Comprehensive Physiology Wiley Online Library

General Morphology of Neurons and Neuroglia

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Neuronal Shape as A Sign of Function
2 Sizes of Neurons
3 Cytology of Neurons
3.1 Soma or Cell Body
3.2 Dendrites
3.3 Axon
3.4 Synapse
3.5 Neuron Doctrine
4 Neuroglia
4.1 Astrocytes
4.2 Oligodendrocytes
4.3 Microglia
4.4 Schwann Cell
Figure 1. Figure 1.

Camera lucida drawing of 3 small pyramidal cells in layer 3 of cerebral cortex (area 17) of adult male Macaca mulatta. Cells give rise to apical and basal dendrites (d) of varying caliber, which display numerous spiny appendages of diverse shapes and sizes. In their ascent toward the pial surface the apical dendrites associate with those of other pyramidal cells in the same and deeper layers of cortex to form fascicles. Notice that cell bodies are also vertically aligned. A thin axon (arrows) springs from each cell body and descends to deeper layers. Rapid Golgi preparation.

Figure 2. Figure 2.

Two large nerve cells in dentate nucleus of cerebellum of adult male Macaca mulatta. These nerve cells, immersed in field of heavily myelinated nerve fibers, emit heavy dendrites (d). Both cell body and dendrites are covered with spherical boutons terminaux (arrows). Within cells a dense population of granules and long mitochondria can be seen. Epon, 1.5‐μm section, toluidine blue. × 1,300.

Figure 3. Figure 3.

Perikaryon of large cell in dentate nucleus of cerebellum of adult male Macaca mulatta. Folded nuclear envelope encloses a dilute and fairly homogeneous karyoplasm, in which the large dense nucleolus is conspicuous. Beside the nucleolus is a fragment of condensed heterochromatin, the nucleolar satellite or Barr body. Section passes obliquely through nuclear envelope at asterisks, disclosing arrays of pores. In the perikaryon, cytoplasm is crowded with organelles, among the most prominent of which are mitochondria (m), lysosomes (ly), Golgi complexes (G), and the granular endoplasmic reticulum (er). Neurofilaments and microtubules can be seen here and there. Notice that mitochondrial profiles occur in groups, indicating that each cluster represents a single mitochondrion of complex configuration. × 11,000.

Figure 4. Figure 4.

Cytoplasm of a Meynert cell in cerebral cortex of adult male Macaca mulatta. Well‐developed Nissl body lies in left upper corner of field, displaying its constituent cisternae of endoplasmic reticulum (er) and both attached and free ribosomes in polysomal array. Clustering of mitochondrial profiles is well shown and the fragment of Golgi apparatus (G) included in the field exhibits typical fenestrated cisternae. An open space to the right of center contains microtubules (mt) and neurofilaments (nf) aligned in Plasmastrasse. Axosomatic synapse with a terminal containing flattened vesicles occurs at lower left (arrows). Area 17. × 13,000.

Figure 5. Figure 5.

Axodendritic synapse of Purkinje cell axon terminal in dentate nucleus of cerebellum of Macaca mulatta. Synaptic cleft is clearly shown. Patches of dense filamentous material adhere to both pre‐ and postsynaptic membranes. In two places (arrows), where synaptic vesicles approach surface of terminal, adherent densities are more prominent on presynaptic than on postsynaptic side. Synaptic cleft contains ill‐defined densities lying in a plane roughly bisecting the cleft. Synaptic vesicles are pleomorphic with high proportion of ellipsoidal or flattened outlines, × 74,000.

Figure 6. Figure 6.

Catecholamine‐containing terminal synapsing on small dendrite in dentate nucleus of cerebellum of Macaca mulatta. Terminal contains 2 kinds of synaptic vesicles, one small and clear centered, the other about 120 nm in diameter and filled with a dense core. Synaptic junction is characterized by some widening of cleft and modest asymmetry of dense adherent plaques. Small dendrite is nearly filled with microtubules and a single mitochondrion in transverse section, × 77,000.

Figure 7. Figure 7.

Dendrite and spines of a Purkinje cell of rat cerebellar cortex. Replica obtained by freeze‐fracture technique provides three‐dimensional view of dendritic spines. Dendrite stem passing across upper left corner of field gives off 4 spines (S1‐S4) that reach out to synapse with parallel fibers (pf) coursing diagonally across the field. A fifth spine (S5) appears in fracture plane, but its connection with dendritic stem is not shown. Dendrite and its spines are coated with neuroglial processes (ng). S1 and S4 are intact, presenting unbroken A faces along their entire length. S2 is broken so that only the B face of its stem remains, whereas the head is complete. At the extremity of S2 is a rounded, flattened area that is almost clear of A face particles. S3 is represented entirely by its B face, which bears a collection of particles near its tip. Varicosity in pf3 underlying S3 signals presence of a synaptic junction between these 2 structures. Similarly, B face of S5 displays a cluster of particles at site of its synaptic junction with pf5. Widened synaptic cleft is clearly shown, × 47,000.

From Palay & Chan‐Palay 124
Figure 8. Figure 8.

Camera lucida drawing of protoplasmic astrocytes in cerebellar cortex of adult rat. Two cells in molecular layer (SA1 and SA2) are examples of smooth protoplasmic astrocytes, the radiating branching processes of which lack elaborate appendages. Cell (VA) below Purkinje cells (PC) is a velate astrocyte displaying its velamentous processes, which spread out in all directions among nerve cells and fibers of gray matter. Golgi‐Kopsch preparation; pia, pial surface of brain.

From Palay & Chan‐Palay 124
Figure 9. Figure 9.

Three cells in layer 4 of cerebral cortex of adult male Macaca mulatta. Upper half of field is occupied by a small neuron (stellate cell), which sends off a dendrite to left and its axon to upper margin of picture. Nucleus is relatively large and cytoplasm is limited to a narrow rim about it. Below the neuron is a rounded, dark cell with a distinct outline and dense nucleus. This is an oligodendrocyte with characteristic cytological features: dense nucleus and cytoplasm, small fragmented profiles of endoplasmic reticulum, small Golgi apparatus, numerous microtubules. In left corner of field is a protoplasmic astrocyte with its typically irregular outline and light nucleus and cytoplasm. Visual cortex, area 17. × 10,000.

Figure 10. Figure 10.

Camera lucida drawing of oligodendrocytes in white matter and granular layer of cerebellum of adult rat. Cell in lower half of picture lies entirely within white matter. Here myelinated fibers are plaited in regular criss‐crossing groups. Long, coiled processes extending from oligodendrocyte are continuous cytoplasmic ribbons in myelin sheaths. These processes serve axons that run in either longitudinal (heavy arrow) or transverse (fine arrows) directions. Cell in upper half of field lies in granular layer, and nearly all of its processes run approximately longitudinally, although some run transversely. They follow trajectory of myelinated Purkinje axons and mossy fibers. Limits of white matter (wm) and granular layer (grl) are indicated by a line. Several mossy fibers (MF) with their elaborate synaptic varicosities (rosettes) are also shown, along with cell bodies of a few granule cells (gr c). Golgi‐Kopsch preparation.

From Palay & Chan‐Palay 124


Figure 1.

Camera lucida drawing of 3 small pyramidal cells in layer 3 of cerebral cortex (area 17) of adult male Macaca mulatta. Cells give rise to apical and basal dendrites (d) of varying caliber, which display numerous spiny appendages of diverse shapes and sizes. In their ascent toward the pial surface the apical dendrites associate with those of other pyramidal cells in the same and deeper layers of cortex to form fascicles. Notice that cell bodies are also vertically aligned. A thin axon (arrows) springs from each cell body and descends to deeper layers. Rapid Golgi preparation.



Figure 2.

Two large nerve cells in dentate nucleus of cerebellum of adult male Macaca mulatta. These nerve cells, immersed in field of heavily myelinated nerve fibers, emit heavy dendrites (d). Both cell body and dendrites are covered with spherical boutons terminaux (arrows). Within cells a dense population of granules and long mitochondria can be seen. Epon, 1.5‐μm section, toluidine blue. × 1,300.



Figure 3.

Perikaryon of large cell in dentate nucleus of cerebellum of adult male Macaca mulatta. Folded nuclear envelope encloses a dilute and fairly homogeneous karyoplasm, in which the large dense nucleolus is conspicuous. Beside the nucleolus is a fragment of condensed heterochromatin, the nucleolar satellite or Barr body. Section passes obliquely through nuclear envelope at asterisks, disclosing arrays of pores. In the perikaryon, cytoplasm is crowded with organelles, among the most prominent of which are mitochondria (m), lysosomes (ly), Golgi complexes (G), and the granular endoplasmic reticulum (er). Neurofilaments and microtubules can be seen here and there. Notice that mitochondrial profiles occur in groups, indicating that each cluster represents a single mitochondrion of complex configuration. × 11,000.



Figure 4.

Cytoplasm of a Meynert cell in cerebral cortex of adult male Macaca mulatta. Well‐developed Nissl body lies in left upper corner of field, displaying its constituent cisternae of endoplasmic reticulum (er) and both attached and free ribosomes in polysomal array. Clustering of mitochondrial profiles is well shown and the fragment of Golgi apparatus (G) included in the field exhibits typical fenestrated cisternae. An open space to the right of center contains microtubules (mt) and neurofilaments (nf) aligned in Plasmastrasse. Axosomatic synapse with a terminal containing flattened vesicles occurs at lower left (arrows). Area 17. × 13,000.



Figure 5.

Axodendritic synapse of Purkinje cell axon terminal in dentate nucleus of cerebellum of Macaca mulatta. Synaptic cleft is clearly shown. Patches of dense filamentous material adhere to both pre‐ and postsynaptic membranes. In two places (arrows), where synaptic vesicles approach surface of terminal, adherent densities are more prominent on presynaptic than on postsynaptic side. Synaptic cleft contains ill‐defined densities lying in a plane roughly bisecting the cleft. Synaptic vesicles are pleomorphic with high proportion of ellipsoidal or flattened outlines, × 74,000.



Figure 6.

Catecholamine‐containing terminal synapsing on small dendrite in dentate nucleus of cerebellum of Macaca mulatta. Terminal contains 2 kinds of synaptic vesicles, one small and clear centered, the other about 120 nm in diameter and filled with a dense core. Synaptic junction is characterized by some widening of cleft and modest asymmetry of dense adherent plaques. Small dendrite is nearly filled with microtubules and a single mitochondrion in transverse section, × 77,000.



Figure 7.

Dendrite and spines of a Purkinje cell of rat cerebellar cortex. Replica obtained by freeze‐fracture technique provides three‐dimensional view of dendritic spines. Dendrite stem passing across upper left corner of field gives off 4 spines (S1‐S4) that reach out to synapse with parallel fibers (pf) coursing diagonally across the field. A fifth spine (S5) appears in fracture plane, but its connection with dendritic stem is not shown. Dendrite and its spines are coated with neuroglial processes (ng). S1 and S4 are intact, presenting unbroken A faces along their entire length. S2 is broken so that only the B face of its stem remains, whereas the head is complete. At the extremity of S2 is a rounded, flattened area that is almost clear of A face particles. S3 is represented entirely by its B face, which bears a collection of particles near its tip. Varicosity in pf3 underlying S3 signals presence of a synaptic junction between these 2 structures. Similarly, B face of S5 displays a cluster of particles at site of its synaptic junction with pf5. Widened synaptic cleft is clearly shown, × 47,000.

From Palay & Chan‐Palay 124


Figure 8.

Camera lucida drawing of protoplasmic astrocytes in cerebellar cortex of adult rat. Two cells in molecular layer (SA1 and SA2) are examples of smooth protoplasmic astrocytes, the radiating branching processes of which lack elaborate appendages. Cell (VA) below Purkinje cells (PC) is a velate astrocyte displaying its velamentous processes, which spread out in all directions among nerve cells and fibers of gray matter. Golgi‐Kopsch preparation; pia, pial surface of brain.

From Palay & Chan‐Palay 124


Figure 9.

Three cells in layer 4 of cerebral cortex of adult male Macaca mulatta. Upper half of field is occupied by a small neuron (stellate cell), which sends off a dendrite to left and its axon to upper margin of picture. Nucleus is relatively large and cytoplasm is limited to a narrow rim about it. Below the neuron is a rounded, dark cell with a distinct outline and dense nucleus. This is an oligodendrocyte with characteristic cytological features: dense nucleus and cytoplasm, small fragmented profiles of endoplasmic reticulum, small Golgi apparatus, numerous microtubules. In left corner of field is a protoplasmic astrocyte with its typically irregular outline and light nucleus and cytoplasm. Visual cortex, area 17. × 10,000.



Figure 10.

Camera lucida drawing of oligodendrocytes in white matter and granular layer of cerebellum of adult rat. Cell in lower half of picture lies entirely within white matter. Here myelinated fibers are plaited in regular criss‐crossing groups. Long, coiled processes extending from oligodendrocyte are continuous cytoplasmic ribbons in myelin sheaths. These processes serve axons that run in either longitudinal (heavy arrow) or transverse (fine arrows) directions. Cell in upper half of field lies in granular layer, and nearly all of its processes run approximately longitudinally, although some run transversely. They follow trajectory of myelinated Purkinje axons and mossy fibers. Limits of white matter (wm) and granular layer (grl) are indicated by a line. Several mossy fibers (MF) with their elaborate synaptic varicosities (rosettes) are also shown, along with cell bodies of a few granule cells (gr c). Golgi‐Kopsch preparation.

From Palay & Chan‐Palay 124
References
 1. Akert, K., K. Pfenninger, and C. Sandri. The fine structure of synapses in the subfornical organ of the cat. Z. Zellforsch. Mikroskop. Anat. 81: 537–556, 1967.
 2. Akert, K., K. Pfenninger, C. Sandri, and M. Moor. Freeze etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system. In: Structure and Function of Synapses, edited by G. D. Pappas and D. P. Purpura. New York: Raven Press, 1972, p. 67–86.
 3. Andres, K. H. Untersuchungen über den Feinbau von Spinalganglien. Z. Zellforsch. Mikroskop. Anat. 55: 1–48, 1961.
 4. Angevine, J. B., Jr. Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exptl. Neurol. Suppl. 2: 1–70, 1965.
 5. Angevine, J. B., Jr., and R. L. Sidman. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192: 766–768, 1961.
 6. Baker, R., and R. Llinás. Electrotonic coupling between neurones in the rat mesencephalic nucleus. J. Physiol. London 212: 45–63, 1971.
 7. Barondes, S. H. Axoplasmic transport: a report of an NRP work session. Neurosci. Res. Progr. Bull. 5: 307–419, 1967.
 8. Bennett, M. V. L., G. D. Pappas, E. Aljure, and Y. Nakajima. Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J. Neurophysiol. 30: 180–208, 1967.
 9. Bennett, M. V. L., G. D. Pappas, M. Giménez, and Y. Nakajima. Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol. 30: 236–300, 1967.
 10. Berry, M., and A. W. Rogers. The migration of neuroblasts in the developing cerebral cortex. J. Anat. 99: 691–709, 1965.
 11. Billings, S. M., and F. J. Swartz. DNA content of Mauthner cell nuclei in Xenopus laevis: a spectrophotometric study. Z. Anat. Entwicklungs. 129: 14–23, 1969.
 12. Bodian, D. Electron microscopy: two major synaptic types on spinal motoneurons. Science 151: 1093–1094, 1966.
 13. Bohan, T. B., A. F. Boyne, P. S. Guth, Y. Narayanan, and T. H. Williams. Electron‐dense particle in cholinergic synaptic vesicles. Nature 244: 32, 1973.
 14. Branton, D. Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. US 55: 1048–1056, 1966.
 15. Brightman, M. W., and T. S. Reese. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677, 1969.
 16. Bullock, T. H. On the anatomy of the giant neurons of the visceral ganglion of Aplysia. In: Nervous Inhibition, edited by E. Florey. New York: Pergamon, 1961, p. 233–240.
 17. Chandler, R. L., and R. Willis. An intranuclear fibrillar lattice in neurons. J. Cell Sci. 1: 283–286, 1966.
 18. Chan‐Palay, V. The tripartite structure of the undercoat in initial segments of Purkinje cell axons. Z. Anat. Entwicklungs. 139: 1–10, 1972.
 19. Chan‐Palay, V. On the identification of the afferent axon terminals in the nucleus lateralis of the cerebellum. An electron microscope study. Z. Anat. Entwicklungs. 142: 149–186, 1973.
 20. Chan‐Palay, V., S. M. Billings‐Gagliardi, and S. L. Palay. Meynert cells in the primate visual cortex. J. Neurocytol. 3: 631–658, 1974.
 21. Chan‐Palay, V., and S. L. Palay. Interrelations of basket cell axons and climbing fibers in the cerebellar cortex of the rat. Z. Anat. Entwicklungs. 132: 191–227, 1970.
 22. Chan‐Palay, V., and S. L. Palay. The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Z. Anat. Entwicklungs. 138: 1–19, 1972.
 23. Coggeshall, R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1263–1287, 1967.
 24. Coggeshall, R. E., B. A. Yaksta, and F. J. Swartz. A cytophotometric analysis of the DNA in the nucleus of the giant cell, R‐2, in Aplysia. Chromosoma 32: 205–212, 1970.
 25. Cohen, J., V. Mareš, and Z. Lodin. DNA content of purified preparations of mouse Purkinje neurons isolated by a velocity sedimentation technique. J. Neurochem. 20: 651–657, 1973.
 26. Conradi, S. Ultrastructural specialization of the initial axon segment of cat lumbar motoneurons. Preliminary observations. Acta Soc. Med. Upsalien. 71: 281–284, 1966.
 27. Conradi, S. Observations on the ultrastructure of the axon hillock and initial axon segment of lumbosacral motoneurons in the cat. Acta Physiol. Scand. Suppl. 332: 65–84, 1969.
 28. Davison, P. F., and B. Winslow. The protein subunit of calf brain neurofilaments. J. Neurobiol. 5: 119–133, 1974.
 29. Deiters, O. Untersuchungen über Gehirn und Rückenmark. Braunschweig: Vieweg, 1865.
 30. Dennis, M. J., and H. M. Gerschenfeld. Some physiological properties of identified mammalian neuroglial cells. J. Physiol. London 203: 211–222, 1969.
 31. Diamond, J., E. G. Gray, and G. M. Yasargil. The function of the dendritic spine: an hypothesis. In: Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 213–222.
 32. Dogiel, A. S. Der Bau der Spinalganglien des Menschen und der Säugetiere. Jena: Fischer, 1908.
 33. Droz, B. Synthèse et transfert des protéines cellulaires dans les neurones ganglionnaires. Étude radioautographique quantitative en microscopie électronique. J. Microscopie 6: 201–228, 1967.
 34. Eccles, J. C. The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press, 1957.
 35. Eccles, J. C., M. Ito, and J. Szentágothai. The Cerebellum as a Neuronal Machine. New York: Springer, 1967.
 36. Famiglietti, E. V., Jr. Dendro‐dendritic synapses in the lateral geniculate nucleus of the cat. Brain Res. 20: 181–191, 1970.
 37. Famiglietti, E. V., Jr., and A. Peters. The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 144: 285–334, 1972.
 38. Favard, P., and N. Carasso. The preparation and observation of thick biological sections in the high voltage electron microscope. J. Microscopy 97: 59–81, 1973.
 39. Feldman, M. L., and A. Peters. Intranuclear rods and sheets in rat cochlear nucleus. J. Neurocytol. 1: 109–127, 1972.
 40. Foster, M., and C. S. Sherrington. A Text Book of Physiology, Part III: The Central Nervous System (7th ed.). London: Macmillan, 1897.
 41. Fox, C. A., and J. W. Barnard. A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. J. Anat. 91: 299–313, 1957.
 42. Franke, W. W. Structure, biochemistry, and functions of the nuclear envelope. Intern. Rev. Cytol. Suppl. 4: 71–236, 1974.
 43. Friend, D. S., and N. B. Gilula. A distinctive cell contact in the rat adrenal cortex. J. Cell Biol. 53: 148–163, 1972.
 44. Fujita, S. Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal cerebellum. J. Cell Biol. 32: 277–287, 1967.
 45. Fujita, S. DNA constancy in neurons of the human cerebellum and spinal cord as revealed by Feulgen cytophotometry and cytofluorometry. J. Comp. Neurol. 155: 195–202, 1974.
 46. Fujita, S., T. Hattori, M. Fukuda, and T. Kitamura. DNA contents in Purkinje cells and inner granule neurons in the developing rat cerebellum. Develop. Growth Differentiation 16: 205–211, 1974.
 47. Fujita, Y. Activity of dendrites of single Purkinje cells and its relationship to so‐called inactivation response in rabbit cerebellum. J. Neurophysiol. 31: 131–141, 1968.
 48. Fuortes, M. G. F., K. Frank, and M. C. Becker. Steps in the production of motoneuron spikes. J. Gen. Physiol. 40: 735–752, 1957.
 49. Furshpan, E. J. “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science 144: 878–880, 1964.
 50. Furshpan, E. J., and D. D. Potter. Transmission at the giant motor synapses of the crayfish. J. Physiol. London 145: 289–325, 1959.
 51. Geffen, L. B., and B. G. Livett. Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51: 98–157, 1971.
 52. Gobel, S. Axo‐axonic septate junctions in the basket formations of the cat cerebellar cortex. J. Cell Biol. 51: 328–333, 1971.
 53. Golgi, C. Sulla fina anatomia degli organi centrali del sistema nervoso. I. Note preliminari sulla struttura, morfologia e vicendevoli rapporti delle cellule gangliari. Riv. Sper. Freniat. Med. Leg. Alienazioni Ment. 8: 165–195, 1882.
 54. Goodenough, D. A., and J.‐P. Revel. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45: 272–290, 1970.
 55. Gray, E. G. Axo‐somatic and axo‐dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93: 420–433, 1959.
 56. Gray, E. G. A morphological basis for pre‐synaptic inhibition' Nature 193: 82–83, 1962.
 57. Gray, E. G., and R. W. Guillery. The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study. J. Physiol. London 157: 581–588, 1961.
 58. Gray, E. G., and R. W. Guillery. A note on the dendritic spine apparatus. J. Anat. 97: 389–392, 1963.
 59. Gray, E. G., and R. A. Willis. On synaptic vesicles, complex vesicles, and dense projections. Brain Res. 24: 149–168, 1970.
 60. Grillo, M. A. Electron microscopy of sympathetic tissues. Pharmacol. Rev. 18: 387–399, 1966.
 61. Heidenhain, M. Plasma und Zelle. Jena: Fischer, vol. 2, 1911.
 62. Held, H. Beiträge zur Structur der Nervenzellen und ihrer Fortsätze. Part II. Arch Anat. Physiol. Anat. Abt. 204–293, 1897. Part III. Arch. Anat. Physiol. Anat. Abt. Suppl. 273–312, 1897.
 63. Henn, F. A., H. Haljamae, and A. Hamberger. Glial cell function: active control of extracellular K+ concentration. Brain Res. 43: 437–443, 1972.
 64. Henn, F. A., and A. Hamberger. Glial cell function. Uptake of transmitter substances. Proc. Natl. Acad. Sci. US 68: 2686–2690, 1971.
 65. Herman, C. J., and L. W. Lapham. DNA content of neurons in the cat hippocampus. Science 160: 537, 1968.
 66. Herman, C. J., and L. W. Lapham. Neuronal polyploidy and nuclear volumes in the cat central nervous system. Brain Res. 15: 35–48, 1969.
 67. Hillman, D. E., and R. Llinás. Calcium‐containing electron‐dense structures in the axons of the squid giant synapse. J. Cell Biol. 61: 146–155, 1974.
 68. Hinrichsen, C. F. L., and L. M. H. Larramendi. Synapses and cluster formation of the mouse mesencephalic fifth nucleus. Brain Res. 7: 296–299, 1968.
 69. Hortega, P. del Río. Tercerea aportación al conocimiento morfológico e interpretación functional de la oligodendroglía. Mem. Real Soc. Esp. Hist. Nat. Madrid 14: 5–122, 1928.
 70. Huneeus, F. C., and P. F. Davison. Fibrillar proteins of the squid axoplasm. I. Neurofilament protein. J. Mol. Biol. 52: 415–428, 1970.
 71. Hyde, J. C., and N. Robinson. Localization of sites of GABA catabolism in the rat retina. Nature 248: 432–433, 1974.
 72. Kaiserman‐Abramof, I. R., and A. Peters. Some aspects of the morphology of Betz cells in the cerebral cortex of the cat. Brain Res. 43: 527–546, 1972.
 73. Kandel, E. R., W. T. Frazier, and R. E. Coggeshall. Opposite synaptic actions mediated by different branches of an identifiable interneuron in Aplysia. Science 155: 346–349, 1967.
 74. Kandel, E. R., and D. Gardner. The synaptic actions mediated by the different branches of a single neuron. Res. Publ. Assoc. Res. Nervous Mental Disease 50: 91–146, 1972.
 75. Kitamura, T., H. Hattori, and S. Fujita. Autoradiographic studies on histogenesis of brain macrophages in the mouse. J. Neuropathol. Exptl. Neurol. 31: 502–518, 1972.
 76. Kohno, K. Neurotubules contained within the dendrite and axon of Purkinje cell of frog. Bull. Tokyo Med. Dent. Univ. 11: 411–442, 1964.
 77. Konigsmark, B. W., and R. L. Sidman. Origin of brain macrophages in the mouse. J. Neuropathol. Exptl. Neurol. 22: 643–676, 1963.
 78. Korn, H., C. Sotelo, and F. Crepel. Electrotonic coupling between neurons in the rat lateral vestibular nucleus. Exptl. Brain Res. 16: 255–275, 1973.
 79. Kuffler, S. W., and J. G. Nicholls. The physiology of neuroglial cells. Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol. 57: 1–90, 1966.
 80. Kuno, M., and J. T. Miyahara. Factors responsible for multiple discharge of neurons in Clarke's column. J. Neurophysiol. 31: 624–638, 1968.
 81. Kuno, M., E. Muñoz‐Martinez, and M. Randic. Synaptic action on Clarke's column neurones in relation to afferent terminal size. J. Physiol. London 228: 343–360, 1973.
 82. Landis, D. M. D., and T. S. Reese. Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex. J. Comp. Neurol. 155: 93–126, 1974.
 83. Landis, D. M. D., T. S. Reese, and E. Raviola. Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb. J. Comp. Neurol. 155: 67–92, 1974.
 84. Lapham, L. W. Tetraploid DNA content of Purkinje neurons of human cerebellar cortex. Science 159: 310–312, 1968.
 85. Lasek, R. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3H]‐l‐leucine. Brain Res. 7: 360–377, 1968.
 86. Lasek, R. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exptl. Neurol. 21: 41–51, 1968.
 87. Lasek, R., and W. J. Dower. Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons. Science 172: 278–280, 1971.
 88. Lehninger, A. L. Cell organelles: the mitochondrion. In: The Neurosciences, edited by G. C. Quarton, T. Melnechuk, and F. O. Schmitt. New York: Rockefeller Univ. Press, 1967, p. 91–100.
 89. Lentz, R. D., and L. W. Lapham. Postnatal development of tetraploid DNA content in rat Purkinje cells: a quantitative cytochemical study. J. Neuropathol. Exptl. Neurol. 29: 43–56, 1970.
 90. Le Vay, S. On the neurons and synapses of the lateral geniculate nucleus of the monkey, and the effects of eye enucleation. Z. Zellforsch. Mikroskop. Anat. 113: 396–419, 1971.
 91. Lieberman, A. R. Neurons with presynaptic perikarya and presynaptic dendrites in the rat lateral geniculate nucleus. Brain Res. 59: 35–59, 1973.
 92. Lieberman, A. R., and K. E. Webster. Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res. 42: 169–200, 1972.
 93. Littau, V. C., V. G. Allfrey, J. H. Frenster, and A. E. Mirsky. Active and inactive regions of nuclear chromatin as revealed by electron microscope autoradiography. Proc. Natl. Acad. Sci. US 52: 93–100, 1964.
 94. Livingston, R. B., K. Pfenninger, H. Moor, and K. Akert. Specialized paranodal and interparanodal glial‐axonal junctions in the peripheral and central nervous system: a freeze‐etching study. Brain Res. 58: 1–24, 1973.
 95. Llinás, R., R. Baker, and C. Sotelo. Electrotonic coupling between neurons in cat inferior olive. Brain Res. 67: 560–571, 1974.
 96. Llinás, R., and D. E. Hillman. Physiological and morphological organization of the cerebellar circuits in various vertebrates. In: Neurobiology of Cerebellar Evolution and Development, edited by R. Llinás. Chicago: AMA‐ERF Institute for Biomedical Research, 1969, p. 43–73.
 97. Llinás, R., and C. Nicholson. Electrophysiological analysis of alligator cerebellar cortex: a study on dendritic spikes. In: Neurobiology of Cerebellar Evolution and Development, edited by R. Llinás. Chicago: AMA‐ERF Institute for Biomedical Research, 1969, p. 431–464.
 98. Llinás, R., and C. Nicholson. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neurophysiol. 34: 532–551, 1971.
 99. Lund, R. D. Synaptic patterns in the superficial layers of the superior colliculus of the rat. J. Comp. Neurol. 135: 179–208, 1969.
 100. Lund, R. D. Synaptic patterns in the superficial layers of the superior colliculus of the monkey Macaca mulatta. Exptl. Brain Res. 15: 194–211, 1972.
 101. Mann, D. M. A., and P. O. Yates. Polypoidy in the human nervous system. Part 1. The DNA content of neurones and glia of the cerebellum. J. Neurol. Sci. 18: 183–196, 1973.
 102. Mannen, H. Arborisations dendritiques. Étide topographique et quantitative dans le noyau vestibulaire du chat. Arch. Ital. Biol. 103: 197–219, 1965.
 103. Mannen, H. Contribution to the quantitative study of the nervous tissue. A new method for measurement of the volume and surface area of neurons. J. Comp. Neurol. 126: 75–89, 1966.
 104. Manuelidis, L., and E. E. Manuelidis. On the DNA content of cerebellar Purkinje cells in vivo and in vitro. Exptl. Neurol. 43: 192–206, 1974.
 105. Mareš, V., Z. Lodin, and J. Sácha. A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells. Brain Res. 53: 273–289, 1973.
 106. Mareš, V., B. Schultze, and W. Maurer. Stability of DNA in Purkinje cell nuclei of the mouse. An autoradiographic study. J. Cell Biol. 63: 665–674, 1974.
 107. Martin, A. R., and G. Pilar. Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. London 168: 443–463, 1963.
 108. Martin, J. R., and H. de F. Webster. Mitotic Schwann cells in developing nerve: their changes in shape, fine structure, and axonal relationships. Develop. Biol. 32: 417–431, 1973.
 109. McNutt, N. S., and R. S. Weinstein. The ultrastructure of the nexus. A correlated thin‐section and freeze‐cleave study. J. Cell Biol. 47: 666–688, 1970.
 110. Miale, I., and R. L. Sidman. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exptl. Neurol. 4: 277–296, 1961.
 111. Milhaud, M., and G. D. Pappas. Postsynaptic bodies in the habenula and interpeduncular nuclei of the cat. J. Cell Biol. 30: 437–441, 1966.
 112. Morest, D. K. Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z. Anat. Entwicklungs. 133: 216–246, 1971.
 113. Mungai, J. M. Dendritic patterns in the somatic sensory cortex of the cat. J. Anat. 101: 403–418, 1967.
 114. Nakajima, Y. Fine structure of the synaptic endings on the Mauthner cell of the goldfish. J. Comp. Neurol. 156: 375–402, 1974.
 115. Neal, M. J., and L. L. Iversen. Autoradiographic localization of 3H‐Gaba in rat retina. Nature New Biol. 235: 217–218, 1972.
 116. Nováková, V., W. Sandritter, and G. Schlueter. DNA content in rat central nervous system. Exptl. Cell Res. 60: 454–456, 1970.
 117. Novikoff, A. B. Enzyme localization and ultrastructure of neurons. In: The Neuron, edited by H. Hydén. Amsterdam: Elsevier, 1967, p. 255–318.
 118. Orkand, R. K., J. G. Nicholls, and S. W. Kuffler. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29: 788–806, 1966.
 119. Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2, Suppl. 193–202, 1956.
 120. Palay, S. L. The morphology of synapses in the central nervous system. Exptl. Cell Res. Suppl. 5: 275–293, 1958.
 121. Palay, S. L. The structural basis for neural action. In: Brain Function. Vol. 2. RNA and Brain Function; Memory and Learning, edited by M. A. B. Brazier. Los Angeles: Univ. of California Press, 1964, p. 69–108.
 122. Palay, S. L. The role of neuroglia in the organization of the central nervous system. In: Nerve as a Tissue, edited by K. Rodahl and B. Issekutz, Jr. New York: Hoeber‐Harper, 1966, p. 3–10.
 123. Palay, S. L., and V. Chan‐Palay. High voltage electron microscopy of the central nervous system in Golgi preparations. J. Microscopy 97: 41–47, 1973.
 124. Palay, S. L., and V. Chan‐Palay. Cerebellar Cortex, Cytology and Organization. Berlin: Springer Verlag, 1974.
 125. Palay, S. L., and G. E. Palade. The fine structure of neurons. J. Biophys. Biochem. Cytol. 1: 69–88, 1955.
 126. Palay, S. L., C. Sotelo, A. Peters, and P. M. Orkand. The axon hillock and the initial segment. J. Cell Biol. 38: 193–201, 1968.
 127. Pappas, G. D., Y. Asada, and M. V. L. Bennett. Morphological correlates of increased coupling resistance at an electrotonic synapse. J. Cell Biol. 49: 173–188, 1971.
 128. Pasik, P., T. Pasik, J. Hámori, and J. Szentágothai. Golgi type II interneurons in the neuronal circuit of the monkey lateral geniculate nucleus. Exptl. Brain Res. 17: 18–34, 1973.
 129. Peters, A., and I. R. Kaiserman‐Abramof. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127: 321–355, 1970.
 130. Peters, A., and S. L. Palay. An electron microscope study of the distribution and patterns of astroglial processes in the central nervous system. J. Anat. 99: 419, 1965.
 131. Peters, A., S. L. Palay, and H. de F. Webster. The Fine Structure of the Nervous System. The Neurons and Supporting Cells. Philadelphia: Saunders, 1976.
 132. Peters, A., C. C. Proskauer, and I. R. Kaiserman‐Abramof. The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J. Cell Biol. 39: 604–619, 1968.
 133. Peterson, R. G., and D. C. Pease. Myelin embedded in polymerized glutaraldehyde‐urea. J. Ultrastruct. Res. 41: 115–132, 1972.
 134. Pfenninger, K., K. Akert, H. Moor, and C. Sandri. The fine structure of freeze‐fractured presynaptic membranes. J. Neurocytol. 1: 129–149, 1972.
 135. Pfenninger, K., C. Sandri, K. Akert, and C. H. Engster. Contribution to the problem of structural organization of the presynaptic area. Brain Res. 12: 10–18, 1969.
 136. Pinching, A. J. Myelinated dendritic segments in the monkey olfactory bulb. Brain Res. 29: 133–138, 1971.
 137. Pinching, A. J., and T. P. S. Powell. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9: 347–377, 1971.
 138. Politoff, A. L., S. Rose, and G. D. Pappas. Calcium binding sites in synaptic vesicles of the frog sartorius neuromuscular junction. J. Cell Biol. 61: 818–823, 1974.
 139. Pomerat, C. M. Dynamic neurogliology. Texas Rept. Biol. Med. 10: 885–913, 1952.
 140. Pomerat, C. M., W. J. Hendelman, C. W. Raiborn, and J. F. Massey. Dynamic activities of nervous tissues in vitro. In: The Neuron, edited by H. Hydén. Amsterdam: Elsevier, 1967, p. 119–178.
 141. Pysh, J. J., and R. G. Wiley. Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulated in vivo. Evidence for transmitter secretion by exocytosis. J. Cell Biol. 60: 365–374, 1974.
 142. Rafols, J. A., and F. Valverde. The structure of the dorsal lateral geniculate nucleus in the mouse. A Golgi and electron microscopic study. J. Comp. Neurol. 150: 303–332, 1973.
 143. Rall, W., G. M. Shepherd, T. S. Reese, and M. W. Brightman. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exptl. Neurol. 14: 44–56, 1966.
 144. Ralston, H. J. Presynaptic dendrites: evidence for their existence and a proposal for their mechanism. Nature 230: 585–587, 1970.
 145. Rambourg, A. Detection des glycoprotéines en microscopie électronique: coloration de la surface cellulaire et de l'appareil de Golgi par un mélange acide chromique‐phosphotungstique. Compt. Rend. 265: 1426–1428, 1967.
 146. Rambourg, A., A. Marraud, and M. Chretien. Tridimensional structure of the forming face of the Golgi apparatus as seen in the high voltage electron microscope after osmium impregnation of the small nerve cells in the semilunar ganglion of the trigeminal nerve. J. Microscopy 97: 49–57, 1973.
 147. Ramón‐Moliner, E. The morphology of dendrites. In: The Structure and Function of Nervous Tissue, edited by G. H. Bourne. New York: Academic, vol. 1, 1968, p. 205–267.
 148. Ramón‐Moliner, E. Presynaptic perikarya in olfactory bulb of guinea pig. Brain Res. 63: 351–356, 1973.
 149. Ramón y Cajal, S. Sur la structure de l'écorce cérébrale de quelques mammifères. Cellule 7: 125–176, 1891.
 150. Ramón y Cajal, S. Croonian Lecture. La fine structure des centres nerveux. Proc. Roy. Soc. London 55: 444–468, 1894.
 151. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés, translated by L. Azoulay. Paris: Maloine, vols. 1 and 2, 1909 and 1911.
 152. Ramón y Cajal, S. Les preuves objectives de l'unité anatomique des cellules nerveuses. Trabajos Lab. Invest. Biol. Madrid 29: 1–137, 1934. [Translated into English by M. U. Purkiss and C. A. Fox. Neuron Theory or Reticular Theory? Objective Evidence of the Anatomical Unity of Nerve Cells. Madrid: Consejo Superior de Investigaciones Cientificas, 1954.]
 153. Revel, J.‐P., and D. W. Hamilton. The double nature of the intermediate dense line in peripheral nerve myelin. Anat. Record 163: 7–16, 1969.
 154. Revel, J.‐P., and M. J. Karnovsky. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7–C12, 1967.
 155. Robertson, J. D. The occurrence of a subunit in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19: 201–221, 1963.
 156. Robertson, J. D., T. S. Bodenheimer, and D. E. Stage. The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. Cell Biol. 19: 159–199, 1963.
 157. Roncoroni, L. Su un nuovo reperto nel nucleo delle cellule nervose. Arch. Psichiat. 16: 447–450, 1895.
 158. Rosenbluth, J. The visceral ganglion of Aplysia californica. Z. Zellforsch. Mikroskop. Anat. 60: 213–236, 1963.
 159. Rovainen, C. M. Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J. Comp. Neurol. 154: 189–206, 1974.
 160. Rovainen, C. M. Synaptic interaction of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey. J. Comp. Neurol. 154: 207–223, 1974.
 161. Sandritter, W., V. Nováková, J. Pilny, and G. Kiefer. Cytophotometrische Messungen des Nukleinsäure‐ und Proteingehaltes von Ganglienzellen der Ratte während der postnatalen Entwicklung und im Alter. Z. Zellforsch. Mikroskop. Anat. 80: 145–152, 1967.
 162. Scharff, J.‐H. Sensible Ganglien. In: Handbuch der mikroskopischen Anatomie des Menschen, edited by W. Bargmann. Berlin: Springer Verlag, IV/1, 3, 1958.
 163. Schnapp, B., and E. Mugnaini. The myelin sheath: electron microscopic studies with thin sections and freeze‐fracture. In: Golgi Centennial Symposium: Perspectives in Neurobiology, edited by M. Santini. New York: Raven Press, 1975, p. 209–233.
 164. Seïte, R. Étude ultrastructurale de divers types d'inclusions nucléaires dans les neurones sympathiques du chat. J. Ultrastruct. Res. 30: 152–165, 1970.
 165. Seïte, R., J. Escaig, and S. Couineau. Microfilaments et microtubules nucléaires et organisation ultrastructurale des bâtonnets intranucléaires des neurones sympathiques. J. Ultrastruct. Res. 37: 449–478, 1971.
 166. Seïte, R., N. Mei, and S. Couineau. Modification quantitative des bâtonnets intranucléaries des neurones sympathiques sou l'influence de la stimulation électrique. Brain Res. 34: 277–290, 1971.
 167. Sétáló, G., and G. Székely. The presence of membrane specializations indicative of somato‐dendritic synaptic junctions in the optic tectum of the frog. Exptl. Brain Res. 4: 237–242, 1967.
 168. Shepherd, G. M. Synaptic organization of the mammalian olfactory bulb. Physiol. Rev. 52: 864–917, 1972.
 169. Shepherd, G. M. The neuron doctrine: a revision of functional concepts. Yale J. Biol. Med. 45: 584–599, 1972.
 170. Sidman, R. L. Autoradiographic methods and principles for study of the nervous system with thymidine‐H3. In: Contemporary Research Methods in Neuroanatomy, edited by W. J. H. Nauta and S. O. E. Ebbeson New York: Springer Verlag, 1970, p. 252–273.
 171. Skoff, R. P., and J. E. Vaughn. An autoradiographic study of cellular proliferation in degenerating optic nerve. J. Comp. Neurol. 141: 133–156, 1971.
 172. Sloper, J. J. Gap junctions between dendrites in the primate neocortex. Brain Res. 44: 641–646, 1972.
 173. Sotelo, C. Ultrastructural aspects of the cerebellar cortex of the frog. In: Neurobiology of Cerebellar Evolution and Development, edited by R. Llinás. Chicago: AMA‐ERF Institute for Biomedical Research, 1969, p. 327–367.
 174. Sotelo, C., and R. Llinás. Specialized membrane junctions between neurons in the vertebrate cerebellar cortex. J. Cell Biol. 53: 271–289, 1972.
 175. Sotelo, C., R. Llinás, and R. Baker. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J. Neurophysiol. 37: 541–559, 1974.
 176. Sotelo, C., and S. L. Palay. Synapses avec des contacts étroits (tight junctions) dans le noyau vestibulaire latéral du rat. J. Microscopie 6: 83a, 1967.
 177. Sotelo, C., and S. L. Palay. The fine structure of the lateral vestibular nucleus in the rat. II. Synaptic organization. Brain Res. 18: 93–115, 1970.
 178. Spencer, W. A., and E. R. Kandel. Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol. 24: 272–285, 1961.
 179. Spira, M. E., and M. V. L. Bennett. Synaptic control of electrotonic coupling between neurons. Brain Res. 37: 294–300, 1972.
 180. Stöhr, P., Jr. Mikroskopische Anatomie des vegetativen Nervensystems. In: Handbuch der Mikroskopischen Anatomie des Menschen, edited by W. Bargmann. Berlin: Springer Verlag, IV/1, 5, 1957.
 181. Streit, P., K. Akert, C. Sandri, R. B. Livingston, and H. Moor. Dynamic ultrastructure in presynaptic membranes at nerve terminals in the spinal cord of rats. Anesthetized and unanesthetized preparations compared. Brain Res. 48: 11–26, 1972.
 182. Swift, H. Nucleic acids and cell morphology in dipteran salivary glands. In: The Molecular Control of Cellular Activity, edited by J. M. Allen. New York: McGraw‐Hill, 1962, p. 73–125.
 183. Taber‐Pierce, E. Histogenesis of the nuclei griseum pontis corporis pontobulbaris and reticularis tegmenti pontis (Bechterew) in the mouse. An autoradiographic study. J. Comp. Neurol. 126: 219–240, 1966.
 184. Taxi, J. Contribution à l'étude des connexions des neurones moteurs du système nerveux autonome. Ann. Sci. Nat. Zool. 7: 413–674, 1965.
 185. Thiéry, J. P. Role de l'appareil de Golgi dans la synthèse des mucopolysaccharides. Etude cytochimique. I. Mise en évidence de mucopolysaccharides dans les vesicules de transition entre l'ergastoplasme et l'appareil de Golgi. J. Microscopie 8: 689–708, 1969.
 186. Trachtenberg, M. C., and D. A. Pollen. Neuroglia: biophysical properties and physiological function. Science 167: 1248–1252, 1970.
 187. Uchizono, K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207: 642–643, 1965.
 188. Uchizono, K. Synaptic organization of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development, edited by R. Llinás. Chicago: AMA‐ERF Institute for Biomedical Research, 1969, p. 549–581.
 189. Valdivia, O. Methods of fixation and the morphology of synaptic vesicles. J. Comp. Neurol. 142: 257–277, 1971.
 190. Valverde, F. The neuropil in superficial layers of the superior colliculus of the mouse: a correlated Golgi and electron microscopic study. Z. Anat. Entwicklungs. 142: 117–147, 1973.
 191. Vaughn, D. W., and A. Peters. Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J. Neurocytol. 3: 405–429, 1974.
 192. Vaughn, J. E., P. L. Hinds, and R. P. Skoff. Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The multipotential glia. J. Comp. Neurol. 140: 175–206, 1970.
 193. Vaughn, J. E., and A. Eters. A third neuroglial cell type. An electron microscope study. J. Comp. Neurol. 133: 269–288, 1968.
 194. Webster, H. de F. The geometry of peripheral myelin sheaths during their formation and growth in cat sciatic nerves. J. Cell Biol. 48: 348–367, 1971.
 195. Webster, H. de F., J. R. Martin, and M. F. O'Connell. The relationships between interphase Schwann cells and axons before myelination: a quantitative electron microscopic study. Develop. Biol. 32: 401–416, 1973.
 196. Wolff, J. Elektronenmikroskopische Untersuchungen über Struktur und Gestalt von Astrozytenfortsätzen. Z. Zellforsch. Mikroskop. Anat. 66: 11–28, 1965.
 197. Wolff, J. Die Astroglia im Gewebsverband des Gehirns. Acta Neuropathol. Suppl. IV: 33–39, 1968.
 198. Wong, M. T. T. Somato‐dendritic and dendro‐dendritic synapses in the squirrel monkey lateral geniculate nucleus. Brain Res. 20: 135–139, 1970.
 199. Wuerker, R. B. Neurofilaments and glial filaments. Tissue Cell 2: 1–9, 1970.
 200. Wuerker, R. B., and J. B. Kirkpatrick. Neuronal microtubules, neurofilaments, and microfilaments. Intern. Rev. Cytol. 33: 45–75, 1972.
 201. Wuerker, R. B., and S. L. Palay. Neurofilaments and microtubules in anterior horn cells of the rat. Tissue Cell 1: 387–402, 1969.
 202. Zampighi, G., and J. D. Robertson. Fine structure of the synaptic discs separated from the goldfish medulla oblongata. J. Cell Biol. 56: 92–105, 1973.
 203. Zelená, J. Ribosome‐like particles in myelinated axons of the rat. Brain Res. 24: 359–363, 1970.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Sanford L. Palay, Victoria Chan‐Palay. General Morphology of Neurons and Neuroglia. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 5-37. First published in print 1977. doi: 10.1002/cphy.cp010102