References |
1. |
Aitken, J. T., and
J. E. Bridger.
Neuron size and neuron population density in the lumbosacral region of the cat's spinal cord.
J. Anat.
95:
38–53,
1961.
|
2. |
Araki, T., and
T. Otani.
Response of single motoneurons to direct stimulation in toad's spinal cord.
J. Neurophysiol.
18:
472–485,
1955.
|
3. |
Arshavskii, Y. I.,
M. B. Berkinblit,
S. A. Kovalev,
V. V. Smolyaninov, and
L. M. Chailakhyan.
The role of dendrites in the functioning of nerve cells.
Dokl. Akademii Nauk SSSR
163:
994–997,
1965.
[Translation in Dokl. Biophys. Consultants Bureau, New York, 1965.]
|
4. |
Barnwell, G. M., and
B. J. Cerimele.
A mathematical model of the effects of spatio‐temporal patterns of dendritic input potentials on neuronal somatic potentials.
Kybernetik
10:
144–155,
1972.
|
5. |
Barrett, J. N.
Motoneuron dendrites: role in synaptic integration.
Federation Proc.
34:
1398–1407,
1975.
|
6. |
Barrett, J. N., and
W. E. Crill.
Specific membrane resistivity of dye‐injected cat motoneurons.
Brain Res.
28:
556–561,
1971.
|
7. |
Barrett, J. N., and
W. E. Crill.
Specific membrane properties of cat motoneurones.
J. Physiol. London
239:
301–324,
1974.
|
8. |
Barrett, J. N., and
W. E. Crill.
Influences of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones.
J. Physiol. London
239:
325–345,
1974.
|
9. |
Bernstein, J.
Untersuchungen zur Thermodynamik der bioelektrischen Ströme.
Pflueger's Arch. Ges. Physiol.
92:
521–562,
1902.
|
10. |
Binstock, L., and
L. Goldman.
Current and voltage clamped studies on Myxicola giant axons.
J. Gen. Physiol.
54:
730–740,
1969.
|
11. |
Bishop, G. H.
Natural history of the nerve impulse.
Physiol. Rev.
36:
376–399,
1956.
|
12. |
Bishop, G. H., and
J. L. O'leary.
The polarity of potentials recorded from the superior colliculus.
J. Cellular Comp. Physiol.
19:
289–300,
1942.
|
13. |
Bok, S. T.
Histonomy of the Cerebral Cortex.
Amsterdam:
Elsevier,
1959.
|
14. |
Brazier, M. A. B.
The historical development of neurophysiology. In:
Handbook of Physiology. Neurophysiology,
edited by H. W. Magoun.
Washington, DC:
Am. Physiol. Soc,
1959,
sect. 1,
vol. I,
p. 1–59.
|
15. |
Brinley, F. J., Jr.
Sodium, potassium, and chloride concentrations and fluxes in the isolated giant axon of Homarus.
J. Neurophysiol.
28:
742–772,
1965.
|
16. |
Brock, L. G.,
J. S. Coombs, and
J. C. Eccles.
The recording of potentials from motoneurones with an intracellular electrode.
J. Physiol. London
117:
431–460,
1952.
|
17. |
Bullock, T. H.
Neuron doctrine and electrophysiology.
Science
129:
997–1002,
1959.
|
18. |
Burke, R. E.
Motor unit types of cat triceps surae muscle.
J. Physiol. London
193:
141–160,
1967.
|
19. |
Burke, R. E.
Composite nature of the monosynaptic excitatory postsynaptic potential.
J. Neurophysiol.
30:
1114–1136,
1967.
|
20. |
Burke, R. E., and
G. Ten Bruggencate.
Electrotonic characteristics of alpha motoneurones of varying size.
J. Physiol. London
212:
1–20,
1971.
|
21. |
Butz, E. G., and
J. D. Cowan.
Transient potentials in dendritic systems of arbitrary geometry.
Biophys. J.
14:
661–689,
1974.
|
22. |
Calvin, W. H.
Dendritic synapses and reversal potentials: theoretical implications of the view from the soma.
Exptl. Neurol.
24:
248–264,
1969.
|
23. |
Carpenter, D. O.,
M. M. Hovey, and
A. F. Bak.
Measurements of intracellular conductivity in Aplysia neurons: evidence for organization of water and ions.
Ann. NY Acad. Sci.
204:
502–530,
1973.
|
24. |
Carslaw, H. S., and
J. C. Jaeger.
Conduction of Heat in Solids.
London:
Oxford,
1959.
|
25. |
Clare, M. H., and
G. H. Bishop.
Properties of the dendrites; apical dendrites of the cat cortex.
Electroencephalog. Clin. Neurophysiol.
7:
85–98,
1955.
|
26. |
Clark, J., and
R. Plonsey.
The extracellular potential field of the single active nerve fiber in a volume conductor.
Biophys. J.
8:
842–864,
1968.
|
27. |
Cole, K. S.
Dynamic electrical characteristics of the squid giant axon membrane.
Arch. Sci. Physiol.
3:
253–258,
1949.
|
28. |
Cole, K. S.
Membranes, Ions and Impulses.
Berkeley:
Univ. of California Press,
1968.
|
29. |
Cole, K. S., and
H. J. Curtis.
Electric impedance of the squid giant axon during activity.
J. Gen. Physiol.
22:
649–670,
1939.
|
30. |
Cole, K. S., and
H. J. Curtis.
Bioelectricity: electric physiology. In:
Medical Physics,
edited by O. Glasser.
Chicago:
Year Book,
vol. II,
1950,
p. 82–90.
|
31. |
Cole, K. S., and
A. L. Hodgkin.
Membrane and protoplasm resistance in the squid giant axon J.
Gen. Physiol.
22:
671–687,
1939.
|
32. |
Coombs, J. S.,
J. C. Eccles, and
P. Fatt.
The electrical properties of the motoneurone membrane.
J. Physiol. London
130:
291–325,
1955.
|
33. |
Coombs, J. S.,
J. C. Eccles, and
P. Fatt.
The inhibitory suppression of reflex discharges from motoneurones.
J. Physiol. London
130:
396–413,
1955.
|
34. |
Cremer, M.
Zum Kernleiterproblem.
Z. Biol.
37:
550–553,
1899;
|
35. |
Z. Biol.
40:
393–418,
1900.
|
36. |
Curtis, H. J., and
K. S. Cole.
Transverse electric impedance of the squid giant axon.
J. Gen. Physiol.
21:
757–765,
1938.
|
37. |
Curtis, D. R., and
J. C. Eccles.
Time courses of excitatory and inhibitory synaptic actions.
J. Physiol. London
145:
529–546,
1959.
|
38. |
Davis, L., Jr., and
R. Lorente De Nó.
Contribution to the mathematical theory of the electrotonus.
Studies Rockefeller Inst. Med. Res.
131:
442–496,
1947.
|
39. |
Diamond, J.
The activation and distribution of GABA and Lglutamate receptor on goldfish Mauthner neurons: an analysis of remote dendritic inhibition (with appendix by A. F. Huxley).
J. Physiol. London
194:
669–723,
1968.
|
40. |
Dodge, F. A., and
J. W. Cooley.
Action potential of the motoneuron.
IBM J. Res. Develop.
17:
219–229,
1973.
|
41. |
Du Bois‐Reymond, E.
Untersuchungen über Thierische Elektricität.
Berlin:
Reimer,
vol. I,
1848;
|
42. |
Untersuchungen über Thierische Elektricität.
Berlin:
Reimer,
vol. II,
1849.
|
43. |
Eccles, J. C.
The Physiology of Nerve Cells.
Baltimore:
Johns Hopkins Press,
1957.
|
44. |
Eccles, J. C.
Neuron physiology. In:
Handbook of Physiology. Neurophysiology,
edited by H. W. Magoun.
Washington, D.C.:
Am. Physiol. Soc,
1959,
sect. 1,
vol. I,
p. 59–74.
|
45. |
Eccles, J. C.
Membrane time constants of cat motoneurones and time courses of synaptic action.
Exptl. Neurol.
4:
1–22,
1961.
|
46. |
Eccles, J.C.
The Physiology of Synapses.
Berlin:
Springer,
1964.
|
47. |
Eisenberg, R. S., and
E. A. Johnson.
Three dimensional electrical field problems in physiology.
Progr. Biophys.
20:
1–65,
1970.
|
48. |
Engel, E.,
V. Barcilon, and
R. S. Eisenberg.
The interpretation of current‐voltage relations recorded with a single microelectrode.
Biophys. J.
12:
384–403,
1972.
|
49. |
Evans, J. W., and
N. Shenk.
Solutions to axon equations.
Biophys. J.
10:
1090–1101,
1970.
|
50. |
Fadiga, E., and
J. M. Brookhart.
Monosynaptic activation of different portions of the motor neuron membrane.
Am. J. Physiol.
198:
693–703,
1960.
|
51. |
Falk, G., and
P. Fatt.
Linear electrical properties of striated muscle fibres observed with intracellular electrodes.
Proc. Roy. Soc. London Ser. B
160:
69–123,
1964.
|
52. |
Fatt, P.
Biophysics of junctional transmission.
Physiol. Rev.
34:
674–710,
1954.
|
53. |
Fatt, P.
Electric potentials occurring around a neurone during its activation.
J. Neurophysiol.
20:
27–60,
1957.
|
54. |
Fatt, P.
Sequence of events in synaptic activation of a motoneurone.
J. Neurophysiol.
20:
61–80,
1957.
|
55. |
Fatt, P., and
B. Katz.
An analysis of the end‐plate potential recorded with an intracellular electrode.
J. Physiol. London
115:
320–370,
1951.
|
56. |
Fatt, P., and
B. Katz.
The effect of inhibitory nerve impulses on a crustacean muscle fibre.
J. Physiol. London
121:
374–389,
1953.
|
57. |
Fernald, R. D.
A neuron model with spatially distributed synaptic input.
Biophys. J.
11:
323–340,
1971.
|
58. |
Fischbach, G. D.,
M. Nameroff, and
P. G. Nelson.
Electrical properties of chick skeletal muscle fibers developing in cell culture.
J. Cell Physiol.
78:
289–300,
1971.
|
59. |
Fitzhugh, R.
Impulses and physiological states in theoretical models of nerve membrane.
Biophys. J.
1:
445–466,
1961.
|
60. |
Fitzhugh, R.
Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber.
Biophys. J.
2:
11–21,
1962.
|
61. |
Fitzhugh, R.
Mathematical models of excitation and propagation in nerve. In:
Biological Engineering,
edited by H. P. Schwan.
New York:
McGraw Hill,
1969,
p. 1–85.
|
62. |
Fitzhugh, R.
Dimensional analysis of nerve models.
J. Theoret. Biol.
40:
517–541,
1973.
|
63. |
Frank, K., and
M. C. Becker.
Microelectrodes for recording and stimulation. In:
Physical Techniques in Biological Research,
edited by W. L. Nastuk.
New York:
Academic,
1964,
vol. V,
p. 22–87.
|
64. |
Frank, K., and
M. G. F. Fuortes.
Stimulation of spinal motoneurones with intracellular electrodes.
J. Physiol. London
134:
451–470,
1956.
|
65. |
Fourier, J.
The Analytical Theory of Heat.
New York:
Dover,
1955.
[French original, 1822; English translation, 1878.]
|
66. |
Gelfan, S.,
G. Kao, and
D. S. Ruchkin.
The dendritic tree of spinal neurons.
J. Comp. Neurol.
139:
385–411,
1970.
|
67. |
Geselowitz, D. B.
Comment on the core conductor model.
Biophys. J.
6:
691–692,
1966.
|
68. |
Gilbert, D. S.
Axoplasm architecture and physical properties as seen in the Myxicola giant axon.
J. Physiol. London
253:
257–301,
1975.
|
69. |
Goldman, D. E.
Potential, impedance, and rectification in membranes.
J. Gen. Physiol.
27:
37–60,
1943.
|
70. |
Goldman, L.
The effects of stretch on cable and spike parameters of single nerve fibres; some implications for the theory of impulse propagation.
J. Physiol. London
175:
425–444,
1964.
|
71. |
Goldman, L., and
J. S. Albus.
Computation of impulse conduction in myelinated fibres; theoretical basis of the velocity diameter relation.
Biophys. J.
8:
596–607,
1968.
|
72. |
Goldman, L., and
C. L. Schauf.
Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons.
J. Gen. Physiol.
61:
361–384,
1973.
|
73. |
Goldstein, S. S., and
W. Rall.
Changes of action potential shape and velocity for changing core conductor geometry.
Biophys. J.
14:
731–757,
1974.
|
74. |
Graham, J., and
R. W. Gerard.
Membrane potentials and excitation of impaled single muscle fibers.
J. Cellular Comp. Physiol.
28:
99–117,
1946.
|
75. |
Granit, R.
The Basis of Motor Control.
New York:
Academic,
1970.
|
76. |
Grundfest, H.
Electrical inexcitability of synapses and some consequences in the central nervous system.
Physiol. Rev.
37:
337–361,
1957.
|
77. |
Harmon, L. D., and
E. R. Lewis.
Neural modeling.
Physiol. Rev.
46:
513–591,
1966.
|
78. |
Hellerstein, D.
Passive membrane potentials: a generalization of the theory of electrotonus.
Biophys. J.
8:
358–379,
1968.
|
79. |
Henneman, E.,
G. G. Somjen, and
D. D. Carpenter.
Functional significance of cell size in spinal motoneurons.
J. Neurophysiol.
28:
599–620,
1965.
|
80. |
Hermann, L.
Allgemeine Nervenphysiologie. In:
Handbuch der Physiologie,
edited by L. Hermann.
Leipzig:
Vogel,
1879,
vol. 2,
parts 1 and 3.
|
81. |
Hermann, L. Zur
Theorie der Erregungsleitung und der elektrischen Erregung.
Pflueger's Arch. Ges. Physiol.
75:
574–590,
1899.
|
82. |
Hermann, L.
Beiträge zur Physiologie und Physik des Nerven.
Pflueger's Arch. Ges. Physiol.
109:
95–144,
1905.
|
83. |
Hermann, L., and
O. Weiss.
Ueber die Entwicklung des Elektrotonus.
Pflueger's Arch. Ges. Physiol.
71:
237–295,
1898.
|
84. |
Hodgkin, A. L.
Evidence for electrical transmission in nerve. Parts I and II.
J. Physiol. London
90:
183–232,
1937.
|
85. |
Hodgkin, A. L.
The subthreshold potentials in a crustacean nerve fibre.
Proc. Roy. Soc. London Ser. B
126:
87–121,
1938.
|
86. |
Hodgkin, A. L.
The membrane resistance of a non‐medullated nerve fibre.
J. Physiol. London
106:
305–318,
1947.
|
87. |
Hodgkin, A. L.
The ionic basis of electrical activity in nerve and muscle.
Biol. Rev.
26:
339–409,
1951.
|
88. |
Hodgkin, A. L.
Ionic movements and electrical activity in giant nerve fibres (The Croonian Lecture).
Proc. Roy. Soc. London Ser. B
148:
1–37,
1958.
|
89. |
Hodgkin, A. L.
The Conduction of the Nervous Impulse.
Springfield, Ill.:
Thomas,
1964.
|
90. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. London
117:
500–544,
1952.
|
91. |
Hodgkin, A. L.,
A. F. Huxley, and
B. Katz.
Measurement of current‐voltage relations in the membrane of the giant axon of the Loligo.
J. Physiol. London
116:
424–448,
1952.
|
92. |
Hodgkin, A. L., and
B. Katz.
The effect of sodium ions on the electrical activity of the giant axon of the squid.
J. Physiol. London
108:
37–77,
1949.
|
93. |
Hodgkin, A. L., and
W. A. H. Rushton.
The electrical constants of a crustacean nerve fibre.
Proc. Roy. Soc. London Ser B
133:
444–479,
1946.
|
94. |
Hoorweg, J. L.
Ueber die elektrischen Eigenschaften der Nerven.
Pflueger's Arch. Ges. Physiol.
71:
128–157,
1898.
|
95. |
Hubbard, J. I.,
R. Llinas, and
D. M. J. Quastel.
Electrophysiological Analysis of Synaptic Transmission.
London:
Arnold,
1969.
|
96. |
Humphrey, D. R.
Re‐analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials.
Electroencephalog. Clin. Neurophysiol.
25:
421–442,
1968.
|
97. |
Huxley, A. F., and
R. Stämpfli.
Evidence for saltatory conduction in peripheral myelineated nerve fibres.
J. Physiol. London
108:
315–339,
1949.
|
98. |
Huxley, A. F., and
R. Stämpfli.
Direct determination of membrane resting potential and action potential in single myelinated nerve fibres.
J. Physiol. London
112:
476–495,
1951.
|
99. |
Iansek, R., and
S. J. Redman.
An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse.
J. Physiol. London
234:
613–636,
1973.
|
100. |
Iansek, R., and
S. J. Redman.
The amplitude, time course and charge of unitary excitatory post‐synaptic potentials evoked in spinal motoneurone dendrites.
J. Physiol. London
234:
665–688,
1973.
|
101. |
Ito, M., and
T. Oshima.
Electrical behaviour of the motoneurone membrane during intracellularly applied current steps.
J. Physiol. London
180:
607–635,
1965.
|
102. |
Jack, J. J. B.,
S. Miller,
R. Porter, and
S. J. Redman.
The distribution of group la synapses on lumbosacral spinal motoneurones in the cat. In:
Excitatory Synaptic Mechanisms,
edited by P. Andersen and
J. K. S. Jansen.
Oslo:
Universitetsforlaget,
1970,
p. 199–205.
|
103. |
Jack, J. J. B.,
S. Miller,
R. Porter, and
S. J. Redman.
The time course of minimal excitatory post‐synaptic potentials evoked in spinal motoneurones by group la afferent fibres.
J. Physiol. London
215:
353–380,
1971.
|
104. |
Jack, J. J. B.,
D. Noble, and
R. W. Tsien.
Electric Current Flow in Excitable Cells.
London:
Oxford,
1975.
|
105. |
Jack, J. J. B., and
S. J. Redman.
The propagation of transient potentials in some linear cable structures.
J. Physiol. London
215:
283–320,
1971.
|
106. |
Jack, J. J. B., and
S. J. Redman.
An electrical description of the motoneurone and its application to the analysis of synaptic potentials.
J. Physiol. London
215:
321–352,
1971.
|
107. |
Jacobson, S., and
D. A. Pollen.
Electrotonic spread of dendritic potentials in feline pyramidal cells.
Science
161:
1351–1353,
1968.
|
108. |
Kaplan, S., and
D. Trujillo.
Numerical studies of the partial differential equations governing nerve impulse conduction: the effect of Lieberstein's inductance term.
Math. Biosci.
7:
379–404,
1970.
|
109. |
Katz, B.
Experimental evidence for a non‐conducted response of nerve to subthreshold stimulation.
Proc. Roy. Soc. London Ser. B
124:
244–276,
1937.
|
110. |
Katz, B.
Electric Excitation of Nerve.
Oxford,
1939.
|
111. |
Katz, B.
The electrical properties of the muscle fibre membrane.
Proc. Roy. Soc. London Ser. B
135:
506–534,
1948.
|
112. |
Katz, B.
Nerve, Muscle, and Synapse.
New York:
McGraw Hill,
1966.
|
113. |
Katz, B., and
R. Miledi.
A study of spontaneous potentials in spinal motoneurones.
J. Physiol. London
168:
389–422,
1963.
|
114. |
Kelvin, W. T.
On the theory of the electric telegraph.
Proc. Roy. Soc.
7:
382–399,
1855;
|
115. |
also
Phil. Mag. Ser.
4, 11:
146–160,
1856 and
Kelvin's Collected Papers.
|
116. |
Kernell, D.
Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord.
Science
152:
1637–1640,
1966.
|
117. |
Kernell, D.
The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones.
Brain Res.
11:
685–687,
1968.
|
118. |
Khodorov, B. I., and
E. N. Timin.
Nerve impulse propagation along nonuniform fibers.
Progr. Biophys. Mol. Biol.
30:
145–184,
1975.
|
119. |
Klee, M., and
W. Rall.
Computed potentials of cortically arranged populations of neurons.
J. Neurophysiol. In Press.
|
120. |
Koles, Z. J., and
M. Rasminsky.
A computer simulation of conduction in demyelinated nerve fibres.
J. Physiol. London
227:
351–364,
1972.
|
121. |
Kuno, M.
Quantum aspects of central and ganglionic synaptic transmission in vertebrates.
Physiol. Rev.
51:
647–678,
1971.
|
122. |
Kuno, M., and
R. Llinás.
Enhancement of synaptic transmission by dendritic potentials in chromatolyzed motoneurones of the cat.
J. Physiol. London
210:
807–821,
1970.
|
123. |
Lewis, E. R.
The iron‐wire model of the neuron: a review. In:
Cybernetic Problems in Bionics,
edited by H. L. Oestreicher.
New York:
Gordon and Breach,
1968.
|
124. |
Lewis, E. R.
Using electronic circuits to model simple neuroelectric interactions.
Proc. IEEE
56:
931–949,
1968.
|
125. |
Ling, G., and
R. W. Gerard.
The normal membrane potential of frog sartorius fibers.
J. Cellular Comp. Physiol.
34:
383–396,
1949.
|
126. |
Lieberstein, H. M.
On the Hodgkin‐Huxley partial differential equation.
Math. Biosci.
1:
45–69,
1967.
|
127. |
Llinas, R., and
C. Nicholson.
Electrophysiological properties of dendrites and somata in alligator Purkinje cells.
J. Neurophysiol.
34:
532–551,
1971.
|
128. |
Lloyd, D. P. C.
Integrative pattern of excitation and inhibition in two‐neuron reflex arcs.
J. Neurophysiol.
9:
439–444,
1946.
|
129. |
Lorente De No, R.
Synaptic stimulation as a local process.
J. Neurophysiol.
1:
194–206,
1938.
|
130. |
Lorente DeNó, R. A.
study of nerve physiology.
Studies Rockefeller Inst. Med. Res.
131 and
132,
1947.
|
131. |
Lorente De Nó, R.
Action potential of the motoneurons of the hypoglossus nucleus.
J. Cellular Comp. Physiol.
29:
207–287,
1947.
|
132. |
Lorente De No, R.
Conduction of impulses in the neurons of the oculomotor nucleus. In:
The Spinal Cord,
edited by J. L. Malcolm and
J. A. B. Cray.
Boston:
Little, Brown,
1953.
(Ciba Found. Symp.)
|
133. |
Lorente De No, R., and
G. A. Condouris.
Decremental conduction in peripheral nerve; integration of stimuli in the neuron.
Proc. Natl. Acad. Set. US
45:
592–617,
1959.
|
134. |
Lux, H‐D.
Eigenschaften eines Neuron‐Modells mit Dendriten begrenzter Länge.
Pflueger's Arch. Ges. Physiol.
297:
238–255,
1967.
|
135. |
Lux, H‐D., and
D. A. Pollen.
Electrical constants of neurons in the motor cortex of the cat.
J. Neurophysiol.
29:
207–220,
1966.
|
136. |
Lux, H‐D.,
P. Schubert, and
G. W. Kreutzberg.
Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In:
Excitatory Synaptic Mechanisms,
edited by P. Andersen and
J. K. S. Jansen.
Oslo:
Universitetsforlaget,
1970,
p. 189–198.
|
137. |
Marmont, G.
Studies on the axon membrane. 1. A new method.
J. Cellular Comp. Physiol.
34:
351–382,
1949.
|
138. |
Martin, A. R.
A further study of the statistical composition of the end‐plate potential.
J. Physiol. London
130:
114–122,
1955.
|
139. |
Matteucci, M. C.
Sur le pouvoir électro‐moteur secondaire des nerfs, et son application à l'électro‐physiologie.
Compt. Rend.
56:
760,
1863.
|
140. |
Mendell, L. M., and
E. Henneman.
Terminals of single la fibers: location, density, and distribution within a pool of 300 homonymous motoneurons.
J. Neurophysiol.
34:
171–187,
1971.
|
141. |
Mirolli, M., and
S. R. Talbott.
The geometrical factors determining the electrotonic properties of a molluscan neurone.
J. Physiol. London
227:
19–34,
1972.
|
142. |
Moore, J. W., and
K. S. Cole.
Voltage clamp techniques. In:
Physical Techniques in Biological Research,
edited by W. L. Nastuk.
New York:
Academic,
1963,
vol. 6,
p. 263–321.
|
143. |
Moore, J. W.,
F. Ramón, and
R. W. Joyner.
Axon voltage‐clamp simulations.
Biophys. J.
15:
11–69,
1975.
|
144. |
Nastuk, W. L., and
A. L. Hodgkin.
The electrical activity of single muscle fibres.
J. Cellular Comp. Physiol.
35:
39–73,
1950.
|
145. |
Nelson, P. G.
Interaction between spinal motoneurons of the cat.
J. Neurophysiol.
29:
275–287,
1966.
|
146. |
Nelson, P. G., and
K. Frank.
Extracellular potential fields of single spinal motoneurons.
J. Neurophysiol.
27:
913–927,
1964.
|
147. |
Nelson, P. G., and
K. Frank.
Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory post synaptic potential.
J. Neurophysiol.
30:
1097–1113,
1967.
|
148. |
Nelson, P. G., and
H‐D. Lux.
Some electrical measurements of motoneuron parameters.
Biophys. J.
10:
55–73,
1970.
|
149. |
Norman, R. S.
Cable theory for finite length dendritic cylinders with initial and boundary conditions.
Biophys. J.
12:
25–45,
1972.
|
150. |
Peskoff, A., and
R. S. Eisenberg.
A point source in a cylindrical cell: potential for a step‐function of current inside an infinite cylindrical cell in a medium of finite conductivity.
UCLA Engr. School Rep. No. 7421,
April 1974.
|
151. |
Pflüger, E.
Physiologie des Electrotonus.
Berlin:
Hirschwald,
1859.
|
152. |
Pickard, W. F.
A contribution to the electromagnetic theory of the unmyelinated axon.
Math. Biosci.
2:
111–121,
1968.
|
153. |
Pickard, W. F.
Electrotonus on a cell of finite dimensions.
Math. Biosci.
10:
201–213,
1971.
|
154. |
Plonsey, R.
Volume conductor fields of action currents.
Biophys. J.
4:
317–328.
1964.
|
155. |
Plonsey, R.
Bioelectric Phenomena.
New York:
McGraw Hill,
1969.
|
156. |
Pottala, E. W.,
T. R. Colburn, and
D. R. Humphrey.
A dendritic compartment model neuron.
IEEE Trans. Biomed. Engr. BME
20:
132–139,
1973.
|
157. |
Rall, W.
Membrane time constant of motoneurons.
Science
126:
454,
1957.
|
158. |
Rall, W.
Branching dendritic trees and motoneuron membrane resistivity.
Exptl. Neurol.
1:
491–527,
1959.
|
159. |
Rall, W.
Membrane potential transients and membrane time constant of motoneurons.
Exptl. Neurol.
2:
503–532,
1960.
|
160. |
Rall, W.
Theory of physiological properties of dendrites.
Ann. NY Acad. Sci.
96:
1071–1092,
1962.
|
161. |
Rall, W.
Electrophysiology of a dendritic neuron model.
Biophys. J.
2,
no. 2,
part 2:
145–167,
1962.
|
162. |
Rall, W.
Theoretical significance of dentritic trees for neuronal input‐output relations. In:
Neural Theory and Modeling,
edited by R. Reiss.
Stanford:
Stanford Univ. Press,
1964,
p. 73–97.
|
163. |
Rall, W.
Distinguishing theoretical synaptic potentials computed for different soma‐dendritic distributions of synaptic input.
J. Neurophysiol.
30:
1138–1168,
1967.
|
164. |
Rall, W.
Time constants and electrotonic length of membrane cylinders and neurons.
Biophys. J.
9:
1483–1508,
1969.
|
165. |
Rall, W.
Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder.
Biophys. J.
9:
1509–1541,
1969.
|
166. |
Rall, W.
Dendritic neuron theory and dendrodendritic synapses in a simple cortical system. In:
The Neurosciences: Second Study Program,
edited by F. O. Schmitt.
New York:
Rockefeller,
1970,
p. 552–565.
|
167. |
Rall, W.
Cable properties of dendrites and effects of synaptic location. In:
Excitatory Synaptic Mechanisms,
edited by P. Andersen and
J. K. S. Jansen.
Oslo:
Universitetsforlag,
1970,
p. 175–187.
|
168. |
Rall, W.,
R. E. Burke,
T. G. Smith,
P. G. Nelson, and
K. Frank.
Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons.
J. Neurophysiol.
30:
1169–1193,
1967.
|
169. |
Rall, W., and
J. Rinzel.
Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model.
Biophys. J.
13:
648–688,
1973.
|
170. |
Rall, W., and
G. M. Shepherd.
Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb.
J. Neurophysiol.
31:
884–915,
1968.
|
171. |
Rall, W.,
G. M. Shepherd,
T. S. Reese, and
M. W. Brightman.
Dendrodendritic synaptic pathway for inhibition in the olfactory bulb.
Exptl. Neurol.
14:
44–56,
1966.
|
172. |
Ramón, F.,
R. W. Joyner, and
J. W. Moore.
Propagation of action potentials in inhomogeneous axon regions.
Federation Proc.
34:
1357–1363,
1975.
|
173. |
Ramon Moliner, E.
An attempt at classifying nerve cells on the basis of their dendritic patterns.
J. Comp. Neurol.
119:
211–227,
1962.
|
174. |
Ramon Moliner, E.
The morphology of dendrites. In:
The Structure and Function of the Nervous System,
edited by G. H. Bourne.
New York:
Academic,
1968.
vol. 1.
|
175. |
Ramon Y Cajal, S.
Histologic du Systeme Nerveux de l'Homme et des Vertebres
(translated by L. Asoulay).
Paris:
Maloine,
1911.
|
176. |
Ranck, J. B., Jr.
Analysis of specific impedance of rabbit cerebral cortex.
Exptl. Neurol.
7:
153–174,
1963.
|
177. |
Rashbass, C., and
W. A. H. Rushton.
The relation of structure to the spread of excitation in the frog's sciatic trunk.
J. Physiol. London
110:
110–135,
1949.
|
178. |
Rasmussen, G. L.
Selective silver impregnation of synaptic endings. In:
New Research Techniques of Neuroanatomy,
edited by W. F. Windle.
Springfield, Ill.:
Thomas,
1957.
|
179. |
Redman, S. J.
The attenuation of passively propagating dendritic potentials in a motoneurone cable model.
J. Physiol. London
234:
637–664.
1973.
|
180. |
Rinzel, J., and
J. B. Keller.
Traveling wave solutions of a nerve conduction equation.
Biophys. J.
13:
1313–1337.
1973.
|
181. |
Rinzel, J., and
W. Rall.
Transient response in a dendritic neuron model for current injected at one branch.
Biophys. J.
14:
759–790,
1974.
|
182. |
Rushton, W. A. H.
The effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve.
J. Physiol. London
63:
357–377,
1927.
|
183. |
Rushton, W. A. H.
Initiation of the propagated disturbance.
Proc. Roy. Soc. London Ser. B
124:
210–243,
1937.
|
184. |
Rushton, W. A. H. A
theory of the effects of fibre size in medullated nerve.
J. Physiol. London
115:
101–122,
1951.
|
185. |
Scheibel, M. E., and
A. B. Scheibel.
Of pattern and place in dendrites.
Intern. Rev. Neurobiol.
13:
1–26.
1970.
|
186. |
Schwan, H. P.
Electrical properties of tissue and cell suspensions. In:
Advances in Biological and Medical Physics.
edited by J. H. Lawrence and
C. A. Tobias.
New York:
Academic,
1957,
vol. 5,
p. 147–209.
|
187. |
Schwan, H. P.
Determination of biological impedances. In:
Physical Techniques in Biological Research,
edited by W. L. Nastuk.
New York:
Academic,
1963,
vol. 6,
p. 323–407.
|
188. |
Schwan, H. P., and
K. S. Cole.
Bioelectricity: alternating current admittance of cells and tissues. In:
Medical Physics,
edited by O. Glasser.
Chicago:
Yearbook,
1960,
vol. 3,
p. 52–56.
|
189. |
Schwindt, P. C., and
W. H. Calvin.
Nature of conductances underlying rhythmic firing in cat spinal motoneurons.
J. Neurophysiol.
36:
955–973,
1973.
|
190. |
Scott, A. C.
Effect of the series inductance of a nerve axon upon its conduction velocity.
Math. Biosci.
11:
277–290,
1971.
|
191. |
Scott, A. C.
The electrophysics of a nerve fiber.
Rev. Mod. Physics
47:
487–533,
1975.
|
192. |
Shepherd, G. M.
The olfactory bulb as a simple cortical system: experimental analysis and functional implications. In:
The Neurosciences: Second Study Program,
edited by F. O. Schmitt.
New York:
Rockefeller,
1970,
p. 539–552.
|
193. |
Shepherd, G. W.
The Synaptic Organization of the Brain.
London:
Oxford,
1974.
|
194. |
Shepherd, G. M., and
L. B. Haberly.
Partial activation of olfactory bulb: analysis of field potentials and topographic relation between bulb and lateral olfactory tract.
J. Neurophysiol.
33:
643–653,
1970.
|
195. |
Sholl, D. A.
The Organization of the Cerebral Cortex.
New York:
Wiley,
1956.
|
196. |
Smith, T. G.,
R. B. Wuerker, and
K. Frank.
Membrane impedance changes during synaptic transmission in cat spinal motoneurons.
J. Neurophysiol.
30:
1072–1096,
1967.
|
197. |
Spencer, W. A., and
E. R. Kandel.
Electrophysiology of hippocampal neurons. III. Firing level and time constant.
J. Neurophysiol.
24:
260–271,
1961.
|
198. |
Stämpfli, R.
Bau und Funktion isolierter markhaltiger Nervenfasern.
Ergeb. Physiol.
47:
70–165,
1952.
|
199. |
Takahashi, K.
Slow and fast groups of pyramidal tract cells and their respective membrane properties.
J. Neurophysiol.
28:
908–924,
1965.
|
200. |
Tasaki, I.
The electrosaltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber.
Am. J. Physiol.
127:
211–227,
1939.
|
201. |
Tasaki, I.
Nervous Transmission.
Springfield, Ill.:
Thomas,
1953.
|
202. |
Tasaki, I.
New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber.
Am. J. Physiol.
181:
639–650,
1955.
|
203. |
Tasaki, I.
Conduction of the nerve impulse. In:
Handbook of Physiology. Neurophysiology,
edited by H. W. Magoun.
Washington, D.C.:
Am. Physiol. Soc,
1959,
sect. 1,
vol. I,
p. 75–121.
|
204. |
Taylor, R. E.
Cable theory. In:
Physical Techniques in Biological Research,
edited by W. L. Nastuk.
New York:
Academic,
1963,
vol. 6,
chapt. 4,
p. 219–262.
|
205. |
Tsukahara, N.,
F. Murakami, and
H. Hultborn.
Electrical constants of neurons of the red nucleus.
Exptl. Brain Res.
23:
49–64,
1975.
|
206. |
Tsukahara, N.,
K. Toyama, and
K. Kosaka.
Electrical activity of red nucleus neurones investigated with intracellular microelectrodes.
Exptl. Brain Res.
4:
18–33,
1967.
|
207. |
Valdiosera, R.,
C. Clausen, and
R. S. Eisenberg.
Measurement of the impedance of frog skeletal muscle fibers.
Biophys. J.
14:
295–315,
1974.
|
208. |
Weber, H.
Ueber die stationären Strömungen der Elektricität in Cylindern.
J. Reine Angewandte Math.
76:
1–20,
1873.
|
209. |
Weidmann, S.
The electrical constants of Purkinje fibres.
J. Physiol. London
118:
348–360,
1952.
|
210. |
Weinberg, A. M.
Weber's theory of the Kernleiter.
Bull. Math. Biophys.
3:
39–55,
1941.
|
211. |
Woodbury, J. W., and
H. D. Patton.
Electrical activity of single spinal cord elements.
Cold Spring Harbor Symp. Quant. Biol.
17:
185–188,
1952.
|
212. |
Wyckoff, R. W. G., and
J. Z. Young.
The motoneuron surface.
Proc. Roy. Soc. London Ser. B
144:
440–450,
1956.
|
213. |
Young, J. Z.
Structure of nerve fibres and synapses in some invertebrates.
Cold Spring Harbor Symp. Quant. Biol.
4:
1–6,
1936.
|
214. |
Zucker, R. S.
Field potentials generated by dendritic spikes and synaptic potentials.
Science
165:
409–413,
1969.
|
215. |
Zucker, R. S.
Theoretical implications of the size principle of motoneurone recruitment.
J. Theoret. Biol.
38:
587–596,
1973.
|