159.Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Kuan YH, Liao SL, Chen CJ. Effects of beta‐adrenergic blockade on metabolic and inflammatory responses in a rat model of ischemic stroke. Cell 9: 1373, 2020.
 160.Lin WS, Chou CL, Chang MH, Chung YM, Lin FG, Tsai PY. Vagus nerve magnetic modulation facilitates dysphagia recovery in patients with stroke involving the brainstem ‐ A proof of concept study. Brain Stimul 11: 264‐270, 2018.
 161.Liu AF, Zhao FB, Wang J, Lu YF, Tian J, Zhao Y, Gao Y, Hu XJ, Liu XY, Tan J, Tian YL, Shi J. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J Transl Med 14: 101, 2016.
 162.Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke Vasc Neurol 1: 52‐58, 2016.
 163.Liu JJ, Raskin JS, McFarlane R, Samatham R, Cetas JS. Subarachnoid hemorrhage pattern predicts acute cerebral blood flow response in the rat. Acta Neurochir Suppl 127: 83‐89, 2020.
 164.Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, Zhang C, Gonzales RJ, Sheth KN, La Cava A, Shi FD. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity 46: 474‐487, 2017.
 165.Liu W, Shang G, Yang S, Huang J, Xue X, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1‐ULK1 complex‐Beclin1 pathway. Int J Mol Med 37: 309‐318, 2016.
 166.Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, Ji J, Fan W, Huang Z, Hu J. Activation of alpha7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress‐induced apoptosis: Implications for Parkinson's disease. Neuropharmacology 91: 87‐96, 2015.
 167.Liu ZJ, Ran YY, Qie SY, Gong WJ, Gao FH, Ding ZT, Xi JN. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti‐inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther 25: 1353‐1362, 2019.
 168.Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: Integration of signals for activation and inhibition. Annu Rev Immunol 31: 227‐258, 2013.
 169.Lopes F, Graepel R, Reyes JL, Wang A, Petri B, McDougall JJ, Sharkey KA, McKay DM. Involvement of mast cells in alpha7 nicotinic receptor agonist exacerbation of Freund's complete adjuvant‐induced monoarthritis in mice. Arthritis Rheumatol 68: 542‐552, 2016.
 170.Lord AS, Langefeld CD, Sekar P, Moomaw CJ, Badjatia N, Vashkevich A, Rosand J, Osborne J, Woo D, Elkind MS. Infection after intracerebral hemorrhage: Risk factors and association with outcomes in the ethnic/racial variations of intracerebral hemorrhage study. Stroke 45: 3535‐3542, 2014.
 171.Lu XX, Hong ZQ, Tan Z, Sui MH, Zhuang ZQ, Liu HH, Zheng XY, Yan TB, Geng DF, Jin DM. Nicotinic acetylcholine receptor alpha7 subunit mediates vagus nerve stimulation‐induced neuroprotection in acute permanent cerebral ischemia by a7nAchR/JAK2 pathway. Med Sci Monit 23: 6072‐6081, 2017.
 172.Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czeh B. Neuropathology of stress. Acta Neuropathol 127: 109‐135, 2014.
 173.Lux D, Alakbarzade V, Bridge L, Clark CN, Clarke B, Zhang L, Khan U, Pereira AC. The association of neutrophil‐lymphocyte ratio and lymphocyte‐monocyte ratio with 3‐month clinical outcome after mechanical thrombectomy following stroke. J Neuroinflammation 17: 60, 2020.
 174.Ma J, Zhang L, He G, Tan X, Jin X, Li C. Transcutaneous auricular vagus nerve stimulation regulates expression of growth differentiation factor 11 and activin‐like kinase 5 in cerebral ischemia/reperfusion rats. J Neurol Sci 369: 27‐35, 2016.
 175.Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease. Neuropeptides 73: 96‐106, 2019.
 176.Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157: 247‐272, 2017.
 177.Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW. Origins of skeletal pain: Sensory and sympathetic innervation of the mouse femur. Neuroscience 113: 155‐166, 2002.
 178.Maestroni GJ. Dendritic cell migration controlled by alpha 1b‐adrenergic receptors. J Immunol 165: 6743‐6747, 2000.
 179.Maestroni GJ, Mazzola P. Langerhans cells beta 2‐adrenoceptors: Role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol 144: 91, 2003.
 180.Mai N, Miller‐Rhodes K, Prifti V, Kim M, O'Reilly MA, Halterman MW. Lung‐derived SOD3 attenuates neurovascular injury after transient global cerebral ischemia. J Am Heart Assoc 8: e011801, 2019.
 181.Maier IL, Becker JC, Leyhe JR, Schnieder M, Behme D, Psychogios MN, Liman J. Influence of beta‐blocker therapy on the risk of infections and death in patients at high risk for stroke induced immunodepression. PLoS One 13: e0196174, 2018.
 182.Marina N, Teschemacher AG, Kasparov S, Gourine AV. Glia, sympathetic activity and cardiovascular disease. Exp Physiol 101: 565‐576, 2016.
 183.Martin A, Aguirre J, Sarasa‐Renedo A, Tsoukatou D, Garofalakis A, Meyer H, Mamalaki C, Ripoll J, Planas AM. Imaging changes in lymphoid organs in vivo after brain ischemia with three‐dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes. Mol Imaging 7: 157‐167, 2008.
 184.Mashimo M, Iwasaki Y, Inoue S, Saito S, Kawashima K, Fujii T. Acetylcholine released from T cells regulates intracellular Ca2+, IL‐2 secretion and T cell proliferation through nicotinic acetylcholine receptor. Life Sci 172: 13‐18, 2017.
 185.Mashimo M, Komori M, Matsui YY, Murase MX, Fujii T, Takeshima S, Okuyama H, Ono S, Moriwaki Y, Misawa H, Kawashima K. Distinct roles of alpha7 nAChRs in antigen‐presenting cells and CD4(+) T cells in the regulation of T cell differentiation. Front Immunol 10: 1102, 2019.
 186.Masuda T, Sato K, Yamamoto S, Matsuyama N, Shimohama T, Matsunaga A, Obuchi S, Shiba Y, Shimizu S, Izumi T. Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke 33: 1671‐1676, 2002.
 187.Mazya MV, Ahmed N, Ford GA, Hobohm C, Mikulik R, Nunes AP, Wahlgren N, Scientific Committee of SI. Remote or extraischemic intracerebral hemorrhage‐‐an uncommon complication of stroke thrombolysis: Results from the safe implementation of treatments in stroke‐international stroke thrombolysis register. Stroke 45: 1657‐1663, 2014.
 188.Mazzone SB, Canning BJ. Autonomic neural control of the airways. Handb Clin Neurol 117: 215‐228, 2013.
 189.McAllen RM, McKinley MJ, Martelli D. Reflex regulation of systemic inflammation by the autonomic nervous system. Auton Neurosci 237: 102926, 2022.
 190.Mcculloch L, Smith CJ, McColl BW. Adrenergic‐mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nat Commun 8: 15051, 2017.
 191.McGrath JC. Localization of α‐adrenoceptors: JR Vane Medal lecture. Br J Pharmacol 172: 1179‐1194, 2015.
 192.Mckim DB, Patterson JM, Wohleb ES, Jarrett BL, Reader BF, Godbout JP, Sheridan JF. Sympathetic release of splenic monocytes promotes recurring anxiety following repeated social defeat. Biol Psychiatry 79: 803‐813, 2016.
 193.Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 5: 606‐616, 2005.
 194.Meisel A, Smith CJ. Stroke: Preventive antibiotics for stroke‐associated pneumonia. Nat Rev Neurol 11: 672‐673, 2015.
 195.Meltzer JC, MacNeil BJ, Sanders V, Pylypas S, Jansen AH, Greenberg AH, Nance DM. Stress‐induced suppression of in vivo splenic cytokine production in the rat by neural and hormonal mechanisms. Brain Behav Immun 18: 262‐273, 2004.
 196.Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL 2nd, Kilgard MP, Hays SA. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49: 710‐717, 2018.
 197.Michel MC, Vrydag W. Alpha1‐, alpha2‐ and beta‐adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147: S88‐S119, 2006.
 198.Mignini F, Sabbatini M, D'Andrea V, Cavallotti C. Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus. Eur J Histochem 54: e17, 2010.
 199.Mikulska J, Juszczyk G, Gawronska‐Grzywacz M, Herbet M. HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation. Brain Sci 11: 1298, 2021.
 200.Min H, Hong J, Cho IH, Jang YH, Lee H, Kim D, Yu SW, Lee S, Lee SJ. TLR2‐induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models. Mol Brain 8: 23, 2015.
 201.Miro‐Mur F, Laredo C, Renu A, Rudilosso S, Zhao Y, Amaro S, Llull L, Urra X, Planas AM, Chamorro A. Adrenal hormones and circulating leukocyte subtypes in stroke patients treated with reperfusion therapy. Brain Behav Immun 70: 346‐353, 2018.
 202.Mo J, Huang L, Peng J, Ocak U, Zhang J, Zhang JH. Autonomic disturbances in acute cerebrovascular disease. Neurosci Bull 35: 133‐144, 2019.
 203.Monson NL, Ortega SB, Ireland SJ, Meeuwissen AJ, Chen D, Plautz EJ, Shubel E, Kong X, Li MK, Freriks LH, Stowe AM. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation 11: 22, 2014.
 204.Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, Takeda I, Maeda N, Sakanaka M, Tanaka J. Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 43: 1026‐1034, 2002.
 205.Morimoto K, Kitano T, Eguchi R, Otsuguro K. Bidirectional modulation of TNF‐alpha transcription via alpha‐ and beta‐adrenoceptors in cultured astrocytes from rat spinal cord. Biochem Biophys Res Commun 528: 78‐84, 2020.
 206.Moussouttas M, Huynh TT, Khoury J, Lai EW, Dombrowski K, Pello S, Pacak K. Cerebrospinal fluid catecholamine levels as predictors of outcome in subarachnoid hemorrhage. Cerebrovasc Dis 33: 173‐181, 2012.
 207.Moussouttas M, Lai EW, Khoury J, Huynh TT, Dombrowski K, Pacak K. Determinants of central sympathetic activation in spontaneous primary subarachnoid hemorrhage. Neurocrit Care 16: 381‐388, 2012.
 208.Mracsko E, Liesz A, Karcher S, Zorn M, Bari F, Veltkamp R. Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav Immun 41: 200‐209, 2014.
 209.Muslumanoglu L, Akyuz G, Aki S, Karsidag S, Us O. Evaluation of autonomic nervous system functions in post‐stroke patients. Am J Phys Med Rehabil 81: 721‐725, 2002.
 210.Nayani S, Sreedharan SE, Namboodiri N, Sarma PS, Sylaja PN. Autonomic dysfunction in first ever ischemic stroke: Prevalence, predictors and short term neurovascular outcome. Clin Neurol Neurosurg 150: 54‐58, 2016.
 211.Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, George MS, Charney DS, Brannan SK. VNS therapy in treatment‐resistant depression: Clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31: 1345‐1355, 2006.
 212.Nevin JT, Moussa M, Corwin WL, Mandoiu II, Srivastava PK. Sympathetic nervous tone limits the development of myeloid‐derived suppressor cells. Sci Immunol 5: eaay9368, 2020.
 213.Nicholls AJ, Wen SW, Hall P, Hickey MJ, Wong CHY. Activation of the sympathetic nervous system modulates neutrophil function. J Leukoc Biol 103: 295‐309, 2018.
 214.Nijhuis LE, Olivier BJ, Dhawan S, Hilbers FW, Boon L, Wolkers MC, Samsom JN, de Jonge WJ. Adrenergic beta2 receptor activation stimulates anti‐inflammatory properties of dendritic cells in vitro. PLoS One 9: e85086, 2014.
 215.Niu X, Cheng Y, Hu W, Fan Z, Zhang W, Shao B, Deng B. Application of bulbocavernosus reflex combined with anal sphincter electromyography in the diagnosis of MSA and PD. Int J Neurosci 1‐6, 2020.
 216.Numan MT, Kamdar A, Young J, Butler IJ. Autologous adipose stem cell therapy for autonomic nervous system dysfunction in two young patients. Stem Cells Dev 26: 391‐393, 2017.
 217.Ocak U, Ocak PE, Wang A, Zhang JH, Boling W, Wu P, Mo J, Zhang T, Huang L. Targeting mast cell as a neuroprotective strategy. Brain Inj 33: 723‐733, 2019.
 218.Offner H, Hurn PD. A novel hypothesis: Regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res 3: 324‐330, 2012.
 219.Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176: 6523‐6531, 2006.
 220.Ogawa Y, Okinaka Y, Takeuchi Y, Saino O, Kikuchi‐Taura A, Taguchi A. Intravenous bone marrow mononuclear cells transplantation improves the effect of training in chronic stroke mice. Front Med 7: 535902, 2020.
 221.Ortega SB, Torres VO, Latchney SE, Whoolery CW, Noorbhai IZ, Poinsatte K, Selvaraj UM, Benson MA, Meeuwissen AJM, Plautz EJ, Kong X, Ramirez DM, Ajay AD, Meeks JP, Goldberg MP, Monson NL, Eisch AJ, Stowe AM. B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc Natl Acad Sci U S A 117: 4983‐4993, 2020.
 222.Osorio F, LeibundGut‐Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C. DC activated via dectin‐1 convert Treg into IL‐17 producers. Eur J Immunol 38: 3274‐3281, 2008.
 223.Ozawa A, Kadowaki E, Horio T, Sakaue M. Acetylcholine suppresses the increase of glia fibrillary acidic protein expression via acetylcholine receptors in cAMP‐induced astrocytic differentiation of rat C6 glioma cells. Neurosci Lett 698: 146‐153, 2019.
 224.Panebianco M, Rigby A, Weston J, Marson AG. Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev 2015: Cd002896, 2015.
 225.Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, Lopez MG. The microglial alpha7‐acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase‐1 via nuclear factor erythroid‐2‐related factor 2. Antioxid Redox Signal 19: 1135‐1148, 2013.
 226.Paravati S, Rosani A, Warrington SJ. Physiology, Catecholamines. Treasure Island (FL): StatPearls, 2022.
 227.Park MG, Kim MK, Chae SH, Kim HK, Han J, Park KP. Lymphocyte‐to‐monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke. Neurol Sci 39: 243‐249, 2018.
 228.Parrella E, Porrini V, Benarese M, Pizzi M. The role of mast cells in stroke. Cell 8, 2019.
 229.Patkai J, Mesples B, Dommergues MA, Fromont G, Thornton EM, Renauld JC, Evrard P, Gressens P. Deleterious effects of IL‐9‐activated mast cells and neuroprotection by antihistamine drugs in the developing mouse brain. Pediatr Res 50: 222‐230, 2001.
 230.Peng LJ, Mao LL, Bi CF, Li LP, Yao W, Xia DY, Wang ZW, Qi XK, Qian HR. Characteristics of sympathetic skin response in patients with multiple system atrophy. Zhonghua Yi Xue Za Zhi 96: 2620‐2624, 2016.
 231.Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J Cell Physiol 231: 1862‐1869, 2016.
 232.Perez‐Burgos A, Wang L, McVey Neufeld KA, Mao YK, Ahmadzai M, Janssen LJ, Stanisz AM, Bienenstock J, Kunze WA. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938. J Physiol 593: 3943‐3957, 2015.
 233.Phelan C, Alaigh V, Fortunato G, Staff I, Sansing L. Effect of beta‐adrenergic antagonists on in‐hospital mortality after ischemic stroke. J Stroke Cerebrovasc Dis 24: 1998‐2004, 2015.
 234.Piascik MT, Perez DM. α1‐Adrenergic receptors: New insights and directions. J Pharmacol Exp Ther 298: 403‐410, 2001.
 235.Piovesana R, Salazar Intriago MS, Dini L, Tata AM. Cholinergic modulation of neuroinflammation: Focus on alpha7 nicotinic receptor. Int J Mol Sci 22: 4912, 2021.
 236.Planas AM. Role of immune cells migrating to the ischemic brain. Stroke 49: 2261‐2267, 2018.
 237.Poli A, Kmiecik J, Domingues O, Hentges F, Blery M, Chekenya M, Boucraut J, Zimmer J. NK cells in central nervous system disorders. J Immunol 190: 5355‐5362, 2013.
 238.Pongratz G, Straub RH. The B cell, arthritis, and the sympathetic nervous system. Brain Behav Immun 24: 186‐192, 2010.
 239.Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie‐Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50: e344‐e418, 2019.
 240.Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A. Stroke‐induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1‐like immunostimulation. J Exp Med 198: 725‐736, 2003.
 241.Qi H, Wang D, Deng X, Pang X. Lymphocyte‐to‐monocyte ratio is an independent predictor for neurological deterioration and 90‐day mortality in spontaneous intracerebral hemorrhage. Med Sci Monit 24: 9282‐9291, 2018.
 242.Qian J, Zhang JM, Lin LL, Dong WZ, Cheng YQ, Su DF, Liu AJ. A combination of neostigmine and anisodamine protects against ischemic stroke by activating alpha7nAChR. Int J Stroke 10: 737‐744, 2015.
 243.Qiu YH, Peng YP, Jiang JL, Wang JJ. Effect of acetylcholine on in vitro IL‐2 production and NK cell cytotoxicity of rats. Lymphology 37: 31‐38, 2004.
 244.Ran Y, Liu Z, Huang S, Shen J, Li F, Zhang W, Chen C, Geng X, Ji Z, Du H, Hu X. Splenectomy fails to provide long‐term protection against ischemic stroke. Aging Dis 9: 467‐479, 2018.
 245.Rass V, Lindner A, Ianosi BA, Schiefecker AJ, Loveys S, Kofler M, Rass S, Pfausler B, Beer R, Schmutzhard E, Helbok R. Early alterations in heart rate are associated with poor outcome in patients with intracerebral hemorrhage. J Crit Care 61: 199‐206, 2021.
 246.Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J. Potential therapeutic targets for intracerebral hemorrhage‐associated inflammation: An update. J Cereb Blood Flow Metab 40: 1752‐1768, 2020.
 247.Robinson RG, Shoemaker WJ, Schlumpf M. Time course of changes in catecholamines following right hemispheric cerebral infarction in the rat. Brain Res 181: 202‐208, 1980.
 248.Rolfes L, Riek‐Burchardt M, Pawlitzki M, Minnerup J, Bock S, Schmidt M, Meuth SG, Gunzer M, Neumann J. Neutrophil granulocytes promote flow stagnation due to dynamic capillary stalls following experimental stroke. Brain Behav Immun 93: 322‐330, 2021.
 249.Romer C, Engel O, Winek K, Hochmeister S, Zhang T, Royl G, Klehmet J, Dirnagl U, Meisel C, Meisel A. Blocking stroke‐induced immunodeficiency increases CNS antigen‐specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci 35: 7777‐7794, 2015.
 250.Roses RE, Xu S, Xu M, Koldovsky U, Koski G, Czerniecki BJ. Differential production of IL‐23 and IL‐12 by myeloid‐derived dendritic cells in response to TLR agonists. J Immunol 181: 5120‐5127, 2008.
 251.Roth S, Cao J, Singh V, Tiedt S, Hundeshagen G, Li T, Boehme JD, Chauhan D, Zhu J, Ricci A, Gorka O, Asare Y, Yang J, Lopez MS, Rehberg M, Bruder D, Zhang S, Gross O, Dichgans M, Hornung V, Liesz A. Post‐injury immunosuppression and secondary infections are caused by an AIM2 inflammasome‐driven signaling cascade. Immunity 54: 648‐659 e648, 2021.
 252.Sadler R, Singh V, Benakis C, Garzetti D, Brea D, Stecher B, Anrather J, Liesz A. Microbiota differences between commercial breeders impacts the post‐stroke immune response. Brain Behav Immun 66: 23‐30, 2017.
 253.Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 57: 833‐838, 2001.
 254.Sansing LH, Messe SR, Cucchiara BL, Lyden PD, Kasner SE. Anti‐adrenergic medications and edema development after intracerebral hemorrhage. Neurocrit Care 14: 395‐400, 2011.
 255.Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria‐gut‐brain signals. Trends Neurosci 39: 763‐781, 2016.
 256.Saxena R. Got nerve? Autonomic innervation of the human liver. Virchows Arch 477: 383‐384, 2020.
 257.Scheibe F, Ladhoff J, Huck J, Grohmann M, Blazej K, Oersal A, Baeva N, Seifert M, Priller J. Immune effects of mesenchymal stromal cells in experimental stroke. J Cereb Blood Flow Metab 32: 1578‐1588, 2012.
 258.Schena G, Caplan MJ. Everything you always wanted to know about β3‐AR * (* but were afraid to ask). Cell 8: 357, 2019.
 259.Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation 14: 112, 2017.
 260.Seifert HA, Halina O. The splenic response to stroke: From rodents to stroke subjects. J Neuroinflammation 15: 195, 2018.
 261.Seylaz J, Hara H, Pinard E, Mraovitch S, MacKenzie ET, Edvinsson L. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab 8: 875‐878, 1988.
 262.Sharma D, Farrar JD. Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol 42: 709‐717, 2020.
 263.Sharma M, Arbabzada N, Flood PM. Mechanism underlying beta2‐AR agonist‐mediated phenotypic conversion of LPS‐activated microglial cells. J Neuroimmunol 332: 37‐48, 2019.
 264.Shea‐Donohue T, Urban JF. Neuroimmune modulation of gut function. Handb Exp Pharmacol 239: 247‐267, 2017.
 265.Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X. Treg cell‐derived osteopontin promotes microglia‐mediated white matter repair after ischemic stroke. Immunity 54: 1527‐1542 e1528, 2021.
 266.Shim R, Wong CH. Ischemia, immunosuppression and infection–tackling the predicaments of post‐stroke complications. Int J Mol Sci 17: 64, 2016.
 267.Shoamanesh A, Patrice Lindsay M, Castellucci LA, Cayley A, Crowther M, de Wit K, English SW, Hoosein S, Huynh T, Kelly M, O'Kelly CJ, Teitelbaum J, Yip S, Dowlatshahi D, Smith EE, Foley N, Pikula A, Mountain A, Gubitz G, Gioia LC. Canadian stroke best practice recommendations: Management of Spontaneous Intracerebral Hemorrhage, 7th Edition Update 2020. Int J Stroke 16: 321‐341, 2020.
 268.Shtaya A, Bridges LR, Williams R, Trippier S, Zhang L, Pereira AC, Nicoll JAR, Boche D, Hainsworth AH. Innate immune anti‐inflammatory response in human spontaneous intracerebral hemorrhage. Stroke 52: 3613‐3623, 2021.
 269.Sibo Z, Yanfeng J, Kelin X, Mei C, Weimin Y, Genming Z, Li J, Xingdong C. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 17: 25, 2020.
 270.Sideris‐Lampretsas G, Malcangio M. Microglial heterogeneity in chronic pain. Brain Behav Immun 96: 279‐289, 2021.
 271.Silva NJ, Dorman LC, Vainchtein ID, Horneck NC, Molofsky AV. In situ and transcriptomic identification of microglia in synapse‐rich regions of the developing zebrafish brain. Nat Commun 12: 5916, 2021.
 272.Silva RL, Castanheira FV, Figueiredo JG, Bassi GS, Ferreira SH, Cunha FQ, Cunha TM, Kanashiro A. Pharmacological beta‐adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen. Inflammation 39: 1405‐1413, 2016.
 273.Silvestre‐Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol 40: 565‐583, 2019.
 274.Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 36: 7428‐7440, 2016.
 275.Sitkauskiene B, Sakalauskas R. The role of beta(2)‐adrenergic receptors in inflammation and allergy. Curr Drug Targets Inflamm Allergy 4: 157‐162, 2005.
 276.Stanley D, Mason LJ, Mackin KE, Srikhanta YN, Lyras D, Prakash MD, Nurgali K, Venegas A, Hill MD, Moore RJ. Translocation and dissemination of commensal bacteria in post‐stroke infection. Nat Med 22: 1277, 2016.
 277.Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patel KP. Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension 68: 1483, 2016.
 278.Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke‐induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 158: 94‐131, 2017.
 279.Stroka KM, Hayenga HN, Aranda‐Espinoza H. Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans‐endothelial migration. PLoS One 8: e61377, 2013.
 280.Sun F, Johnson SR, Jin K, Uteshev VV. Boosting endogenous resistance of brain to ischemia. Mol Neurobiol 54: 2045‐2059, 2017.
 281.Sundar SK, Cierpial MA, Kilts C, Ritchie JC, Weiss JM. Brain IL‐1‐induced immunosuppression occurs through activation of both pituitary‐adrenal axis and sympathetic nervous system by corticotropin‐releasing factor. J Neurosci 10: 3701‐3706, 1990.
 282.Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andra M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83: 1461‐1470, 2006.
 283.Sykora M, Diedler J, Poli S, Rizos T, Turcani P, Veltkamp R, Steiner T. Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke 42: 1218‐1223, 2011.
 284.Sykora M, Diedler J, Rupp A, Turcani P, Rocco A, Steiner T. Impaired baroreflex sensitivity predicts outcome of acute intracerebral hemorrhage. Crit Care Med 36: 3074‐3079, 2008.
 285.Szabo J, Smielewski P, Czosnyka M, Jakubicek S, Krebs S, Siarnik P, Sykora M. Heart rate variability is associated with outcome in spontaneous intracerebral hemorrhage. J Crit Care 48: 85‐89, 2018.
 286.Takenaka MC, Araujo LP, Maricato JT, Nascimento VM, Guereschi MG, Rezende RM, Quintana FJ, Basso AS. Norepinephrine controls effector T cell differentiation through beta2‐adrenergic receptor‐mediated inhibition of NF‐kappaB and AP‐1 in dendritic cells. J Immunol 196: 637‐644, 2016.
 287.Takenaka MC, Guereschi MG, Basso AS. Neuroimmune interactions: Dendritic cell modulation by the sympathetic nervous system. Semin Immunopathol 39: 165‐176, 2017.
 288.Tan C, Wang H, Gao X, Xu R, Zeng X, Cui Z, Zhu J, Wu Q, Xia G, Zhou H, He Y, Yin J. Dynamic changes and prognostic value of gut microbiota‐dependent trimethylamine‐N‐oxide in acute ischemic stroke. Front Neurol 11: 29, 2020.
 289.Tan C, Wang Z, Zheng M, Zhao S, Shichinohe H, Houkin K. Responses of immune organs following cerebral ischemic stroke. J Nippon Med Sch 88: 228‐237, 2021.
 290.Tang S, Xiong L, Fan Y, Mok VCT, Wong KS, Leung TW. Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity. Stroke 51: 1317‐1320, 2020.
 291.Ten Hove AS, Seppen J, de Jonge WJ. Neuronal innervation of the intestinal crypt. Am J Physiol Gastrointest Liver Physiol 320: G193‐G205, 2021.
 292.Todman D. 'Autonomic' nervous system. Eur Neurol 60: 215‐216, 2008.
 293.Tracey KJ. The inflammatory reflex. Nature 420: 853‐859, 2002.
 294.Trotter RN, Stornetta RL, Guyenet PG, Roberts MR. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci 131: 9‐20, 2007.
 295.Tsai WC, Lin HC, Lai YR, Hsu CW, Huang CC, Wang HC, Su CM, Su YJ, Lin WC, Cheng BC, Chang WN, Lu CH, Tsai NW. The effect of stroke subtypes on baroreceptor sensitivity, a predict for acute stroke outcome. Biomed Res Int 2019: 7614828, 2019.
 296.Ueno M, Ueno‐Nakamura Y, Niehaus J, Popovich PG, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 19: 784‐787, 2016.
 297.Ulleryd MA, Mjörnstedt F, Panagaki D, Yang LJ, Engevall K, Gutiérrez S, Wang Y, Gan L‐M, Nilsson H, Michaëlsson E, Johansson ME. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122‐133, 2019.
 298.Undem BJ, Potenzieri C. Autonomic neural control of intrathoracic airways. Compr Physiol 2: 1241‐1267, 2012.
 299.Uriarte Huarte O, Kyriakis D, Heurtaux T, Pires‐Afonso Y, Grzyb K, Halder R, Buttini M, Skupin A, Mittelbronn M, Michelucci A. Single‐cell transcriptomics and in situ morphological analyses reveal microglia heterogeneity across the nigrostriatal pathway. Front Immunol 12: 639613, 2021.
 300.Urra X, Cervera A, Villamor N, Planas AM, Chamorro A. Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience 158: 1174‐1183, 2009.
 301.Urra X, Obach V, Chamorro A. Stroke induced immunodepression syndrome: From bench to bedside. Curr Mol Med 9: 195‐202, 2009.
 302.Vahidy FS, Parsha KN, Rahbar MH, Lee M, Bui TT, Nguyen C, Barreto AD, Bambhroliya AB, Sahota P, Yang B, Aronowski J, Savitz SI. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metab 36: 1012‐1021, 2016.
 303.Vida G, Pena G, Kanashiro A, Thompson‐Bonilla Mdel R, Palange D, Deitch EA, Ulloa L. beta2‐Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 25: 4476‐4485, 2011.
 304.Vogelgesang A, Grunwald U, Langner S, Jack R, Broker BM, Kessler C, Dressel A. Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke 39: 237‐241, 2008.
 305.Walter U, Kolbaske S, Patejdl R, Steinhagen V, Abu‐Mugheisib M, Grossmann A, Zingler C, Benecke R. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol 20: 153‐159, 2013.
 306.Wang C, Chen H, Zhu W, Xu Y, Liu M, Zhu L, Yang F, Zhang L, Liu X, Zhong Z, Zhao J, Jiang J, Xiang M, Yu H, Hu X, Lu H, Wang J. Nicotine accelerates atherosclerosis in apolipoprotein E‐deficient mice by activating alpha7 nicotinic acetylcholine receptor on mast cells. Arterioscler Thromb Vasc Biol 37: 53‐65, 2017.
 307.Wang H, Yan FL, Cunningham M, Deng QW, Zuo L, Xing FL, Shi LH, Hu SS, Huang Y. Potential specific immunological indicators for stroke associated infection are partly modulated by sympathetic pathway activation. Oncotarget 7: 52404‐52415, 2016.
 308.Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al‐Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384‐388, 2003.
 309.Wang HY, Ye JR, Cui LY, Chu SF, Chen NH. Regulatory T cells in ischemic stroke. Acta Pharmacol Sin 43: 1‐9, 2022.
 310.Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, Ou C, Cui X, Zhou C, Wang J. Cerebral ischemia increases bone marrow CD4+ CD25+ FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun 43: 172‐183, 2015.
 311.Wang Y, Han S, Qin H, Zheng H, Jiang B, Cao Y, Gao Y, Guan L, Jia Q, Jiang Y, Jiao Y, Li S, Li Y, Li Z, Liu W, Ru X, Sun D, Sun H, Wang P, Wang T, Zong L, Guo L, Xie X, Xu Y, Yang X, Yang Y, Zhou M, Wang W. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: Executive summary and 2019 update of the management of high‐risk population. Stroke Vasc Neurol 5: 270‐278, 2020.
 312.Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 127: 37‐53, 2021.
 313.Wang YY, Lin SY, Chuang YH, Sheu WH, Tung KC, Chen CJ. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 155: 1235‐1246, 2014.
 314.Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 16: 20, 2019.
 315.Wang ZK, Xue L, Wang T, Wang XJ, Su ZQ. Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice. Neurosci Lett 633: 62‐68, 2016.
 316.Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol 6: 1239‐1278, 2016.
 317.Westendorp WF, Nederkoorn PJ, Vermeij JD, Dijkgraaf MG, van de Beek D. Post‐stroke infection: A systematic review and meta‐analysis. BMC Neurol 11: 110, 2011.
 318.Wirtz MR, Moekotte J, Balvers K, Admiraal MM, Pittet JF, Colombo J, Wagener BM, Goslings JC, Juffermans N. Autonomic nervous system activity and the risk of nosocomial infection in critically ill patients with brain injury. Intensive Care Med Exp 8: 69, 2020.
 319.Wong CHY, Jenne CN, Woo‐Yong L, Caroline L, Paul K. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334: 101‐105, 2011.
 320.Woo MS, Yang J, Beltran C, Cho S. Cell surface CD36 protein in monocyte/macrophage contributes to phagocytosis during the resolution phase of ischemic stroke in mice. J Biol Chem 291: 23654‐23661, 2016.
 321.Worthylake RA, Burridge K. Leukocyte transendothelial migration: Orchestrating the underlying molecular machinery. Curr Opin Cell Biol 13: 569‐577, 2001.
 322.Wu C, Li C, Zhao W, Xie N, Yan F, Lian Y, Zhou L, Xu X, Liang Y, Wang L, Ren M, Li S, Cheng X, Zhang L, Ma Q, Song H, Meng R, Ji X. Elevated trimethylamine N‐oxide related to ischemic brain lesions after carotid artery stenting. Neurology 90: e1283‐e1290, 2018.
 323.Xie WJ, Yu HQ, Zhang Y, Liu Q, Meng HM. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage. Neural Regen Res 11: 1122‐1127, 2016.
 324.Xiong L, Tian G, Leung H, Soo YOY, Chen X, Ip VHL, Mok VCT, Chu WCW, Wong KS, Leung TWH. Autonomic dysfunction predicts clinical outcomes after acute ischemic stroke: A prospective observational study. Stroke 49: 215‐218, 2018.
 325.Xiong L, Tian G, Leung HW, Chen XY, Lin WH, Leung TWH, Soo YO, Siu DYW, Wong LKS. Autonomic dysfunction as measured by Ewing battery test to predict poor outcome after acute ischaemic stroke. Hong Kong Med J 5: 9‐11, 2019.
 326.Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: Role of the immune response in ischemic stroke. Front Immunol 11: 294, 2020.
 327.Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. Cellular responses and functions of alpha7 nicotinic acetylcholine receptor activation in the brain: A narrative review. Ann Transl Med 9: 509, 2021.
 328.Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: Immunotherapies with potential for translation. Lancet Neurol 19: 1023‐1032, 2020.
 329.Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial polarization: Novel therapeutic strategy against ischemic stroke. Aging Dis 12: 466‐479, 2021.
 330.Yan FL, Zhang JH. Role of the sympathetic nervous system and spleen in experimental stroke‐induced immunodepression. Med Sci Monit 20: 2489‐2496, 2014.
 331.Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via ?2 adrenoceptor‐mediated PI3K activation following brief exposure to noradrenaline. J Immunol 185: 5762‐5768, 2010.
 332.Yanagawa Y, Matsumoto M, Togashi H. Adrenoceptor‐mediated enhancement of interleukin‐33 production by dendritic cells. Brain Behav Immun 25: 1427‐1433, 2011.
 333.Yang B, Hamilton JA, Valenzuela KS, Bogaerts A, Xi X, Aronowski J, Mays RW, Savitz SI. Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cells 35: 1290‐1302, 2017.
 334.Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, Yang Y. Non‐invasive vagus nerve stimulation reduces blood‐brain barrier disruption in a rat model of ischemic stroke. Brain Stimul 11: 689‐698, 2018.
 335.Yeh CF, Chuang TY, Hung YW, Lan MY, Tsai CH, Huang HX, Lin YY. Inhibition of soluble epoxide hydrolase regulates monocyte/macrophage polarization and improves neurological outcome in a rat model of ischemic stroke. Neuroreport 30: 567‐572, 2019.
 336.Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW. Dysbiosis of gut microbiota with reduced trimethylamine‐N‐oxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4: e002699, 2015.
 337.Ying J, Zhentang C, Huizi M, Guihong W, Xuemei W, Zhan W, Yaqin Y, Huiqing Z, Genliang L, Longling L, Tao F. Auricular vagus nerve stimulation exerts antiinflammatory effects and immune regulatory function in a 6‐OHDA model of Parkinson's disease. Neurochem Res 43: 2155‐2164, 2018.
 338.Yperzeele L, van Hooff RJ, Nagels G, De Smedt A, De Keyser J, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: A systematic review. Int J Stroke 10: 796‐800, 2015.
 339.Yu X, Zhou G, Shao B, Zhou H, Xu C, Yan F, Wang L, Chen G, Li J, Fu X. Gut microbiota dysbiosis induced by intracerebral hemorrhage aggravates neuroinflammation in mice. Front Microbiol 12: 647304, 2021.
 340.Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Oral administration of corticosterone at stress‐like levels drives microglial but not vascular disturbances post‐stroke. Neuroscience 352: 30‐38, 2017.
 341.Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and functional role of alpha7 nicotinic receptor in human cytokine‐stimulated natural killer (NK) cells. J Biol Chem 291: 16541‐16552, 2016.
 342.Zera KA, Buckwalter MS. The local and peripheral immune responses to stroke: Implications for therapeutic development. Neurotherapeutics 17: 414‐435, 2020.
 343.Zhai Q, Sun T, Sun C, Yan L, Wang X, Wang Y, Sun J, Zhao Y. High plasma levels of trimethylamine N‐oxide are associated with poor outcome in intracerebral hemorrhage patients. Neurol Sci 42 (3): 1009‐1016, 2021.
 344.Zhang J, Shi K, Li Z, Li M, Han Y, Wang L, Zhang Z, Yu C, Zhang F, Song L, Dong JF, La Cava A, Sheth KN, Shi FD. Organ‐ and cell‐specific immune responses are associated with the outcomes of intracerebral hemorrhage. FASEB J 32: 220‐229, 2018.
 345.Zhang L, Liu Y, Wang S, Long L, Zang Q, Ma J, Yu L, Jia G. Vagus nerve stimulation mediates microglia M1/2 polarization via inhibition of TLR4 pathway after ischemic stroke. Biochem Biophys Res Commun 577: 71‐79, 2021.
 346.Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54: 1874‐1886, 2017.
 347.Zhao M, Guan L, Collet JP, Wang Y. Relationship between ischemic stroke locations, etiology subtypes, neurological outcomes, and autonomic cardiac function. Neurol Res 42: 630‐639, 2020.
 348.Zhao M, Guan L, Wang Y. The association of autonomic nervous system function with ischemic stroke, and treatment strategies. Front Neurol 10: 1411, 2019.
 349.Zhao M, Tuo H, Wang S, Zhao L. The roles of monocyte and monocyte‐derived macrophages in common brain disorders. Biomed Res Int 2020: 9396021, 2020.
 350.Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy‐O'Reilly M, Aronowski J. Neutrophil polarization by IL‐27 as a therapeutic target for intracerebral hemorrhage. Nat Commun 8: 602, 2017.
 351.Zhao XP, Zhao Y, Qin XY, Wan LY, Fan XX. Non‐invasive vagus nerve stimulation protects against cerebral ischemia/reperfusion injury and promotes microglial M2 polarization via interleukin‐17A inhibition. J Mol Neurosci 67: 217‐226, 2019.
 352.Zhao Y, Chen S, Yu W, Cai S, Zhang L, Wang X, Tang A. The effect of electro‐acupuncture on endogenous EPCs and serum cytokines in cerebral ischemia‐reperfusion rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 27: 1322‐1326, 2010.
 353.Zhi M, Zengli Z, Fuhai B, Tao J, Chaoying Y, Qiang W. Electroacupuncture pretreatment alleviates cerebral ischemic injury through α7 nicotinic acetylcholine receptor‐mediated phenotypic conversion of microglia. Front Cell Neurosci 13: 537, 2019.
 354.Zhihong J, Rui L, Xiqun Z, Daniel S, Yi Z, Lijuan G, Weirong F, Xiaoxing X. The involvement and therapy target of immune cells after ischemic stroke. Front Immunol 10: 2167, 2019.
 355.Zhou H, Liang H, Li ZF, Xiang H, Liu W, Li JG. Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through alpha7 nicotinic acetylcholine receptors. Shock 40: 144‐151, 2013.
 356.Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, Liu J, Duan CM, Li J, Gong QW, Liu L, Yang MH, Xiong A, Wang J, Yang QW. Regulatory T cells ameliorate intracerebral hemorrhage‐induced inflammatory injury by modulating microglia/macrophage polarization through the IL‐10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab 37: 967‐979, 2017.
 357.Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Prog Neurobiol 115: 25‐44, 2014.
 358.Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 178: 101610, 2019.
 359.Zierath D, Olmstead T, Stults A, Shen A, Kunze A, Becker KJ. Chemical sympathectomy, but not adrenergic blockade, improves stroke outcome. J Stroke Cerebrovasc Dis 27: 3177‐3186, 2018.
 360.Zuo L, Shi L, Yan F. The reciprocal interaction of sympathetic nervous system and cAMP‐PKA‐NF‐kB pathway in immune suppression after experimental stroke. Neurosci Lett 627: 205‐210, 2016.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Li Zhu, Leo Huang, Anh Le, Tom J. Wang, Jiewen Zhang, Xuemei Chen, Junmin Wang, Jian Wang, Chao Jiang. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022, 12: 3665-3704. doi: 10.1002/cphy.c210047