References |
1. |
Akasaki, K.,
K. Karasawa,
M. Watanabe,
H. Yonehara, and
H. Umezawa.
Monazomycin, a new antibiotic produced by a streptomyces.
J. Antibiotics, Tokyo, Ser. A
16:
127–131,
1963.
|
2. |
Armstrong, C. M., and
L. Binstock.
Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.
J. Gen. Physiol.
48:
859–872,
1965.
|
3. |
Bass, L.
Potential of liquid junctions.
Trans. Faraday Soc.
60:
1914–1919,
1964.
|
4. |
Bean, R. C.
Protein‐mediated mechanisms of variable ion conductance in thin lipid membranes. In:
Membranes. Lipid Bilayers and Antibiotics, edited by
G. Eisenman.
New York:
Dekker,
1973,
vol. 2,
p. 409–477.
|
5. |
Cass, A., and
M. Dalmark.
Equilibrium dialysis of ions in nystatin‐treated red cells.
Nature
244:
47–49,
1973.
|
6. |
Cass, A.,
A. Finkelstein, and
V. Krespi.
The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.
J. Gen. Physiol.
56:
100–124,
1970.
|
7. |
Cherry, R. J.,
D. Chapman, and
D. E. Graham.
Studies on the conductance changes induced in bimolecular lipid membranes by alamethicin.
J. Membrane Biol.
7:
325–344,
1972.
|
8. |
Cohen, H., and
J. W. Cooley.
The numerical solution of the time‐dependent Nernst‐Planck equations.
Biophys. J.
5:
145–162,
1965.
|
9. |
Davson, H.
Growth of the concept of the paucimolecular membrane.
Circulation
26:
1022–1037,
1962.
|
10. |
Dobler, M.,
J. D. Dunitz, and
J. Krajewski.
Structure of the K+ complex with enniatin B, a macrocyclic antibiotic with K+ transport properties.
J. Mol. Biol.
42:
603–606,
1969.
|
11. |
Dominguez, J.,
J. D. Dunitz,
H. Gerlach, and
V. Prelog.
Stoffwechselprodukte von Actinomyceten 32. Mitteilung. Uber die Konstitution von Nonactin.
Helv. Chim. Acta
45:
129–138,
1962.
|
12. |
Ehrenstein, G.,
H. Lecar, and
R. Nossal.
The nature of the negative resistance in bimolecular lipid membranes containing excitability‐inducing material.
J. Gen. Physiol.
55:
119–133,
1970.
|
13. |
Einstein, A.
On the movement of small particles suspended in a stationary liquid demanded by the molecular‐kinetic theory of heat.
(Translated from Ann. Phys.
17:
549–560,
1905.)
|
14. |
In:
Investigations On the Theory of the Brownian Movement by Albert Einstein,
edited with notes by R. Fürth.
(Translated by A. D. Cowper.)
New York:
Dover,
1956,
p. 1–18.
|
15. |
Einstein, A.
The elementary theory of the Brownian motion.
(Translated from
Z. Elektrochem.
14:
235–239,
1908.)
|
16. |
In:
Investigations on the Theory of the Brownian Movement,
by Albert Einstein,
edited with notes by R. Fürth.
(Translated by A. D. Cowper.)
New York:
Dover,
1956,
p. 68–85.
|
17. |
Eisenberg‐Grünberg, M.
Voltage gateable ionic pores induced by alamethicin in black lipid membranes
(Ph.D. thesis). Pasadena: California Institute of Technology,
1972.
|
18. |
Eisenman, G.,
S. Ciani, and
G. Szabo.
The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.
J. Membrane Biol.
1:
294–345,
1969.
|
19. |
Finkelstein, A.
Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B, and gramicidin A: implications for pores in plasma membranes. In:
Drugs and Transport Processes,
edited by B. A. Callingham.
New York:
Macmillan,
1974,
p. 241–250.
|
20. |
Finkelstein, A., and
A. Cass.
Permeability and electrical properties of thin lipid membranes.
J. Gen. Physiol.
52:
145s–172s,
1968.
|
21. |
Finkelstein, A., and
R. Holz.
Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In:
Membranes. Lipid Bilayers and Antibiotics,
edited by G. Eisenman.
New York:
Marcel Dekker, Inc.,
1973,
vol. 2,
p. 377–408.
|
22. |
Finkelstein, A., and
A. Mauro.
Equivalent circuits as related to ionic systems.
Biophys. J.
3:
215–237,
1963.
|
23. |
Frankenhaeuser, B., and
A. L. Hodgkin.
The action of calcium on the electrical properties of squid axons.
J. Physiol. London
137:
217–244,
1957.
|
24. |
Goodall, M. C.
Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidins “A” and “S,” and lipid specificity.
Biochim. Biophys. Acta
219:
471–478,
1970.
|
25. |
Goodall, M. C.
Thickness dependence in the action of gramicidin A on lipid bilayers.
Arch. Biochem. Biophys.
147:
129–135,
1971.
|
26. |
Gordon, L. G. M., and
D. A. Haydon.
The unit conductance channel of alamethicin.
Biochim. Biophys. Acta
255:
1014–1018,
1972.
|
27. |
Gorter, E., and
F. Grendel.
On bimolecular layers of lipoids on the chromocytes of the blood.
J. Exptl. Med.
41:
439–443,
1925.
|
28. |
Haydon, D. A., and
S. B. Hladky.
Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems.
Quart. Rev. Biophys.
5:
187–282,
1972.
|
29. |
Heyer, E. J.
Two physical methods of producing “inactivation” in monazomycin‐treated thin lipid membranes
(Ph.D. thesis). New York: Albert Einstein College of Medicine of Yeshiva University,
1974.
|
30. |
Hladky, S. B., and
D. A. Haydon.
Ion transfer across lipid membranes in the presence of gramicidin A. 1. Studies on the unit conductance channel.
Biochim. Biophys. Acta
274:
294–312,
1972.
|
31. |
Hodgkin, A. L., and
A. F. Huxley.
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J. Physiol. London
116:
449–472,
1952.
|
32. |
Hodgkin, A. L., and
A. F. Huxley.
The components of membrane conductance in the giant axon of Loligo.
J. Physiol. London
116:
473–496,
1952.
|
33. |
Hodgkin, A. L., and
A. F. Huxley.
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J. Physiol. London
116:
497–506,
1952.
|
34. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. London
117:
500–544,
1952.
|
35. |
Hodgkin, A. L.,
A. F. Huxley, and
B. Katz.
Measurement of current‐voltage relations in the membrane of the giant axon of Loligo.
J. Physiol. London
116:
424–448,
1952.
|
36. |
Hodgkin, A. L., and
R. D. Keynes.
Active transport of cations in giant axons from Sepia and Loligo.
J. Physiol. London
128:
28–60,
1955.
|
37. |
Holz, R., and
A. Finkelstein.
The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.
J. Gen. Physiol.
56:
125–145,
1970.
|
38. |
Katchalsky, A., and
P. F. Curran.
Nonequilibrium Thermodynamics in Biophysics.
Cambridge, Mass.:
Harvard Univ. Press,
1965,
p. 1–248.
|
39. |
Kilbourn, B. T.,
J. D. Dunitz,
L. A. Pioda, and
W. Simon.
Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties.
J. Mol. Biol.
30:
559–563,
1967.
|
40. |
Lampen, J. O.
Interference of polyene antifungal antibiotics (especially nystatin and filipin) with specific membrane functions. In:
Biochemical Studies of Antimicrobial Drugs,
edited by B. A. Newton and
P. E. Reynolds.
Cambridge, Mass.:
Soc. Gen. Microbiol.,
1966,
p. 111–130.
|
41. |
Latorre, R.,
G. Ehrenstein, and
H. Lecar.
Ion transport through excitability‐inducing material (EIM) channels in lipid bilayer membranes.
J. Gen. Physiol.
60:
72–85,
1972.
|
42. |
MacInnes, D. A.
The Principles of Electrochemistry.
New York:
Dover,
1961,
p. 220–245.
|
43. |
Mauro, A.
Some properties of ionic and nonionic semipermeable membranes.
Circulation
21:
845–854,
1960.
|
44. |
Mauro, A.
Anomalous impedance: a phenomenological property of time‐variant resistance. An analytic review.
Biophys. J.
1:
353–372,
1961.
|
45. |
Mauro, A.
Space charge regions in fixed charge membranes and the associated property of capacitance.
Biophys. J.
2:
179–198,
1962.
|
46. |
Mauro, A.,
R. P. Nanavati, and
E. Heyer.
Time‐variant conductance of bilayer membranes treated with monazomycin and alamethicin.
Proc. Natl. Acad. Sci. US
69:
3742–3744,
1972.
|
47. |
MacLaughlin, S. G. A.,
G. Szabo, and
G. Eisenman.
Divalent ions and the surface potential of charged phospholipid membranes.
J. Gen. Physiol.
58:
667–687,
1971.
|
48. |
McLaughlin, S. G. A.,
G. Szabo,
G. Eisenman, and
S. M. Ciani.
Surface charge and the conductance of phospholipid membranes.
Proc. Natl. Acad. Sci. US
67:
1268–1275,
1970.
|
49. |
Mechlinski, W.,
C. P. Schaffner,
P. Ganis, and
G. Avitabile.
Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B.
Tetrahedron Letters
44:
3873–3876,
1970.
|
50. |
Mitscher, L. A.,
A. J. Shay, and
N. Bohonos.
LL‐A491, a monazomycin‐like antibiotic.
Appl. Microbiol.
15:
1002–1005,
1967.
|
51. |
Moore, J. W.,
M. P. Blaustein,
N. C. Andersen, and
T. Narahashi.
Basis of tetrodoxin's selectivity in blockage of squid axons.
J. Gen. Physiol.
50:
1401–1411,
1967.
|
52. |
Mueller, P., and
D. O. Rudin.
Induced excitability in reconstituted cell membrane structure.
J. Theoret. Biol.
4:
268–280,
1963.
|
53. |
Mueller, P., and
D. O. Rudin.
Action potential phenomena in experimental bimolecular lipid membranes.
Nature
213:
603–604,
1967.
|
54. |
Mueller, P., and
D. O. Rudin.
Development of K+‐Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.
Biochem. Biophys. Res. Commun.
26:
398–404,
1967.
|
55. |
Mueller, P., and
D. O. Rudin.
Action potentials induced in bimolecular lipid membranes.
Nature
217:
713–719,
1968.
|
56. |
Mueller, P., and
D. O. Rudin.
Resting and action potentials in experimental bimolecular lipid membranes.
J. Theoret. Biol.
18:
222–258,
1968.
|
57. |
Mueller, P., and
D. O. Rudin.
Translocators in bimolecular lipid membranes: their role in dissipative and conservative bioenergy transductions.
Current Topics Bioenerg.
3:
157–249,
1969.
|
58. |
Mueller, P.,
D. O. Rudin,
H. T. Tien, and
W. C. Wescott.
Methods for the formation of single bimolecular lipid membranes in aqueous solution.
J. Phys. Chem.
67:
534–535,
1963.
|
59. |
Muller, R. U., and
A. Finkelstein.
Voltage‐dependent conductance induced in thin lipid membranes by monazomycin.
J. Gen. Physiol.
60:
263–284,
1972.
|
60. |
Muller, R. U., and
A. Finkelstein.
The effect of surface charge on the voltage‐dependent conductance induced in thin lipid membranes by monazomycin.
J. Gen. Physiol.
60:
285–306,
1972.
|
61. |
Neumcke, B., and
P. Lauger.
Space charge‐limited conductance in lipid bilayer membranes.
J. Membrane Biol.
3:
54–66,
1970.
|
62. |
Parsegian, A.
Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems.
Nature
221:
844–846,
1969.
|
63. |
Payne, J. W.,
R. Jakes, and
B. S. Hartley.
The primary structure of alamethicin.
Biochem. J.
117:
757–766,
1970.
|
64. |
Pinkerton, M.,
L. K. Steinrauf, and
P. Dawkins.
The molecular structure and some transport properties of valinomycin.
Biochem. Biophys. Res. Commun.
35:
512–518,
1969.
|
65. |
Planck, M.
Ueber die Erregung von Electricität und Wärme in Electrolyten.
Ann. Phys. Chem. Neue Folge
39:
161–186,
1890.
|
66. |
Plattner, P. A.,
K. Vogler,
R. O. Studer,
P. Quitt, and
W. Keller‐Schierlein.
Synthesen in der Depsipeptid‐Reihe. 1. Mitteilung. Synthese von Enniatin B.
Helv. Chim. Acta
46:
927–935,
1963.
|
67. |
Pressman, B. C.
Ionophorous antibiotics as models for biological transport.
Federation Proc.
27:
1283–1288,
1968.
|
68. |
Pressman, B. C.,
E. J. Harris,
W. S. Jagger, and
J. H. Johnson.
Antibiotic‐mediated transport of alkali ions across lipid barriers.
Proc. Natl. Acad. Sci. US
58:
1949–1956,
1967.
|
69. |
Rutgers, A. J.
Physical Chemistry.
New York:
Interscience,
1954,
p. 392.
|
70. |
Sarges, R., and
B. Witkop.
Gramicidin A. V. The structure of valine‐ and isoleucine‐gramicidin A.
J. Am. Chem. Soc.
87:
2011–2020,
1965.
|
71. |
Shemyakin, M. M.,
E. I. Vinogradova,
M. Y. U. Feigina,
N. A. Aldanova,
N. F. Loginova,
I. D. Ryabova, and
I. A. Pavlenko.
The structure‐antimicrobial relation for valinomycin depsipeptides.
Experientia
21:
548–552,
1965.
|
72. |
Szabo, G.,
G. Eisenman, and
S. Ciani.
The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.
J. Membrane Biol.
1:
346–382,
1969.
|
73. |
Teorell, T.
Transport processes and electrical phenomena in ionic membranes.
Progr. Biophys. Biophys. Chem.
3:
305–369,
1953.
|
74. |
Teorell, T.
Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes.
J. Gen. Physiol.
42:
831–845,
1959.
|
75. |
Teorell, T.
Electrokinetic membrane processes in relation to properties of excitable tissues. II. Some theoretical considerations.
J. Gen. Physiol.
42:
847–863,
1959.
|
76. |
Tien, H. T.
Thickness and molecular organization of bimolecular lipid membranes in aqueous media.
J. Mol. Biol.
16:
577–580,
1966.
|
77. |
Urry, D. W.
Protein conformation in biomembranes: optical rotation and absorption of membranes suspensions.
Biochim. Biophys. Acta
265:
115–168,
1972.
|
78. |
Urry, D. W.,
M. C. Goodall,
J. D. Glickson, and
D. F. Mayers.
The gramicidin A transmembrane channel: characteristics of head‐to‐head dimerized π(L, D) helices.
Proc. Natl. Acad. Sci. US
68:
1907–1911,
1971.
|
79. |
Walz, D.,
E. Bamberg, and
P. Läuger.
Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection.
Biophys. J.
9:
1150–1159,
1969.
|