Comprehensive Physiology Wiley Online Library

Axonal Transport: The Intracellular Traffic of the Neuron

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anterograde Transport of Protein
1.1 Demonstration of Fast and Slow Components
1.2 Characteristics of the Fast and Slow Components
1.3 Postulated Mechanisms of Transport
1.4 Intermediate Rates of Protein Transport
2 Retrograde Transport of Protein
3 Transport of Materials Other than Protein
3.1 Phospholipids
3.2 Nucleotides and Related Compounds
3.3 Ribonucleic Acid
4 Functions of the Transported Material
4.1 Maintenance and Growth of the Axon
4.2 Renewal of the Plasma Membrane
4.3 Supply of Materials to Nerve Terminals
4.4 Release of Trophic Materials
4.5 Removal of Materials from Nerve Terminals
4.6 Initiation of the Cell Body Response to Axon Injury
4.7 Other Signals to the Cell Body
4.8 Structural Modification in Learning
5 Applications of the Principles of Axonal Transport
5.1 Neuroanatomy
5.2 Neurochemistry
5.3 Neuropathology
6 The Present Status of Axonal Transport: A Summary
Figure 1. Figure 1.

Distribution of radioactive protein in mouse optic nerve at various times after injection of [3H]leucine into the posterior chamber of the eye. Measurements were made by grain counting on autoradiograms of longitudinal sections of the nerves. Counts were normalized by calculating measurements at nerve origin as 100%.

From Taylor & Weiss 301
Figure 2. Figure 2.

Time course of appearance of axonally transported radioactive protein in optic nerve terminations after intraocular injection of [3H]leucine. A: optic tectum of goldfish. [Adapted from Grafstein et al. 125.] B: superior colliculus of mouse. [Adapted from Grafstein et al. 130.] Radioactivity was determined by liquid scintillation spectrometry of brain samples after fixation of the tissue in Bouin's solution (A) or by grain counting on autoradiograms (B). Data were normalized by calculating maximum radioactivity as 100%.

Figure 3. Figure 3.

Distribution of radioactive protein in cat sciatic nerve at various times after injection of [3H]leucine into dorsal root ganglion in lumbar region. Measurements were made by liquid scintillation spectrometry of nerve segments. Note logarithmic scale of ordinate.

From Ochs 242, copyright 1972 by the American Association for the Advancement of Science
Figure 4. Figure 4.

Distribution of radioactive protein in cat sciatic nerve at various times after injection of [3H]leucine into ventral horn of spinal cord in lumbar region. Measurements were made by liquid scintillation spectrometry. Note logarithmic scale for ordinate.

From Lasek 196
Figure 5. Figure 5.

Time course of appearance of radioactivity in various portions of presynaptic axons in chick ciliary ganglion after cell bodies of presynaptic axons were labeled by intracerebral injection of [3H]lysine. Measurements were made by grain counting on autoradiograms. Note larger proportion of radioactivity appearing at later time periods in preganglionic axons and preterminal segments

Modified from Droz et al. 81
Figure 6. Figure 6.

Axonally transported material in optic tectum of goldfish at various times after injection into one eye of [3H]leucine (A) and [3H]glucosamine (B). Measurements, made by liquid scintillation spectrometry, represent the difference between the tecta of the two sides, (L and R) since both tecta contain background radioactivity derived from label which had escaped from the eye into the bloodstream, whereas the transported material is conveyed to the tectum contralateral to the injected eye. TCA, trichloroacetic acid.

From Forman et al. 112
Figure 7. Figure 7.

Accumulation of norepinephrine (noradrenaline) in 1 cm of rat sciatic nerve immediately proximal to a ligation. Values are means ± SEM of the number of observations (small numerals). Norepinephrine content was determined by spectrophotofluorimetry after isolation of the norepinephrine on an ion‐exchange column.

From Dahlström & Häggendal 67
Figure 8. Figure 8.

Distribution of acetylcholinesterase (AChE) activity in dog peroneal nerve 22 h after transection at two points to produce an isolated nerve segment 70 mm long. Acetylcholinesterase activity was measured in individual nerve segments a few millimeters in length by a biochemical technique. Note the accumulation of activity on the distal side of each transection, indicating retrograde transport of the enzyme. In some experiments the accumulation was significantly larger at the distal end of the isolated segment than at its proximal end

Redrawn from Lubińska & Niemierko 212
Figure 9. Figure 9.

Distribution of radioactivity in rabbit vagus nerve after application of 32P to the floor of the fourth ventricle. Data obtained by liquid scintillation spectrometry of nerve segments. Note logarithmic scale for ordinate

Modified from Miani 227
Figure 10. Figure 10.

Time course of arrival of labeled phospholipid in the left goldfish optic tectum following injection of [3H]glycerol into the right eye. Broken line, time course of arrival of labeled protein after corresponding injection of [3H]leucine (as in Fig. 1). Each point is the mean of 5–6 animals. Radioactivity was determined by liquid scintillation counting of lipid fraction isolated by extracting acid‐fixed tecta with chloroform‐methanol (2:1). Measurements of transported radioactivity represent the difference between the left (L) and right (R) tecta. All values are given as per cent of 24‐h value.

From Grafstein et al. 128
Figure 11. Figure 11.

Distribution of radioactivity in chicken sciatic nerve at various times after injection of [3H]orotic acid into ventral horn of spinal cord in lumbar region. Acid‐soluble fraction (solid line) contains nucleotides and related compounds; acid‐insoluble fraction (broken line) consists of RNA. Measurements were made by liquid scintillation spectrometry of nerve segments after homogenization and acid extraction.

From Bray & Austin 36
Figure 12. Figure 12.

Time course of appearance of labeled trichloroacetic acid (TCA)‐soluble radioactivity (○—○) and labeled RNA (•—•) in left goldfish optic tectum after injection of [3H]guanosine into right eye. Measurements were made by liquid scintillation spectrometry of brain samples that had been homogenized and acid extracted. Transported material was measured as the difference between the amounts of radioactivity in the two tecta.

Modified from Ingoglia et al. 151


Figure 1.

Distribution of radioactive protein in mouse optic nerve at various times after injection of [3H]leucine into the posterior chamber of the eye. Measurements were made by grain counting on autoradiograms of longitudinal sections of the nerves. Counts were normalized by calculating measurements at nerve origin as 100%.

From Taylor & Weiss 301


Figure 2.

Time course of appearance of axonally transported radioactive protein in optic nerve terminations after intraocular injection of [3H]leucine. A: optic tectum of goldfish. [Adapted from Grafstein et al. 125.] B: superior colliculus of mouse. [Adapted from Grafstein et al. 130.] Radioactivity was determined by liquid scintillation spectrometry of brain samples after fixation of the tissue in Bouin's solution (A) or by grain counting on autoradiograms (B). Data were normalized by calculating maximum radioactivity as 100%.



Figure 3.

Distribution of radioactive protein in cat sciatic nerve at various times after injection of [3H]leucine into dorsal root ganglion in lumbar region. Measurements were made by liquid scintillation spectrometry of nerve segments. Note logarithmic scale of ordinate.

From Ochs 242, copyright 1972 by the American Association for the Advancement of Science


Figure 4.

Distribution of radioactive protein in cat sciatic nerve at various times after injection of [3H]leucine into ventral horn of spinal cord in lumbar region. Measurements were made by liquid scintillation spectrometry. Note logarithmic scale for ordinate.

From Lasek 196


Figure 5.

Time course of appearance of radioactivity in various portions of presynaptic axons in chick ciliary ganglion after cell bodies of presynaptic axons were labeled by intracerebral injection of [3H]lysine. Measurements were made by grain counting on autoradiograms. Note larger proportion of radioactivity appearing at later time periods in preganglionic axons and preterminal segments

Modified from Droz et al. 81


Figure 6.

Axonally transported material in optic tectum of goldfish at various times after injection into one eye of [3H]leucine (A) and [3H]glucosamine (B). Measurements, made by liquid scintillation spectrometry, represent the difference between the tecta of the two sides, (L and R) since both tecta contain background radioactivity derived from label which had escaped from the eye into the bloodstream, whereas the transported material is conveyed to the tectum contralateral to the injected eye. TCA, trichloroacetic acid.

From Forman et al. 112


Figure 7.

Accumulation of norepinephrine (noradrenaline) in 1 cm of rat sciatic nerve immediately proximal to a ligation. Values are means ± SEM of the number of observations (small numerals). Norepinephrine content was determined by spectrophotofluorimetry after isolation of the norepinephrine on an ion‐exchange column.

From Dahlström & Häggendal 67


Figure 8.

Distribution of acetylcholinesterase (AChE) activity in dog peroneal nerve 22 h after transection at two points to produce an isolated nerve segment 70 mm long. Acetylcholinesterase activity was measured in individual nerve segments a few millimeters in length by a biochemical technique. Note the accumulation of activity on the distal side of each transection, indicating retrograde transport of the enzyme. In some experiments the accumulation was significantly larger at the distal end of the isolated segment than at its proximal end

Redrawn from Lubińska & Niemierko 212


Figure 9.

Distribution of radioactivity in rabbit vagus nerve after application of 32P to the floor of the fourth ventricle. Data obtained by liquid scintillation spectrometry of nerve segments. Note logarithmic scale for ordinate

Modified from Miani 227


Figure 10.

Time course of arrival of labeled phospholipid in the left goldfish optic tectum following injection of [3H]glycerol into the right eye. Broken line, time course of arrival of labeled protein after corresponding injection of [3H]leucine (as in Fig. 1). Each point is the mean of 5–6 animals. Radioactivity was determined by liquid scintillation counting of lipid fraction isolated by extracting acid‐fixed tecta with chloroform‐methanol (2:1). Measurements of transported radioactivity represent the difference between the left (L) and right (R) tecta. All values are given as per cent of 24‐h value.

From Grafstein et al. 128


Figure 11.

Distribution of radioactivity in chicken sciatic nerve at various times after injection of [3H]orotic acid into ventral horn of spinal cord in lumbar region. Acid‐soluble fraction (solid line) contains nucleotides and related compounds; acid‐insoluble fraction (broken line) consists of RNA. Measurements were made by liquid scintillation spectrometry of nerve segments after homogenization and acid extraction.

From Bray & Austin 36


Figure 12.

Time course of appearance of labeled trichloroacetic acid (TCA)‐soluble radioactivity (○—○) and labeled RNA (•—•) in left goldfish optic tectum after injection of [3H]guanosine into right eye. Measurements were made by liquid scintillation spectrometry of brain samples that had been homogenized and acid extracted. Transported material was measured as the difference between the amounts of radioactivity in the two tecta.

Modified from Ingoglia et al. 151
References
 1. Abe, T., T. Haja, and M. Kurokawa. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in frog sciatic nerve. Biochem. J. 136: 731–740, 1973.
 2. Adelman, M. R., G. G. Borisy, M. L. Shelanski, R. C. Weisenberg, and E. W. Taylor. Cytoplasmic filaments and tubules. Federation Proc. 27: 1186–1193, 1968.
 3. Agranoff, B. W., R. E. Davis, and J. J. Brink. Memory fixation in the goldfish. Proc. Natl. Acad. Sci. US 54: 778–793, 1965.
 4. Albuquerque, E. X., E. J. Warnick, J. R. Tasse, and F. M. Sansone. Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exptl. Neurol. 37: 607–634, 1972.
 5. Alvarez, J., and M. Püschel. Transfer of material from efferent axons to sensory epithelium in the goldfish vestibular system. Brain Res. 37: 265–278, 1972.
 6. Amsterdam, A., M. Schramm, I. Ohad, Y. Salomon, and Z. Selinger. Concomitant synthesis of membrane protein and exportable protein of the secretory granule in rat parotid gland. J. Cell Biol. 50: 187–200, 1971.
 7. Anderson, K.‐E., and A. Edström. Effects of nerve blocking agents on fast axonal transport of proteins in frog sciatic nerves in vitro. Brain Res. 50: 125–134, 1973.
 8. Anderson, K.‐E., A. Edström, and M. Hanson. Heavy water reversibly inhibits fast axonal transport of proteins in frog sciatic nerves. Brain Res. 43: 299–302, 1972.
 9. Anderson, K.‐E., A. Edström, and H. Mattsson. Effects of cytochalasin B on uptake of glucosamine, leucine, and sulphate into nerve cells: incorporation and rapid axonal transport. Brain Res. 48: 343–353, 1972.
 10. Anderson, L. E., and W. O. McClure. Differential transport of protein in axons: comparison between the sciatic nerve and dorsal columns of cats. Proc. Natl. Acad. Sci. US 70: 1521–1525, 1973.
 11. Austin, L., J. J. Bray, and R. J. Young. Transport of proteins and ribonucleic acid along nerve axons. J. Neurochem. 13: 1267–1269, 1966.
 12. Autilio‐Gambetti, L., P. Gambetti, and B. Shafer. RNA and axonal flow. Biochemical and autoradiographic study in the rabbit optic system. Brain Res. 53: 387–398, 1973.
 13. Banks, P., D. Mangnall, and D. Mayor. The re‐distribution of cytochrome oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J. Physiol. London 200: 745–762, 1969.
 14. Banks, P., D. Mayor, M. Mitchell, and D. Tomlinson. Studies on the translocation of noradrenaline‐containing vesicles in postganglionic sympathetic neurones in vitro. Inhibition of movement by colchicine and vinblastine and evidence for the involvement of axonal microtubules. J. Physiol. London 216: 625–639, 1971.
 15. Banks, P., D. Mayor, and P. Mraz. Cytochalasin B and the intra‐axonal movement of noradrenaline storage vesicles. Brain Res. 49: 417–421, 1973.
 16. Banks, P., D. Mayor, and D. R. Tomlinson. Further evidence for the involvement of microtubules in the intra‐axonal movement of noradrenaline storage granules. J. Physiol. London 219: 755–761, 1971.
 17. Barondes, S. H. Axoplasmic transport. Neurosci. Res. Program Bull. 5: 307–419, 1967.
 18. Barondes, S. H. Synaptic plasticity and axoplasmic transport. Neurosci. Res. Program Bull. 5: 365–370, 1967.
 19. Barondes, S. H., Axoplasmic transport. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum Press, 1969, p. 435–446.
 20. Barondes, S. H. Cerebral protein synthesis inhibitors block long‐term memory. Intern. Rev. Neurobiol. 12: 177–205, 1970.
 21. Bennett, G., L. Di Giamberardino, H. L. Koenig, and B. Droz. Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of [3H]fucose and [3H]glucosamine. Brain Res. 60: 129–146, 1973.
 22. Bennett, G., and C. P. Leblond. Formation of cell coat material for the whole surface of columnar cells in the rat small intestine, as visualized by radioautography using l‐fucose‐3H. J. Cell Biol. 46: 409–416, 1970.
 23. Berl, S., S. Puszkin, and W. J. Nicklas. Actomyosin‐like protein in brain. Science 179: 441–446, 1973.
 24. Berlinrood, M., S. M. McGee‐Russel, and R. D. Allen. Patterns of particle movements in nerve fibers in vitro. An analysis by photokymography and microscopy. J. Cell Sci. 11: 875–886, 1972.
 25. Biondi, R. J., M. J. Levy, and P. A. Weiss. An engineering study of the peristaltic drive of axonal flow. Proc. Natl. Acad. Sci. US 69: 1732–1736, 1972.
 26. Bloom, F. E. Amino acids and polypeptides in neuronal function. Neurosci. Res. Program Bull. 10: 121–251, 1972.
 27. Boesch, J., P. Marko, and M. Cuénod. Effects of colchicine on axonal transport of proteins in the pigeon visual pathways. Neurobiology 2: 123–132, 1972.
 28. Bondy, S. C. Axonal transport of macromolecules. II. Nucleic acid migration in the central nervous system. Exptl. Brain Res. 13: 135–139, 1971.
 29. Bondy, S. C. Axonal migration of various ribonucleic acid species along the optic tract of the chick. J. Neurochem. 19: 1769–1776, 1972.
 30. Bondy, S. C., and C. J. Madsen. Development of rapid axonal flow in the chick embryo. J. Neurobiol. 2: 279–286, 1971.
 31. Bosmann, H. B., and B. A. Hemsworth. Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria. J. Biol. Chem. 245: 363–371, 1970.
 32. Boyle, F. C., and J. S. Gillespie. Accumulation and loss of noradrenaline central to a constriction on adrenergic nerves. European J. Pharmacol. 12: 77–84, 1970.
 33. Bradley, W. G., and E. Jaros. Axoplasmic flow in axonal neuropathies. II. Axoplasmic flow in mice with motor neuron disease and muscular dystrophy. Brain Res. 96: 247–258, 1973.
 34. Bradley, W. G., D. Murchison, and M. J. Day. The range of velocities of axoplasmic flow. A new approach, and its application to mice with genetically inherited spinal muscular atrophy. Brain Res. 35: 185–197, 1971.
 35. Bradley, W. G., and M. H. Williams. Axoplasmic flow in axonal neuropathies. I. Axoplasmic flow in cats with toxic neuropathies. Brain 96: 235–246, 1973.
 36. Bray, J. J., and L. Austin. Flow of protein and ribonucleic acid in peripheral nerve. J. Neurochem. 15: 731–740, 1968.
 37. Bray, J. J., and L. Austin. Axoplasmic transport of 14C proteins at two rates in chicken sciatic nerve. Brain Res. 12: 230–233, 1969.
 38. Bray, J. J., C. M. Kon, and B. McL. Breckenridge. Reversed polarity of rapid axonal transport in chicken motoneurons. Brain Res. 33: 560–564, 1971.
 39. Bretscher, M. S. Membrane structure: some general principles. Science 181: 622–629, 1973.
 40. Brimijoin, S. Transport and turnover of dopamine‐β‐hydroxylase (EC 1.14.2.1) in sympathetic nerves of the rat. J. Neurochem. 19: 2183–2193, 1972.
 41. Brimijoin, S., P. Capek, and P. J. Dyck. Axonal transport of dopamine‐β‐hydroxylase by human sural nerves in vitro. Science 180: 1295–1297, 1973.
 42. Brink, J. J., and M. L. Karnovsky. Axonal flow of exogenous RNA in the rat optic nerve. J. Neurochem. 21: 1003–1007, 1973.
 43. Brzin, M., V. M. Tennyson, and P. E. Duffy. Acetylcholinesterase in frog sympathetic and dorsal root ganglia. Study by electron microscope cytochemistry and microgasometric analysis with the magnetic diver. J. Cell Biol. 31: 215–242, 1966.
 44. Byers, M. R., B. R. Fink, R. D. Kennedy, M. E. Middaugh, and A. E. Hendrickson. Effects of lidocaine on axonal morphology, microtubules, and rapid transport in rabbit vagus nerve in vitro. J. Neurobiol. 4: 125–143, 1973.
 45. Caro, L. G., and G. E. Palade. Protein synthesis, storage, and discharge in the pancreatic exocrine cell. J. Cell Biol. 20: 473–495, 1964.
 46. Carter, S. B. The cytochalasins as research tools in cytology. Endeavour 31: 77–82, 1973.
 47. Carton, H. C., and S. H. Appel. The contribution of axoplasmic flow in optic nerve and protein synthesis within the optic tectum to synaptic membrane proteins of the chick optic tectum. J. Neurochem. 20: 1707–1717, 1973.
 48. Casola, L., G. A. Davis, and R. E. Davis. Evidence for RNA transport in rat optic nerve. J. Neurochem. 16: 1037–1041, 1969.
 49. Ceccarelli, B., W. P. Hurlbut, and A. Mauro. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57: 499–524, 1973.
 50. Cheah, T. B., and L. B. Geffen. Effects of axonal injury on norepinephrine, tyrosine hydroxylase and monoamine oxidase levels in sympathetic ganglia. J. Neurobiol. 4: 443–452, 1973.
 51. Chou, S. M. Axoplasmic flow rates in the monkey optic system. Neurology 20: 607–612, 1970.
 52. Cook, G. M. W. Glycoproteins in membranes. Biol. Rev. 43: 363–391, 1968.
 53. Cowan, W. M., B. D. I. Gottlieb, A. E. Hendrickson, J. L. Price, and T. A. Woolsey. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37: 21–51, 1972.
 54. Coyle, J. T., and G. F. Wooten. Rapid axonal transport of tyrosine hydroxylase and dopamine‐β‐hydroxylase. Brain Res. 44: 701–704, 1972.
 55. Cragg, B. G. What is the signal for chromatolysis? Brain Res. 23: 1–21, 1970.
 56. Crooks, R. F., and W. O. McClure. The effect of cytochalasin B on fast axoplasmic transport. Brain Res. 45: 643–646, 1972.
 57. Csanyi, V., J. Gervai, and A. Lajtha. Axoplasmic transport of free amino acids. Brain Res. 56: 271–284, 1973.
 58. Cuénod, M., J. Boesch, P. Marko, M. Perisic, C. Sandri, and J. Schonbach. Contributions of axoplasmic transport to synaptic structures and functions. Intern. J. Neurosci. 4: 77–87, 1972.
 59. Cuénod, M., P. Marko, and E. Niederer. Disappearance of particulate tectal protein during optic nerve degeneration in the pigeon. Brain Res. 49: 422–426, 1973.
 60. Cuénod, M., C. Sandri, and K. Akert. Enlarged synaptic vesicles as an early sign of secondary degeneration in the optic nerve terminals of the pigeon. J. Cell Sci. 6: 605–613, 1970.
 61. Cuénod, M., C. Sandri, and K. Akert. Enlarged synaptic vesicles in optic nerve terminals induced by intraocular injection of colchicine. Brain Res. 39: 285–296, 1972.
 62. Cuénod, M., and J. Schonbach. Synaptic proteins and axonal flow in the pigeon visual pathway. J. Neurochem. 18: 809–816, 1971.
 63. Dahlström, A. Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. 99: 677–689, 1965.
 64. Dahlström, A. The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerves of rat and cat. Acta Physiol. Scand. 69: 158–166, 1967.
 65. Dahlström, A. Effects of vinblastine and colchicine on monoamine containing neurons of the rat, with special regard to the axoplasmic transport of amine granules. Acta Neuropathol. Suppl. V: 226–237, 1971.
 66. Dahlström, A. Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. Roy. Soc. London Ser. B 261: 325–358, 1971.
 67. Dahlström, A. Aminergic transmission. Introduction and short review. Brain Res. 62: 441–460, 1973.
 68. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. Suppl. 247: 5–36, 1965.
 69. Dahlström, A., and J. Häggendal. Studies on the transport and life‐span of amine storage granules in a peripheral adrenergic neuron system. Acta Physiol. Scand. 67: 278–288, 1966.
 70. Dahlström, A., and J. Häggendal. Studies on the transport and life‐span of amine storage granules in the adrenergic neuron system of the rabbit sciatic nerve. Acta Physiol. Scand. 69: 153–157, 1967.
 71. Dahlström, A., and J. Jonason. DOPA‐decarboxylase activity in sciatic nerves of the rat after constriction. European J. Pharmacol. 4: 377–383, 1968.
 72. Dairman, W., L. Geffen, and M. Marchelle. Axoplasmic transport of aromatic l‐amino acid decarboxylase (EC 4.1.1.26) and dopamine‐β‐hydroxylase (EC 1.14.2.1) in rat sciatic nerve. J. Neurochem. 20: 1617–1623, 1973.
 73. Davison, P. F., Microtubules and neurofilaments: possible implications in axoplasmic transport. In: Biochemistry of Simple Neuronal Models, edited by E. Costa and E. Giacobini. New York: Raven, 1970, p. 289–302.
 74. Den, H., B. Kaufman, and S. Roseman. Properties of some glycosyltransferases in embryonic chicken brain. J. Biol. Chem. 245: 6607–6615, 1970.
 75. De Potter, W. P., A. F. De Schaepdryver, E. J. Moerman, and A. D. Smith. Evidence for the release of vesicle‐proteins together with noradrenaline upon stimulation of the splenic nerve. J. Physiol. London 204: 102P–104P, 1969.
 76. Di Giamberardino, L. Independence of the rapid axonal transport of protein from the flow of free amino acids. Acta Neuropathol. Suppl. V: 132–135, 1971.
 77. Di Giamberardino, L., G. Bennett, H. L. Koenig, and B. Droz. Axonal migration of protein and glycoprotein to nerve endings. III. Cell fraction analysis of chicken ciliary ganglion after intracerebral injection of labeled precursors of proteins and glycoproteins. Brain Res. 60: 147–159, 1973.
 78. Drachman, D. B., and F. Witzke. Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 514–516, 1972.
 79. Droz, B. Protein metabolism in nerve cells. Intern. Rev. Cytol. 25: 363–390, 1969.
 80. Droz, B. Renewal of synaptic proteins. Brain Res. 62: 383–394, 1973.
 81. Droz, B., and L. Di Giamberardino. Critical analysis of the rates of axonal migration estimated from autoradiographs. Brain Res. 60: 122–127, 1973.
 82. Droz, B., H. L. Koenig, and L. Di Giamberardino. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of [3H]lysine. Brain Res. 60: 93–127, 1973.
 83. Droz, B., and C. P. Leblond. Migration of proteins along the axons of the sciatic nerve. Science 137: 1047–1048, 1962.
 84. Droz, B., and C. P. Leblond. Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J. Comp. Neurol. 121: 325–346, 1963.
 85. Dutton, G. R., P. Haywood, and S. H. Barondes. [14C]glucosamine incorporation into specific products in the nerve ending fraction in vivo and in vitro. Brain Res. 57: 397–408, 1973.
 86. Edström, A., J.‐E. Edström, and T. Hökfelt. Sedimentation analysis of ribonucleic acid extracted from isolated Mouthner nerve fibre components. J. Neurochem. 16: 53–66, 1973.
 87. Edström, A., and M. Hanson. Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves. Brain Res. 58: 345–354, 1973.
 88. Edström, A., and M. Hanson. Retrograde axonal transport of proteins in vitro in frog sciatic nerves. Brain Res. 61: 311–320, 1973.
 89. Edström, A., and H. Mattsson. Fast axonal transport in vitro in the sciatic system of the frog. J. Neurochem. 19: 205–221, 1972.
 90. Edström, A., and H. Mattsson. Rapid axonal transport in vitro in the sciatic system of the frog of fucose‐, glucosamine‐, and sulphate‐containing material. J. Neurochem. 19: 1717–1729, 1972.
 91. Elam, J. S., and B. W. Agranoff. Rapid transport of protein in the optic system of the goldfish. J. Neurochem. 18: 375–387, 1971.
 92. Elam, J. S., and B. W. Agranoff. Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system. J. Neurobiol. 2: 379–390, 1971.
 93. Elam, J. S., J. M. Goldberg, N. S. Radin, and B. W. Agranoff. Rapid axonal transport of sulfated mucopolysaccharide protein. Science 170: 453–460, 1970.
 94. Elam, J. S., E. A. Neale, and B. W. Agranoff. Axonal transport in the goldfish visual system. Acta Neuropathol. Suppl. V: 257–266, 1971.
 95. Estensen, R. D., M. Rosenberg, and J. D. Sheridan. Cytochalasin B: microfilaments and “contractile” processes. Science 173: 356–358, 1971.
 96. Feit, H., and S. Barondes. Colchicine‐binding activity in particulate fractions of mouse brain. J. Neurochem. 17: 1355–1364, 1970.
 97. Feit, H., G. R. Dutton, S. H. Barondes, and M. L. Shelanski. Microtubule protein: identification in and transport to nerve endings. J. Cell Biol. 51: 138–147, 1971.
 98. Fernandez, H. L., P. R. Burton, and F. E. Samson. Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J. Cell Biol. 51: 176–192, 1971.
 99. Fernandez, H. L., F. C. Huneeus, and P. F. Davison. Studies on the mechanism of axoplasmic transport in the crayfish cord. J. Neurobiol. 1: 395–409, 1970.
 100. Fernandez, H. L., and F. E. Samson, Jr.. Axoplasmic transport: differential inhibition by cytochalasin B. J. Neurobiol. 4: 201–206, 1973.
 101. Festoff, B. W., S. H. Appel, and E. Day. Incorporation of [14C]glucosamine into synaptosomes in vitro. J. Neurochem. 18: 1871–1886, 1971.
 102. Fex, S., and B. Sonesson. Histochemical observations after implantation of a “fast” nerve into an innervated mammalian “slow” skeletal muscle. Acta Anat. 77: 1–10, 1970.
 103. Fibiger, H. C., E. G. McGeer, and S. Atmadja. Axoplasmic transport of dopamine in nigrostriatal neurons. J. Neurochem. 21: 373–385, 1973.
 104. Fine, R. E., and D. Bray. Actin in growing nerve cells. Nature New Biol. 234: 115–118, 1971.
 105. Fink, B. R., M. R. Byers, and M. E. Middaugh. Dynamics of colchicine effects on rapid axonal transport and axonal morphology. Brain Res. 56: 299–312, 1973.
 106. Fink, B. R., and R. D. Kennedy. Rapid axonal transport: effect of halothane anesthesia. Anesthesiology 36: 13–20, 1972.
 107. Fink, B. R., R. D. Kennedy, A. E. Hendrickson, and M. B. Middaugh. Lidocaine inhibition of rapid axonal transport. Anesthesiology 36: 422–432, 1972.
 108. Flexner, J. B., L. B. Flexner, and E. Stellar. Memory in mice as affected by intracerebral puromycin. Science 141: 57–59, 1963.
 109. Forman, D. S. Axonal Transport of Glycoproteins and Glycolipids in the Goldfish Optic System (Ph.D. thesis). New York: Rockefeller University, 1971.
 110. Forman, D. S. A symmetrical double‐label method for studying the rapid axonal transport of radioactivity from labeled d‐glucosamine in the goldfish visual system. Acta Neuropathol. Suppl. V: 171–178, 1971.
 111. Forman, D. S., B. Grafstein, and B. S. McEwen. Rapid axonal transport of [3H]fucosyl glycoproteins in the goldfish optic system. Brain Res. 48: 327–342, 1972.
 112. Forman, D. S., and R. W. Ledeen. Axonal transport of gangliosides in the goldfish optic nerve. Science 177: 630–633, 1972.
 113. Forman, D. S., B. S. McEwen, and B. Grafstein. Rapid transport of radioactivity in goldfish optic nerve following injections of labeled glucosamine. Brain Res. 28: 119–130, 1971.
 114. Frizell, M., P. O. Hasselgren, and J. Sjöstrand. Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit. Exptl. Brain Res. 10: 526–531, 1970.
 115. Fukuda, T., and G. B. Koelle. The cytological localization of intracellular neuronal acetylcholinestererase. J. Biophys. Biochem. Cytol. 5: 433–440, 1959.
 116. Gambetti, P., L. Autilio‐Gambetti, B. Shafer, and L. Pfaff. Quantitative autoradiographic study of labeled RNA in rabbit optic nerve after intraocular injection of [3H]uridine. J. Cell Biol. 59: 677–684, 1973.
 117. Geffen, L. B., and B. G. Livett. Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51: 98–157, 1971.
 118. Geffen, L. B., and R. A. Rush. Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15: 925–930, 1968.
 119. Gerard, R. W. Nerve metabolism. Physiol. Rev. 12: 469–592, 1932.
 120. Giorgi, P. P., J‐O. Karlsson, J. Sjöstrand, and E. J. Field. Axonal flow and myelin protein in the optic pathway. Nature New Biol. 244: 121–124, 1973.
 121. Glasgow, M. W., R. H. Quarles, and S. Grollman. Metabolism of fucoglycoproteins in the developing rat brain. Brain Res. 42: 129–137, 1972.
 122. Grafstein, B. Transport of protein by goldfish optic nerve fibers. Science 157: 196–198, 1967.
 123. Grafstein, B., Axonal transport: communication between soma and synapse. In: Advances in Biochemical Psychopharmacology, edited by E. Costa and P. Greengard. New York: Raven, 1969, vol. 1, p. 11–25.
 124. Grafstein, B. Role of slow axonal transport in nerve regeneration. Acta Neuropathol. Suppl. V: 144–152, 1971.
 125. Grafstein, B. Transneuronal transfer of radioactivity in the central nervous system. Science 172: 177–179, 1971.
 126. Grafstein, B., Principles of anterograde axonal transport in relation to studies of neuronal connectivity. In: The Use of Axonal Transport for Studies of Neuronal Connectivity, edited by W. M. Cowan and M. Cuénod. Amsterdam: Elsevier, 1975, p. 47–67.
 127. Grafstein, B. The nerve cell body response to axotomy. Exptl. Neurol. 48: 32–51, 1975.
 128. Grafstein, B., D. S. Forman, and B. S. McEwen. Effects of temperature on axonal transport and turnover of protein in goldfish optic system. Exptl. Neurol. 34: 158–170, 1972.
 129. Grafstein, B., and R. Laureno. Transport of radioactivity from eye to visual cortex in the mouse. Exptl. Neurol. 39: 44–57, 1973.
 130. Grafstein, B., B. S. McEwen, and M. L. Shelanski. Axonal transport of neurotubule protein. Nature 227: 289–290, 1970.
 131. Grafstein, B., J. A. Miller, R. W. Ledeen, J. Haley, and S. C. Specht. Axonal transport of phospholipid labeled with [3H]glycerol in goldfish optic system. Exptl. Neurol. 46: 261–281, 1975.
 132. Grafstein, B., and M. Murray. Transport of protein in goldfish optic nerve during regeneration. Exptl. Neurol. 25: 494–508, 1969.
 133. Grafstein, B., M. Murray, and N. A. Ingoglia. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res. 44: 37–48, 1972.
 134. Griffith, A., and A. LaVelle. Developmental protein changes in normal and chromatolytic facial nerve nuclear regions. Exptl. Neurol. 33: 360–371, 1971.
 135. Gross, G. W. The effect of temperature on the rapid axoplasmic transport in C‐fibers. Brain Res. 56: 359–363, 1973.
 136. Gross, G. W., and L. M. Beidler. Fast axonal transport in the C‐fibers of goldfish olfactory nerve. J. Neurobiol. 4: 413–428, 1973.
 137. Guth, L. “Trophic” effects of vertebrate neurons. Neurosci. Res. Program Bull. 7: 1–73, 1965.
 138. Häggendal, C. J., A. B. Dahlström, and N. R. Saunders. Axonal transport and acetylcholine in rat preganglionic neurones. Brain Res. 58: 494–499, 1973.
 139. Häggendal, C. J., N. R. Saunders, and A. B. Dahlström. Rapid accumulation of acetylcholine in nerve above a crush. J. Pharm. Pharmacol. 23: 552–554, 1971.
 140. Harris, J. B., and S. Thesleff. Nerve stump length and membrane changes in denervated skeletal muscle. Nature New Biol. 236: 60–61, 1972.
 141. Hebb, C. O., and A. Silver. Axoplasmic flow of protein. In: Protides of the Biological Fluids, edited by H. Peeters. Amsterdam: Elsevier, 1966, vol. 13, p. 178–180.
 142. Held, I., and I. J. Young. Transport of radioactivity derived from labeled N‐acetylglucosamine in mammalian motor axons. J. Neurobiol. 3: 153–161, 1972.
 143. Hendrickson, A. E. Electron microscopic distribution of axoplasmic transport. J. Comp. Neurol. 144: 381–398, 1972.
 144. Hendrickson, A. E., and M. Cowan. Changes in the rate of axoplasmic transport during postnatal development of the rabbit's optic nerve and tract. Exptl. Neurol. 30: 403–422, 1971.
 145. Hendry, I. A., K. Stöckel, H. Thoenen, and L. L. Iversen. The retrograde axonal transport of nerve growth factor. Brain Res. 68: 103–122, 1974.
 146. Heslop, J. P., and E. A. Howes. Temperature and inhibitor effects of fast axonal transport in a molluscan nerve. J. Neurochem. 19: 1709–1716, 1972.
 147. Heuser, J. E., and T. S. Reese. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57: 315–344, 1973.
 148. Hirano, H. B., B. Parkhouse, G. L. Nicolson, E. S. Lennox, and S. J. Singer. Distribution of saccharide residues on membrane fragments from a myeloma‐cell homogenate: its implications for membrane biogenesis. Proc. Natl. Acad. Sci. US 69: 2945–2949, 1972.
 149. Hoffman, W. W., and S. Thesleff. Studies on the trophic influence of nerve on skeletal muscle. European J. Pharmacol. 30: 256–260, 1972.
 150. Hökfelt, T. On the origin of small adrenergic storage vesicles: evidence for local formation in nerve endings after chronic reserpine treatment. Experientia 29: 580–582, 1973.
 151. Holtzman, E. Cytochemical studies of protein transport in the nervous system. Phil. Trans. Roy. Soc. London Ser. B 26: 407–421, 1971.
 152. Holtzman, E., S. Teichberg, S. J. Abrams, E. Citkowitz, S. N. Crain, N. Kawai, and E. R. Peterson. Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. J. Histochem. Cytochem. 21: 349–385, 1973.
 153. Ingoglia, N. A., B. Grafstein, and B. S. McEwen. Effect of actinomycin‐D on labeled material in the retina and optic tectum of goldfish after intraocular injection of tritiated RNA precursors. J. Neurochem. 23: 681–687, 1974.
 154. Ingoglia, N. A., B. Grafstein, B. S. McEwen, and I. G. McQuarrie. Axonal transport of radioactivity in the goldfish optic system following intraocular injection of labeled RNA precursors. J. Neurochem. 20: 1605–1615, 1973.
 155. Ingoglia, N. A., P. Weis, and J. Mycek. Axonal transport of RNA during regeneration of the optic nerves of goldfish. J. Neurobiol. 6: 549–563, 1975.
 156. Jahn, T. L., and E. C. Bovee. Protoplasmic movements within cells. Physiol. Rev. 49: 793–862, 1969.
 157. James, K. A. C., and L. Austin. The binding in vitro of colchicine to axoplasmic proteins from chicken sciatic nerve. Biochem. J. 117: 773–777, 1970.
 158. James, K. A. C., J. J. Bray, I. G. Morgan, and L. Austin. The effect of colchicine on the transport of axonal protein in the chicken. Biochem. J. 117: 767–771, 1970.
 159. Jamieson, J. D., and G. E. Palade. Intracellular transport of secretory proteins in the pancreatic exocrine cell. III. Dissociation of intracellular transport from protein synthesis. J. Cell Biol. 39: 580–588, 1968.
 160. Jamieson, J. D., and G. E. Palade. Synthesis, intracellular transport and discharge of secretory proteins in stimulated pancreatic exocrine cells. J. Cell Biol. 50: 135–158, 1971.
 161. Jankowska, L., L. Lubińska, and S. Niemierko. Translocation of AChE‐containing particles in the axoplasm during nerve activity. Comp. Biochem. Physiol. 28: 907–913, 1969.
 162. Jansen, J. K. S., T. Lømo, K. Nicolaysen, and R. H. Westgaard. Hyperinnervation of skeletal muscle fibers: dependence on muscle activity. Science 181: 559–561, 1973.
 163. Jarlstedt, J., and A. Hamberger. Patterns and labelling characteristics in neuronal and glial RNA. J. Neurochem. 18: 921–930, 1971.
 164. Jarlstedt, J., and J‐O. Karlsson. Evidence for axonaltransport of RNA in mammalian neurons. Exptl. Brain Res. 16: 501–506, 1972.
 165. Jarrot, B., and L. B. Geffen. Rapid axoplasmic transport of tyrosine hydroxylase in relation to other cytoplasmic constituents. Proc. Natl. Acad. Sci. US 69: 3440–3442, 1972.
 166. Jeffrey, P. L., K. A. C. James, A. D. Kidman, A. M. Richards, and L. Austin. The flow of mitochondria in chicken sciatic nerve. J. Neurobiol. 3: 199–208, 1972.
 167. Jones, C. W., and B. T. Pickering. Intra‐axonal transport and turnover of neurohypophysial hormones in the rat. J. Physiol. London 227: 553–564, 1972.
 168. Jones, D. P., and M. Singer. Neurotrophic dependence of the lateral‐line sensory organs of the newt. J. Exptl. Zool. 171: 433–442, 1969.
 169. Kapeller, K., and D. Mayor. The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. Roy. Soc. London Ser. B 167: 282–292, 1967.
 170. Kapeller, K., and D. Mayor. An electron microscopic study of the early changes proximal to a constriction in sympathetic nerves. Proc. Roy. Soc. London Ser. B 172: 39–51, 1969.
 171. Kapeller, K., and D. Mayor. An electron microscopic study of the early changes distal to a constriction in sympathetic nerves. Proc. Roy. Soc. London Ser. B 172: 53–63, 1969.
 172. Karlsson, J.‐O., H. A. Hansson, and J. Sjöstrand. Effect of colchicine on axonal transport and morphology of retinal ganglion cells. Z. Zellforsch. Mikroskop. Anal. 115: 265–283, 1971.
 173. Karlsson, J.‐O., and J. Sjöstrand. Synthesis, migration and turnover of protein in retinal ganglion cells. J. Neurochem. 18: 749–767, 1971.
 174. Karlsson, J.‐O., and J. Sjöstrand. Transport of microtubular protein in axons of retinal ganglion cells. J. Neurochem. 18: 975–982, 1971.
 175. Karlsson, J.‐O., and J. Sjöstrand. Rapid intracellular transport of fucose‐containing glycoproteins in retinal ganglion cells. J. Neurochem. 18: 2209–2216, 1971.
 176. Karlsson, J.‐O., and J. Sjöstrand. Characterization of the fast and slow components of axonal transport in retinal ganglion cells. J. Neurobiol. 2: 135–143, 1971.
 177. Karlsson, J.‐O., and J. Sjöstrand. Electrophoretic characterization of rapidly transported proteins in axons of retinal ganglion cells. FEBS Letters 16: 329–332, 1971.
 178. Karlström, L., and A. Dahlström. The effect of different types of axonal trauma on the synthesis and transport of amine storage granules in rat sciatic nerve. J. Neurobiol. 4: 191–200, 1973.
 179. Kása, P., S. P. Mann, S. Karcsu, L. Tóth, and S. Jordan. Transport of choline acetyltransferase and acetycholinesterase in the rat sciatic nerve: a biochemical and electron histochemical study. J. Neurochem. 21: 431–436, 1973.
 180. Kerkut, G. A., A. Shapira, and R. J. Walker. The transport of 14C‐labelled material from CNS ⇌ muscle along a nerve trunk. Comp. Biochem. Physiol. 23: 729–748, 1967.
 181. Kirkpatrick, J. B., J. J. Bray, and S. M. Palmer. Visualization of axoplasmic flow in vitro by Nomarksi microscopy. Comparison to rapid flow of radioactive proteins. Brain Res. 43: 1–10, 1972.
 182. Kirkpatrick, J. B., and R. E. Rose. Calcium requirement for axoplasmic flow. Soc. Neurosci. Abstr. 2: 255, 1972.
 183. Kirkpatrick, J. B., and L. Z. Stern. Axoplasmic flow in human sural nerve. Arch. Neurol. 28: 308–312, 1973.
 184. Koike, H., M. Eisenstadt, and J. H. Schwartz. Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 37: 152–159, 1972.
 185. Kolodny, G. M. Evidence for transfer of macromolecular RNA between mammalian cells in culture. Exptl. Cell Res. 65: 313–324, 1971.
 186. Kopin, I. J., and S. D. Silberstein. Axons of sympathetic neurons: transport of enzymes in vivo and properties of axonal sprouts in vitro. Pharmacol. Rev. 23: 245–254, 1972.
 187. Korr, I. M., P. N. Wilkinson, and F. W. Chornock. Axonal delivery of neuroplasmic components to muscle cells. Science 155: 342–345, 1967.
 188. Kreutzberg, G. W. Neuronal dynamics and axonal flow. IV. Blockade of intra‐axonal enzyme transport by colchicine. Proc. Natl. Acad. Sci. US 62: 722–728, 1969.
 189. Kreutzberg, G. W., and P. Schubert. Changes in axonal flow during regeneration of mammalian motor nerves. Acta Neuropathol. Suppl. V: 70–75, 1971.
 190. Kreutzberg, G. W., P. Schubert, L. Tóth, and E. Rieske. Intradendritic transport to postsynaptic sites. Brain Res. 62: 399–404, 1973.
 191. Kristensson, K., E. Lycke, and J. Sjöstrand. Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol. 17: 44–53, 1971.
 192. Kristensson, K., and Y. Olsson. Uptake and retrograde axonal transport of peroxidase in hypoglossal neurones. Electron microscopical localization in neuronal perikaryon. Acta Neuropathol. 19: 1–9, 1971.
 193. Kristensson, K., and Y. Olsson. Diffusion pathways and retrograde axonal transport of protein tracers in peripheral nerves. Progr. Neurobiol. 1: 87–109, 1973.
 194. Kristensson, K., Y. Olsson, and J. Sjöstrand. Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res. 32: 399–406, 1971.
 195. Laduron, P., and F. Belpaire. Transport of noradrenaline and dopamine‐ β‐hydroxylase in sympathetic nerves. Life Sci. Part 1 7: 1–7, 1968.
 196. Laduron, P., and F. Belpaire. Evidence for an extragranular localization of tyrosine hydroxylase. Nature 217: 1155–1156, 1968.
 197. Lasek, R. J. Bidirectional transport of radioactively labeled axoplasmic components. Nature 216: 1212–1214, 1967.
 198. Lasek, R. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3H]‐L‐leucine. Brain Res. 7: 360–377, 1968.
 199. Lasek, R. J. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exptl. Neurol. 21: 41–51, 1968.
 200. Lasek, R. J. Axonal transport of proteins in dorsal root ganglion cells of the growing cat: a comparison of growing and mature neurons. Brain Res. 20: 121–126, 1970.
 201. Lasek, R. J. Protein transport in neurons. Intern. Rev. Neurobiol. 13: 289–321, 1970.
 202. Lasek, R. J., C. Dabrowski, and R. Nordlander. Analysis of axoplasmic RNA from invertebrate giant axons. Nature New Biol. 244: 162–165, 1973.
 203. Lasek, R., B. S. Joseph, and D. G. Whitlock. Evaluation of a radioautographic neuroanatomical tracing method. Brain Res. 8: 319–336, 1968.
 204. LaVail, J. H., and M. M. LaVail. Retrograde axonal transport in the central nervous system. Science 176: 1416–1417, 1972.
 205. LaVail, J. H., K. R. Winston, and A. Tish. A method based on retrograde intraaxonal transport of protein for identification of cell bodies of origin of axons terminating within the CNS. Brain Res. 58: 470–477, 1973.
 206. Lebowitz, P., and M. Singer. Neurotrophic control of protein synthesis in the regenerating limb of the newt, Triturus. Nature 225: 824–827, 1970.
 207. Ledeen, R., B. Graftstein, S. Specht, D. Forman, and R. Grady. Rapid axonal transport of gangliosides in the goldfish and mouse. Abstr. Meeting Intern. Soc. Neurochem. 4th, Tokyo, 1973, p. 237.
 208. Lentz, T. L. Nerve trophic function: in vitro assay of effects of nerve tissue on muscle Cholinesterase activity. Science 171: 187–189, 1971.
 209. Lieberman, A. R. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Intern. Rev. Neurobiol. 14: 49–124, 1971.
 210. Litchy, W. J. Uptake and retrograde transport of horseradish peroxidase in frog sartorius nerve in vitro. Brain Res. 56: 377–381, 1973.
 211. Livett, B. G., L. B. Geffen, and L. Austin. Proximo‐distal transport of [14C]noradrenaline and protein in sympathetic nerves. J. Neurochem. 15: 931–939, 1968.
 212. Livett, B. G., L. B. Geffen, and R. A. Rush. Immunohistochemical evidence for the transport of dopamine‐β‐hydroxylase and a catecholamine binding protein in sympathetic nerves. Biochem. Pharmacol. 18: 923–924, 1969.
 213. Lømo, T., and J. Rosenthal. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. London 221: 493–513, 1972.
 214. Lubińska, L., Axoplasmic streaming in regenerating and in normal nerve fibers. In: Progress in Brain Research. Vol. 13, Mechanisms of Neural Regeneration, edited by M. Singer and J. P. Schadé. Amsterdam; Elsevier, 1964, p. 1–66.
 215. Lubińska, L., and S. Niemierko. Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves. Brain Res. 27: 329–342, 1971.
 216. Lux, H. D., P. Schubert, G. W. Kreutzberg, and A. Globus. Excitation and axonal flow: autoradiographic study on motoneurons intracellularly injected with a 3H‐amino acid. Exptl. Brain Res. 10: 197–204, 1970.
 217. Lynch, G., R. L. Smith, P. Mensah, and C. Cotman. Tracing the dentate gyrus mossy fiber system with horseradish peroxidase histochemistry. Exptl. Neurol. 40: 516–524, 1973.
 218. Marchisio, P. C., and F. Gremo. The axoplasmic transport of proteins along the optic pathway of newly hatched chicks: the blocking effects of colchicine and vinblastine. Abstr. Meeting Intern. Soc. Neurochem., 3rd, Budapest, 1971, p. 153.
 219. Marchisio, P. C., and J. Sjöstrand. Radioautographic evidence for protein transport along the optic pathway of early chick embryos. J. Neurocytol. 1: 101–108, 1972.
 220. Marinari, U. M., I. G. Morgan, G. Mack, and G. Gombos. Synthesis of synaptic glycoproteins. II. Delayed labeling of the glycoproteins of synaptic vesicles and synaptosomal plasma membranes. Neurobiology 2: 176–182, 1972.
 221. Marko, P., and M. Cuénod. Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system. Brain Res. 62: 419–423, 1973.
 222. Marko, P., J. P. Susz, and M. Cuénod. Synaptosomal proteins and axoplasmic flow: fractionation by SDS polyacrylamide gel electrophoresis. FEBS Letters 17: 261–264, 1971.
 223. Marks, N., R. K. Datta, and A. Lajtha. Distribution of amino acids and of exo‐ and endopeptidases along vertebrate and invertebrate nerves. J. Neurochem. 17: 53–63, 1970.
 224. Martinez, A. J., and R. L. Friede. Accumulation of axoplasmic organelles in swollen nerve fibers. Brain Res. 19: 183–189, 1970.
 225. McClure, W. O. Effect of drugs upon axoplasmic transport. Advan. Pharmacol. Chemotherap. 10: 185–220, 1972.
 226. McEwen, B. S., D. S. Forman, and B. Grafstein. Components of fast and slow axonal transport in the goldfish optic nerve. J. Neurobiol. 2: 361–377, 1971.
 227. McEwen, B. S., and B. Grafstein. Rapid transport of material in fish optic nerve. In: International Symposium of Nucleic Acids and Proteins and the Function of the Neuron, edited by Z. Lodin. Amsterdam: Excerpta Medica Foundation, 1967, p. 225–234.
 228. McEwen, B. S., and B. Grafstein. Fast and slow components in axonal transport of protein. J. Cell Biol. 38: 494–508, 1968.
 229. McMahan, U. J., and S. W. Kuffler. Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in heart of the frog. Proc. Roy. Soc. London Ser. B 177: 485–508, 1971.
 230. Miani, N. Analysis of the somato‐axonal movement of phospholipids in the vagus and hypoglossal nerves. J. Neurochem. 10: 859–874, 1963.
 231. Miani, N., Proximo‐distal movement of phospholipid in the axoplasm of the intact and regenerating neurons. In: Progress in Brain Research. Vol. 13. Mechanisms of Neural Regeneration, edited by M. Singer, and J. P. Schadé. Amsterdam: Elsevier, 1964, p. 115–126.
 232. Miani, N. Transport of S‐100 protein in mammalian nerve fibers and transneuronal signals. Acta Neuropathol Suppl. V: 104–108, 1971.
 233. Miani, N., G. DeRenzis, F. Michetti, S. Correr, C. Olivieri Sangiacomo, and A. Caniglia. Axonal transport of S‐100 proteins in mammalian nerve fibers. J. Neurochem. 19: 1387–1394, 1972.
 234. Miani, N., A. Di Girolamo, and M. Di Girolamo. Sedimentation characteristics of axonal RNA in rabbit. J. Neurochem. 13: 755–759, 1966.
 235. Miledi, R., and C. R. Slater. On the degeneration of rat neuromuscular junctions after nerve section. J. Physiol. London 207: 507–528, 1970.
 236. Moore, R. Y., and N. J. Lenn. A retinohypothalamic projection in the rat. J. Comp. Neurol. 146: 1–14, 1972.
 237. Murphy, M. G., J. L. O'Leary, and D. Cornblath. Axoplasmic flow in cerebellar mossy and climbing fibers. Arch. Neurol. 28: 118–123, 1973.
 238. Murray, M. 3H‐uridine incorporation by regenerating retinal ganglion cells of goldfish. Exptl. Neurol. 39: 489–497, 1973.
 239. Murray, M. Axonal transport in the asymmetric optic axons of flatfish. Exptl. Neurol. 42: 636–646, 1974.
 240. Murray, M., and D. S. Forman. Fine structural changes in goldfish retinal ganglion cells during axonal regeneration. Brain Res. 32: 287–298, 1971.
 241. Murray, M., and B. Grafstein. Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons. Exptl. Neurol. 23: 544–560, 1969.
 242. Norström, A., and J. Sjöstrand. Transport and turnover of neurohypophysial proteins of the rat. J. Neurochem. 18: 2007–2016, 1971.
 243. Norström, A., and J. Sjöstrand. Effect of haemorrhage on the rapid axonal transport of neurohypophysial proteins of the rat. J. Neurochem. 18: 2017–2026, 1971.
 244. Ochs, S. Local supply of energy to the fast axoplasmic transport mechanism. Proc. Natl. Acad. Sci. US 68: 1279–1282, 1971.
 245. Ochs, S. Fast transport of materials in mammalian nerve fibers. Science 176: 252–260, 1972.
 246. Ochs, S. Rate of fast axoplasmic transport in mammalian nerve fibers. J. Physiol. London 227: 627–645, 1972.
 247. Ochs, S. Membrane properties [excitability and osmoticity] and fast axoplasmic transport in vitro. Soc. Neurosci. Abstr. 2: 255, 1972.
 248. Ochs, S. Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann. NY Acad. Sci. 228: 202–223, 1974.
 249. Ochs, S., J. Johnson, and M.‐H. Ng. Protein incorporation and axoplasmic flow in motoneuron fibers following intra‐cord injection of labelled leucine. J. Neurochem. 14: 317–331, 1967.
 250. Ochs, S., and D. Hollingsworth. Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J. Neurochem. 18: 107–114, 1971.
 251. Ochs, S., and N. Ranish. Characteristics of the fast transport system in mammalian nerve fibers. J. Neurobiol. 1: 247–261, 1969.
 252. Ochs, S., and N. Ranish. Metabolic dependence of fast axoplasmic transport in nerve. Science 167: 878–879, 1970.
 253. Ochs, S., M. I. Sabri, and J. Johnson. Fast transport system of materials in mammalian nerve fibers. Science 163: 686–687, 1969.
 254. Ochs, S., M. I. Sabri, and N. Ranish. Somal site of synthesis of fast transported materials in mammalian nerve fibers. J. Neurobiol. 1: 329–344, 1970.
 255. Ochs, S., and C. Smith. Effect of temperature and rate of stimulation on fast axoplasmic transport in mammalian nerve fibers. Federation Proc. 30: 665, 1971.
 256. Oesch, F., U. Otten, and H. Thoenen. Relationship between the rate of axoplasmic transport and subcellular distribution of enzymes involved in the synthesis of norepinephrine. J. Neurochem. 20: 1691–1706, 1973.
 257. Oh, T. H., D. D. Johnson, and S. U. Kim. Neurotrophic effect on isolated chick embryo muscle in culture. Science 178: 1298–1300, 1972.
 258. Parker, G. H. What are neurofibrils? Am. Naturalist 63: 97–117, 1929.
 259. Partlow, L. M., C. D. Ross, R. Motwani, and D. B. McDougal, Jr.. Transport of axonal enzymes in surviving segments of frog sciatic nerve. J. Gen. Physiol. 60: 388–405, 1972.
 260. Perez, V. J., J. W. Olney, T. J. Cicero, B. W. Moore, and B. A. Bahn. Wallerian degeneration in rabbit optic nerve: cellular localization in the central nervous system of the S‐100 and 14–3–2 proteins. J. Neurochem. 17: 511–519, 1970.
 261. Periśić, M., and N. Cuénod. Synaptic transmission depressed by colchicine blockade of axoplasmic flow. Science 175: 1140–1142, 1972.
 262. Peters, A., and J. E. Vaughn. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32: 113–119, 1967.
 263. Peterson, J. A., J. J. Bray, and L. Austin. An autoradiographic study of the flow of protein and RNA along peripheral nerve. J. Neurochem. 15: 741–745, 1968.
 264. Peterson, R. P., R. M. Hurwitz, and R. Lindsay. Migration of axonal protein: absence of a protein concentration gradient and effect of inhibition of protein synthesis. Exptl. Brain Res. 4: 138–145, 1967.
 265. Pette, D., M. E. Smith, H. W. Staudte, and G. Vrbová. Effects of long‐term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pfluegers Arch. European J. Physiol. 338: 257–272, 1973.
 266. Pevzner, L. Z. Topochemical aspects of nucleic acid and protein metabolism within the neuron‐neuroglia unit of the superior cervical ganglion. J. Neurochem. 12: 993–1002, 1965.
 267. Pinching, A. J., and T. P. S. Powell. Ultrastructural features of transneuronal cell degeneration in the olfactory system. Exptl. Cell Res. 8: 253–287, 1971.
 268. Pleasure, D. E., K. C. Mishler, and W. K. Engel. Axonal transport of proteins in experimental neuropathies. Science 166: 524–525, 1969.
 269. Pollay, M., A. Stevens, and R. Kaplan. Diffusion of radioactive nonelectrolytes in saline‐agar gels. Anal. Biochem. 27: 381–386, 1969.
 270. Pomerat, C. M., W. J. Hendelman, C. W. Raiborn, Jr., and J. F. Massey. Dynamic activities of nervous tissues in vitro. In: The Neuron, edited by H. Hyden. Amsterdam: Elsevier, 1967, p. 119–178.
 271. Rahmann, H., and H. Wolburg. Intraaxonaler Transport von 3H‐Verbindungen im Tractus opticus von Teleosteern. Experientia 27: 903–904, 1971.
 272. Rambourg, A. Morphological and histochemical aspects of glycoproteins at the surface of animal cells. Intern. Rev. Cytol. 31: 57–114, 1971.
 273. Ramón Y Cajal, S. Degeneration and Regeneration of the Nervous System. [Translated by R. M. May.] Cambridge: Oxford Univ. Press, 1928, vol.I.
 274. Ranish, N., and S. Ochs. Fast axoplasmic transport of acetylcholineserase in mammalian nerve fibers. J. Neurochem. 19: 2641–2649, 1972.
 275. Rebhun, L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Intern. Rev. Cytol. 32: 93–137, 1972.
 276. Reis, D. J., and R. A. Ross. Dynamic changes in brain dopamine‐β‐hydroxylase activity during anterograde and retrograde reactions to injury of central noradrenergic neurons. Brain Res. 57: 307–326, 1973.
 277. Roberts, P. J., P. Keen, and J. F. Mitchell. The distribution and axonal transport of free amino acids and related compounds in the dorsal sensory neuron of the rat, as determined by the dansyl reaction. J. Neurochem. 21: 199–209, 1973.
 278. Rösner, H., H. Wiegandt, and H. Rahmann. Sialic acid incorporation into ganglioside and glycoproteins of the fish brain. J. Neurochem. 21: 655–665, 1973.
 279. Sabri, M. I., and S. Ochs. Characterization of fast and slow transported proteins in dorsal root and sciatic nerve of cat. J. Neurobiol. 4: 145–165, 1972.
 280. Samson, F. E., Jr.. Mechanism of axoplasmic transport. J. Neurobiol. 2: 347–360, 1971.
 281. Saunders, N. R., K. Dziegielewska, C. J. Häggendal, and A. B. Dahlström. Slow accumulation of choline acetyltransferase in crushed sciatic nerves of the rat. J. Neurobiol. 4: 95–103, 1973.
 282. Scalia, F. Autoradiographic demonstration of optic nerve fibers in the stratum zonale of the frog's tectum. Brain Res. 58: 484–488, 1973.
 283. Schmitt, F. O. Fibrous proteins — neuronal organelles. Proc. Natl. Acad. Sci. US 60: 1092–1101, 1968.
 284. Schmitt, F. O., and F. E. Samson, Jr. Neuronal fibrous proteins. Neurosci. Res. Program Bull. 6: 113–219, 1968.
 285. Schmitt, F. S., and F. E. Samson, Jr.. Brain cell microenvironment. Neurosci. Res. Program Bull. 7: 277–417, 1969.
 286. Schonbach, J., and M. Cuénod. Axoplasmic migration of protein. A light microscopic autoradiographic study in the avian retinotectal pathway. Exptl. Brain Res. 12: 275–282, 1971.
 287. Schonbach, J., C. H. Schonbach, and M. Cuénod. Rapid phase of axoplasmic flow and synaptic proteins: an electron microscopical autoradiographic study. J. Comp. Neurol. 141: 485–498, 1971.
 288. Schonbach, J., C. Schonbach, and M. Cuénod. Distribution of transported proteins in the slow phase of axoplasmic flow. An electron microscopical autoradiographic study. J. Comp. Neurol. 152: 1–16, 1973.
 289. Schubert, P., G. W. Kreutzberg, and H. D. Lux. Neuroplasmic transport in dendrites: effect of colchicine on morphology and physiology of motoneurones in the cat. Brain Res. 47: 331–343, 1972.
 290. Scott, F. H. On the relation of nerve cells to fatigue of their nerve fibers. J. Physiol. London 34: 145–162, 1906.
 291. Singer, M., The trophic quality of the neuron: some theoretical considerations, in: Progress in Brain Research, Vol. 13, Mechanisms of Neural Regeneration, edited by M. Singer and J. P. Schadé. Amsterdam: Elsevier, 1964, p. 228–232.
 292. Singer, M., and J. D. Caston. Neurotrophic dependence of macromolecular synthesis in the early limb regenerate of the newt, Triturus. J. Embryol. Exptl. Morphol. 28: 1–11, 1972.
 293. Singer, M., and M. R. Green. Autoradiographic studies of uridine incorporation in peripheral nerve of the newt, Triturus. J. Morphol. 124: 321–344, 1968.
 294. Singer, S. J., and L. I. Rothfield. Synthesis and turnover of cell membranes. Neurosci. Res. Program Bull. 11: 1–86, 1973.
 295. Sjöstrand, J. Rapid axoplasmic transport of labelled proteins in the vagus and hypoglossal nerves of the rabbit. Exptl. Brain Res. 8: 105–112, 1969.
 296. Sjöstrand, J. Fast and slow components of axoplasmic transport in the hypoglossal and vagus nerves of the rabbit. Brain Res. 18: 461–467, 1970.
 297. Sjöstrand, J., M. Frizell, and P. O. Hasselgren. Effects of colchicine on axonal transport in peripheral nerves. J. Neurochem. 17: 1563–1570, 1970.
 298. Slater, C. R. Time course of failure of neuromuscular transmission after motor nerve section. Nature 209: 305–306, 1966.
 299. Smith, R. S. Centripetal movement of particles in myelinated axons. Cytobios 3: 259–262, 1971.
 300. Sotelo, C., and J. Taxi. On the axonal migration of catecholamines in constricted sciatic nerve of the rat. A radioautographic study. Z. Zellforsch. Mikroskop. Anat. 138: 345–370, 1973.
 301. Specht, S., and B. Grafstein. Accumulation of radioactive protein in mouse cerebral cortex after injection of 3H‐fucose into the eye. Exptl. Neurol. 41: 705–722, 1973.
 302. Stadler, J., and W. W. Franke. Colchicine‐binding proteins in chromatin and membranes. Nature New Biol. 237: 237–238, 1972.
 303. Tanaka, C., Y. Itokawa, and S. Tanaka. The axoplasmic transport of thiamine in rat sciatic nerve. J. Histochem. Cytochem. 21: 81–86, 1973.
 304. Taylor, A. C., and P. Weiss. Demonstration of axonal flow by the movement of tritium‐labeled protein in mature optic nerve fibers. Proc. Natl. Acad. Sci. US 54: 1521–1527, 1965.
 305. Taxi, J., and C. Sotelo. Cytological aspects of the axonal migration of catecholamines and of their storage material. Brain Res. 62: 431–437, 1973.
 306. Van Den Bosch, H., L. M. G. Van Golde, and L. L. M. Van Deenin. Dynamics of phosphoglycerides. Ergeb. Physiol. 66: 13–145, 1972.
 307. Watson, W. E. Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. London 196: 122P–123P, 1968.
 308. Weiss, P., Self‐renewal and proximo‐distal convection in nerve fibers. In: The Effect of Use and Disuse on Neuromuscular Functions, edited by E. Guttman and P. Hník. Prague: Publ. House of the Czech. Acad. Sci., 1963, p. 171–183.
 309. Weiss, P. Neuronal dynamics. Neurosci. Res. Program Bull. 5: 371–400, 1967.
 310. Weiss, P. A., Neuronal dynamics and neuroplasmic (“axonal”) flow. In: Cellular Dynamics of the Neuron, edited by S. W. Barondes. New York: Academic, 1970, p. 3–34. (Symposia of the International Society for Cell Biology, Vol. 8.)
 311. Weiss, P. A., Neuronal dynamics and neuroplasmic flow. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 840–850.
 312. Weiss, P. A. Neuronal dynamics and axonal flow: axonal peristalsis. Proc. Natl. Acad. Sci. US 69: 1309–1312, 1972.
 313. Weiss, P., and H. Hiscoe. Experiments on the mechanism of nerve growth. J. Exptl. Zool. 107: 315–395, 1948.
 314. Weiss, P. A., and R. Mayr. Neuronal organelles in neuroplasmic (“axonal”) flow. I. Mitochondria. Acta Neuropathol. Suppl. V: 187–197, 1971.
 315. Wessells, N. K., S. S. Spooner, J. F. Ash, M. O. Bradley, M. A. Ludeena, E. L. Taylor, J. T. Wrenn, and K. M. Yamada. Microfilaments in cellular and developmental processes. Science 171: 135–143, 1971.
 316. Williams, P. L., and S. M. Hall. Prolonged in vivo observations of normal peripheral nerve fibers and their acute reactions to crush and deliberate trauma. J. Anat. 108: 397–408, 1971.
 317. Wolburg, H. Intraaxonaler Transport von Ethidium‐Bromid‐sensitiven RNS‐ und niedermolekularen 3H‐Uridin‐Verbindungen im Tractus opticus von Teleosteern. Exptl. Brain Res. 15: 348–363, 1972.
 318. Wooten, G. F., and J. T. Coyle. Axonal transport of catecholamine synthesizing and metabolizing enzymes. J. Neurochem. 20: 1361–1371, 1973.
 319. Wuerker, R. B., and J. B. Kirkpatrick. Neuronal microtubules, neurofilaments and microfilaments. Intern. Rev. Cytol. 53: 45–75, 1972.
 320. Wunderlich, F., R. Muller, and V. Speth. Direct evidence for a colchicine‐induced impairment in the mobility of membrane components. Science 182: 1136–1138, 1973.
 321. Zatz, M., and S. H. Barondes. Fucose incorporation into glycoproteins of mouse brain. J. Neurochem. 17: 157–163, 1970.
 322. Zatz, M., and S. H. Barondes. Rapid transport of fucosyl glycoproteins to nerve endings in mouse brain. J. Neurochem. 18: 1125–1133, 1971.
 323. Zelená, J., Bidirectional shift of mitochondria in axons after injury. In The Structure and Function of Nervous Tissue, edited by G. H. Bourne. New York: Academic, 1969, vol. 3, p. 73–94.
 324. Zelená, J., L. Lubińska, and E. Guttmann. Accumulation of organelles at the ends of interrupted axons. Z. Zellforsch. Mikroskop. Anat. 91: 200–219, 1968.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Bernice Grafstein. Axonal Transport: The Intracellular Traffic of the Neuron. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 691-717. First published in print 1977. doi: 10.1002/cphy.cp010119