Comprehensive Physiology Wiley Online Library

Connexin‐Based Channels in the Liver

Full Article on Wiley Online Library



Abstract

Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell‐cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12: 4147–4163, 2022.

Figure 1. Figure 1. Structure of connexin (Cx) proteins and their channels. Cx proteins consist of four transmembrane regions, two extracellular loops (EL1 and EL2), one cytoplasmic loop (CL), an intracellular carboxy (CT), and an amino terminus (NT). Oligomerization of six Cx proteins creates Cx hemichannels. Homomeric hemichannels are composed of six single types of Cx proteins, whereas heteromeric hemichannels gather different Cx species. Gap junctions arise from the interaction of two Cx hemichannels on adjacent cells. Identical Cx hemichannels build up homotypic gap junctions, whereas different Cx hemichannels generate heterotypic gap junctions.
Figure 2. Figure 2. Organization of hepatic lobules. Hepatocytes build hepatic cellular plates that diverge from the hepatic vein. Branches of the hepatic artery, hepatic portal vein, and bile duct form the portal triad. Branches of the hepatic artery and portal vein gather together in hepatic capillaries that supply blood to hepatocytes. After a bidirectional exchange of substances between these hepatic capillaries and hepatocytes, blood is drained to the central hepatic vein. The localization of hepatocytes in the hepatic lobule determines access to oxygen and nutrients, whereby hepatocytes are localized in the periportal, midlobular, or perivenous zone.
Figure 3. Figure 3. Polarization of hepatocytes. The part of the hepatocyte membrane that allows interaction with the sinusoids and the perisinusoidal space is called the basal or sinusoidal membrane. The part of the hepatocyte membrane facing bile canaliculi is called the canalicular membrane. Both sides of the hepatocyte membrane are strictly separated by tight junctions, gap junctions, and adherens junctions. This provides a physical barrier between the sinusoids and bile ducts that prevents the mixing of blood and bile.
Figure 4. Figure 4. Connexin (Cx) protein expression in parenchymal and non‐parenchymal cells of the liver. The most prominent Cx species is listed at the top. In hepatocytes, Cx32 is the main Cx species, while Cx43 is the most important Cx species in non‐parenchymal cells.
Figure 5. Figure 5. Role of gap junctions in liver‐specific functions. Connexin (Cx) proteins, in particular Cx32, and their channels are involved in physiological processes, such as biotransformation of xenobiotics (A), carbohydrate metabolism (B), bile production (C), and protein synthesis and secretion (D). On the one hand, Cx proteins are involved in bile production by being essential units to form a physical barrier between hepatic sinusoids and bile canaliculi, since Cx32 colocalizes with tight junctional proteins such as zonula occludens protein‐1 (ZO‐1). On the other hand, Cx26 and Cx32 are critical building blocks of gap junctions that allow the passage of calcium ions (Ca2+) between hepatocytes, which is essential to regulate the process of bile secretion. Cx32 and its channels also stimulate the secretion of albumin. Enhanced expression of Cx26 and Cx32, associated with induced gap junction communication, but knockdown of Cx43 promotes cytochrome P450 (CYP) activity. Cx32‐based gap junctions promote the propagation of hormonal signals, such as noradrenaline and glucagon, to initiate the release of glucose from the liver hepatocytes.
Figure 6. Figure 6. Role of gap junctions involved in the hepatic life cycle. During liver cell proliferation, connexin (Cx) protein expression levels and gap junction activity are altered (A). Increased expression of Cx26 proteins is seen until the onset of the S phase. Gap junction activity also increases in the G1 phase. The progression from the G1 to the S phase is linked with decreased levels of Cx26 and Cx32, and reduced gap junction activity. Cx43 phosphorylation occurs upon progression from the G0 phase. An apoptosis‐mediating role for Cx channels is linked with their ability to spread inositol triphosphate molecules (IP3) and calcium ions (Ca2+) to neighboring cells (B). The liver cell differentiation process of oval cells toward hepatocytes is accompanied by a switch from Cx43 to Cx32 (C).
Figure 7. Figure 7. Connexin (Cx) expression, Cx hemichannel activity, and gap junction activity in various liver diseases. In many liver diseases, the expression of Cx26, Cx32, or Cx43 is altered. In general, while there is a decrease of Cx26 and Cx32, the opposite is observed for Cx43 in pathological situations. Cx32 and Cx43 hemichannel activity is increased in acute liver injury, non‐alcoholic steatohepatitis, and fibrosis. In contrast, gap junction activity is decreased in most liver diseases.


Figure 1. Structure of connexin (Cx) proteins and their channels. Cx proteins consist of four transmembrane regions, two extracellular loops (EL1 and EL2), one cytoplasmic loop (CL), an intracellular carboxy (CT), and an amino terminus (NT). Oligomerization of six Cx proteins creates Cx hemichannels. Homomeric hemichannels are composed of six single types of Cx proteins, whereas heteromeric hemichannels gather different Cx species. Gap junctions arise from the interaction of two Cx hemichannels on adjacent cells. Identical Cx hemichannels build up homotypic gap junctions, whereas different Cx hemichannels generate heterotypic gap junctions.


Figure 2. Organization of hepatic lobules. Hepatocytes build hepatic cellular plates that diverge from the hepatic vein. Branches of the hepatic artery, hepatic portal vein, and bile duct form the portal triad. Branches of the hepatic artery and portal vein gather together in hepatic capillaries that supply blood to hepatocytes. After a bidirectional exchange of substances between these hepatic capillaries and hepatocytes, blood is drained to the central hepatic vein. The localization of hepatocytes in the hepatic lobule determines access to oxygen and nutrients, whereby hepatocytes are localized in the periportal, midlobular, or perivenous zone.


Figure 3. Polarization of hepatocytes. The part of the hepatocyte membrane that allows interaction with the sinusoids and the perisinusoidal space is called the basal or sinusoidal membrane. The part of the hepatocyte membrane facing bile canaliculi is called the canalicular membrane. Both sides of the hepatocyte membrane are strictly separated by tight junctions, gap junctions, and adherens junctions. This provides a physical barrier between the sinusoids and bile ducts that prevents the mixing of blood and bile.


Figure 4. Connexin (Cx) protein expression in parenchymal and non‐parenchymal cells of the liver. The most prominent Cx species is listed at the top. In hepatocytes, Cx32 is the main Cx species, while Cx43 is the most important Cx species in non‐parenchymal cells.


Figure 5. Role of gap junctions in liver‐specific functions. Connexin (Cx) proteins, in particular Cx32, and their channels are involved in physiological processes, such as biotransformation of xenobiotics (A), carbohydrate metabolism (B), bile production (C), and protein synthesis and secretion (D). On the one hand, Cx proteins are involved in bile production by being essential units to form a physical barrier between hepatic sinusoids and bile canaliculi, since Cx32 colocalizes with tight junctional proteins such as zonula occludens protein‐1 (ZO‐1). On the other hand, Cx26 and Cx32 are critical building blocks of gap junctions that allow the passage of calcium ions (Ca2+) between hepatocytes, which is essential to regulate the process of bile secretion. Cx32 and its channels also stimulate the secretion of albumin. Enhanced expression of Cx26 and Cx32, associated with induced gap junction communication, but knockdown of Cx43 promotes cytochrome P450 (CYP) activity. Cx32‐based gap junctions promote the propagation of hormonal signals, such as noradrenaline and glucagon, to initiate the release of glucose from the liver hepatocytes.


Figure 6. Role of gap junctions involved in the hepatic life cycle. During liver cell proliferation, connexin (Cx) protein expression levels and gap junction activity are altered (A). Increased expression of Cx26 proteins is seen until the onset of the S phase. Gap junction activity also increases in the G1 phase. The progression from the G1 to the S phase is linked with decreased levels of Cx26 and Cx32, and reduced gap junction activity. Cx43 phosphorylation occurs upon progression from the G0 phase. An apoptosis‐mediating role for Cx channels is linked with their ability to spread inositol triphosphate molecules (IP3) and calcium ions (Ca2+) to neighboring cells (B). The liver cell differentiation process of oval cells toward hepatocytes is accompanied by a switch from Cx43 to Cx32 (C).


Figure 7. Connexin (Cx) expression, Cx hemichannel activity, and gap junction activity in various liver diseases. In many liver diseases, the expression of Cx26, Cx32, or Cx43 is altered. In general, while there is a decrease of Cx26 and Cx32, the opposite is observed for Cx43 in pathological situations. Cx32 and Cx43 hemichannel activity is increased in acute liver injury, non‐alcoholic steatohepatitis, and fibrosis. In contrast, gap junction activity is decreased in most liver diseases.
References
 1.Aasen T, Johnstone S, Vidal‐Brime L, Lynn KS, Koval M. Connexins: Synthesis, post‐translational modifications, and trafficking in health and disease. Int J Mol Sci 19: 1‐36, 2018. DOI: 10.3390/ijms19051296.
 2.Abdel‐Misih SRZ, Bloomston M. Liver anatomy. Surg Clin North Am 90: 643‐653, 2010. DOI: 10.1016/j.suc.2010.04.017.
 3.Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol 12: 1‐28, 2021. DOI: 10.3389/fphar.2021.671640.
 4.Alamri ZZ. The role of liver in metabolism: An updated review with physiological emphasis. Int J Basic Clin Pharmacol 7: 2271‐2276, 2018. DOI: 10.18203/2319‐2003.ijbcp20184211.
 5.Albright CD, Kuo J, Jeong S. cAMP enhances Cx43 gap junction formation and function and reverses choline deficiency apoptosis. Exp Mol Pathol 71: 34‐39, 2001. DOI: 10.1006/exmp.2001.2375.
 6.Aldana AJG, Tapias M, Mindiola AL. Diagnostic and therapeutic approach for cholestasis in the adult. Rev Colomb Gastroenterol 35: 76‐86, 2020. DOI: 10.22516/25007440.375.
 7.Alqahtani A, Khan Z, Alloghbi A, Ahmed TSS, Ashraf M, Hammouda DM. Hepatocellular carcinoma: Molecular mechanisms and targeted therapies. Med 55: 1‐22, 2019. DOI: 10.3390/medicina55090526.
 8.Asamoto M, Hokaiwado N, Murasaki T, Shirai T. Connexin 32 dominant‐negative mutant transgenic rats are resistant to hepatic damage by chemicals. Hepatology 40: 205‐210, 2004. DOI: 10.1002/hep.20256.
 9.Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem 281: 16727‐16739, 2006. DOI: 10.1074/jbc.M600136200.
 10.Balasubramaniyan V, Dhar DK, Warner AE, Vivien Li WY, Amiri AF, Bright B, Mookerjee RP, Davies NA, Becker DL, Jalan R. Importance of Connexin‐43 based gap junction in cirrhosis and acute‐on‐chronic liver failure. J Hepatol 58: 1194‐1200, 2013. DOI: 10.1016/j.jhep.2013.01.023.
 11.Bargiello TA, Oh S, Tang Q, Bargiello NK, Dowd TL, Kwon T. Gating of connexin channels by transjunctional‐voltage: Conformations and models of open and closed states. Biochim Biophys Acta Biomembr 22–39: 2018, 1860. DOI: 10.1016/j.bbamem.2017.04.028.
 12.Batallar R, Brenner DA. Liver fibrosis. J Clin Invest 115: 209‐218, 2005. DOI: 10.36290/vnl.2020.078.
 13.Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56: 952‐964, 2012. DOI: 10.1016/j.jhep.2011.08.025.
 14.Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, Pereira P, Cuervo AM. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin‐dependent manner. Mol Biol Cell 23: 2156‐2169, 2012. DOI: 10.1091/mbc.E11‐10‐0844.
 15.Bierwolf J, Lutgehetmann M, Feng K, Erbes J, Deichmann S, Toronyi E, Stieglitz C, Nashan B, Ma PX, Pollok JM. Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng 108: 141‐150, 2011. DOI: 10.1002/bit.22924.
 16.Bosch J. Portal hypertension and cirrhosis: From evolving concepts to better therapies. Clin Liver Dis 15: S8‐S12, 2020. DOI: 10.1002/cld.844.
 17.Boucherie S, Decaens C, Verbavatz JM, Grosse B, Erard M, Merola F, Cassio D, Combettes L. Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9. Biol Cell 105: 561‐575, 2013. DOI: 10.1111/boc.201200092.
 18.Bowe A, Zweerink S, Mück V, Kondylis V, Schulte S, Goeser T, Nierhoff D. Depolarized hepatocytes express the stem/progenitor cell marker neighbor of Punc E11 after bile duct ligation in mice. J Histochem Cytochem 66: 563‐576, 2018. DOI: 10.1369/0022155418768230.
 19.Boyer JL. Bile formation and secretion. Compr Physiol 3: 1035‐1078, 2013. DOI: 10.1002/cphy.c120027.
 20.Buzzetti E, Pinzani M, Tsochatzis EA. The multiple‐hit pathogenesis of non‐alcoholic fatty liver disease (NAFLD). Metabolism 65: 1038‐1048, 2016. DOI: 10.1016/j.metabol.2015.12.012.
 21.Campard D, Lysy PA, Najimi M, Sokal EM. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte‐like cells. Gastroenterology 134: 833‐848, 2008. DOI: 10.1053/j.gastro.2007.12.024.
 22.Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res 1: 3‐9, 2017. DOI: 10.1016/j.livres.2017.05.001.
 23.Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha‐hydroxylase (CYP7A1) in bile acid synthesis. Liver Res 4: 47‐63, 2020. DOI: 10.1016/j.livres.2020.05.001.
 24.Cogliati B, Da Silva TC, TPA A, Chaible LM, Real‐Lima MA, Sanches DS, Matsuzaki P, Hernandez‐Blazquez FJ, MLZ D. Morphological and molecular pathology of CCL4‐induced hepatic fibrosis in connexin43‐deficient mice. Microsc Res Tech 74: 421‐429, 2011. DOI: 10.1002/jemt.20926.
 25.Cogliati B, Yanguas SC, Da Silva TC, Aloia TPA, Nogueira MS, Real‐Lima MA, Chaible LM, Sanches DS, Willebrords J, Maes M, Pereira IVA, De CIA, Vinken M, Dagli MLZ. Connexin32 deficiency exacerbates carbon tetrachloride‐induced hepatocellular injury and liver fibrosis in mice. Toxicol Mech Methods 26: 362‐370, 2016. DOI: 10.1080/15376516.2016.1190991.
 26.Contreras JE, Sanchez HA, Véliz LP, Bukauskas FF, Bennett MVL, Sáez JC. Role of connexin‐based gap junction channels and hemichannels in ischemia‐induced cell death in nervous tissue. Brain Res Rev 47: 290‐303, 2004. DOI: 10.1016/j.brainresrev.2004.08.002.Role.
 27.Cooreman A, Van Campenhout R, Ballet S, Annaert P, Van Den Bossche B, Colle I, Cogliati B, Vinken M. Connexin and pannexin (hemi)channels: Emerging targets in the treatment of liver disease. Hepatology 69: 1317‐1323, 2019. DOI: 10.1002/hep.30306.
 28.Cooreman A, Van Campenhout R, Crespo Yanguas S, Gijbels E, Leroy K, Pieters A, Tabernilla A, Van Brantegem P, Annaert P, Cogliati B, Vinken M. Cholestasis differentially affects liver connexins. Int J Mol Sci 21: 1‐18, 2020. DOI: 10.3390/ijms21186534.
 29.Correa PRAV, Guerra MT, Leite MF, Spray DC, Nathanson MH. Endotoxin unmasks the role of gap junctions in the liver. Biochem Biophys Res Commun 322: 718‐726, 2004. DOI: 10.1016/j.bbrc.2004.07.192.
 30.Crespo Yanguas S, da Silva TC, Pereira IVA, Willebrords J, Maes M, Nogueira MS, de Castro IA, Leclercq I, Romualdo GR, Barbisan LF, Leybaert L, Cogliati B, Vinken M. TAT‐Gap19 and carbenoxolone alleviate liver fibrosis in mice. Int J Mol Sci 19: 1‐17, 2018. DOI: 10.3390/ijms19030817.
 31.Cunningham RP, Porat‐Shliom N. Liver zonation – Revisiting old questions with new technologies. Front Physiol 12: 1‐17, 2021. DOI: 10.3389/fphys.2021.732929.
 32.Dagli MLZ, Yamasaki H, Krutovskikh V, Omori Y. Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant‐negative mutant of connexin32 only in the liver. Carcinogenesis 25: 483‐492, 2004. DOI: 10.1093/carcin/bgh050.
 33.Dawson PA, Lan T, Rao A. Thematic review series: Bile acids. Bile acid transporters. J Lipid Res 50: 2340‐2357, 2009. DOI: 10.1194/jlr.R900012‐JLR200.
 34.De Kock J, Vanhaecke T, Biernaskie J, Rogiers V, Snykers S. Characterization and hepatic differentiation of skin‐derived precursors from adult foreskin by sequential exposure to hepatogenic cytokines and growth factors reflecting liver development. Toxicol In Vitro 23: 1522‐1527, 2009. DOI: 10.1016/j.tiv.2009.08.014.
 35.De Maio A, Gingalewski C, Theodorakis NG, Clemens MG. Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide. Shock 14: 53‐59, 2000. DOI: 10.1097/00024382‐200014010‐00010.
 36.Dejong CHC, Van De Poll MCG, Soeters PB, Jalan R, Olde Damink SWM. Aromatic amino acid metabolism during liver failure. J Nutr 137: 1579‐1585, 2007. DOI: 10.1093/jn/137.6.1579s.
 37.Dermietzel R, Yancey SB, Traub O, Willecke K, Revel JP. Major loss of the 28‐kD protein of gap junction in proliferating hepatocytes. J Cell Biol 105: 1925‐1934, 1987. DOI: 10.1083/jcb.105.4.1925.
 38.Dueñas F, Becerra V, Cortes Y, Vidal S, Sáenz L, Palomino J, De los Reyes M, Peralta OA. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir‐derived bovine fetuses. BMC Vet Res 10: 1‐13, 2014. DOI: 10.1186/1746‐6148‐10‐154.
 39.Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC. Involvement of gap junctions in tumorigenesis: Transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci U S A 88: 10701‐10705, 1991. DOI: 10.1073/pnas.88.23.10701.
 40.Esteves F, Rueff J, Kranendonk M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J Xenobiotics 11: 94‐114, 2021. DOI: 10.3390/jox11030007.
 41.Eugenín EA, González HE, Sánchez HA, Brañes MC, Sáez JC. Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro. Cell Immunol 247: 103‐110, 2007. DOI: 10.1016/j.cellimm.2007.08.001.
 42.Ezzeldin M, Borrego‐Diaz E, Taha M, Esfandyari T, Wise AL, Peng W, Rouyanian A, Asvadi Kermani A, Soleimani M, Patrad E, Lialyte K, Wang K, Williamson S, Abdulkarim B, Olyaee M, Farassati F. RalA signaling pathway as a therapeutic target in hepatocellular carcinoma (HCC). Mol Oncol 8: 1043‐1053, 2014. DOI: 10.1016/j.molonc.2014.03.020.
 43.Falk MM, Kells RM, Berthoud VM. Degradation of connexins and gap junctions. FEBS Lett 588: 1221‐1229, 2014. DOI: 10.1016/j.febslet.2014.01.031.
 44.Fallon MB, Nathanson MH, Mennone A, Saez JC, Burgstahler AD, Anderson JM. Altered expression and function of hepatocyte gap junctions after common bile duct ligation in the rat. Am J Physiol Cell Physiol 268: 1186‐1194, 1995. DOI: 10.1152/ajpcell.1995.268.5.c1186.
 45.Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 5: 1‐15, 2014. DOI: 10.3389/fphys.2014.00071.
 46.Fladmark KE, Gjertsen BT, Molven A, Mellgren G, Vintermyr OK, Døskeland SO. Gap junctions and growth control in liver regeneration and in isolated rat hepatocytes. Hepatology 25: 847‐855, 1997. DOI: 10.1002/hep.510250411.
 47.Fowler SL, Akins M, Zhou H, Figeys D, Bennett SAL. The liver connexin32 interactome is a novel plasma membrane‐mitochondrial signaling nexus. J Proteome Res 12: 2597‐2610, 2013. DOI: 10.1021/pr301166p.
 48.Friedman SL. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88: 125‐172, 2008. DOI: 10.1152/physrev.00013.2007.
 49.Garciarena CD, Malik A, Swietach P, Moreno AP, Vaughan‐Jones RD. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. FASEB J 32: 1969‐1981, 2018. DOI: 10.1096/fj.201700876R.
 50.Gingalewski C, Wang K, Clemens MG, De Maio A. Posttranscriptional regulation of connexin 32 expression in liver during acute inflammation. J Cell Physiol 166: 461‐467, 1996. DOI: 10.1002/(SICI)1097‐4652(199602)166:2<461::AID‐JCP25>3.0.CO;2‐C.
 51.Girao H, Pereira P. The proteasome regulates the interaction between Cx43 and ZO‐1. J Cell Biochem 102: 719‐728, 2007. DOI: 10.1002/jcb.21351.
 52.González HE, Eugenín EA, Garcés G, Solís N, Pizarro M, Accatino L, Sáez JC. Regulation of hepatic connexins in cholestasis: Possible involvement of Kupffer cells and inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 282: 991‐1001, 2002. DOI: 10.1152/ajpgi.00298.2001.
 53.Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver‐centric perspective. Exp Mol Med 48: 1‐10, 2016. DOI: 10.1038/emm.2015.122.
 54.Hernández‐Guerra M, González‐Méndez Y, de Ganzo ZA, Salido E, García‐Pagán JC, Abrante B, Malagón AM, Bosch J, Quintero E. Role of gap junctions modulating hepatic vascular tone in cirrhosis. Liver Int 34: 859‐868, 2014. DOI: 10.1111/liv.12446.
 55.Hernández‐Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J Hepatol 70: 759‐772, 2019. DOI: 10.1016/j.jhep.2018.12.023.
 56.Hou Y, Hu S, Li X, He W, Wu G. Amino acid metabolism in the liver: Nutritional and physiological significance. In: Amino Acids in Nutrition and Health: Amino Acids in Systems Function and Health. Springer International Publishing, p. 21‐37.
 57.Hu D, Zou H, Han T, Xie J, Dai N, Zhuo L, Gu J, Bian J, Yuan Y, Liu X, Liu Z. Gap junction blockage promotes cadmium‐induced apoptosis in BRL 3A derived from Buffalo rat liver cells. J Vet Sci 17: 63‐70, 2016. DOI: 10.4142/jvs.2016.17.1.63.
 58.Igarashi I, Maejima T, Kai K, Arakawa S, Teranishi M, Sanbuissho A. Role of connexin 32 in acetaminophen toxicity in a knockout mice model. Exp Toxicol Pathol 66: 103‐110, 2014. DOI: 10.1016/j.etp.2013.10.002.
 59.Ishii Y, Saito R, Marushima H, Ito R, Sakamoto T, Yanaga K. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor. World J Gastroenterol 14: 2740‐2747, 2008. DOI: 10.3748/wjg.14.2740.
 60.Iwai M, Harada Y, Muramatsu A, Tanaka S, Mori T, Okanoue T, Katoh F, Ohkusa T, Kashima K. Development of gap junctional channels and intercellular communication in rat liver during ontogenesis. J Hepatol 32: 11‐18, 2000. DOI: 10.1016/S0168‐8278(00)80184‐1.
 61.Iyyathurai J, Decuypere JP, Leybaert L, D'hondt C, Bultynck G. Connexins: Substrates and regulators of autophagy. BMC Cell Biol 17: 89‐104, 2016. DOI: 10.1186/s12860‐016‐0093‐9.
 62.Jeong SH, Habeebu SSM, Klaassen CD. Cadmium decreases gap junctional intercellular communication in mouse liver. Toxicol Sci 57: 156‐166, 2000. DOI: 10.1093/toxsci/57.1.156.
 63.Jones JG. Hepatic glucose and lipid metabolism. Diabetologia 59: 1098‐1103, 2016. DOI: 10.1007/s00125‐016‐3940‐5.
 64.Juanola O, Martínez‐López S, Francés R, Gómez‐Hurtado I. Non‐alcoholic fatty liver disease: Metabolic, genetic, epigenetic and environmental risk factors. Int J Environ Res Public Health 18: 1‐24, 2021. DOI: 10.3390/ijerph18105227.
 65.Jung JW, Cho SD, Ahn NS, Yang SR, Park JS, Jo EH, Hwang JW, Aruoma OI, Lee YS, Kang KS. Effects of the histone deacetylases inhibitors sodium butyrate and trichostatin A on the inhibition of gap junctional intercellular communication by H2O2‐ and 12‐O‐tetradecanoylphorbol‐13‐acetate in rat liver epithelial cells. Cancer Lett 241: 301‐308, 2006. DOI: 10.1016/j.canlet.2005.10.029.
 66.Juza RM, Pauli EM. Clinical and surgical anatomy of the liver: A review for clinicians. Clin Anat 27: 764‐769, 2014. DOI: 10.1002/ca.22350.
 67.Kameritsch P, Khandoga N, Pohl U, Pogoda K. Gap junctional communication promotes apoptosis in a connexin‐type‐ dependent manner. Cell Death Dis 4: 1‐9, 2013. DOI: 10.1038/cddis.2013.105.
 68.Kar R, Batra N, Riquelme M, Jiang J. Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 524: 2‐15, 2012. DOI: 10.1016/j.abb.2012.03.008.Biological.
 69.Kawasaki Y, Kubomoto A, Yamasaki H. Control of intracellular localization and function of Cx43 by SEMA3F. J Membr Biol 217: 53‐61, 2007. DOI: 10.1007/s00232‐007‐9051‐y.
 70.Keil M, Siegert A, Eckert K, Gerlach J, Haider W, Fichtner I. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo. Vitr Cell Dev Biol Anim 48: 165‐174, 2012. DOI: 10.1007/s11626‐012‐9487‐y.
 71.Khan AK, Jagielnicki M, McIntire WE, Purdy MD, Dharmarajan V, Griffin PR, Yeager M. A steric “ball‐and‐chain” mechanism for pH‐mediated regulation of gap junction channels. Cell Rep 31: 1‐11, 2020. DOI: 10.1016/j.celrep.2020.03.046.
 72.Kim D, Seo Y, Kwon S. Role of gap junction communication in hepatocyte/fibroblast co‐cultures: Implications for hepatic tissue engineering. Biotechnol Bioprocess Eng 20: 358‐365, 2015. DOI: 10.1007/s12257‐014‐0595‐2.
 73.Kirichenko EY, Skatchkov SN, Ermakov AM. Structure and functions of gap junctions and their constituent connexins in the mammalian CNS. Biochem Suppl Ser A Membr Cell Biol 15: 107‐119, 2021. DOI: 10.1134/S1990747821020069.
 74.Koch DG, Speiser JL, Durkalski V, Fontana RJ, Davern T, McGuire B, Stravitz RT, Larson AM, Liou I, Fix O, Schilsky ML, McCashland T, Hay JE, Murray N, Shaikh OS, Ganger D, Zaman A, Han SB, Chung RT, Brown RS, Munoz S, Reddy KR, Rossaro L, Satyanarayana R, Hanje AJ, Olson J, Subramanian RM, Karvellas C, Hameed B, Sherker AH, Lee WM, Reuben A. The natural history of severe acute liver injury. Am J Gastroenterol 112: 1389‐1396, 2017. DOI: 10.1038/ajg.2017.98.
 75.Koffler LD, Fernstrom MJ, Akiyama TE, Gonzalez FJ, Ruch RJ. Positive regulation of connexin32 transcription by hepatocyte nuclear factor‐1α. Arch Biochem Biophys 407: 160‐167, 2002. DOI: 10.1016/S0003‐9861(02)00488‐5.
 76.Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N. Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res 263: 193‐201, 2001. DOI: 10.1006/excr.2000.5103.
 77.Kojima T, Sawada N, Chiba H, Kokai Y, Yamamoto M, Urban M, Lee GH, Hertzberg EL, Mochizuki Y, Spray DC. Induction of tight junctions in human connexin 32 (hCx32)‐transfected mouse hepatocytes: Connexin 32 interacts with occludin. Biochem Biophys Res Commun 266: 222‐229, 1999. DOI: 10.1006/bbrc.1999.1778.
 78.Kojima T, Spray DC, Kokai Y, Chiba H, Mochizuki Y, Sawada N. Cx32 formation and/or Cx32‐mediated intercellular communication induces expression and function of tight junctions in hepatocytic cell line. Exp Cell Res 276: 40‐51, 2002. DOI: 10.1006/excr.2002.5511.
 79.Kojima T, Yamamoto M, Mochizuki C, Mitaka T, Sawada N, Mochizuki Y. Different changes in expression and function of connexin 26 and connexin 32 during DNA synthesis and redifferentiation in primary rat hepatocytes using a DMSO culture system. Hepatology 26: 585‐597, 1997. DOI: 10.1002/hep.510260309.
 80.Kojima T, Yamamoto T, Lan M, Murata M, Takano KI, Go M, Ichimiya S, Chiba H, Sawada N. Inhibition of MAP kinase activity moderates changes in expression and function of Cx32 but not claudin‐1 during DNA synthesis in primary cultures of rat hepatocytes. Med Electron Microsc 37: 101‐113, 2004. DOI: 10.1007/s00795‐003‐0239‐7.
 81.Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood‐biliary barrier: Interaction between gap and tight junctions in hepatocytes. Med Electron Microsc 36: 157‐164, 2003. DOI: 10.1007/s00795‐003‐0220‐5.
 82.Kojima T, Yamamoto T, Murata M, Lan M, Takano KI, Go M, Ichimiya S, Chiba H, Sawada N. Role of the p38 MAP‐kinase signaling pathway for Cx32 and claudin‐1 in the rat liver. Cell Commun Adhes 10: 437‐443, 2003. DOI: 10.1080/cac.10.4‐6.437.443.
 83.Koo SK, Kim DY, Park SD, Kang KW, Joe CO. PKC phosphorylation disrupts gap junctional communication at G0/S phase in clone 9 cells. Mol Cell Biochem 167: 41‐49, 1997. DOI: 10.1023/A:1006831114120.
 84.Kordes C, Bock HH, Reichert D, May P, Häussinger D. Hepatic stellate cells: Current state and open questions. Biol Chem 402: 1021‐1032, 2021. DOI: 10.1515/hsz‐2021‐0180.
 85.Kren BT, Kumar NM, Wang SQ, Gilula NB, Steer CJ. Differential regulation of multiple gap junction transcripts and proteins during rat liver regeneration. J Cell Biol 123: 707‐718, 1993. DOI: 10.1083/jcb.123.3.707.
 86.Krutovskikh V, Mazzoleni G, Mironov N, Omori Y, Aguelon A‐M, Mesnil M, Berger F, Partensky C, Yamasaki H. Altered homologous and heterologous gap‐junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer 56: 87‐94, 1994. DOI: 10.1002/ijc.2910560116.
 87.Krutovskikh VA, Oyamada M, Yamasaki H. Sequential changes of gap‐junctional intercellular communications during multistage rat liver carcinogenesis: Direct measurement of communication in vivo. Carcinogenesis 12: 1701‐1706, 1991. DOI: 10.1093/carcin/12.9.1701.
 88.Krutovskikh VA, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 21: 1989‐1990, 2002. DOI: 10.1038/sj.onc.1205567.
 89.Kuver R, Savard CE, Sung KL, Haigh WG, Lee SP. Murine gallbladder epithelial cells can differentiate into hepatocyte‐like cells in vitro. Am J Physiol Gastrointest Liver Physiol 293: 944‐955, 2007. DOI: 10.1152/ajpgi.00263.2006.
 90.Lee D‐Y, Kim E‐H. Therapeutic effects of amino acids in liver diseases: Current studies and future perspectives. J Cancer Prev 24: 72‐78, 2019. DOI: 10.15430/jcp.2019.24.2.72.
 91.Lee SP, Savard CE, Kuver R. Gallbladder epithelial cells that engraft in mouse liver can differentiate into hepatocyte‐like cells. Am J Pathol 174: 842‐853, 2009. DOI: 10.2353/ajpath.2009.080262.
 92.Leithe E, Mesnil M, Aasen T. The connexin 43 C‐terminus: A tail of many tales. Biochim Biophys Acta Biomembr 48–64: 2018, 1860. DOI: 10.1016/j.bbamem.2017.05.008.
 93.Leroy K, Costa CJS, Pieters A, Rodrigues BDS, Van Campenhout R, Cooreman A, Tabernilla A, Cogliati B, Vinken M. Expression and functionality of connexin‐based channels in human liver cancer cell lines. Int J Mol Sci 22: 1‐17, 2021. DOI: 10.3390/ijms222212187.
 94.Li Z, Chen L, Chu H, Wang W, Yang L. Estrogen alleviates hepatocyte necroptosis depending on GPER in hepatic ischemia reperfusion injury. J Physiol Biochem 78: 125‐137, 2022. DOI: 10.1007/s13105‐021‐00846‐5.
 95.Lichtenstein A, Minogue PJ, Beyer EC, Berthoud VM. Autophagy: A pathway that contributes to connexin degradation. J Cell Sci 124: 910‐920, 2011. DOI: 10.1242/jcs.073072.
 96.Lim HK, Jeffrey GP, Ramm GA, Soekmadji C. Pathogenesis of viral hepatitis‐induced chronic liver disease: Role of extracellular vesicles. Front Cell Infect Microbiol 10: 1‐16, 2020. DOI: 10.3389/fcimb.2020.587628.
 97.Lin N, Lin J, Bo L, Weidong P, Chen S, Xu R. Differentiation of bone marrow‐derived mesenchymal stem cells into hepatocyte‐like cells in an alginate scaffold. Cell Prolif 43: 427‐434, 2010. DOI: 10.1111/j.1365‐2184.2010.00692.x.
 98.Liu H, Xu J, Zhou L, Yun X, Chen L, Wang S, Sun L, Wen Y, Gu J. Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Res 71: 7547‐7557, 2011. DOI: 10.1158/0008‐5472.CAN‐11‐2260.
 99.Lorente S, Hautefeuille M, Sanchez‐Cedillo A. The liver, a functionalized vascular structure. Sci Rep 10: 1‐10, 2020. DOI: 10.1038/s41598‐020‐73208‐8.
 100.Luther J, Gala MK, Borren N, Masia R, Goodman RP, Moeller IH, DiGiacomo E, Ehrlich A, Warren A, Yarmush ML, Ananthakrishnan A, Corey K, Kaplan LM, Bhatia S, Chung RT, Patel SJ. Hepatic connexin 32 associates with nonalcoholic fatty liver disease severity. Hepatol Commun 2: 786‐797, 2018. DOI: 10.1002/hep4.1179.
 101.Ma XD, Ma X, Sui YF, Wang WL. Expression of gap junction genes connexin 32 and connexin 43 mRNAs and proteins, and their role in hepatocarcinogenesis. World J Gastroenterol 8: 64‐68, 2002. DOI: 10.3748/wjg.v8.i1.64.
 102.Maes M, Crespo Yanguas S, Willebrords J, Weemhoff JL, da Silva TC, Decrock E, Lebofsky M, Pereira IVA, Leybaert L, Farhood A, Jaeschke H, Cogliati B, Vinken M. Connexin hemichannel inhibition reduces acetaminophen‐induced liver injury in mice. Toxicol Lett 278: 30‐37, 2017. DOI: 10.1016/j.toxlet.2017.07.007.
 103.Maes M, Decrock E, Cogliati B, Oliveira AG, Marques PE, Dagli MLZ, Menezes GB, Mennecier G, Leybaert L, Vanhaecke T, Rogiers V, Vinken M. Connexin and pannexin (hemi)channels in the liver. Front Physiol 4: 1‐8, 2014. DOI: 10.3389/fphys.2013.00405.
 104.Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Maria Monteiro de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Zaidan Dagli ML, Jaeschke H, Cogliati B, Vinken M. Involvement of connexin43 in acetaminophen‐induced liver injury. Biochim Biophys Acta Mol basis Dis 1862: 1111‐1121, 2016. DOI: 10.1016/j.bbadis.2016.02.007.
 105.Maes M, McGill MR, da Silva TC, Lebofsky M, Monteiro M, de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Zaidan Dagli ML, Jaeschke H, Cogliati B, Vinken M. Connexin32: A mediator of acetaminophen‐induced liver injury? Toxicol Mech Methods 26: 88‐96, 2016. DOI: 10.3109/15376516.2015.1103000.
 106.Mesnil M, Crespin S, Avanzo JL, Zaidan‐Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta Biomembr 1719: 125‐145, 2005. DOI: 10.1016/j.bbamem.2005.11.004.
 107.Meyer DJ, Yancey SB, Revel JP. Intercellular communication in normal and regenerating rat liver: A quantitative analysis. J Cell Biol 91: 505‐519, 1981. DOI: 10.1083/jcb.91.2.505.
 108.Miashita T, Takeda A, Iwai M, Shimazu T. Single administration of hepatotoxic chemicals transiently decreases the gap‐junction‐protein levels of connexin 32 in rat liver. Eur J Biochem 196: 37‐42, 1991. DOI: 10.1111/j.1432‐1033.1991.tb15782.x.
 109.Moennikes O, Buchmann A, Ott T, Willecke K, Schwarz M. The effect of connexin32 null mutation on hepatocarcinogenesis in different mouse strains. Carcinogenesis 20: 1379‐1382, 1999. DOI: 10.1093/carcin/20.7.1379.
 110.Muramatsu A, Iwai M, Morikawa T, Tanaka S, Mori T, Harada Y, Okanoue T. Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells. Carcinogenesis 23: 351‐358, 2002. DOI: 10.1093/carcin/23.2.351.
 111.Naiki‐Ito A, Asamoto M, Naiki T, Ogawa K, Takahashi S, Sato S, Shirai T. Gap junction dysfunction reduces acetaminophen hepatotoxicity with impact on apoptotic signaling and connexin 43 protein induction in rat. Toxicol Pathol 38: 280‐286, 2010. DOI: 10.1177/0192623309357951.
 112.Naiki‐Ito A, Kato H, Naiki T, Yeewa R, Aoyama Y, Nagayasu Y, Suzuki S, Inaguma S, Takahashi S. A novel model of non‐alcoholic steatohepatitis with fibrosis and carcinogenesis in connexin 32 dominant‐negative transgenic rats. Arch Toxicol 94: 4085‐4097, 2020. DOI: 10.1007/s00204‐020‐02873‐5.
 113.Nakashima Y, Ono T, Yamanoi A, El‐Assal ON, Kohno H, Nagasue N. Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39: 763‐768, 2004. DOI: 10.1007/s00535‐003‐1386‐2.
 114.Nakata Y, Iwai M, Kimura S, Shimazu T. Prolonged decrease in hepatic connexin32 in chronic liver injury induced by carbon tetrachloride in rats. J Hepatol 25: 529‐537, 1996. DOI: 10.1016/S0168‐8278(96)80213‐3.
 115.Naves MMV, Silveira ER, Dagli MLZ, Moreno FS. Effects of β‐carotene and vitamin A on oval cell proliferation and connexin 43 expression during hepatic differentiation in the rat. J Nutr Biochem 12: 685‐692, 2001. DOI: 10.1016/S0955‐2863(01)00187‐5.
 116.Nelles E, Bützler C, Jung D, Temme A, Gabriel HD, Dahl U, Traub O, Stümpel F, Jungermann K, Zielasek J, Toyka KV, Dermietzel R, Willecke K. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32‐deficient mice. Proc Natl Acad Sci U S A 93: 9565‐9570, 1996. DOI: 10.1073/pnas.93.18.9565.
 117.Neveu MJ, Hully JR, Babcock KL, Hertzberg EL, Nicholson BJ, Paul DL, Pitot HC. Multiple mechanisms are responsible for altered expression of gap junction genes during oncogenesis in rat liver. J Cell Sci 107: 83‐95, 1994. DOI: 10.1242/jcs.107.1.83.
 118.Neveu MJ, Hully JR, Babcock KL, Vaughan J, Hertzberg EL, Nicholson BJ, Paul DL, Pitot HC. Proliferation‐associated differences in the spatial and temporal expression of gap junction genes in rat liver. Hepatology 22: 202‐212, 1995. DOI: 10.1016/0270‐9139(95)90374‐7.
 119.Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein‐Rathlou NH. Gap junctions. Compr Physiol 2: 1981‐2035, 2012. DOI: 10.1002/cphy.c110051.
 120.Ogawa K, Pitchakarn P, Suzuki S, Chewonarin T, Tang M, Takahashi S, Naiki‐Ito A, Sato S, Takahashi S, Asamoto M, Shirai T. Silencing of connexin 43 suppresses invasion, migration and lung metastasis of rat hepatocellular carcinoma cells. Cancer Sci 103: 860‐867, 2012. DOI: 10.1111/j.1349‐7006.2012.02228.x.
 121.Ogawa T, Hayashi T, Tokunou M, Nakachi K, Trosko JE, Chang CC, Yorioka N. Suberoylanilide hydroxamic acid enhances gap junctional intercellular communication via acetylation of histone containing Connexin 43 gene locus. Cancer Res 65: 9771‐9778, 2005. DOI: 10.1158/0008‐5472.CAN‐05‐0227.
 122.Onofrio FQ, Hirschfield GM. The pathophysiology of cholestasis and its relevance to clinical practice. Clin Liver Dis 15: 110‐114, 2020. DOI: 10.1002/cld.894.
 123.Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug‐induced cholestasis. Hepatology 53: 1377‐1387, 2011. DOI: 10.1002/hep.24229.
 124.Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth 58: 515‐523, 2014. DOI: 10.4103/0019‐5049.144643.
 125.Patel SJ, Milwid JM, King KR, Bohr S, Iracheta‐Velle A, Li M, Vitalo A, Parekkadan B, Jindal R, Yarmush ML. Gap junction inhibition prevents drug‐induced liver toxicity and fulminant hepatic failure. Nat Biotechnol 30: 179‐183, 2012. DOI: 10.1038/nbt.2089.
 126.Pei H, Zhai C, Li H, Yan F, Qin J, Yuan H, Zhang R, Wang S, Zhang W, Chang M, Wang Y, Pei X. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes. Stem Cell Res Ther 8: 1‐11, 2017. DOI: 10.1186/s13287‐017‐0703‐2.
 127.Peracchia C. Chemical gating of gap junction channels: Roles of calcium, pH and calmodulin. Biochim Biophys Acta Biomembr 1662: 61‐80, 2004. DOI: 10.1016/j.bbamem.2003.10.020.
 128.Peracchia C, Peracchia LML. Calmodulin‐connexin partnership in gap junction channel regulation‐calmodulin‐cork gating model. Int J Mol Sci 22: 1‐27, 2021. DOI: 10.3390/ijms222313055.
 129.Plante I, Charbonneau M, Cyr DG. Activation of the integrin‐linked kinase pathway downregulates hepatic connexin32 via nuclear Akt. Carcinogenesis 27: 1923‐1929, 2006. DOI: 10.1093/carcin/bgl059.
 130.Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: A revision. BMC Cell Biol 17: 137‐150, 2016. DOI: 10.1186/s12860‐016‐0099‐3.
 131.Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30: 398‐408, 2004. DOI: 10.1016/S1262‐3636(07)70133‐7.
 132.Pradhan‐Sundd T, Monga SP. Blood‐bile barrier: Morphology, regulation, and pathophysiology. Gene Expr 19: 69‐87, 2019. DOI: 10.3727/105221619X15469715711907.
 133.Procházka L, Turánek J, Tesařík R, Knotigová P, Polášková P, Andrysík Z, Kozubík A, Žák F, Sova P, Neuzil J, Machala M. Apoptosis and inhibition of gap‐junctional intercellular communication induced by LA‐12, a novel hydrophobic platinum(IV) complex. Arch Biochem Biophys 462: 54‐61, 2007. DOI: 10.1016/j.abb.2007.03.021.
 134.Qin J, Chang M, Wang S, Liu Z, Zhu W, Wang Y, Yan F, Li J, Zhang B, Dou G, Liu J, Pei X, Wang Y. Connexin 32‐mediated cell‐cell communication is essential for hepatic differentiation from human embryonic stem cells. Sci Rep 6: 1‐16, 2016. DOI: 10.1038/srep37388.
 135.Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 3: 157‐169, 2017. DOI: 10.18053/jctres.03.2017s1.002.
 136.Raven A, Forbes SJ. Hepatic progenitors in liver regeneration. J Hepatol 69: 1394‐1395, 2018. DOI: 10.1016/j.jhep.2018.03.004.
 137.Rehermann B. Chronic infections with hepatotropic viruses: Mechanisms of impairment of cellular immune responses. Semin Liver Dis 27: 152‐160, 2007. DOI: 10.1055/s‐2007‐979468.
 138.Ren H, Fang J, Ding X, Chen Q. Role and inhibition of Src signaling in the progression of liver cancer. Open Life Sci 11: 513‐518, 2016. DOI: 10.1515/biol‐2016‐0067.
 139.Rodrigues AS, Dagli MLZ, Avanzo JL, de Moraes HP, Mackowiak II, Hernandez‐Blazquez FJ. Expression and distribution of connexin 32 in rat liver with experimentally induced fibrosis. Pesqui Vet Bras 29: 353‐357, 2009. DOI: 10.1590/s0100‐736x2009000400013.
 140.Roh H, Yang DH, Chun HJ, Khang G. Cellular behaviour of hepatocyte‐like cells from nude mouse bone marrow‐derived mesenchymal stem cells on galactosylated poly(D,L‐lactic,co‐glycolic acid). J Tissue Eng Regen Med 9: 819‐825, 2015. DOI: 10.1002/term.1771.
 141.Rosenberg E, Faris RA, Spray DC, Monfils B, Abreu S, Danishefsky I, Reid LM. Correlation of expression of connexin mRNA isoforms with degree of cellular differentiation. Cell Commun Adhes 4: 223‐235, 1996. DOI: 10.3109/15419069609010768.
 142.Sadiku E, Taci S, Dibra A, Nela E, Babameto A. The differential diagnosis of intra and extra‐hepatic cholestasis: Causes and diagnosis of intrahepatic cholestatic disorders. Alban Med J: 72‐82, 2015.
 143.Sáez CG, Eugenin E, Hertzberg EL, Sáez JC. Regulation of gap junctions in rat liver during acute and chronic CCl4‐induced liver injury. In: From Ion Channels to Cell‐to‐Cell Conversations. Springer US, p. 367‐380.
 144.Saez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MVL. Phosphorylation of connexin 32, a hepatocyte gap‐junction protein, by cAMP‐dependent protein kinase, protein kinase C and Ca2+/calmodulin‐dependent protein kinase II. Eur J Biochem 192: 263‐273, 1990. DOI: 10.1111/j.1432‐1033.1990.tb19223.x.
 145.Sáez PJ, Orellana JA, Vega‐Riveros N, Figueroa VA, Hernández DE, Castro JF, Klein AD, Jiang JX, Zanlungo S, Sáez JC. Disruption in connexin‐based communication is associated with intracellular Ca2+ signal alterations in astrocytes from Niemann‐Pick type C mice. PLoS One 8: 1‐12, 2013. DOI: 10.1371/journal.pone.0071361.
 146.Sagawa H, Naiki‐Ito A, Kato H, Naiki T, Yamashita Y, Suzuki S, Sato S, Shiomi K, Kato A, Kuno T, Matsuo Y, Kimura M, Takeyama H, Takahashi S. Connexin 32 and luteolin play protective roles in nonalcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis 36: 1539‐1549, 2015. DOI: 10.1093/carcin/bgv143.
 147.Saito C, Shinzawa K, Tsujimoto Y. Synchronized necrotic death of attached hepatocytes mediated via gap junctions. Sci Rep 4: 1‐8, 2014. DOI: 10.1038/srep05169.
 148.Sakamoto H, Oyamada M, Enomoto K, Mori M. Differential changes in expression of gap junction proteins connexin 26 and 32 during hepatocarcinogenesis in rats. Jpn J Cancer Res 83: 1210‐1215, 1992. DOI: 10.1111/j.1349‐7006.1992.tb02747.x.
 149.Sanchez RI, Kauffman FC. Regulation of xenobiotic metabolism in the liver. Compr Toxicol 9: 109‐128, 2010. DOI: 10.1016/B978‐0‐08‐046884‐6.01005‐8.
 150.Sanz‐García C, Fernández‐Iglesias A, Gracia‐Sancho J, Arráez‐Aybar LA, Nevzorova YA, Cubero FJ. The space of disse: The liver hub in health and disease. Livers 1: 3‐26, 2021. DOI: 10.3390/livers1010002.
 151.Scholten D, Trebicka J, Liedtke C, Weiskirchen R. The carbon tetrachloride model in mice. Lab Anim 49: 4‐11, 2015. DOI: 10.1177/0023677215571192.
 152.Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 15: 349‐364, 2018. DOI: 10.1038/s41575‐018‐0009‐6.
 153.Sen WZ, Wu LQ, Yi X, Geng C, Li YJ, Yao RY. Connexin‐43 can delay early recurrence and metastasis in patients with hepatitis B‐related hepatocellular carcinoma and low serum alpha‐fetoprotein after radical hepatectomy. BMC Cancer 13: 1‐9, 2013. DOI: 10.1186/1471‐2407‐13‐306.
 154.Sgodda M, Aurich H, Kleist S, Aurich I, König S, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 313: 2875‐2886, 2007. DOI: 10.1016/j.yexcr.2007.05.020.
 155.Sheen IS, Jeng KS, Wang PC, Shih SC, Chang WH, Wang HY, Chen CC, Shyung LR. Are gap junction gene connexins 26, 32 and 43 of prognostic values in hepatocellular carcinoma? A prospective study. World J Gastroenterol 10: 2785‐2790, 2004. DOI: 10.3748/wjg.v10.i19.2785.
 156.Shen Y, Li Y, Ma X, Wan Q, Jiang Z, Liu Y, Zhang D, Liu X, Wu W. Connexin 43 SUMOylation improves gap junction functions between liver cancer stem cells and enhances their sensitivity to HSVtk/GCV. Int J Oncol 52: 872‐880, 2018. DOI: 10.3892/ijo.2018.4263.
 157.Shevchenko BF, Zeleniuk OV, Klenina IA, Babii OM. Structural and functional state of the liver in patients with extrahepatic cholestasis of non‐tumor genesis. Rep Morphol 25: 36‐43, 2019. DOI: 10.31393/morphology‐journal‐2019‐25(4)‐06.
 158.Shimizu K, Onishi M, Sugata E, Sokuza Y, Mori C, Nishikawa T, Honoki K, Tsujiuchi T. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline‐deficient L‐amino acid‐defined diet in rats. Cancer Sci 98: 1318‐1322, 2007. DOI: 10.1111/j.1349‐7006.2007.00564.x.
 159.Shin EC, Sung PS, Park SH. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 16: 509‐523, 2016. DOI: 10.1038/nri.2016.69.
 160.Singer SJ. Intercellular communication and cell‐cell adhesion. Science 80 (255): 1671‐1677, 1992. DOI: 10.1126/science.1313187.
 161.Stecklum M, Wulf‐Goldenberg A, Purfürst B, Siegert A, Keil M, Eckert K, Fichtner I. Cell differentiation mediated by co‐culture of human umbilical cord blood stem cells with murine hepatic cells. In Vitro Cell Dev Biol Anim 51: 183‐191, 2015. DOI: 10.1007/s11626‐014‐9817‐3.
 162.Stravitz RT, Lee WM. Acute liver failure. Lancet 394: 869‐881, 2019. DOI: 10.1016/S0140‐6736(19)31894‐X.
 163.Stümpel F, Ott T, Willecke K, Jungermann K. Connexin 32 Gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28: 1616‐1620, 1998. DOI: 10.1002/hep.510280622.
 164.Sugiyama Y, Ohta H. Changes in density and distribution of gap junctions after partial hepatectomy: Immunohistochemical and morphometric studies. Arch Histol Cytol 53: 71‐80, 1990. DOI: 10.1679/aohc.53.71.
 165.Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71: 209‐249, 2021. DOI: 10.3322/caac.21660.
 166.Tang N, Cai Z, Chen H, Cao L, Chen B, Lin B. Involvement of gap junctions in propylthiouracil‐induced cytotoxicity in BRL‐3A cells. Exp Ther Med 8: 2799‐2806, 2019. DOI: 10.3892/etm.2019.7244.
 167.Tang S, Hu W, Hu J, Wu S, Li J, Luo Y, Cao M, Zhou H, Jiang X. Hepatitis B virus X protein promotes P3 transcript expression of the insulin‐like growth factor 2 gene via inducing hypomethylation of P3 promoter in hepatocellular carcinoma. Liver Int 35: 608‐619, 2015. DOI: 10.1111/liv.12469.
 168.Tao R, Li J, Xin J, Wu J, Guo J, Zhang L, Jiang L, Zhang W, Yang Z, Li L. Methylation profile of single hepatocytes derived from hepatitis B virus‐related hepatocellular carcinoma. PLoS One 6: 1‐11, 2011. DOI: 10.1371/journal.pone.0019862.
 169.Temme A, Ott T, Dombrowski F, Willecke K. The extent of synchronous initiation and termination of DNA synthesis in regenerating mouse liver is dependent on connexin32 expressing gap junctions. J Hepatol 32: 627‐635, 2000. DOI: 10.1016/S0168‐8278(00)80225‐1.
 170.Temme A, Stümpel F, Söhl G, Rieber EP, Jungermann K, Willecke K, Ott T. Dilated bile canaliculi and attenuated decrease of nerve‐dependent bile secretion in connexin32‐deficient mouse liver. Pflugers Arch Eur J Physiol 442: 961‐966, 2001. DOI: 10.1007/s004240100623.
 171.Temme A, Traub O, Willecke K. Downregulation of connexin32 protein and gap‐junctional intercellular communication by cytokine‐mediated acute‐phase response in immortalized mouse hepatocytes. Cell Tissue Res 294: 345‐350, 1998. DOI: 10.1007/s004410051184.
 172.Theodorakis NG, De Maio A. Cx32 mRNA in rat liver: Effects of inflammation on poly(A) tail distribution and mRNA degradation. Am J Physiol Regul Integr Compr Physiol 276: 1249‐1257, 1999. DOI: 10.1152/ajpregu.1999.276.5.r1249.
 173.Tiburcio TC, Willebrords J, da Silva TC, Pereira IVA, Nogueira MS, Crespo Yanguas S, Maes M, dos Anjos Silva E, Dagli MLZ, de Castro IA, Oliveira CP, Vinken M, Cogliati B. Connexin32 deficiency is associated with liver injury, inflammation and oxidative stress in experimental non‐alcoholic steatohepatitis. Clin Exp Pharmacol Physiol 44: 197‐206, 2017. DOI: 10.1111/1440‐1681.12701.
 174.Tirnitz‐Parker JEE, Tonkin JN, Knight B, Olynyk JK, Yeoh GCT. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline‐deficient, ethionine‐supplemented diet. Int J Biochem Cell Biol 39: 2226‐2239, 2007. DOI: 10.1016/j.biocel.2007.06.008.
 175.Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: Physiological and pathophysiological implications. Cell Mol Life Sci 77: 573‐591, 2020. DOI: 10.1007/s00018‐019‐03285‐0.
 176.Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. Biochim Biophys Acta Mol Cell Res 1761–1770: 2018, 1865. DOI: 10.1016/j.bbamcr.2018.05.010.
 177.Traub O, Druge PM, Willecke K. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci U S A 80: 755‐759, 1983. DOI: 10.1073/pnas.80.3.755.
 178.Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 27: R1147‐R1151, 2017. DOI: 10.1016/j.cub.2017.09.019.
 179.Treyer A, Müsch A. Hepatocyte polarity. Compr Physiol 3: 243‐287, 2013. DOI: 10.1002/cphy.c120009.
 180.Van Campenhout R, Cooreman A, Leroy K, Rusiecka OM, Van Brantegem P, Annaert P, Muyldermans S, Devoogdt N, Cogliati B, Kwak BR, Vinken M. Non‐canonical roles of connexins. Prog Biophys Mol Biol 153: 35‐41, 2020. DOI: 10.1016/j.pbiomolbio.2020.03.002.
 181.Van Campenhout R, Gomes AR, De Groof TWM, Muyldermans S, Devoogdt N, Vinken M. Mechanisms underlying connexin hemichannel activation in disease. Int J Mol Sci 22: 1‐14, 2021. DOI: 10.3390/ijms22073503.
 182.Vinken M, De Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli MLZ, Vanhaecke T, Rogiers V. Modifications in connexin expression in liver development and cancer. Cell Commun Adhes 19: 55‐62, 2012. DOI: 10.3109/15419061.2012.712576.
 183.Vinken M, Decrock E, Doktorova T, Ramboer E, De Vuyst E, Vanhaecke T, Leybaert L, Rogiers V. Characterization of spontaneous cell death in monolayer cultures of primary hepatocytes. Arch Toxicol 85: 1589‐1596, 2011. DOI: 10.1007/s00204‐011‐0703‐4.
 184.Vinken M, Decrock E, Vanhaecke T, Leybaert L, Rogiers V. Connexin43 signaling contributes to spontaneous apoptosis in cultures of primary hepatocytes. Toxicol Sci 125: 175‐186, 2012. DOI: 10.1093/toxsci/kfr277.
 185.Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 47: 1077‐1088, 2008. DOI: 10.1002/hep.22049.
 186.Vinken M, Henkens T, Snykers S, Lukaszuk A, Tourwé D, Rogiers V, Vanhaecke T. The novel histone deacetylase inhibitor 4‐Me2N‐BAVAH differentially affects cell junctions between primary hepatocytes. Toxicology 236: 92‐102, 2007. DOI: 10.1016/j.tox.2007.04.003.
 187.Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V. Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 91: 484‐492, 2006. DOI: 10.1093/toxsci/kfj152.
 188.Vondráček J, Machala M. Environmental ligands of the aryl hydrocarbon receptor and their effects in models of adult liver progenitor cells. Stem Cells Int 5–7: 2016, 2016. DOI: 10.1155/2016/4326194.
 189.Wagner M, Fickert P. Drug therapies for chronic cholestatic liver diseases. Annu Rev Pharmacol Toxicol 60: 503‐527, 2020. DOI: 10.1146/annurev‐pharmtox‐010818‐021059.
 190.Wang ZS, Tan Z, Wu ZH, Zhan SX, Guo WD, Liu SG, Zhang L. Identification of downstream target genes regulated by CX43 in hepatocellular carcinoma. Neoplasma 66: 870‐878, 2019. DOI: 10.4149/neo_2018_181225N995.
 191.Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51: 522‐529, 1992. DOI: 10.1002/ijc.2910510404.
 192.Willebrords J, Cogliati B, Pereira IVA, Da Silva TC, Yanguas SC, Maes M, Govoni VM, Lima A, Felisbino DA, Decrock E, Nogueira MS, De Castro IA, Leclercq I, Leybaert L, Rodrigues RM, Vinken M. Inhibition of connexin hemichannels alleviates non‐alcoholic steatohepatitis in mice. Sci Rep 7: 1‐11, 2017. DOI: 10.1038/s41598‐017‐08583‐w.
 193.Wilson MR, Close TW, Trosko JE. Cell population dynamics (apoptosis, mitosis, and cell‐cell communication) during disruption of homeostasis. Exp Cell Res 254: 257‐268, 2000. DOI: 10.1006/excr.1999.4771.
 194.Xiang Y, Wang Q, Guo Y, Ge H, Fu Y, Wang X, Tao L. Cx32 exerts anti‐apoptotic and pro‐tumor effects via the epidermal growth factor receptor pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 38: 1‐15, 2019. DOI: 10.1186/s13046‐019‐1142‐y.
 195.Yamaji S, Droggiti A, Lu SC, Martinez‐Chantar ML, Warner A, Varela‐Rey M. S‐Adenosylmethionine regulates connexins sub‐types expressed by hepatocytes. Eur J Cell Biol 90: 312‐322, 2011. DOI: 10.1016/j.ejcb.2010.09.007.
 196.Yamaoka K, Nouchi T, Kohashi T, Marumo F, Sato C. Expression of gap junction protein connexin 32 in chronic liver diseases. Liver 20: 104‐107, 2000. DOI: 10.1034/j.1600‐0676.2000.020002104.x.
 197.Yamashita YI, Shimada M, Harimoto N, Tanaka S, Shirabe K, Ijima H, Nakazawa K, Fukuda J, Funatsu K, Maehara Y. cDNA microarray analysis in hepatocyte differentiation in Huh 7 cells. Cell Transplant 13: 793‐799, 2004. DOI: 10.3727/000000004783983396.
 198.Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen‐induced liver injury and its implications for therapeutic interventions. Redox Biol 17: 274‐283, 2018. DOI: 10.1016/j.redox.2018.04.019.
 199.Yang J, Ichikawa A, Tsuchiya T. A novel function of connexin 32: Marked enhancement of liver function in a hepatoma cell line. Biochem Biophys Res Commun 307: 80‐85, 2003. DOI: 10.1016/S0006‐291X(03)01117‐3.
 200.Yang K, Köck K, Sedykh A, Tropsha A, Brouwer KLR. An updated review on drug‐induced cholestasis: Mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci 102: 3037‐3057, 2013. DOI: 10.1002/jps.23584.
 201.Yang L, Dong C, Tian L, Ji X, Yang L, Li L. Gadolinium chloride restores the function of the gap junctional intercellular communication between hepatocytes in a liver injury. Int J Mol Sci 20: 1‐17, 2019. DOI: 10.3390/ijms20153748.
 202.Yang Y, Zhu J, Zhang N, Zhao Y, Li WY, Zhao FY, Ou YR, Qin SK, Wu Q. Impaired gap junctions in human hepatocellular carcinoma limit intrinsic oxaliplatin chemosensitivity: A key role of connexin 26. Int J Oncol 48: 703‐713, 2016. DOI: 10.3892/ijo.2015.3266.
 203.Yano T, Hernandez‐Blazquez FJ, Omori Y, Yamasaki H. Reduction of malignant phenotype of HEPG2 cell is associated with the expression of connexin 26 but not connexin 32. Carcinogenesis 22: 1593‐1600, 2001. DOI: 10.1093/carcin/22.10.1593.
 204.Zhang D, Kaneda M, Nakahama K, ichi, Arii S, Morita I. Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell‐cell communication. Cancer Lett 252: 208‐215, 2007. DOI: 10.1016/j.canlet.2006.12.024.
 205.Zhang M, Thorgeirsson SS. Modulation of connexins during differentiation of oval cells into hepatocytes. Exp Cell Res 213: 37‐42, 1994. DOI: 10.1006/excr.1994.1170.
 206.Zhao B, Zhao W, Wang Y, Xu Y, Xu J, Tang K, Zhang S, Yin Z, Wu Q, Wang X. Connexin32 regulates hepatoma cell metastasis and proliferation via the p53 and Akt pathways. Oncotarget 6: 10116‐10133, 2015. DOI: 10.18632/oncotarget.2687.
 207.Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 20: 7312‐7324, 2014. DOI: 10.3748/wjg.v20.i23.7312.
 208.Zsembery A, Thalhammer T, Graf J. Bile formation: A concerted action of membrane transporters in hepatocytes and cholangiocytes. News Physiol Sci 15: 6‐11, 2000. DOI: 10.1152/physiologyonline.2000.15.1.6.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Raf Van Campenhout, Kaat Leroy, Axelle Cooreman, Andrés Tabernilla, Bruno Cogliati, Prashant Kadam, Mathieu Vinken. Connexin‐Based Channels in the Liver. Compr Physiol 2022, 12: 4147-4163. doi: 10.1002/cphy.c220007