References |
1. |
Adelman, W. J., Jr. (Editor).
Biophysics and Physiology of Excitable Membranes.
New York:
Van Nostrand Reinhold,
1971.
|
2. |
Adelman, W. J., Jr., and
Y. Palti.
The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei.
J. Gen. Physiol.
54:
589–606,
1969.
|
3. |
Adelman, W. J., Jr., and
J. P. Senft.
Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon.
J. Gen. Physiol.
50:
279–293,
1966.
|
4. |
Adrian, E. D., and
K. Lucas.
On the summation of propagated disturbances in nerve and muscle.
J. Physiol. London
44:
68–124,
1912.
|
5. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
Voltage clamp experiments in striated muscle fibres.
J. Physiol. London
208:
607–644,
1970.
|
6. |
Agin, D.
Hodgkin‐Huxley equations: logarithmic relation between membrane current and frequency of repetitive activity.
Nature
201:
625–626,
1964.
|
7. |
Agin, D. P. (Editor).
Perspectives in Membrane Biophysics, a Tribute to Kenneth S. Cole.
New York:
Gordon and Breach,
1972.
|
8. |
Almers, W., and
S. R. Levinson.
Tetrodotoxin binding to normal and depolarized frog muscle and the conductance of a single sodium channel.
J. Physiol. London
247:
483–509,
1975.
|
9. |
Anderson, N. C., Jr.
Voltage‐clamp studies on uterine smooth muscle.
J. Gen. Physiol.
54:
145–165,
1969.
|
10. |
Armstrong, C. M.
Time course of TEA+‐induced anomalous rectification in squid giant axons.
J. Gen. Physiol.
50:
491–503,
1966.
|
11. |
Armstrong, C. M.
Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons.
J. Gen. Physiol.
54:
553–575,
1969.
|
12. |
Armstrong, C. M.
Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons.
J. Gen. Physiol.
58:
413–437,
1971.
|
13. |
Armstrong, C. M.
Channels and voltage dependent gates in nerve. In:
Membranes — a Series of Advances. Artificial and Biological Membranes,
edited by G. Eisenman.
New York:
Dekker,
1975,
vol. 3,
325–358.
|
14. |
Armstrong, C. M.
Ionic pores, gates, and gating currents.
Quart. Rev. Biophys.
7:
179–210,
1974.
|
15. |
Armstrong, C. M., and
F. Bezanilla.
Currents related to movement of the gating particles of the sodium channels.
Nature
242:
459–461,
1973.
|
16. |
Armstrong, C. M., and
F. Bezanilla.
Charge movement associated with the opening and closing of the activation gates of the Na channels.
J. Gen. Physiol.
63:
533–552,
1974.
|
17. |
Armstrong, C. M.,
F. Bezanilla, and
E. Rojas.
Destruction of sodium conductance inactivation in squid axons perfused with pronase.
J. Gen. Physiol.
62:
375–391,
1973.
|
18. |
Armstrong, C. M., and
L. Binstock.
Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.
J. Gen. Physiol.
48:
859–872,
1965.
|
19. |
Armstrong, C. M., and
B. Hille.
The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier.
J. Gen. Physiol.
59:
388–400,
1972.
|
20. |
Arrhenius, S.
Öber die Dissociation in Wasser geloUster Stoffe.
Z. Physik. Chem. Leipzig
1:
631–648,
1887.
|
21. |
Asano, T., and
W. P. Hurlbut.
Effects of potassium, sodium, and azide on the ionic movements that accompany activity in frog nerves.
J. Gen. Physiol.
41:
1187–1203,
1958.
|
22. |
Atwater, I.,
F. Bezanilla, and
E. Rojas.
Sodium influxes in internally perfused squid giant axons during voltage clamp.
J. Physiol. London
201:
657–664,
1969.
|
23. |
Baker, P. F.
Transport and metabolism of calcium ions in nerve.
Progr. Biophys. Mol. Biol.
24:
177–223,
1972.
|
24. |
Baker, P. F.,
A. L. Hodgkin, and
E. B. Ridgway.
Depolarization and calcium entry in squid giant axons.
J. Physiol. London
218:
709–755,
1971.
|
25. |
Baker, P. F.,
A. L. Hodgkin, and
T. I. Shaw.
Replacement of the axoplasm of giant nerve fibres with artificial solutions.
J. Physiol. London
164:
330–354,
1962.
|
26. |
Baker, P. F., and
J. S. Willis.
On the number of sodium pumping sites in cell membranes.
Biochim. Biophys. Acta
183:
646–649,
1969.
|
27. |
Beeler, G. W., and
H. Reuter.
The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres.
J. Physiol. London
207:
211–229,
1970.
|
28. |
Beeler, G. W., Jr., and
H. Reuter.
Membrane calcium current in ventricular myocardial fibres.
J. Physiol. London
207:
191–209,
1970.
|
29. |
Bennett, M. V. L.
Comparative physiology: electric organs.
Ann. Rev. Physiol.
32:
471–528,
1970.
|
30. |
Bernstein, J.
Untersuchungen zur Thermodynamik der bioelektrischen Strötne. Erster Theil.
Pfluegers Arch. Ges. Physiol.
92:
521–562,
1902.
|
31. |
Bernstein, J.
Elektrobiologie.
Braunschweig:
Vieweg,
1912.
|
32. |
Bezanilla, F., and
C. M. Armstrong.
Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.
J. Gen. Physiol.
60:
588–608,
1972.
|
33. |
Bezanilla, F.,
E. Rojas, and
R. E. Taylor.
Time course of the sodium influx in squid giant axon during a single voltage clamp pulse.
J. Physiol. London
207:
151–164,
1970.
|
34. |
Binstock, L., and
L. Goldman.
Current‐ and voltage‐clamped studies on Myxicola giant axons. Effect of tetrodotoxin.
J. Gen. Physiol.
54:
730–740,
1969.
|
35. |
Blankenship, J. E.
Action of tetrodotoxin on spinal motoneurons of the cat.
J. Neurophysiol.
31:
186–194,
1968.
|
36. |
Bunch, W. H., and
G. Kallsen.
Rate of intracellular diffusion as measured in barnacle muscle.
Science
164:
1178–1179,
1969.
|
37. |
Burg, D.
Untersuchungen am Ranvierschen Schnürring einzelner Taubennervenfasern.
Pfluegers Arch. Ges. Physiol.
317:
278–286,
1970.
|
38. |
Burrows, T. M. O.,
I. A. Campbell,
E. J. Howe, and
J. Z. Young.
Conduction velocity and diameter of nerve fibres of cephalopods.
J. Physiol. London
179:
39P–40P,
1965.
|
39. |
Chandler, W. K.,
A. L. Hodgkin, and
H. Meves.
The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.
J. Physiol. London
180:
821–836,
1965.
|
40. |
Chandler, W. K., and
H. Meves.
Voltage clamp experiments on internally perfused giant axons.
J. Physiol. London
180:
788–820,
1965.
|
41. |
Chandler, W. K., and
H. Meves.
Sodium and potassium currents in squid axons perfused with fluoride solutions.
J. Physiol. London
211:
623–652,
1970.
|
42. |
Cohen, L. B.
Changes in neuron structure during action potential propagation and synaptic transmission.
Physiol. Rev.
53:
373–418,
1973.
|
43. |
Cole, K. S.
Dynamic electrical characteristics of the squid axon membrane.
Arch. Sci. Physiol.
3:
253–258,
1949.
|
44. |
Cole, K. S.
Membranes, Ions and Impulses. A Chapter of Classical Biophysics.
Berkeley:
Univ. of California Press,
1968.
|
45. |
Cole, K. S., and
R. F. Baker.
Transverse impedance of the squid giant axon during current flow.
J. Gen. Physiol.
24:
535–549,
1941.
|
46. |
Cole, K. S., and
H. J. Curtis.
Electric impedance of the squid giant axon during activity.
J. Gen. Physiol.
22:
649–670,
1939.
|
47. |
Cole, K. S., and
J. W. Moore.
Ionic current measurements in the squid giant axon membrane.
J. Gen. Physiol.
44:
123–167,
1960.
|
48. |
Colquhoun, D.,
R. Henderson, and
J. M. Ritchie.
The binding of labelled tetrodotoxin to non‐myelinated nerve fibres.
J. Physiol. London
227:
95–126,
1972.
|
49. |
Colquhoun, D., and
J. M. Ritchie.
The interaction at equilibrium between tetrodotoxin and mammalian non‐myelinated nerve fibres.
J. Physiol. London
221:
533–553,
1972.
|
50. |
Connor, J. A., and
C. F. Stevens.
Inward and delayed outward membrane currents in isolated neural somata under voltage clamp.
J. Physiol. London
213:
1–19,
1971.
|
51. |
Connor, J. A., and
C. F. Stevens.
Voltage clamp studies of a transient outward membrane current in gastropod neural somata.
J. Physiol. London
213:
21–30,
1971.
|
52. |
Connor, J. A., and
C. F. Stevens.
Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma.
J. Physiol. London
213:
31–53,
1971.
|
53. |
Cooley, J. W., and
F. A. Dodge.
Digital computer solutions for excitation and propagation of the nerve impulse.
IBM Res. Rept.
1496,
1965.
|
54. |
Cooley, J. W., and
F. A. Dodge.
Digital computer solutions for excitation and propagation of the nerve impulse.
Biophys. J.
6:
583–599,
1966.
|
55. |
Coppin, C. M. L., and
J. J. B. Jack.
Internodal length and conduction velocity of cat muscle afferent nerve fibres.
J. Physiol. London
222:
91P–93P,
1971.
|
56. |
Curtis, H. J., and
K. S. Cole.
Membrane resting and action potentials from the squid giant axon.
J. Cell. Comp. Physiol.
19:
135–144,
1942.
|
57. |
Deck, K. A.,
R. Kern, and
W. Trautwein.
Voltage clamp technique in mammalian cardiac fibres.
Pfluegers Arch. Ges. Physiol.
280:
50–62,
1964.
|
58. |
Deck, K. A., and
W. Trautwein.
Ionic currents in cardiac excitation.
Pfluegers Arch. Ges. Physiol.
280:
63–80,
1964.
|
59. |
Del Castillo, J., and
J. W. Moore.
On increasing the velocity of a nerve impulse.
J. Physiol. London
148:
665–670,
1959.
|
60. |
De Weer, P., and
D. Geduldig.
Electrogenic sodium pump in squid giant axon.
Science
179:
1326–1328,
1973.
|
61. |
Dodge, F. A.
Ionic permeability changes underlying nerve excitation. In:
Biophysics of Physiological and Pharmacological Actions.
Washington, D.C.:
Am. Assoc. Advan. Sci.,
1961,
p. 119.
|
62. |
Dodge, F. A.
A Study of Ionic Permeability Changes Underlying Excitation in Myelinated Nerve Fibers of the Frog
(Ph.D. thesis). New York: The Rockefeller University,
1963.
[University Microfilms, Inc., Ann Arbor, Mich. (No. 64–7333).]
|
63. |
Dodge, F. A., and
B. Frankenhaeuser.
Membrane currents in isolated frog nerve fibre under voltage clamp conditions.
J. Physiol. London
143:
76–90,
1958.
|
64. |
Dodge, F. A., and
B. Frankenhaeuser.
Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique.
J. Physiol. London
148:
188–200,
1959.
|
65. |
Ehrenstein, G., and
D. L. Gilbert.
Slow changes of potassium permeability in the squid giant axon.
Biophys. J.
6:
553–566,
1966.
|
66. |
Ehrenstein, G., and
H. Lecar.
The mechanism of signal transmission in nerve axons.
Ann. Rev. Biophys. Bioeng.
1:
347–368,
1972.
|
67. |
Einstein, A.
On the movement of small particles suspended in a stationary liquid demanded by the molecular‐kinetic theory on heat.
Ann. Physik Leipzig
17:
549–560,
1905.
[Reprinted in: Einstein, A. Investigations on the Theory of the Brownian Movement. New York: Dover, 1956.]
|
68. |
Eisenman, G.
Cation selective glass electrodes and their mode of operation.
Biophys. J.
2,
Suppl. 2:
259–323,
1962.
|
69. |
Erlanger, J., and
E. A. Blair.
Manifestation of segmentation in myelinated axons.
Am. J. Physiol.
110:
287–311,
1934.
|
70. |
Erlanger, J., and
H. S. Gasser.
Electrical Signs of Nervous Activity.
Philadelphia:
Univ. of Pennsylvania Press,
1937.
|
71. |
Evans, M. H.
Tetrodotoxin, saxitoxin, and related substances: their applications in neurobiology.
Intern. Rev. Neurobiol.
15:
83–166,
1972.
|
72. |
Eyring, H.,
D. Henderson,
B. J. Stover, and
E. M. Eyring.
Statistical Mechanics and Dynamics.
New York:
Wiley,
1964.
|
73. |
Eyring, H.,
R. Lumry, and
J. W. Woodbury.
Some applications of modern rate theory to physiological systems.
Record Chem. Progr. Kresge‐Hooker Sci. Lib.
10:
100–114,
1949.
|
74. |
Fatt, P., and
B. L. Ginsborg.
The ionic requirements for the production of action potentials in crustacean muscle fibres.
J. Physiol. London
142:
516–543,
1958.
|
75. |
Fatt, P., and
B. Katz.
The electrical properties of crustacean muscle fibres.
J. Physiol. London
120:
171–204,
1953.
|
76. |
FitzHugh, R.
A kinetic model of the conductance changes in nerve membrane.
J. Cell. Comp. Physiol.
66,
Suppl. 2:
111–117,
1965.
|
77. |
FitzHugh, R., and
H. A. Antosiewicz.
Automatic computation of nerve excitation—detailed corrections and additions.
J. Soc. Ind. Appl. Math.
7:
447–458,
1959.
|
78. |
Frankenhaeuser, B.
A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog.
J. Physiol. London
135:
550–559,
1957.
|
79. |
Frankenhaeuser, B.
Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis.
J. Physiol. London
151:
491–501,
1960.
|
80. |
Frankenhaeuser, B.
Sodium permeability in toad nerve and in squid nerve.
J. Physiol. London
152:
159–166,
1960.
|
81. |
Frankenhaeuser, B.
A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis.
J. Physiol. London
169:
424–430,
1963.
|
82. |
Frankenhaeuser, B.
Computed action potential in nerve from Xenopus laevis.
J. Physiol. London
180:
780–787,
1965.
|
83. |
Frankenhaeuser, B., and
A. L. Hodgkin.
The after‐effects of impulses in the giant nerve fibres of Loligo.
J. Physiol. London
131:
341–376,
1956.
|
84. |
Frankenhaeuser, B., and
A. L. Hodgkin.
The action of calcium on the electrical properties of squid axons.
J. Physiol. London
137:
218–244,
1957.
|
85. |
Frankenhaeuser, B., and
A. F. Huxley.
The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data.
J. Physiol. London
171:
302–315,
1964.
|
86. |
Frankenhaeuser, B., and
L. E. Moore.
The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis.
J. Physiol. London
169:
431–437,
1963.
|
87. |
Frazier, D. T.,
T. Narahashi, and
M. Yamada.
The site of action and active form of local anesthetics. II. Experiments with quaternary compounds.
J. Pharmacol. Exptl. Therap.
171:
45–51,
1970.
|
88. |
Gasser, H. S.
Unmedullated fibers originating in dorsal root ganglia.
J. Gen. Physiol.
33:
651–690,
1950.
|
89. |
Geduldig, D., and
R. Gruener.
Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents.
J. Physiol. London
211:
217–244,
1970.
|
90. |
Gerasimov, V. D.,
P. G. Kostyuk, and
V. A. Maiskii.
Effect of bivalent cations on the electrical characteristics of the membrane of giant neurones.
Biofizika
10:
447–453,
1965.
|
91. |
Gilbert, D. L., and
G. Ehrenstein.
Effect of divalent cations on potassium conductance of squid axons: determination of surface charge.
Biophys. J.
9:
447–463,
1969.
|
92. |
Goldman, D. E.
Potential, impedance, and rectification in membranes.
J. Gen. Physiol.
27:
37–60,
1943.
|
93. |
Goldman, L., and
J. S. Albus.
Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity‐diameter relation.
Biophys. J.
8:
596–607,
1968.
|
94. |
Goldman, L., and
C. L. Schauf.
Inactivation of the sodium current in Myxicola giant axons. Evidence for coupling to the activation process.
J. Gen. Physiol.
59:
659–675,
1972.
|
95. |
Goldman, L., and
C. L. Schauf.
Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons.
J. Gen. Physiol.
61:
361–384,
1973.
|
96. |
Hagiwara, S.
Ca++ dependent action potentials. In:
Membranes — a Series of Advances. Artificial and Biological Membranes,
edited by G. Eisenman.
New York:
Dekker,
1975,
vol. 3,
359–382.
|
97. |
Hagiwara, S.,
J. Fukuda, and
D. C. Eaton.
Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp.
J. Gen. Physiol.
63:
564–578,
1974.
|
98. |
Hagiwara, S.,
H. Hayashi, and
K. Takahashi.
Calcium and potassium currents of the membrane of a barnacle muscle fibre in relation to the calcium spike.
J. Physiol. London
205:
115–129,
1969.
|
99. |
Hagiwara, S., and
K‐I. Naka.
The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++
J. Gen. Physiol.
48:
141–162,
1964.
|
100. |
Hagiwara, S., and
S. Nakajima.
Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions.
J. Gen. Physiol.
49:
793–806,
1966.
|
101. |
Hagiwara, S., and
K. Takahashi.
Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane.
J. Gen. Physiol.
50:
583–601,
1967.
|
102. |
Hardy, W. L.
Propagation speed in myelinated nerve: theoretical dependence on external Na+ and on temperature.
Biophys. J.
13:
1071–1089,
1973.
|
103. |
Heckmann, K.
Single‐file diffusion. In:
Passive Permeability of Cell Membranes. Biomembranes,
edited by F. Kreuzer and
J. K. S. Jansen.
New York:
Plenum Press,
1972,
vol. 3,
127–153.
|
104. |
Henderson, R.,
J. M. Ritchie, and
G. R. Strichartz.
The binding of labelled saxitoxin to the sodium channels in nerve membranes.
J. Physiol. London
235:
783–804,
1973.
|
105. |
Henderson, R., and
J. H. Wang.
Solubilization of a specific tetrodotoxin‐binding component from garfish olfactory nerve membrane.
Biochemistry
11:
4565–4569,
1972.
|
106. |
Hille, B.
The common mode of action of three agents that decrease the transient change in sodium permeability in nerves.
Nature
210:
1220–1222,
1966.
|
107. |
Hille, B.
The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.
J. Gen. Physiol.
50:
1287–1302,
1967.
|
108. |
Hille, B.
Pharmacological modifications of the sodium channels of frog nerve.
J. Gen. Physiol.
51:
199–219,
1968.
|
109. |
Hille, B.
Charges and potentials at the nerve surface. Divalent ions and pH.
J. Gen. Physiol.
51:
221–236,
1968.
|
110. |
Hille, B.
Ionic channels in nerve membranes.
Progr. Biophys. Mol. Biol.
21:
1–32,
1970.
|
111. |
Hille, B.
Voltage clamp studies on myelinated nerve fibers. In:
Biophysics and Physiology and Excitable Membranes,
edited by W. J. Adelman, Jr.
New York:
Van Nostrand Reinhold,
1971.
|
112. |
Hille, B.
The permeability of the sodium channel to organic cations in myelinated nerve.
J. Gen. Physiol.
58:
599–619,
1971.
|
113. |
Hille, B.
The permeability of the sodium channel to metal cations in myelinated nerve.
J. Gen. Physiol.
59:
637–658,
1972.
|
114. |
Hille, B.
Potassium channels in myelinated nerve. Selective permeability to small cations.
J. Gen. Physiol.
61:
669–686,
1973.
|
115. |
Hille, B.
Ionic selectivity of Na and K channels of nerve membranes. In:
Membranes — a Series of Advances. Artificial and Biological Membranes,
edited by G. Eisenman.
New York:
Dekker,
1975,
vol. 3,
255–324.
|
116. |
Hille, B.,
A. M. Woodhull, and
B. I. Shapiro.
Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.
Phil. Trans. Roy. Soc.
270:
301–318,
1975.
|
117. |
Hinke, J. A. M.
The measurement of sodium and potassium activities in the squid axon by means of cation‐selective glass microelectrodes.
J. Physiol. London
156:
314–335,
1961.
|
118. |
Hinke, J. A. M.
Solvent water for electrolytes in the muscle fiber of the giant barnacle.
J. Gen. Physiol.
56:
521–541,
1970.
|
119. |
Hinke, J. A. M.,
J. P. Caillé, and
D. C. Gayton.
Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses.
Ann. NY Acad. Sci.
204:
274–296,
1973.
|
120. |
Hirst, G. D. S., and
I. Spence.
Calcium action potentials in mammalian peripheral neurones.
Nature New Biol.
243:
54–56,
1973.
|
121. |
Hodgkin, A. L.
Evidence for electrical transmission in nerve. Part I.
J. Physiol. London
90:
183–210,
1937.
|
122. |
Hodgkin, A. L.
Evidence for electrical transmission in nerve. Part II.
J. Physiol. London
90:
211–232,
1937.
|
123. |
Hodgkin, A. L.
The subthreshold potentials in a crustacean nerve fibre.
Proc. Roy. Soc. London Ser. B
126:
87–121,
1938.
|
124. |
Hodgkin, A. L.
The local electrical changes associated with repetitive action in a non‐medullated axon.
J. Physiol. London
107:
165–179,
1948.
|
125. |
Hodgkin, A. L.
The ionic basis of electrical activity in nerve and muscle.
Biol. Rev.
26:
339–409,
1951.
|
126. |
Hodgkin, A. L.
A note on conduction velocity.
J. Physiol. London
125:
221–224,
1954.
|
127. |
Hodgkin, A. L.
Ionic movements and electrical activity in giant nerve fibres.
Proc. Roy. Soc. London Ser. B
148:
1–37,
1958.
|
128. |
Hodgkin, A. L.
The Conduction of the Nervous Impulse.
Springfield, Ill.:
Thomas,
1964.
|
129. |
Hodgkin, A. L., and
P. Horowicz.
The influence of potassium and chloride ions on the membrane potential of single muscle fibres.
J. Physiol. London
148:
127–160,
1959.
|
130. |
Hodgkin, A. L., and
P. Horowicz.
The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres.
J. Physiol. London
153:
370–385,
1960.
|
131. |
Hodgkin, A. L., and
A. F. Huxley.
Action potentials recorded from inside a nerve fibre.
Nature
144:
710–711,
1939.
|
132. |
Hodgkin, A. L., and
A. F. Huxley.
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J. Physiol. London
116:
449–472,
1952.
|
133. |
Hodgkin, A. L., and
A. F. Huxley.
The components of membrane conductance in the giant axon of Loligo.
J. Physiol. London
116:
473–496,
1952.
|
134. |
Hodgkin, A. L., and
A. F. Huxley.
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J. Physiol. London
116:
497–506,
1952.
|
135. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. London
117:
500–544,
1952.
|
136. |
Hodgkin, A. L., and
A. F. Huxley.
Movement of radioactive potassium and membrane current in a giant axon.
J. Physiol. London
121:
403–414,
1953.
|
137. |
Hodgkin, A. L.,
A. F. Huxley, and
B. Katz.
Ionic currents underlying activity in the giant axon of the squid.
Arch. Sci. Physiol.
3:
129–150,
1949.
|
138. |
Hodgkin, A. L.,
A. F. Huxley, and
B. Katz.
Measurement of current‐voltage relations in the membrane of the giant axon of Loligo.
J. Physiol. London
116:
424–448,
1952.
|
139. |
Hodgkin, A. L., and
B. Katz.
The effect of sodium ions on the electrical activity of the giant axon of the squid.
J. Physiol. London
108:
37–77,
1949.
|
140. |
Hodgkin, A. L., and
R. D. Keynes.
The mobility and diffusion coefficient of potassium in giant axons from Sepia.
J. Physiol. London
119:
513–528,
1953.
|
141. |
Hodgkin, A. L., and
R. D. Keynes.
The potassium permeability of a giant nerve fibre.
J. Physiol. London
128:
61–88,
1955.
|
142. |
Hodgkin, A. L., and
R. D. Keynes.
Movements of labelled calcium in squid giant axons.
J. Physiol. London
138:
253–281,
1957.
|
143. |
Hodgkin, A. L., and
W. A. H. Rushton.
The electrical constants of a crustacean nerve fibre.
Proc. Roy. Soc. London Ser. B
133:
444–479,
1946.
|
144. |
Horáčkova, M.,
W. Nonner, and
R. Stämpfli.
Action potentials and voltage clamp currents of single rat Ranvier nodes.
Proc. Intern. Union Physiol. Sci.
7:
198,
1968.
|
145. |
Horowicz, P.,
P. W. Gage, and
R. S. Eisenberg.
The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.
J. Gen. Physiol.
51:
193S–203S,
1968.
|
146. |
Howarth, J. V.,
R. D. Keynes, and
J. M. Ritchie.
The origin of the initial heat associated with a single impulse in mammalian non‐myelinated nerve fibres.
J. Physiol. London
194:
745–793,
1968.
|
147. |
Hoyt, R. C., and
W. J. Adelman, Jr.
Sodium inactivation. Experimental test of two models.
Biophys. J.
10:
610–617,
1970.
|
148. |
Hursh, J. B.
Conduction velocity and diameter of nerve fibers.
Am. J. Physiol.
127:
131–139,
1939.
|
149. |
Hursh, J. B.
The properties of growing nerve fibers.
Am. J. Physiol.
127:
140–153,
1939.
|
150. |
Hutchinson, N. A.,
Z. J. Koles, and
R. S. Smith.
Conduction velocity in myelinated nerve fibers of Xenopus laevis.
J. Physiol. London
208:
279–289,
1970.
|
151. |
Huxley, A. F.
Ion movements during nerve activity.
Ann. NY Acad. Sci.
81:
221–246,
1959.
|
152. |
Huxley, A. F., and
R. Stämpfli.
Evidence for saltatory conduction in peripheral myelinated nerve fibres.
J. Physiol. London
108:
315–339,
1949.
|
153. |
Huxley, A. F., and
R. Stämpfli.
Direct determination of membrane resting potential and action potential in single myelinated nerve fibres.
J. Physiol. London
112:
476–495,
1951.
|
154. |
Huxley, A. F., and
R. Stämpfli.
Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres.
J. Physiol. London
112:
496–508,
1951.
|
155. |
Julian, F. J.,
J. W. Moore, and
D. E. Goldman.
Current‐voltage relations in the lobster giant axon membrane under voltage clamp conditions.
J. Gen. Physiol.
45:
1217–1238,
1962.
|
156. |
Kato, G.
On the excitation, conduction, and narcotisation of single nerve fibres.
Cold Spring Harbor Symp. Quant. Biol.
4:
209–213,
1936.
|
157. |
Katz, B.
Experimental evidence for a non‐conducted response of nerve to subthreshold stimulation.
Proc. Roy. Soc. London Ser. B
124:
244–276,
1937.
|
158. |
Katz, B.
The Release of Neural Transmitter Substances.
Springfield, Ill.:
Thomas,
1969.
|
159. |
Keynes, R. D.
The ionic movements during nervous activity.
J. Physiol. London
114:
119–150,
1951.
|
160. |
Keynes, R. D., and
P. R. Lewis.
The sodium and potassium content of cephalopod nerve fibres.
J. Physiol. London
114:
151–182,
1951.
|
161. |
Keynes, R. D., and
J. M. Ritchie.
The movements of labelled ions in mammalian non‐myelinated nerve fibres.
J. Physiol. London
179:
333–367,
1965.
|
162. |
Keynes, R. D., and
E. Rojas.
Characteristics of the sodium gating current in the squid giant axon.
J. Physiol. London
233:
28P,
1973.
|
163. |
Keynes, R. D., and
E. Rojas.
Kinetics and steady state properties of the charged system controlling sodium conductance in the squid giant axon.
J. Physiol. London
239:
393–434,
1974.
|
164. |
Keynes, R. D.,
E. Rojas,
R. E. Taylor, and
J. Vergara.
Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control.
J. Physiol. London
229:
409–455,
1973.
|
165. |
Khodorov, B. I.
The Problem of Excitability. Electrical Excitability and Ionic Permeability of the Nerve Membrane.
New York:
Plenum Press,
1974.
|
166. |
Kohlhardt, M.,
B. Bauer,
H. Krause, and
A. Fleckenstein.
Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors.
Pfluegers Arch. Ges. Physiol.
335:
309–322,
1972.
|
167. |
Koketsu, K., and
S. Nishi.
Effects of tetrodotoxin on the action potential in Na‐free media.
Life Sci., Part 2,
5:
2341–2346,
1966.
|
168. |
Koketsu, K., and
S. Nishi.
Calcium and action potentials of bullfrog sympathetic ganglion cells.
J. Gen. Physiol.
53:
608–623,
1969.
|
169. |
Koles, Z. J., and
M. Rasminsky.
A computer simulation of conduction in demyelinated nerve fibres.
J. Physiol. London
227:
351–364,
1972.
|
170. |
Koppenhöffer, E.
Die Wirkung von Tetraäthylammoni‐umchlorid auf die Membranströme Ranvierscher Schnürringe von Xenopus laevis.
Pfluegers Arch. Ges. Physiol.
293:
34–55,
1967.
|
171. |
Koppenhöfer, E., and
H. Schmidt.
Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings. I. Die permeabilitäten PNa und Pk.
Pfluegers Arch. Ges. Physiol.
303:
133–149,
1968.
|
172. |
Koppenhöfer, E., and
H. Schmidt.
Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings. II. Unvollständige Natrium‐Inaktivierung.
Pfluegers Arch. Ges. Physiol.
303:
150–161,
1968.
|
173. |
Kushmerick, M. J., and
R. J. Podolsky.
Ionic mobility in muscle cells.
Science
166:
1297–1298,
1969.
|
174. |
Lillie, R. S.
Factors affecting transmission and recovery in the passive iron nerve model.
J. Gen. Physiol.
7:
473–507,
1925.
|
175. |
Ling, G. N.
A Physical Theory of the Living State.
Waltham, Mass.:
Blaisdell,
1962.
|
176. |
Lucas, K.
The analysis of complex excitable tissues by their response to electric currents of short duration.
J. Physiol. London
35:
310–331,
1906.
|
177. |
Lüttgau, V. H‐C.
Sprunghafte Schwankungen unter‐schwelliger Potentiale an markhaltigen Nervenfasern.
Z. Naturforsch.
13B:
692–693,
1958.
|
178. |
Marmont, G.
Studies on the axon membrane. I. A new method.
J. Cellular Comp. Physiol.
34:
351–382,
1949.
|
179. |
Martinez, D.,
A. A. Silvidi, and
R. M. Stokes.
Nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver.
Biophys. J.
9:
1256–1260,
1969.
|
180. |
Mauro, A.,
F. Conti,
F. Dodge, and
R. Schor.
Subthreshold behavior and phenomenological impedance of the squid giant axon.
J. Gen. Physiol.
55:
497–523,
1970.
|
181. |
Meves, H.
The ionic requirements for the production of action potentials in Helix pomatia neurones.
Pfluegers Arch. Ges. Physiol.
304:
215–241,
1968.
|
182. |
Meves, H., and
W. Vogel.
Calcium inward currents in internally perfused giant axons.
J. Physiol. London
235:
225–265,
1973.
|
183. |
Moore, J. W., and
T. Narahashi.
Tetrodotoxin's highly selective blockage of an ionic channel.
Federation Proc.
26:
1655–1663,
1967.
|
184. |
Moore, J. W.,
T. Narahashi, and
T. I. Shaw.
An upper limit to the number of sodium channels in nerve membrane?
J. Physiol. London
188:
99–105,
1967.
|
185. |
Moreton, R. B.
An investigation of the electrogenic sodium pump in snail neurones, using the constant‐field theory.
J. Exptl. Biol.
51:
181–201,
1969.
|
186. |
Morton, S. D., and
G. F. Lee.
Calcium carbonate equilibria in the oceans. Ion pair formation.
J. Chem. Educ.
45:
513–515,
1968.
|
187. |
Mozhayeva, G. N., and
A. P. Naumov.
Effect of surface charge on the steady‐state potassium conductance of nodal membrane.
Nature
228:
164–165,
1970.
|
188. |
Murayama, K.,
N. J. Abbott,
T. Narahashi, and
B. I. Shapiro.
Effects of allethrin and condylactis toxin on the kinetics of sodium conductance of crayfish axon membranes.
Comp. Gen. Pharmacol.
3:
391–400,
1972.
|
189. |
Nakajima, S.
Analysis of K inactivation and TEA action in the supramedullary cells of puffer.
J. Gen. Physiol.
49:
629–640,
1966.
|
190. |
Narahashi, T.,
D. T. Frazier, and
M. Yamada.
The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds.
J. Pharmacol. Exptl. Therap.
171:
32–44,
1970.
|
191. |
Narahashi, T., and
H. G. Haas.
Interaction of DDT with the components of lobster nerve membrane conductance.
J. Gen. Physiol.
51:
177–198,
1968.
|
192. |
Narahashi, T.,
J. W. Moore, and
W. R. Scott.
Tetrodotoxin blockage of sodium conductance increase in lobster giant axons.
J. Gen. Physiol.
47:
965–974,
1964.
|
193. |
Narahashi, T.,
J. W. Moore, and
B. I. Shapiro.
Condylactis toxin: interaction with nerve membrane ionic conductances.
Science
163:
680–681,
1969.
|
194. |
Neher, E.
Two fast transient current components during voltage clamp in snail neurons.
J. Gen. Physiol.
58:
36–53,
1971.
|
195. |
Nernst, W.
Zur Kinetik der in Lösung befindlichen Körper: Theorie der Diffusion.
Z. Physik. Chem. Leipzig
2:
613–637,
1888.
|
196. |
Nernst, W.
Die elektromotorische Wirksamkeit der Ionen.
Z. Physik. Chem. Leipzig
4:
129–181,
1889.
|
197. |
Noble, D.
Applications of Hodgkin‐Huxley equations to excitable tissues.
Physiol. Rev.
46:
1–50,
1966.
|
198. |
Noble, D., and
R. B. Stein.
The threshold conditions for initiation of action potentials by excitable cells.
J. Physiol. London
187:
129–162,
1966.
|
199. |
Noble, D., and
R. W. Tsien.
The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres.
J. Physiol. London
195:
185–214,
1968.
|
200. |
Noble, D., and
R. W. Tsien.
Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres.
J. Physiol. London
200:
205–231,
1969.
|
201. |
Nonner, W.
A new voltage clamp method for Ranvier nodes.
Pfluegers Arch. Ges. Physiol.
309:
176–192,
1969.
|
202. |
Nonner, W., and
R. Stämpfli.
A new voltage clamp method. In:
Laboratory Techniques in Membrane Biophysics,
edited by H. Passow and
R. Stämpfli.
Berlin:
Springer Verlag,
1969.
|
203. |
Paintal, A. S.
Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of the cat.
J. Physiol. London
180:
20–49,
1965.
|
204. |
Paintal, A. S.
The influence of diameter of medullated nerve fibers of cats on the rising and falling phases of the spike and its recovery.
J. Physiol. London
184:
791–811,
1966.
|
205. |
Pearson, K. G.,
R. B. Stein, and
S. K. Malhotra.
Properties of action potentials from insect motor nerve fibres.
J. Exptl. Biol.
53:
299–316,
1970.
|
206. |
Pichon, Y., and
J. Boistel.
Current‐voltage relations in the isolated giant axon of the cockroach under voltage‐clamp conditions.
J. Exptl. Biol.
47:
343–355,
1967.
|
207. |
Planck, M.
Ueber die Erregung von Elektricität und Wärme in Elektrolyten.
Ann. Physik Chem.
39:
161–186,
1890.
|
208. |
Planck, M.
Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Elektrolyte.
Ann. Physik Chem.
40:
561–576,
1890.
|
209. |
Pooler, J.
Photodynamic alteration of sodium currents in lobster axons.
J. Gen. Physiol.
60:
367–387,
1972.
|
210. |
Pumphrey, R. J., and
J. Z. Young.
The rates of conduction of nerve fibres of various diameters in cephalopods.
J. Exptl. Biol.
15:
453–466,
1938.
|
211. |
Rang, H. P., and
J. M. Ritchie.
On the electrogenic sodium pump in mammalian non‐myelinated nerve fibres and its activation by various external cations.
J. Physiol. London
196:
183–211,
1968.
|
212. |
Rasminsky, M., and
T. A. Sears.
Internodal conduction in undissected demyelinated nerve fibres.
J. Physiol. London
227:
323–350,
1972.
|
213. |
Reuter, H.
Divalent cations as charge carriers in excitable membranes.
Progr. Biophys. Mol. Biol.
26:
1–43,
1973.
|
214. |
Ritchie, J. M.
Electrogenic ion pumping in nervous tissue. In:
Current Topics in Bioenergetics,
edited by D. R. Sanadi.
New York:
Academic,
1971.
|
215. |
Ritchie, J. M.
Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism.
Progr. Biophys. Mol. Biol.
26:
147–187,
1973.
|
216. |
Ritchie, J. M., and
P. Greengard.
On the mode of action of local anesthetics.
Ann. Rev. Pharmacol.
6:
405–430,
1966.
|
217. |
Robertson, J. D.
The molecular structure and contact relationship of cell membranes.
Progr. Biophys. Biophys. Chem.
10:
344–418,
1960.
|
218. |
Robinson, R. A., and
R. H. Stokes.
Electrolyte Solutions.
London:
Butterworths,
1965.
|
219. |
Rushton, W. A. H.
A theory of the effects of fibre size in medullated nerve.
J. Physiol. London
115:
101–122,
1951.
|
220. |
Schwarz, J. R., and
W. Vogel.
Potassium inactivation in single myelinated nerve fibres of Xenopus laevis.
Pfluegers Arch. Ges. Physiol.
330:
61–73,
1971.
|
221. |
Schauf, C. L.
Temperature dependence of the ionic current kinetics of Myxicola giant axons.
J. Physiol. London
235:
197–205,
1973.
|
222. |
Seeman, P.
The membrane actions of anesthetics and tranquilizers.
Pharmacol Rev.
24:
583–656,
1972.
|
223. |
Shapiro, B. I., and
F. K. Lenherr.
Hodgkin‐Huxley axon: increased modulation and linearity of response to constant current stimulus.
Biophys. J.
12:
1145–1158,
1972.
|
224. |
Stämpfli, R., and
B. Hille.
Amphibian peripheral nerves In:
Handbook of Frog Neurobiology,
edited by R. Llinas and
W. Precht.
Heidelberg:
Springer Verlag.
In press.
|
225. |
Stein, R. B.
The frequency of nerve action potentials generated by applied currents.
Proc. Roy. Soc. London Ser. B
167:
64–86,
1967.
|
226. |
Stevens, C. F.
Inferences about membrane properties from electrical noise measurements.
Biophys. J.
12:
1028–1047,
1972.
|
227. |
Strichartz, G. R.
The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine.
J. Gen. Physiol.
62:
37–57,
1973.
|
228. |
Takata, M.,
J. W. Moore,
C. Y. Kao, and
F. A. Fuhrman.
Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin).
J. Gen. Physiol.
49:
977–988,
1966.
|
229. |
Tasaki, I.
Nervous Transmission.
Springfield, Ill.:
Thomas,
1953.
|
230. |
Tasaki, I.
Conduction of the nerve impulse. In:
Handbook of Physiology. Neurophysiology,
edited by H. W. Magoun.
Washington, D.C.:
Am. Physiol. Soc,
1959,
sect. 1,
vol. I,
p. 75–121.
|
231. |
Tasaki, I.
Nerve Excitation. A Macromolecular Approach.
Springfield, Ill.:
Thomas,
1968.
|
232. |
Tasaki, I., and
M. Fujita.
Action currents of single nerve fibers as modified by temperature changes.
J. Neurophysiol.
11:
311–315,
1948.
|
233. |
Tasaki, I., and
K. Mizuguchi.
The changes in the electric impedance during activity and the effect of alkaloids and polarization upon the bioelectric processes in the myelinated nerve fibre.
Biochim. Biophys. Acta
3:
484–493,
1949.
|
234. |
Tasaki, I., and
T. Takeuchi.
Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung.
Pfluegers Arch. Ges. Physiol.
244:
696–711,
1941.
|
235. |
Tasaki, I., and
T. Takeuchi.
Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Ubertragung des Nervenimpulses.
Pfluegers Arch. Ges. Physiol.
245:
764–782,
1942.
|
236. |
Thomas, R. C.
Electrogenic sodium pump in nerve and muscle cells.
Physiol. Rev.
52:
563–594,
1972.
|
237. |
Tomita, T., and
E. B. Wright.
A study of the crustacean axon repetitive response. I. The effect of membrane potential and resistance.
J. Cell. Comp. Physiol.
65:
195–210,
1965.
|
238. |
Ulbricht, W.
The effect of veratridine on excitable membranes of nerve and muscle.
Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol.
61:
18–71,
1969.
|
239. |
Ulbricht, W.
Rate of veratridine action on the nodal membrane. I. Fast phase determined during sustained depolarization in the voltage clamp.
Pfluegers Arch. Ges. Physiol.
336:
187–199,
1972.
|
240. |
Ussing, H. H.
The distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin.
Acta Physiol. Scand.
19:
43–56,
1949.
|
241. |
Woodbury, J. W.
Eyring rate theory model of the current‐voltage relationships of ion channels in excitable membranes. In:
Chemical Dynamics: Papers in Honor of Henry Eyring,
edited by J. O. Hirschfelder.
New York:
Wiley,
1971,
p. 601–617.
|