Comprehensive Physiology Wiley Online Library

Adipose Tissue Plasticity in Aging

Full Article on Wiley Online Library



Abstract

As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole‐body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age‐associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age‐associated alterations in WAT and BAT and the impact of these alterations on whole‐body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age‐associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119–4132, 2022.

Figure 1. Figure 1. Age‐associated adipose tissue dysfunction. Adipose tissue undergoes redistribution during aging, with accumulation of vWAT and reduction in sWAT. Concurrently, skeletal muscle mass decreases, and ectopic adipose deposition increases. Thermogenic activity of BAT declines with age. Brown adipocyte heterogeneity alters during aging as the low‐thermogenic brown adipocytes dramatically increases in number. In WAT, especially in vWAT, aging is associated with increased cellular senescence, hypoxia, and chronic inflammation. These changes impair the function of WAT. Dysfunctional WAT and BAT contribute to metabolic disorders, which accelerate the aging process. Created with BioRender.com.
Figure 2. Figure 2. Adipocyte progenitor plasticity in WAT during aging. DPP4+ ASCs and ICAM1+ preadipocytes exist in sWAT and vWAT, which differentiate into mature adipocytes. In young sWAT, CD142+ Aregs inhibit adipogenesis. Some studies also indicate that this population could be converted to ICAM1+ preadipocytes and differentiate into adipocytes. In aged sWAT, Lgals3+CD36+ ARC population emerges with age, which could inhibit adipogenesis of the neighboring APCs. Lineage trajectory shows that the ARC population derived from ICAM1+Pref1+ preadipocytes. Further evidence is needed to demonstrate the regulatory role of CD142+ Aregs during aging. In young vWAT, PDGFRβ+Ly6C+ FIPs inhibit adipogenesis and contribute to inflammation. Their dynamics during aging remain to be determined. A novel preadipocyte population, LIFR+Thbs1+ CP‐A population, contributes to the massive adipogenesis in vWAT during aging. The inhibitory role of FIPs on adipogenesis might be impaired with age, which might be one possible mechanism that unlocks the differentiation capacity of the CP‐A population in aging. Created with BioRender.com.
Figure 3. Figure 3. Immune cell alterations in aged vWAT. In young vWAT, ILC2s are recruited by IL‐33‐producing PDGFRα+ and PDGFRβ+ DPP4+ stromal cells. ILC2s maintain eosinophils through IL‐5 and activate macrophages toward an anti‐inflammatory M2 phenotype through IL‐13. Eosinophils also maintain M2 by secreting IL‐4. The ILC2‐eosinophil‐M2 axis contributes to thermogenesis, tissue homeostasis, physical health, and insulin sensitivity. In aged vWAT, ILC2s are sustained by mesothelial cells and become dysfunctional in a cell‐intrinsic manner. IL‐33‐producing PDGFRα+ stromal cells are responsible for Treg accumulation. Adipocytes have hypertrophy and impaired lipolysis. MAOA‐mediated catecholamine degradation is responsible for impaired lipolysis. MAOA is produced in adipocytes in human and macrophages in mice, which is dependent on Nlrp3 inflammasome. Nlrp3+ macrophages lead to B cell expansion, which could also inhibit lipolysis. The cellular changes in aged vWAT result in increased tissue and systemic inflammation, reduced physical fitness, and insulin resistance. Created with BioRender.com.


Figure 1. Age‐associated adipose tissue dysfunction. Adipose tissue undergoes redistribution during aging, with accumulation of vWAT and reduction in sWAT. Concurrently, skeletal muscle mass decreases, and ectopic adipose deposition increases. Thermogenic activity of BAT declines with age. Brown adipocyte heterogeneity alters during aging as the low‐thermogenic brown adipocytes dramatically increases in number. In WAT, especially in vWAT, aging is associated with increased cellular senescence, hypoxia, and chronic inflammation. These changes impair the function of WAT. Dysfunctional WAT and BAT contribute to metabolic disorders, which accelerate the aging process. Created with BioRender.com.


Figure 2. Adipocyte progenitor plasticity in WAT during aging. DPP4+ ASCs and ICAM1+ preadipocytes exist in sWAT and vWAT, which differentiate into mature adipocytes. In young sWAT, CD142+ Aregs inhibit adipogenesis. Some studies also indicate that this population could be converted to ICAM1+ preadipocytes and differentiate into adipocytes. In aged sWAT, Lgals3+CD36+ ARC population emerges with age, which could inhibit adipogenesis of the neighboring APCs. Lineage trajectory shows that the ARC population derived from ICAM1+Pref1+ preadipocytes. Further evidence is needed to demonstrate the regulatory role of CD142+ Aregs during aging. In young vWAT, PDGFRβ+Ly6C+ FIPs inhibit adipogenesis and contribute to inflammation. Their dynamics during aging remain to be determined. A novel preadipocyte population, LIFR+Thbs1+ CP‐A population, contributes to the massive adipogenesis in vWAT during aging. The inhibitory role of FIPs on adipogenesis might be impaired with age, which might be one possible mechanism that unlocks the differentiation capacity of the CP‐A population in aging. Created with BioRender.com.


Figure 3. Immune cell alterations in aged vWAT. In young vWAT, ILC2s are recruited by IL‐33‐producing PDGFRα+ and PDGFRβ+ DPP4+ stromal cells. ILC2s maintain eosinophils through IL‐5 and activate macrophages toward an anti‐inflammatory M2 phenotype through IL‐13. Eosinophils also maintain M2 by secreting IL‐4. The ILC2‐eosinophil‐M2 axis contributes to thermogenesis, tissue homeostasis, physical health, and insulin sensitivity. In aged vWAT, ILC2s are sustained by mesothelial cells and become dysfunctional in a cell‐intrinsic manner. IL‐33‐producing PDGFRα+ stromal cells are responsible for Treg accumulation. Adipocytes have hypertrophy and impaired lipolysis. MAOA‐mediated catecholamine degradation is responsible for impaired lipolysis. MAOA is produced in adipocytes in human and macrophages in mice, which is dependent on Nlrp3 inflammasome. Nlrp3+ macrophages lead to B cell expansion, which could also inhibit lipolysis. The cellular changes in aged vWAT result in increased tissue and systemic inflammation, reduced physical fitness, and insulin resistance. Created with BioRender.com.
References
 1.Acosta JR, Douagi I, Andersson DP, Backdahl J, Ryden M, Arner P, Laurencikiene J. Increased fat cell size: A major phenotype of subcutaneous white adipose tissue in non‐obese individuals with type 2 diabetes. Diabetologia 59: 560‐570, 2016.
 2.Acosta JR, Joost S, Karlsson K, Ehrlund A, Li X, Aouadi M, Kasper M, Arner P, Ryden M, Laurencikiene J. Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population. Stem Cell Res Ther 8: 250, 2017.
 3.Altshuler‐Keylin S, Shinoda K, Hasegawa Y, Ikeda K, Hong H, Kang Q, Yang Y, Perera RM, Debnath J, Kajimura S. Beige adipocyte maintenance is regulated by autophagy‐induced mitochondrial clearance. Cell Metab 24: 402‐419, 2016.
 4.Arner P, Bernard S, Appelsved L, Fu KY, Andersson DP, Salehpour M, Thorell A, Ryden M, Spalding KL. Adipose lipid turnover and long‐term changes in body weight. Nat Med 25: 1385‐1389, 2019.
 5.Asterholm IW, Scherer PE. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am J Pathol 176: 1364‐1376, 2010.
 6.Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, Rincon M, Siegel G, Katz M, Lipton RB, Shuldiner AR, Barzilai N. Adiponectin levels and genotype: A potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci 63: 447‐453, 2008.
 7.Backdahl J, Franzen L, Massier L, Li Q, Jalkanen J, Gao H, Andersson A, Bhalla N, Thorell A, Ryden M, Stahl PL, Mejhert N. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab 33: 1869‐1882 e1866, 2021.
 8.Bahler L, Verberne HJ, Admiraal WM, Stok WJ, Soeters MR, Hoekstra JB, Holleman F. Differences in sympathetic nervous stimulation of brown adipose tissue between the young and old, and the lean and obese. J Nucl Med 57: 372‐377, 2016.
 9.Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold‐induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298: E1244‐E1253, 2010.
 10.Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17: 200‐205, 2011.
 11.Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10: 24‐36, 2014.
 12.Bassaganya‐Riera J, Misyak S, Guri AJ, Hontecillas R. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose‐tissue inflammation. Cell Immunol 258: 138‐146, 2009.
 13.Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LP, Gordts PL, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PC. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6: 6356, 2015.
 14.Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13: 84‐89, 2002.
 15.Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular aging contributes to failure of cold‐induced beige adipocyte formation in old mice and humans. Cell Metab 25: 481, 2017.
 16.Berry DC, Jiang Y, Graff JM. Mouse strains to study cold‐inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7: 10184, 2016.
 17.Berry R, Jeffery E, Rodeheffer MS. Weighing in on adipocyte precursors. Cell Metab 19: 8‐20, 2014.
 18.Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299: 572‐574, 2003.
 19.Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8: 349‐369, 2017.
 20.Bortolin RC, Vargas AR, de Miranda Ramos V, Gasparotto J, Chaves PR, Schnorr CE, da Boit Martinello K, Silveira AK, Gomes HM, Rabelo TK, Grunwald MS, Ligabue‐Braun R, Gelain DP, Moreira JCF. Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation. Phytother Res 33: 1394‐1403, 2019.
 21.Brigger D, Riether C, van Brummelen R, Mosher KI, Shiu A, Ding Z, Zbaren N, Gasser P, Guntern P, Yousef H, Castellano JM, Storni F, Graff‐Radford N, Britschgi M, Grandgirard D, Hinterbrandner M, Siegrist M, Moullan N, Hofstetter W, Leib SL, Villiger PM, Auwerx J, Villeda SA, Wyss‐Coray T, Noti M, Eggel A. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat Metab 2: 688‐702, 2020.
 22.Burl RB, Ramseyer VD, Rondini EA, Pique‐Regi R, Lee YH, Granneman JG. Deconstructing adipogenesis induced by beta3‐adrenergic receptor activation with single‐cell expression profiling. Cell Metab 28: 300‐309 e304, 2018.
 23.Camell CD, Gunther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard GB, Ikeno Y, Ruddle NH, Schultze J, Dixit VD. Aging induces an Nlrp3 inflammasome‐dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab 30: 1024‐1039 e1026, 2019.
 24.Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW, Elsworth J, Rodeheffer MS, Schultze JL, Dixit VD. Inflammasome‐driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550: 119‐123, 2017.
 25.Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 75: 685‐705, 2013.
 26.Cartwright MJ, Schlauch K, Lenburg ME, Tchkonia T, Pirtskhalava T, Cartwright A, Thomou T, Kirkland JL. Aging, depot origin, and preadipocyte gene expression. J Gerontol A Biol Sci Med Sci 65: 242‐251, 2010.
 27.Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J Lipid Res 53: 227‐246, 2012.
 28.Celada A, Borras FE, Soler C, Lloberas J, Klemsz M, van Beveren C, McKercher S, Maki RA. The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med 184: 61‐69, 1996.
 29.Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, Casteilla L. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 278: 9850‐9855, 2003.
 30.Chen HJ, Meng T, Gao PJ, Ruan CC. The role of brown adipose tissue dysfunction in the development of cardiovascular disease. Front Endocrinol (Lausanne) 12: 652246, 2021.
 31.Chen Y, Zeng X, Huang X, Serag S, Woolf CJ, Spiegelman BM. Crosstalk between KCNK3‐mediated ion current and adrenergic signaling regulates adipose thermogenesis and obesity. Cell 171: 836‐848 e813, 2017.
 32.Chumlea WC, Rhyne RL, Garry PJ, Hunt WC. Changes in anthropometric indices of body composition with age in a healthy elderly population. Am J Hum Biol 1: 457‐462, 1989.
 33.Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: Age, diet, and PPARgamma effects. Proc Natl Acad Sci U S A 112: 482‐487, 2015.
 34.Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR‐gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486: 549‐553, 2012.
 35.Coimbra S, Brandao Proenca J, Santos‐Silva A, Neuparth MJ. Adiponectin, leptin, and chemerin in elderly patients with type 2 diabetes mellitus: A close linkage with obesity and length of the disease. Biomed Res Int 2014: 701915, 2014.
 36.Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, Ding YY, Russell RG, Lindemann D, Hartley A, Baker GR, Obici S, Deshaies Y, Ludgate M, Rossetti L, Scherer PE. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145: 367‐383, 2004.
 37.Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence‐associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol 5: 99‐118, 2010.
 38.Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12: 722‐734, 2011.
 39.Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509‐1517, 2009.
 40.Cypess AM, Weiner LS, Roberts‐Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM. Activation of human brown adipose tissue by a beta3‐adrenergic receptor agonist. Cell Metab 21: 33‐38, 2015.
 41.Decaria JE, Sharp C, Petrella RJ. Scoping review report: Obesity in older adults. Int J Obes 36: 1141‐1150, 2012.
 42.Ding X, Luo Y, Zhang X, Zheng H, Yang X, Yang X, Liu M. IL‐33‐driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J Endocrinol 231: 35‐48, 2016.
 43.Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med 12: 130‐138, 2018.
 44.Duteil D, Tosic M, Willmann D, Georgiadi A, Kanouni T, Schule R. Lsd1 prevents age‐programed loss of beige adipocytes. Proc Natl Acad Sci U S A 114: 5265‐5270, 2017.
 45.Escobedo N, Oliver G. The lymphatic vasculature: Its role in adipose metabolism and obesity. Cell Metab 26: 598‐609, 2017.
 46.Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty‐acid‐dependent UCP1 uncoupling in brown fat mitochondria. Cell 151: 400‐413, 2012.
 47.Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage‐like cells. Proc Natl Acad Sci U S A 105: 6057‐6062, 2008.
 48.Ferhat MH, Robin A, Barbier L, Thierry A, Gombert JM, Barbarin A, Herbelin A. The impact of invariant NKT cells in sterile inflammation: The possible contribution of the alarmin/cytokine IL‐33. Front Immunol 9: 2308, 2018.
 49.Ferrero R, Rainer P, Deplancke B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol 30: 937‐950, 2020.
 50.Fischer B, Schottl T, Schempp C, Fromme T, Hauner H, Klingenspor M, Skurk T. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am J Physiol Endocrinol Metab 309: E380‐E387, 2015.
 51.Flegal KM, Kruszon‐Moran D, Carroll MD, Fryar CD, Ogden CL. trends in obesity among adults in the United States, 2005 to 2014. JAMA 315: 2284‐2291, 2016.
 52.Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich‐Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 116: 39‐48, 2007.
 53.Gabaldon AM, Florez‐Duquet ML, Hamilton JS, McDonald RB, Horwitz BA. Effects of age and gender on brown fat and skeletal muscle metabolic responses to cold in F344 rats. Am J Phys 268: R931‐R941, 1995.
 54.Gabriely I, Ma XH, Yang XM, Rossetti L, Barzilai N. Leptin resistance during aging is independent of fat mass. Diabetes 51: 1016‐1021, 2002.
 55.Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am J Clin Nutr 72: 694‐701, 2000.
 56.Gao H, Arner P, Beauchef G, Guere C, Vie K, Dahlman I, Mejhert N, Ryden M. Age‐induced reduction in human lipolysis: A potential role for adipocyte noradrenaline degradation. Cell Metab 32: 1‐3, 2020.
 57.Garg SK, Delaney C, Shi H, Yung R. Changes in adipose tissue macrophages and T cells during aging. Crit Rev Immunol 34: 1‐14, 2014.
 58.Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for targeting senescent cells in human disease. Nat Aging 1: 870‐879, 2021.
 59.Gerber JG, Detmar‐Hanna D, Zahniser NR. Lack of an effect of age on beta‐adrenoceptor‐mediated lipolysis in isolated human adipocytes. J Gerontol A Biol Sci Med Sci 54: B71‐B77, 1999.
 60.Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 20: 242‐258, 2019.
 61.Goldberg EL, Shchukina I, Youm YH, Ryu S, Tsusaka T, Young KC, Camell CD, Dlugos T, Artyomov MN, Dixit VD. IL‐33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab 33: 2277‐2287 e2275, 2021.
 62.Gong H, Pang J, Han Y, Dai Y, Dai D, Cai J, Zhang TM. Age‐dependent tissue expression patterns of Sirt1 in senescence‐accelerated mice. Mol Med Rep 10: 3296‐3302, 2014.
 63.Gonzalez FJ, Xie C, Jiang C. The role of hypoxia‐inducible factors in metabolic diseases. Nat Rev Endocrinol 15: 21‐32, 2018.
 64.Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. Cellular senescence: Defining a path forward. Cell 179: 813‐827, 2019.
 65.Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 15: 207‐225, 2019.
 66.Halberg N, Khan T, Trujillo ME, Wernstedt‐Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner‐Eiger S, Dineen S, Magalang UJ, Brekken RA, Scherer PE. Hypoxia‐inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29: 4467‐4483, 2009.
 67.Halberg N, Schraw TD, Wang ZV, Kim JY, Yi J, Hamilton MP, Luby‐Phelps K, Scherer PE. Systemic fate of the adipocyte‐derived factor adiponectin. Diabetes 58: 1961‐1970, 2009.
 68.Han MS, White A, Perry RJ, Camporez JP, Hidalgo J, Shulman GI, Davis RJ. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci U S A 117: 2751‐2760, 2020.
 69.Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460: 392‐395, 2009.
 70.Helfer G, Wu QF. Chemerin: A multifaceted adipokine involved in metabolic disorders. J Endocrinol 238: R79‐R94, 2018.
 71.Hepler C, Shan B, Zhang Q, Henry GH, Shao M, Vishvanath L, Ghaben AL, Mobley AB, Strand D, Hon GC, Gupta RK. Identification of functionally distinct fibro‐inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7: e39636, 2018.
 72.Hepler C, Vishvanath L, Gupta RK. Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev 31: 127‐140, 2017.
 73.Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21‐adiponectin‐ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17: 790‐797, 2013.
 74.Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901‐911, 2007.
 75.Huang Z, Zhang Z, Heck R, Hu P, Nanda H, Ren K, Sun Z, Bartolomucci A, Gao Y, Chung D, Zhu W, Shen S, Ruan H‐B. Loss of FSTL1‐expressing adipocyte progenitors drives the age‐related involution of brown adipose tissue. bioRxiv 2020: 2005.2014.096990, 2020.
 76.Huffman DM, Barzilai N. Role of visceral adipose tissue in aging. Biochim Biophys Acta 1790: 1117‐1123, 2009.
 77.Hunter GR, Gower BA, Kane BL. Age related shift in visceral fat. Int J Body Compos Res 8: 103‐108, 2010.
 78.Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev 11: 11‐18, 2010.
 79.Imbeault P, Prud'Homme D, Tremblay A, Despres JP, Mauriege P. Adipose tissue metabolism in young and middle‐aged men after control for total body fatness. J Clin Endocrinol Metab 85: 2455‐2462, 2000.
 80.Jiang Y, Berry DC, Graff JM. Distinct cellular and molecular mechanisms for beta3 adrenergic receptor‐induced beige adipocyte formation. eLife 6: e30329, 2017.
 81.Joffin N, Paschoal VA, Gliniak CM, Crewe C, Elnwasany A, Szweda LI, Zhang Q, Hepler C, Kusminski CM, Gordillo R, Oh DY, Gupta RK, Scherer PE. Mitochondrial metabolism is a key regulator of the fibro‐inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell 28: 702‐717 e708, 2021.
 82.Kaminski DA, Randall TD. Adaptive immunity and adipose tissue biology. Trends Immunol 31: 384‐390, 2010.
 83.Kane H, Lynch L. Innate immune control of adipose tissue homeostasis. Trends Immunol 40: 857‐872, 2019.
 84.Karakelides H, Irving BA, Short KR, O'Brien P, Nair KS. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 59: 89‐97, 2010.
 85.Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, Zhang S, Ramsay LC, Dou FY, Tenen D, Chouchani ET, Dzeja P, Watson IR, Tsai L, Rosen ED, Spiegelman BM. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet‐induced obesity. Nat Metab 1: 360‐370, 2019.
 86.Kennedy BK, Lamming DW. The mechanistic target of rapamycin: The grand conductor of metabolism and aging. Cell Metab 23: 990‐1003, 2016.
 87.Khanh VC, Zulkifli AF, Tokunaga C, Yamashita T, Hiramatsu Y, Ohneda O. Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of Sirtuin 1. Biochem Biophys Res Commun 500: 682‐690, 2018.
 88.Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE. Obesity‐associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117: 2621‐2637, 2007.
 89.Kirkland JL, Dobson DE. Preadipocyte function and aging: Links between age‐related changes in cell dynamics and altered fat tissue function. J Am Geriatr Soc 45: 959‐967, 1997.
 90.Kirkland JL, Hollenberg CH, Kindler S, Gillon WS. Effects of age and anatomic site on preadipocyte number in rat fat depots. J Gerontol 49: B31‐B35, 1994.
 91.Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I. Adipogenesis and aging: Does aging make fat go MAD? Exp Gerontol 37: 757‐767, 2002.
 92.Kizer JR, Arnold AM, Strotmeyer ES, Ives DG, Cushman M, Ding J, Kritchevsky SB, Chaves PH, Hirsch CH, Newman AB. Change in circulating adiponectin in advanced old age: Determinants and impact on physical function and mortality. The Cardiovascular Health Study All Stars Study. J Gerontol A Biol Sci Med Sci 65: 1208‐1214, 2010.
 93.Kmiec Z, Pokrywka L, Kotlarz G, Kubasik J, Szutowicz A, Mysliwski A. Effects of fasting and refeeding on serum leptin, adiponectin and free fatty acid concentrations in young and old male rats. Gerontology 51: 357‐362, 2005.
 94.Koenen M, Hill MA, Cohen P, Sowers JR. Obesity, adipose tissue and vascular dysfunction. Circ Res 128: 951‐968, 2021.
 95.Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling‐protein homologues. Nat Rev Mol Cell Biol 6: 248‐261, 2005.
 96.Kuk JL, Saunders TJ, Davidson LE, Ross R. Age‐related changes in total and regional fat distribution. Ageing Res Rev 8: 339‐348, 2009.
 97.Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci 52: 301‐313, 2015.
 98.Langin D, Holm C, Lafontan M. Adipocyte hormone‐sensitive lipase: A major regulator of lipid metabolism. Proc Nutr Soc 55: 93‐109, 1996.
 99.Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, Laforge M, Atlan M, Feve B, Capeau J, Lagathu C, Bereziat V. Metformin alleviates stress‐induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 10: e62635, 2021.
 100.Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Phys Endocrinol Metab 299: E601‐E606, 2010.
 101.Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold‐induced brown adipocytes in adult mice. FASEB J 29: 286‐299, 2015.
 102.Li C, Wang G, Sivasami P, Ramirez RN, Zhang Y, Benoist C, Mathis D. Interferon‐alpha‐producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab 33: 1610‐1623 e1615, 2021.
 103.Li N, Zhao S, Zhang Z, Zhu Y, Gliniak CM, Vishvanath L, An YA, Wang MY, Deng Y, Zhu Q, Shan B, Sherwood A, Onodera T, Oz OK, Gordillo R, Gupta RK, Liu M, Horvath TL, Dixit VD, Scherer PE. Adiponectin preserves metabolic fitness during aging. eLife 10: e65108, 2021.
 104.Liew PX, Lee WY, Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity 47: 752‐765 e755, 2017.
 105.Lin L, Pang W, Chen K, Wang F, Gengler J, Sun Y, Tong Q. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab 302: E1550‐E1559, 2012.
 106.Lin Y, Xiao L, Cai Q, Zhu C, Li S, Li B, Liu T, Zhang Q, Wang Y, Li Y, He X, Pan D, Tang Q, Wu X, Pan W, Wang J, Li X, He R. The chemerin‐CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL‐33/type 2 innate immunity circuit. Sci Immunol 6 (61): eabg9698, 2021.
 107.Loncar D. Convertible adipose tissue in mice. Cell Tissue Res 266: 149‐161, 1991.
 108.Lonnqvist F, Nyberg B, Wahrenberg H, Arner P. Catecholamine‐induced lipolysis in adipose tissue of the elderly. J Clin Invest 85: 1614‐1621, 1990.
 109.Lopez‐Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 153: 1194‐1217, 2013.
 110.Lowell BB, S‐Susulic V, Hamann A, Lawitts JA, Himms‐Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740‐742, 1993.
 111.Lu J, Zhao J, Meng H, Zhang X. Adipose tissue‐resident immune cells in obesity and type 2 diabetes. Front Immunol 10: 1173, 2019.
 112.Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, Oatmen K, Martinez‐Santibanez G, Julius A, Garg S, Yung RL. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J Immunol 187: 6208‐6216, 2011.
 113.Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O'Shea D, O'Farrelly C, Exley MA. Adipose tissue invariant NKT cells protect against diet‐induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37: 574‐587, 2012.
 114.Ma X, Xu L, Gavrilova O, Mueller E. Role of forkhead box protein A3 in age‐associated metabolic decline. Proc Natl Acad Sci U S A 111: 14289‐14294, 2014.
 115.Ma XH, Muzumdar R, Yang XM, Gabriely I, Berger R, Barzilai N. Aging is associated with resistance to effects of leptin on fat distribution and insulin action. J Gerontol A Biol Sci Med Sci 57: B225‐B231, 2002.
 116.Mahlakoiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG, Bryce PJ, Artis D. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin‐33. Sci Immunol 4, 2019.
 117.Majeed Y, Halabi N, Madani AY, Engelke R, Bhagwat AM, Abdesselem H, Agha MV, Vakayil M, Courjaret R, Goswami N, Hamidane HB, Elrayess MA, Rafii A, Graumann J, Schmidt F, Mazloum NA. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep 11: 8177, 2021.
 118.Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne) 10: 137, 2019.
 119.Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes 38: 812‐817, 2014.
 120.McDonald RB, Horwitz BA. Brown adipose tissue thermogenesis during aging and senescence. J Bioenerg Biomembr 31: 507‐516, 1999.
 121.Merrick D, Sakers A, Irgebay Z, Okada C, Calvert C, Morley MP, Percec I, Seale P. Identification of a Mesenchymal Progenitor Cell Hierarchy in Adipose Tissue. Science, vol. 364, 2019.
 122.Milman S, Huffman DM, Barzilai N. The somatotropic axis in human aging: Framework for the current state of knowledge and future research. Cell Metab 23: 980‐989, 2016.
 123.Min SY, Kady J, Nam M, Rojas‐Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP, Fitzgibbons T, Brehm MA, Corvera S. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22: 312‐318, 2016.
 124.Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 210: 535‐549, 2013.
 125.Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17: 276‐295, 2021.
 126.Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19: 741‐756, 2014.
 127.Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low‐grade inflammation. J Endocrinol 222: R113‐R127, 2014.
 128.Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L, Scherer PE. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator‐activated receptor gamma agonists. J Biol Chem 281: 2654‐2660, 2006.
 129.Nguyen HP, Lin F, Yi D, Xie Y, Dinh J, Xue P, Sul HS. Aging‐dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell 56: 1437‐1451 e1433, 2021.
 130.Obata Y, Yamada Y, Takahi Y, Baden MY, Saisho K, Tamba S, Yamamoto K, Umeda M, Furubayashi A, Matsuzawa Y. Relationship between serum adiponectin levels and age in healthy subjects and patients with type 2 diabetes. Clin Endocrinol 79: 204‐210, 2013.
 131.Odegaard JI, Ricardo‐Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage‐specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116‐1120, 2007.
 132.Ostman J, Efendic S, Arner P. Catecholamines and metabolism of human adipose tissue. I. Comparison between in vitro effects of noradrenaline, adrenaline and theophylline on lipolysis in omental adipose tissue. Acta Med Scand 186: 241‐246, 1969.
 133.Osuna‐Prieto FJ, Martinez‐Tellez B, Sanchez‐Delgado G, Aguilera CM, Lozano‐Sanchez J, Arraez‐Roman D, Segura‐Carretero A, Ruiz JR. Activation of human brown adipose tissue by capsinoids, catechins, ephedrine, and other dietary components: A systematic review. Adv Nutr 10: 291‐302, 2019.
 134.Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11: 85‐97, 2011.
 135.Ouellet V, Routhier‐Labadie A, Bellemare W, Lakhal‐Chaieb L, Turcotte E, Carpentier AC, Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose‐uptake activity of 18F‐FDG‐detected BAT in humans. J Clin Endocrinol Metab 96: 192‐199, 2011.
 136.Palliyaguru DL, Shiroma EJ, Nam JK, Duregon E, Vieira Ligo Teixeira C, Price NL, Bernier M, Camandola S, Vaughan KL, Colman RJ, Deighan A, Korstanje R, Peters LL, Dickinson SL, Ejima K, Simonsick EM, Launer LJ, Chia CW, Egan J, Allison DB, Churchill GA, Anderson RM, Ferrucci L, Mattison JA, de Cabo R. Fasting blood glucose as a predictor of mortality: Lost in translation. Cell Metab 33: 2189‐2200 e2183, 2021.
 137.Palmer AK, Kirkland JL. Aging and adipose tissue: Potential interventions for diabetes and regenerative medicine. Exp Gerontol 86: 97‐105, 2016.
 138.Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: A therapeutic opportunity. Diabetes 64: 2289‐2298, 2015.
 139.Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM, Prata LG, van Dijk TH, Verkade E, Casaclang‐Verzosa G, Johnson KO, Cubro H, Doornebal EJ, Ogrodnik M, Jurk D, Jensen MD, Chini EN, Miller JD, Matveyenko A, Stout MB, Schafer MJ, White TA, Hickson LJ, Demaria M, Garovic V, Grande J, Arriaga EA, Kuipers F, von Zglinicki T, LeBrasseur NK, Campisi J, Tchkonia T, Kirkland JL. Targeting senescent cells alleviates obesity‐induced metabolic dysfunction. Aging Cell 18: e12950, 2019.
 140.Pan XX, Yao KL, Yang YF, Ge Q, Zhang R, Gao PJ, Ruan CC, Wu F. Senescent T cell induces brown adipose tissue “whitening” via secreting IFN‐gamma. Front Cell Dev Biol 9: 637424, 2021.
 141.Pausova Z. From big fat cells to high blood pressure: A pathway to obesity‐associated hypertension. Curr Opin Nephrol Hypertens 15: 173‐178, 2006.
 142.Peek V, Neumann E, Inoue T, Koenig S, Pflieger FJ, Gerstberger R, Roth J, Matsumura K, Rummel C. Age‐dependent changes of adipokine and cytokine secretion from rat adipose tissue by endogenous and exogenous toll‐like receptor agonists. Front Immunol 11: 1800, 2020.
 143.Peinado JR, Quiros PM, Pulido MR, Marino G, Martinez‐Chantar ML, Vazquez‐Martinez R, Freije JM, Lopez‐Otin C, Malagon MM. Proteomic profiling of adipose tissue from Zmpste24‐/‐ mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics 10: M111 008094, 2011.
 144.Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator‐activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1‐containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285: 7153‐7164, 2010.
 145.Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. Brown remodeling of white adipose tissue by SirT1‐dependent deacetylation of Ppargamma. Cell 150: 620‐632, 2012.
 146.Queiroz M, Sena CM. Perivascular adipose tissue in age‐related vascular disease. Ageing Res Rev 59: 101040, 2020.
 147.Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, Zaghari N, Feng AC, Thomas BJ, Vergnes L, Lee SD, Rajbhandari AK, Reue K, Smale ST, Yang X, Tontonoz P. Single cell analysis reveals immune cell‐adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8: e49501, 2019.
 148.Ravaglia G, Forti P, Maioli F, Boschi F, Cicognani A, Gasbarrini G. Measurement of body fat in healthy elderly men: A comparison of methods. J Gerontol A Biol Sci Med Sci 54: M70‐M76, 1999.
 149.Reinders I, Visser M, Schaap L. Body weight and body composition in old age and their relationship with frailty. Curr Opin Clin Nutr Metab Care 20: 11‐15, 2017.
 150.Roh E, Choi KM. Health consequences of sarcopenic obesity: A narrative review. Front Endocrinol (Lausanne) 11: 332, 2020.
 151.Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jorgensen SW, Brons C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener‐Victorin E, Vaag A, Nilsson E, Ling C. Impact of age, BMI and HbA1c levels on the genome‐wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24: 3792‐3813, 2015.
 152.Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 156: 20‐44, 2014.
 153.Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi‐directional interconversion of brite and white adipocytes. Nat Cell Biol 15: 659‐667, 2013.
 154.Roszkowska‐Gancarz M, Jonas M, Owczarz M, Kurylowicz A, Polosak J, Franek E, Slusarczyk P, Mossakowska M, Puzianowska‐Kuznicka M. Age‐related changes of leptin and leptin receptor variants in healthy elderly and long‐lived adults. Geriatr Gerontol Int 15: 365‐371, 2015.
 155.Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol 7: 1281‐1306, 2017.
 156.Rutkowski JM, Wang ZV, Park AS, Zhang J, Zhang D, Hu MC, Moe OW, Susztak K, Scherer PE. Adiponectin promotes functional recovery after podocyte ablation. J Am Soc Nephrol 24: 268‐282, 2013.
 157.Ryden M, Gao H, Arner P. Influence of aging and menstrual status on subcutaneous fat cell lipolysis. J Clin Endocrinol Metab 105, 2020.
 158.Saito M, Okamatsu‐Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio‐Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 58: 1526‐1531, 2009.
 159.Salvestrini V, Sell C, Lorenzini A. Obesity may accelerate the aging process. Front Endocrinol (Lausanne) 10: 266, 2019.
 160.Sarvari AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S. Plasticity of epididymal adipose tissue in response to diet‐induced obesity at single‐nucleus resolution. Cell Metab 33: 437‐453 e435, 2021.
 161.Scarpace PJ, Mooradian AD, Morley JE. Age‐associated decrease in beta‐adrenergic receptors and adenylate cyclase activity in rat brown adipose tissue. J Gerontol 43: B65‐B70, 1988.
 162.Scherer PE. Adipose tissue: From lipid storage compartment to endocrine organ. Diabetes 55: 1537‐1545, 2006.
 163.Scherer PE. The multifaceted roles of adipose tissue‐therapeutic targets for diabetes and beyond: The 2015 Banting Lecture. Diabetes 65: 1452‐1461, 2016.
 164.Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270: 26746‐26749, 1995.
 165.Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose‐derived stem cells. Ann Plast Surg 60: 538‐544, 2008.
 166.Schottl T, Kappler L, Fromme T, Klingenspor M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol Metab 4: 631‐642, 2015.
 167.Schwalie PC, Dong H, Zachara M, Russeil J, Alpern D, Akchiche N, Caprara C, Sun W, Schlaudraff KU, Soldati G, Wolfrum C, Deplancke B. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559: 103‐108, 2018.
 168.Schwartz RS, Shuman WP, Bradbury VL, Cain KC, Fellingham GW, Beard JC, Kahn SE, Stratton JR, Cerqueira MD, Abrass IB. Body fat distribution in healthy young and older men. J Gerontol 45: M181‐M185, 1990.
 169.Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument‐Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961‐967, 2008.
 170.Sepe A, Tchkonia T, Thomou T, Zamboni M, Kirkland JL. Aging and regional differences in fat cell progenitors ‐ a mini‐review. Gerontology 57: 66‐75, 2011.
 171.Shamsi F, Piper M, Ho LL, Huang TL, Gupta A, Streets A, Lynes MD, Tseng YH. Vascular smooth muscle‐derived Trpv1(+) progenitors are a source of cold‐induced thermogenic adipocytes. Nat Metab 3: 485‐495, 2021.
 172.Shan B, Shao M, Zhang Q, An YA, Vishvanath L, Gupta RK. Cold‐responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes Dev 35: 1333‐1338, 2021.
 173.Shan B, Shao M, Zhang Q, Hepler C, Paschoal VA, Barnes SD, Vishvanath L, An YA, Jia L, Malladi VS, Strand DW, Gupta OT, Elmquist JK, Oh D, Gupta RK. Perivascular mesenchymal cells control adipose‐tissue macrophage accrual in obesity. Nat Metab 2: 1332‐1349, 2020.
 174.Shao M, Hepler C, Zhang Q, Shan B, Vishvanath L, Henry GH, Zhao S, An YA, Wu Y, Strand DW, Gupta RK. Pathologic HIF1alpha signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell 28: 685‐701 e687, 2021.
 175.Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L, MacPherson KA, Spurgin SB, Sun K, Holland WL, Seale P, Gupta RK. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab 23: 1167‐1184, 2016.
 176.Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng YH, Nedergaard J, Sidossis LS, Kajimura S. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21: 389‐394, 2015.
 177.Song A, Dai W, Jang MJ, Medrano L, Li Z, Zhao H, Shao M, Tan J, Li A, Ning T, Miller MM, Armstrong B, Huss JM, Zhu Y, Liu Y, Gradinaru V, Wu X, Jiang L, Scherer PE, Wang QA. Low‐ and high‐thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J Clin Invest 130: 247‐257, 2020.
 178.Spaethling JM, Sanchez‐Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single‐cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J 30: 81‐92, 2016.
 179.Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fat cell turnover in humans. Nature 453: 783‐787, 2008.
 180.Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C, Bryce PJ, Benoist C, Mathis D. Distinct immunocyte‐promoting and adipocyte‐generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol 4 (35): eaaw3658, 2019.
 181.Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: Definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11: 693‐700, 2008.
 182.Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological aging: Links among adipose tissue dysfunction, diabetes, and frailty. Physiology (Bethesda) 32: 9‐19, 2017.
 183.Straub LG, Scherer PE. Metabolic messengers: Adiponectin. Nat Metab 1: 334‐339, 2019.
 184.Stuart T, Satija R. Integrative single‐cell analysis. Nat Rev Genet 20: 257‐272, 2019.
 185.Sun K, Halberg N, Khan M, Magalang UJ, Scherer PE. Selective inhibition of hypoxia‐inducible factor 1alpha ameliorates adipose tissue dysfunction. Mol Cell Biol 33: 904‐917, 2013.
 186.Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, Giordano A, Kovanicova Z, Stefanicka P, Balazova L, Ding L, Husted AS, Rudofsky G, Ukropec J, Cinti S, Schwartz TW, Regev A, Wolfrum C. snRNA‐seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587: 98‐102, 2020.
 187.Sun W, Modica S, Dong H, Wolfrum C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat Metab 3: 751‐761, 2021.
 188.Tabula MC. A single‐cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583: 590‐595, 2020.
 189.Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 322: 583‐586, 2008.
 190.Tchkonia T, Lenburg M, Thomou T, Giorgadze N, Frampton G, Pirtskhalava T, Cartwright A, Cartwright M, Flanagan J, Karagiannides I, Gerry N, Forse RA, Tchoukalova Y, Jensen MD, Pothoulakis C, Kirkland JL. Identification of depot‐specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292: E298‐E307, 2007.
 191.Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell 9: 667‐684, 2010.
 192.Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J Clin Invest 123: 966‐972, 2013.
 193.Toth MJ, Tchernof A. Lipid metabolism in the elderly. Eur J Clin Nutr 54 (Suppl 3): S121‐S125, 2000.
 194.Trim W, Turner JE, Thompson D. Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front Immunol 9: 169, 2018.
 195.Trujillo ME, Scherer PE. Adipose tissue‐derived factors: Impact on health and disease. Endocr Rev 27: 762‐778, 2006.
 196.Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5: 405‐417, 2007.
 197.Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K, Henstridge DC, Zhan Y, Torres SV, Liene S, Collins N, Cao E, Sidwell T, Li C, Spallanzani RG, Liao Y, Beavis PA, Gebhardt T, Trevaskis N, Nutt SL, Zajac JD, Davey RA, Febbraio MA, Mathis D, Shi W, Kallies A. Sex‐specific adipose tissue imprinting of regulatory T cells. Nature 579: 581‐585, 2020.
 198.Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13: 26‐35, 2017.
 199.Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS, Gupta RK. Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high‐fat‐diet feeding and prolonged cold exposure in adult mice. Cell Metab 23: 350‐359, 2016.
 200.Wang B, Wang L, Gasek NS, Zhou Y, Kim T, Guo C, Jellison ER, Haynes L, Yadav S, Tchkonia T, Kuchel GA, Kirkland JL, Xu M. An inducible p21‐Cre mouse model to monitor and manipulate p21‐highly‐expressing senescent cells in vivo. Nat Aging 1: 962‐973, 2021.
 201.Wang F, Tong Q. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. Am J Physiol Cell Physiol 295: C213‐C220, 2008.
 202.Wang L, Wang B, Gasek NS, Zhou Y, Cohn RL, Martin DE, Zuo W, Flynn WF, Guo C, Jellison ER, Kim T, Prata L, Palmer AK, Li M, Inman CL, Barber LS, Al‐Naggar IMA, Zhou Y, Kuchel GA, Meves A, Tchkonia T, Kirkland JL, Robson P, Xu M. Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab 34 (1): 75‐89.e8, 2021.
 203.Wang QA, Song A, Chen W, Schwalie PC, Zhang F, Vishvanath L, Jiang L, Ye R, Shao M, Tao C, Gupta RK, Deplancke B, Scherer PE. Reversible de‐differentiation of mature white adipocytes into preadipocyte‐like precursors during lactation. Cell Metab 28: 282‐288 e283, 2018.
 204.Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19: 1338‐1344, 2013.
 205.Wang QA, Wang G, Li G, Song A, Dai W, Shamlin N, Qin H, Medrano L, Dow J, Li A, Brown L, Amstrong B, Fueger P, Campisi J, Wu X, Jiang L, Yang X. A unique adipocyte progenitor population promotes age‐related adiposity. Res Sq, 2022. DOI: 10.21203/rs.3.rs-888694/v1
 206.Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, Lim HW, O'Connor S, Doan MT, Cohen P, Baur JA, King MT, Veech RL, Won KJ, Rabinowitz JD, Snyder NW, Gupta RK, Seale P. A PRDM16‐driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab 30: 174‐189 e175, 2019.
 207.Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ, Seale P. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A 111: 14466‐14471, 2014.
 208.Wang W, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol 17: 691‐702, 2016.
 209.Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 8: 93‐100, 2016.
 210.Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado‐Lopez F, Wang ZV, Scherer PE. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20: 103‐118, 2014.
 211.Wingender G, Rogers P, Batzer G, Lee MS, Bai D, Pei B, Khurana A, Kronenberg M, Horner AA. Invariant NKT cells are required for airway inflammation induced by environmental antigens. J Exp Med 208: 1151‐1162, 2011.
 212.Wu D, Molofsky AB, Liang HE, Ricardo‐Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332: 243‐247, 2011.
 213.Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150: 366‐376, 2012.
 214.Xia JY, Sun K, Hepler C, Ghaben AL, Gupta RK, An YA, Holland WL, Morley TS, Adams AC, Gordillo R, Kusminski CM, Scherer PE. Acute loss of adipose tissue‐derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia 61: 932‐941, 2018.
 215.Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4: e12997, 2015.
 216.Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL. Senolytics improve physical function and increase lifespan in old age. Nat Med 24: 1246‐1256, 2018.
 217.Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL. JAK inhibition alleviates the cellular senescence‐associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112: E6301‐E6310, 2015.
 218.Yang W, Yang C, Luo J, Wei Y, Wang W, Zhong Y. Adiponectin promotes preadipocyte differentiation via the PPARgamma pathway. Mol Med Rep 17: 428‐435, 2018.
 219.Ye R, Holland WL, Gordillo R, Wang M, Wang QA, Shao M, Morley TS, Gupta RK, Stahl A, Scherer PE. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta‐cell regeneration. eLife 3: e03851, 2014.
 220.Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol Metab 2: 133‐141, 2013.
 221.Yoneshiro T, Ogawa T, Okamoto N, Matsushita M, Aita S, Kameya T, Kawai Y, Iwanaga T, Saito M. Impact of UCP1 and beta3AR gene polymorphisms on age‐related changes in brown adipose tissue and adiposity in humans. Int J Obes 37: 993‐998, 2013.
 222.Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M, Hantusch B, Schranz M, Neuhofer A, Itariu BK, Keck M, Prager G, Wojta J, Stulnig TM. Severe obesity increases adipose tissue expression of interleukin‐33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes 37: 658‐665, 2013.
 223.Zhang L, Ebenezer PJ, Dasuri K, Fernandez‐Kim SO, Francis J, Mariappan N, Gao Z, Ye J, Bruce‐Keller AJ, Keller JN. Aging is associated with hypoxia and oxidative stress in adipose tissue: Implications for adipose function. Am J Physiol Endocrinol Metab 301: E599‐E607, 2011.
 224.Zhu M, Lee GD, Ding L, Hu J, Qiu G, de Cabo R, Bernier M, Ingram DK, Zou S. Adipogenic signaling in rat white adipose tissue: Modulation by aging and calorie restriction. Exp Gerontol 42: 733‐744, 2007.
 225.Zhu Q, An YA, Kim M, Zhang Z, Zhao S, Zhu Y, Asterholm IW, Kusminski CM, Scherer PE. Suppressing adipocyte inflammation promotes insulin resistance in mice. Mol Metab 39: 101010, 2020.
 226.Zhu Y, Tchkonia T, Stout MB, Giorgadze N, Wang L, Li PW, Heppelmann CJ, Bouloumie A, Jensen MD, Bergen HR 3rd, Kirkland JL. Inflammation and the depot‐specific secretome of human preadipocytes. Obesity (Silver Spring) 23: 989‐999, 2015.
 227.Zoncu R, Efeyan A, Sabatini DM. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12: 21‐35, 2011.
 228.Zwick RK, Guerrero‐Juarez CF, Horsley V, Plikus MV. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27: 68‐83, 2018.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Guan Wang, Anying Song, Marie Bae, Qiong A. Wang. Adipose Tissue Plasticity in Aging. Compr Physiol 2022, 12: 4119-4132. doi: 10.1002/cphy.c220005