References |
1. |
Adrian, E. D.
Discharge frequencies in the cerebral and cerebellar cortex.
J. Physiol. London
83:
32–33,
1935.
|
2. |
Albus, J. S.
A theory of cerebellar function.
Math. Biosci.
10:
25–61,
1971.
|
3. |
Altman, J.,
W. J. Anderson, and
K. A. Wright.
Selective destruction of precursors of microneurons of the cerebellar cortex with fractionated low‐dose x‐rays.
Exp. Neurol.
17:
481–497,
1967.
|
4. |
Andersen, P.,
J. C. Eccles, and
P. E. Voorhoeve.
Postsynaptic inhibition of cerebellar Purkinje cells.
J. Neurophysiol.
27:
1138–1153,
1964.
|
5. |
Armstrong, D. M.,
R. J. Harvey, and
R. F. Schild.
Branching of inferior olivary axons to terminate in different folia, lobules or lobes of the cerebellum.
Brain Res.
54:
365–371,
1973.
|
6. |
Baker, P. F.,
A. L. Hodgkin, and
E. B. Ridgway.
Depolarization and calcium entry in squid giant axons.
J. Physiol. London
218:
709–755,
1971.
|
7. |
Bantli, H.
Analysis of difference between potentials evoked by climbing fibers in cerebellum of cat and turtle.
J. Neurophysiol.
37:
573–593,
1974.
|
8. |
Belbenoit, P.
Conditionnement instrumental de l'électroperception des objets chez Gnathonemus petersii (Mormyridae, Teleostei, Pisces).
Z. Vgl. Physiol.
67:
192–204,
1970.
|
9. |
Belcari, P.,
A. Francesconi,
C. Maioli, and
P. Strata.
Spontaneous activity of the Purkinje cells in the pigeon cerebellum.
Pfluegers Arch.
371:
147–154,
1977.
|
10. |
Bell, C. C., and
R. J. Grimm.
Discharge properties of Purkinje cells recorded on single and double microelectrodes.
J. Neurophysiol.
32:
1044–1055,
1969.
|
11. |
Bennett, M. V. L.
Physiology of electrotonic junctions.
Ann. NY Acad. Sci.
137:
509–539,
1966.
|
12. |
Bernstein, N.
The Coordination and Regulation of Movements.
New York:
Pergamon,
1967.
|
13. |
Bisti, S.,
G. Iosip,
G. F. Marchesi, and
P. Strata.
Pharmacological properties of inhibition in the cerebellar cortex.
Exp. Brain Res.
14:
24–37,
1971.
|
14. |
Bloedel, J. R.,
R. S. Gregory, and
S. H. Martin.
Action of interneurons and axon collaterals in cerebellar cortex of a primate.
J. Neurophysiol.
35:
847–863,
1972.
|
15. |
Bloedel, J. R., and
W. J. Roberts.
Action of climbing fibers in cerebellar cortex of the cat.
J. Neurophysiol.
34:
17–31,
1971.
|
16. |
Blomfield, S., and
D. Marr.
How the cerebellum may be used.
Nature London
227:
1224–1228,
1970.
|
17. |
Bloom, F. E.,
Chemical integrative processes in the central nervous system.
In: The Neurosciences: Fourth Study Program,
edited by
F. O. Schmitt and
F. G. Worden.
Cambridge:
MIT Press,
1979,
p. 51–58.
|
18. |
Bower, J. M.,
D. C. Woolston, and
J. M. Gibson.
Congruence of spatial patterns of receptive field projections to Purkinje cell and granule cell layers in the cerebellar cortex of the rat.
Soc. Neurosci. Abstr.
6:
511,
1980.
|
19. |
Boylls, C. C.
A Theory of Cerebellar Function With Applications to Locomotion. I. The Physiological Role of Climbing Fiber Inputs in Anterior Lobe Operation.
Amherst:
Univ. of Massachusetts,
1975.
(COINS Tech. Rep. 75C‐6.).
|
20. |
Boylls, C. C.
A Theory of Cerebellar Function With Applications to Locomotion. II. The Relation of Anterior Lobe Climbing Fiber Function to Locomotor Behavior in the Cat.
Amherst:
Univ. of Massachusetts,
1975.
(COINS Tech. Rep. 76–1.).
|
21. |
Boylls, C. C.,
Cerebellar strategies for movement coordination.
In: Tutorials in Motor Behavior,
edited by
G. E. Stelmach and
J. Reguin.
New York:
Elsevier/North Holland,
1980,
p. 83–94.
|
22. |
Boylls, C. C.,
Contributions to locomotor coordination of an olivo‐cerebellar projection to the vermis in the cat: experimental results and theoretical proposals.
In: The Inferior Olivary Nucleus: Anatomy and Physiology,
edited by
J. Courville,
C. de Montigny, and
Y. Lamarre.
New York:
Raven,
1980,
p. 321–348.
|
23. |
Braitenberg, V.
Functional interpretation of cerebellar histology.
Nature London.
190:
539–540,
1961.
|
24. |
Braitenberg, V.,
Is the cerebellar cortex a biological clock in the millisecond range?
In: Progress in Brain Research. The Cerebellum,
edited by
C. A. Fox and
R. S. Snider.
Amsterdam:
Elsevier,
1967,
vol. 25,
p. 334–346.
|
25. |
Braitenberg, V., and
R. P. Atwood.
Morphological observations in the cerebellar cortex.
J. Comp. Neurol.
109:
1–34,
1958.
|
26. |
Braitenberg, V., and
N. Onesto.
The cerebellar cortex as a timing organ. Discussion of an hypothesis.
Proc. 1st Congr. Int. Med. Cibern. Naples:
Giannini,
1961,
p. 1–19.
|
27. |
Brand, S.,
A.‐L. Dahl, and
E. Mugnaini.
The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study.
Exp. Brain Res.
26:
39–58,
1976.
|
28. |
Brindley, G. S.
The use made by the cerebellum of the information that it receives from sense organs.
Int. Brain Res. Org. Bull.
3:
80,
1964.
|
29. |
Brodal, A., and
B. Høivik.
Site and termination of primary vestibulocerebellar fibers in the cat: an experimental study with silver impregnation methods.
Arch. Ital. Biol.
102:
1–21,
1964.
|
30. |
Brookhart, J. M.,
G. Moruzzi, and
R. S. Snider.
Spike discharges of single units in the cerebellar cortex.
J. Neurophysiol.
13:
465–486,
1950.
|
31. |
Bruggencate, G. ten,
R. Teichmann, and
E. Weller.
Neuronal activity in the lateral vestibular nucleus of the cat. I. Patterns of postsynaptic potentials and discharges in Deiters' neurones evoked by stimulation of the spinal cord.
Pfluegers Arch.
337:
119–134,
1972.
|
32. |
ten Bruggencate, G.,
R. Teichmann, and
E. Weller.
Neuronal activity in the lateral vestibular nucleus of the cat. III. Inhibitory actions of cerebellar Purkinje cells evoked via mossy and climbing fibre afferents.
Pfluegers Arch.
337:
147–162,
1972.
|
33. |
Buisseret, P., and
C. Batini.
Réponses complexes des cellules de Purkinje: conduction avec leur caractère répétitif.
C. R. Acad. Sci. Ser. D
273:
2306–2308,
1971.
|
34. |
Burke, R. E., and
P. Rudomín.
Spinal neurons and synapses.
In: Handbook of Physiology. The Nervous System,
edited by
J. M. Brookhart and
V. B. Mountcastle.
Bethesda, MD:
Am. Physiol. Soc.,
1977,
sect. 1,
vol. I,
pt. 2, chapt. 24,
p. 877–944.
|
35. |
Buser, P., and
A. Rougeul.
Etude des réponses du cervelet du pigeon à la stimulation du nerf optique.
Boll. Soc. Ital. Biol. Sper.
30:
758–760,
1954.
|
36. |
Clarke, P. G. H.
The organization of visual processing in the pigeon cerebellum.
J. Physiol. London
243:
267–284,
1974.
|
37. |
Colin, F.,
J. Manil, and
J. C. Desclin.
The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers.
Brain Res.
187:
3–27,
1980.
|
38. |
Coombs, J. S.,
J. C. Eccles, and
P. Fatt.
The electrical properties of the motoneurone membrane.
J. Physiol. London
130:
291–325,
1955.
|
39. |
Courville, J.,
J. R. Augustine, and
P. Martel.
Projections from the inferior olive to the cerebellar nuclei in the cat demonstrated by retrograde transport of horseradish peroxidase.
Brain Res.
130:
405–419,
1977.
|
40. |
Crepel, F., and
J. Mariani.
Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the Weaver mutant mouse.
J. Neurobiol.
1:
579–582,
1976.
|
41. |
Crill, W. E.
Unitary multiple‐spiked responses in cat inferior olive nucleus.
J. Neurophysiol.
33:
199–209,
1970.
|
42. |
Desclin, J. C., and
F. Colin.
The olivocerebellar system. II. Some ultrastructural correlates of inferior olive destruction in the rat.
Brain Res.
187:
29–46,
1980.
|
43. |
Dow, R. S.
The electrical activity of the cerebellum and its functional significance.
J. Physiol London
94:
67–86,
1938.
|
44. |
Dow, R. S.
Cerebellar action potentials in response to stimulation of various afferent connections.
J. Neurophysiol.
2:
543–555,
1939.
|
45. |
Dow, R. S.
Action potentials of cerebellar cortex in response to local electrical stimulation.
J. Neurophysiol.
12:
245–256,
1949.
|
46. |
Eccles, J. C.
Circuits in the cerebellar control of movement.
Proc. Natl. Acad. Sci. USA
58:
336–343,
1967.
|
47. |
Eccles, J. C.,
The dynamic loop hypothesis of movement control.
In: Information Processing in the Central Nervous System,
edited by
K. N. Leibovic.
Berlin:
Springer‐Verlag,
1969,
p. 245–269.
|
48. |
Eccles, J. C.
The Understanding of the Brain.
New York:
McGraw‐Hill,
1973.
|
49. |
Eccles, J. C.
The cerebellum as a computer: pattern in space and time.
J. Physiol. London
229:
1–32,
1973.
|
50. |
Eccles, J. C.,
M. Ito, and
J. Szentágothai.
The Cerebellum as a Neuronal Machine.
Berlin:
Springer‐Verlag,
1967.
|
51. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum.
J. Physiol. London
182:
268–296,
1966.
|
52. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
The action of antidromic impulses on the cerebellar Purkinje cells.
J. Physiol. London
182:
316–345,
1966.
|
53. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
The inhibitory interneurons within the cerebellar cortex.
Exp. Brain Res.
1:
1–16,
1966.
|
54. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum
Exp. Brain Res.
1:
17–39,
1966.
|
55. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
The mossy fibre‐granule cell relay of the cerebellum and its inhibitory control by Golgi cells.
Exp. Brain Res.
1:
82–101,
1966.
|
56. |
Eccles, J. C.,
R. Llinás, and
K. Sasaki.
Intracellularly recorded responses of the cerebellar Purkinje cells.
Exp. Brain Res.
1:
161–183,
1966.
|
57. |
Eccles, J. C.,
R. Llinás,
K. Sasaki, and
P. E. Voorhoeve.
Interaction experiments on the responses evoked in Purkinje cells by climbing fibres.
J. Physiol. London
182:
297–315,
1966.
|
58. |
Eccles, J. C.,
K. Sasaki, and
P. Strata.
The profiles of physiological events produced by a parallel fiber volley in the cerebellar cortex.
Exp. Brain Res.
2:
18–34,
1966.
|
59. |
Eccles, J. C.,
K. Sasaki, and
P. Strata.
Interpretation of the potential fields generated in the cerebellar cortex by a mossy fiber volley.
Exp. Brain Res.
3:
58–80,
1967.
|
60. |
Eccles, J. C.,
K. Sasaki, and
P. Strata.
A comparison of the inhibitory actions of Golgi cells and of basket cells.
Exp. Brain Res.
3:
81–94,
1967.
|
61. |
Eccles, J. C.,
H. Táboříá, and
N. Tsukahara.
Excitation and inhibition of Purkyne cells in the cerebellum of Mustelus canis.
Biol. Bull.
135:
418,
1968.
|
62. |
Enger, P. S., and
T. Szabo.
Activity of central neurons involved in electroreception in some weakly electric fish (Gymnotidae).
J. Neurophysiol.
28:
800–818,
1965.
|
63. |
Faber, D. S., and
H. Korn.
Inhibition in the frog cerebellar cortex following parallel fiber activation.
Brain Res.
17:
506–510,
1970.
|
64. |
Fatt, P.
Electric potentials occurring around a neurone during its antidromic activation.
J. Neurophysiol.
20:
27–60,
1957.
|
65. |
Fisher, D. S., and
A. M. Jonas.
Cerebellar hypoplasia resulting from cytosine arabinoside treatment in the neonatal hamster.
Clin. Res.
13:
540:
1965.
|
66. |
Flourens, P.
Recherches experimentales sur les proprietes et les systèmes nerveux dans les animaux vertébrés.
Paris:
Crevot,
1824.
|
67. |
Frank, K., and
M. G. F. Fuortes.
Potentials recorded from the spinal cord with microelectrodes.
J. Physiol. London
130:
625–654,
1955.
|
68. |
Frederickson, R. C. A.,
M. Neuss,
S. L. Morzorati, and
W. J. McBride.
A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rat.
Brain Res.
145:
117–126,
1978.
|
69. |
Freeman, J. A.,
The cerebellum as a timing device: an experimental study in the frog.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 397–420.
|
70. |
Freeman, J. A., and
M. Lubozynski.
Modulation of Purkinje cell firing by laterally‐mediated inhibition in the cerebellum of Bufo marinus.
Federation Proc.
32:
365,
1973.
|
71. |
Freeman, J. A., and
C. Nicholson.
Experimental optimization of current source‐density technique for anuran cerebellum.
J. Neurophysiol.
38:
369–382,
1975.
|
72. |
Freeman, J. A., and
J. Stone.
A technique for current density analysis of field potentials and its application to the frog cerebellum.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 421–430.
|
73. |
Furukawa, T., and
E. J. Furshpan.
Two inhibitory mechanisms in the Mauthner neurons of goldfish.
J. Neurophysiol.
26:
140–176,
1963.
|
74. |
Gardner‐Medwin, A. R.
An extreme supernormal period in cerebellar parallel fibres.
J. Physiol. London
222:
357–371,
1972.
|
75. |
Gilbert, P. F. C.
A theory of memory that explains the function and structure of the cerebellum.
Brain Res.
70:
1–18,
1974.
|
76. |
Gilbert, P. F. C.
How the cerebellum could memorise movements.
Nature London
254:
688–689,
1975.
|
77. |
Gilbert, P. F. C., and
W. T. Thach.
Purkinje cell activity during motor learning.
Brain Res.
128:
309–328,
1977.
|
78. |
Gould, B. B., and
A. M. Graybiel.
Afferents to the cerebellar cortex in the cat. Evidence for an intrinsic pathway leading from the deep nuclei to the cortex.
Brain Res.
110:
601–611,
1976.
|
79. |
Granit, R., and
C. G. Phillips.
Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats.
J. Physiol. London
133:
520–547,
1956.
|
80. |
Granit, R., and
C. G. Phillips.
Effect on Purkinje cells of surface stimulation of the cerebellum.
J. Physiol. London
135:
73–92,
1957.
|
81. |
Gross, N.
Sensory representation within the cerebellum of the pigeon.
Brain Res.
21:
280–283,
1970.
|
82. |
Guselnikov, V. I., and
V. I. Ivanova.
Electrical responses of cerebellum to the effects of various stimuli in lower vertebrates.
Fiziol. Zh. SSSR im. I. M. Sechenova
44:
118–125,
1958.
|
83. |
Hackett, J. T.
Calcium dependency of excitatory chemical synaptic transmission in the frog cerebellum in vitro.
Brain Res.
114:
35–46,
1976.
|
84. |
Hagiwara, S.
Calcium spikes.
Adv. Biophys.
4:
71–102,
1973.
|
85. |
Hámori, J., and
J. Szentágothai.
Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study.
Exp. Brain Res.
2:
35–48,
1966.
|
86. |
Haugedé‐carré, F.,
T. Szabo, and
F. Kirschbaum.
Development of the gigantocerebellum of the weakly electric fish pollimyrus.
J. Physiol. Paris
75:
381–395,
1979.
|
87. |
Heier, P.
Fundamental principles in the structure of the brain; a study of the brain of Petromyzon fluviatilis.
Acta Anat. Suppl.
8:
1–112,
1948.
|
88. |
Herndon, R. M.,
G. Margolis, and
L. Kilham.
Virus‐induced cerebellar malformation. An electron microscopic study.
J. Neuropathol. Exp. Neurol.
28:
164,
1969.
|
89. |
Herndon, R. M.,
G. Margolis, and
L. Kilham.
Synaptic organization of the malformed cerebellum induced by perinatal infection with feline panleukopenia virus (PLV). II. The Purkinje cell and its afferents.
J. Neuropathol. Exp. Neurol.
30:
557–560,
1971.
|
90. |
Herrick, C. J.
Origin and evolution of the cerebellum.
Arch. Neurol. Psychiatry Chicago
11:
621–652,
1924.
|
91. |
Hess, R., and
J. I. Simpson.
Visual and somatosensory messages to the rabbit's cerebellar flocculus.
Neurosci. Lett. Suppl.
1:
146,
1978.
|
92. |
Hillman, D. E.
Morphological organization of frog cerebellar cortex: a light and electron microscopic study.
J. Neurophysiol.
32:
818–846,
1969.
|
93. |
Hillman, D. E.,
Neuronal organization of the cerebellar cortex in amphibia and reptilia.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc,
1969,
p. 279–325.
|
94. |
Hodgkin, A. L.
The local electric changes associated with repetitive action in a nonmedulated axon.
J. Physiol. London
107:
165–181,
1948.
|
95. |
Hoffer, B. J.,
G. R. Siggins, and
F. E. Bloom.
Studies on norepinephrine‐containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis.
Brain Res.
25:
523–534,
1971.
|
96. |
Holmes, G.
The cerebellum in man.
Brain
63:
1–30,
1939.
|
97. |
Hounsgaard, J., and
C. Yamamoto.
Dendritic spikes in Purkinje cells of the guinea pig cerebellum studied in vitro.
Exp. Brain Res.
37:
387–398,
1979.
|
98. |
Ito, M.
Neurophysiological aspects of the cerebellar motor control system.
Int. J. Neurol.
7:
162–176,
1970.
|
99. |
Ito, M.
Neural design of the cerebellar motor control system.
Brain Res.
40:
81–84,
1972.
|
100. |
Ito, M.,
The control mechanism of cerebellar motor systems.
In: The Neurosciences: Third Study Program,
edited by
F. O. Schmitt and
F. G. Worden.
Cambridge:
MIT Press,
1974,
p. 293–303.
|
101. |
Ito, M.,
Adaptive modification of the vestibulo‐ocular reflex in rabbits affected by visual inputs and its possible neuronal mechanisms.
In: Progress in Brain Research. Reflex Control of Posture and Movement,
edited by
R. Granit and
O. Pompeiano.
Amsterdam:
Elsevier,
1979,
vol. 50,
p. 757–761.
|
102. |
Ito, M.,
Eye movements and the cerebellum.
In: The Cerebellum: New Vistas,
edited by
S. L. Palay and
V. Chan‐Palay.
Heidelberg:
Springer‐Verlag.
In press.
|
103. |
Ito, M.,
N. Kawai, and
M. Udo.
The origin of cerebellar‐induced inhibition of Deiters' neurons. III. Distribution of the inhibitory zone.
Exp. Brain Res.
4:
310–320,
1968.
|
104. |
Ito, M.,
N. Nisimaru, and
K. Shibuki.
Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells.
Nature London
227:
568–569,
1979.
|
105. |
Ito, M.,
K. Obata, and
R. Ochi.
The origin of cerebellar‐evoked inhibition of Deiters' neurons. II. Temporal correlation between the trans‐synaptic activation of Purkinje cells and the inhibition of Deiters' neurons.
Exp. Brain Res.
2:
350–364,
1966.
|
106. |
Ito, M.,
I. Olov, and
I. Shimoyama.
Reduction of the cerebellar stimulus effect on rat Deiters' neurons after chemical destruction of the inferior olive.
Exp. Brain Res.
33:
143–145,
1978.
|
107. |
Ito, M., and
J. I. Simpson.
Discharges in Purkinje cell axons during climbing fiber activation.
Brain Res.
31:
215–219,
1971.
|
108. |
Ito, M., and
M. Yoshida.
The origin of cerebellar‐induced inhibition of Deiters' neurons. I. Monosynaptic initiation of the inhibitory postsynaptic potentials.
Exp. Brain Res.
2:
330–349,
1966.
|
109. |
Ito, M.,
M. Yoshida,
K. Obata,
N. Kawai, and
M. Udo.
Inhibitory control of intracerebellar nuclei by the Purkinje cell axons.
Exp. Brain Res.
10:
64–80,
1970.
|
110. |
Jansen, J. K. S.
Afferent impulses to the cerebellar hemispheres from the cerebral cortex and certain subcortical nuclei.
Acta Physiol. Scand. Suppl.
143:
1–99,
1957.
|
111. |
Johnston, J. B.
The brain of Petromyzon.
J. Comp. Neurol.
12:
1–106,
1902.
|
112. |
Johnston, J. B.
The Nervous System of Vertebrates.
Philadelphia:
Blakiston,
1909.
|
113. |
Kaiserman‐Abramof, I. R., and
S. L. Palay.
Fine structural studies of the cerebellar cortex in mormyrid fish.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 171–205.
|
114. |
Kandel, E. R., and
W. A. Spencer.
Electrophysiological properties of an archicortical neuron.
Ann. NY Acad. Sci.
94:
570–603,
1961.
|
115. |
Karamian, A. I.,
V. V. Fanardjian, and
A. A. Kosareva.
The functional and morphological evolution of the cerebellum and its role in behavior.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 639–673.
|
116. |
Kawamura, H., and
L. Provini.
Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids.
Brain Res.
24:
293–304,
1979.
|
117. |
Kennedy, D. T.,
T. Shimono, and
S. T. Kitai.
Parallel fiber and white matter activation of Purkinje cells in a reptilian cerebellum (Lacerta viridis).
Brain Res.
22:
381–385,
1970.
|
118. |
Kidokoro, Y.
Direct inhibitory innervation of teleost oculomotor neurons by cerebellar Purkinje cells.
Brain Res.
10:
453–456,
1968.
|
119. |
Kidokoro, Y.,
Cerebellar and vestibular control of fish oculomotor neurones.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 257–276.
|
120. |
King, J. S.,
J. A. Andrezik,
W. M. Falls, and
G. F. Martin.
Synaptic organization of cerebello‐olivary circuit.
Exp. Brain Res.
26:
159–170,
1976.
|
121. |
Kitai, S. T.,
T. Shimono, and
D. T. Kennedy.
Inhibition in the cerebellar cortex of the lizard, Lacerta viridis.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 481–489.
|
122. |
Korn, H., and
H. Axelrod.
Electrical inhibition of Purkinje cells in the cerebellum of the rat.
Proc. Natl. Acad. Sci. USA
77:
6244–6247,
1980.
|
123. |
Kornhuber, H. H.
Motor functions of cerebellum and basal ganglia: the cerebello‐cortical saccadic (ballistic) clock, the cerebello‐nuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator.
Kybernetik
8:
157–162,
1971.
|
124. |
Kostyuk, P. G., and
O. A. Krishtal.
Separation of sodium and calcium currents in the somatic membrane of mollusc neurones.
J. Physiol. London
270:
545–568,
1977.
|
125. |
Kotchabhakdi, N.
Functional circuitry of the goldfish cerebellum.
J. Comp. Physiol.
112:
47–73,
1976.
|
126. |
Kotchabhakdi, N.
Functional organization of the goldfish cerebellum.
J. Comp. Physiol.
112:
75–93,
1976.
|
127. |
Kron, G.
Tensor Analysis of Networks.
New York:
Wiley,
1939.
|
128. |
Kwan, H. C., and
J. T. Murphy.
A basis for extracellular current density analysis in cerebellar cortex.
J. Neurophysiol.
37:
170–180,
1974.
|
129. |
Kwan, H. C., and
J. T. Murphy.
Extracellular current density analysis of responses in cerebellar cortex to climbing fiber activation.
J. Neurophysiol.
37:
333–345,
1974.
|
130. |
Kwan, H. C., and
J. T. Murphy.
Extracellular current density analysis of responses in cerebellar cortex to mossy fiber activation.
J. Neurophysiol.
37:
947–953,
1974.
|
131. |
Lamarre, Y.,
C. de Montigny,
M. Dumont, and
M. Weiss.
Harmaline‐induced rhythmic activity of cerebellar and lower brain stem neurons.
Brain Res.
32:
246–250,
1971.
|
132. |
Larramendi, L. M. H., and
T. Victor.
Synapses on spines of the Purkinje cell of the mouse. An electron microscopic study.
Brain Res.
5:
15–30,
1967.
|
133. |
Larsell, O.
The cerebellum of myxinoids and petromyzonts, including developmental stages in the lampreys.
J. Comp. Neurol.
86:
395–446,
1947.
|
134. |
Larsell, O.
Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds,
edited by
J. Jansen.
Minneapolis:
Univ. of Minnesota Press,
1967.
|
135. |
Latham, A., and
D. H. Paul.
Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres.
J. Physiol. London
213:
135–156,
1971.
|
136. |
Libouban, S., and
T. Szabo.
An integration centre of the mormyrid fish brain: the auricula cerebelli. An HRP study.
Neurosci. Lett.
6:
115–119,
1977.
|
137. |
Llinás, R.
Mechanisms of supraspinal actions upon spinal cord activities. Differences between reticular and cerebellar inhibitory actions upon alpha extensor motoneurons.
J. Neurophysiol.
27:
1117–1126,
1964.
|
138. |
Llinás, R.,
Neuronal operations in cerebellar transactions.
In: The Neurosciences: Second Study Program,
edited by
F. O. Schmitt.
New York:
Rockefeller Univ. Press,
1970,
p. 409–426.
|
139. |
Llinás, R.
18th Bowditch Lecture: motor aspects of cerebellar control.
Physiologist
17:
19–46,
1974.
|
140. |
Llinás, R.,
The role of calcium in neuronal function.
In: The Neurosciences: Fourth Study Program,
edited by
F. O. Schmitt and
F. G. Worden.
Cambridge:
MIT Press,
1979,
p. 555–571.
|
141. |
Llinás, R.,
Radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer.
In: The Cerebellum: New Vistas,
edited by
S. L. Palay and
V. Chan‐Palay.
Heidelberg:
Springer‐Verlag.
In press.
|
142. |
Llinás, R.,
R. Baker, and
C. Sotelo.
Electrotonic coupling between neurons in cat inferior olive.
J. Neurophysiol.
37:
560–571,
1974.
|
143. |
Llinás, R.,
J. R. Bloedel, and
D. E. Hillman.
Functional characterization of neuronal circuitry of frog cerebellar cortex.
J. Neurophysiol.
32:
847–870,
1969.
|
144. |
Llinás, R.,
J. R. Bloedel, and
W. Roberts.
Antidromic invasion of Purkinje cells in frog cerebellum.
J. Neurophysiol.
32:
881–891,
1969.
|
145. |
Llinás, R., and
R. Hess.
Tetrodotoxin‐resistant dendritic spikes in avian Purkinje cells.
Proc. Natl. Acad. Sci. USA
73:
2520–2523,
1976.
|
146. |
Llinás, R., and
D. E. Hillman.
Physiological and morphological organization of the cerebellar circuits of various vertebrates.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 43–73.
|
147. |
Llinás, R.,
D. E. Hillman, and
W. Precht.
Functional aspects of cerebellar evolution.
In: The Cerebellum in Health and Disease,
edited by
W. S. Fields and
W. D. Willis, Jr.
St. Louis:
Green,
1970,
p. 269–291.
|
148. |
Llinás, R.,
D. E. Hillman, and
W. Precht.
Neuronal circuit reorganization in mammalian agranular cerebellar cortex.
J. Neurobiol.
4:
69–94,
1973.
|
149. |
Llinás, R., and
C. Nicholson.
Electrophysiological analysis of alligator cerebellar cortex: a study on dendritic spikes.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 431–465.
|
150. |
Llinás, R., and
C. Nicholson.
Electrophysiological properties of dendrites and somata in alligator Purkinje cells.
J. Neurophysiol.
34:
532–551,
1971.
|
151. |
Llinás, R., and
C. Nicholson.
Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse.
J. Neurophysiol.
39:
311–323,
1976.
|
152. |
Llinás, R., and
J. I. Simpson.
Cerebellar control of movement.
In: Handbook of Behavioral Neurobiology,
edited by
A. Towe and
E. Luschei.
New York:
Plenum,
vol. II.
In press.
|
153. |
Llinás, R., and
M. Sugimori.
Calcium conductances in Purkinje cell dendrites: their role in development and integration.
In: Progress in Brain Research, Development and Chemical Specificity of Neurons,
edited by
M. Cuénod.
Amsterdam:
Elsevier,
1979,
vol. 51,
p. 323–334.
|
154. |
Llinás, R., and
M. Sugimori.
Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices.
J. Physiol. London
305:
171–195,
1980.
|
155. |
Llinás, R., and
M. Sugimori.
Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.
J. Physiol. London
305:
197–213,
1980.
|
156. |
Llinás, R., and
M. Sugimori.
Functional significance of the climbing fiber input to Purkinje cells: an in vitro study in mammalian slices.
In: The Cerebellum: New Vistas,
edited by
S. L. Palay and
V. Chan‐Palay.
Heidelberg:
Springer‐Verlag.
In press.
|
157. |
Llinás, R., and
R. A. Volkind.
The olivo‐cerebellar system: functional properties as revealed by harmaline‐induced tremor.
Exp. Brain Res.
18:
69–87,
1973.
|
158. |
Llinás, R.,
Y. Yarom, and
M. Sugimori.
The isolated mammalian brain in vitro: a new technique for the analysis of the electrical activity of neuronal circuit function.
Federation Proc.
in press.
|
159. |
Llinás, R., and
Y. Yarom.
Electrophysiological properties of mammalian inferior olivary cells in vitro.
In: The Inferior Olivary Nucleus: Anatomy and Physiology,
edited by
J. Courville,
C. de Montigny, and
Y. Lamarre.
New York:
Raven,
1980,
p. 379–388.
|
160. |
Llinás, R., and
Y. Yarom.
Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage‐dependent ionic conductances.
J. Physiol. London
in press.
|
161. |
Llinás, R., and
Y. Yarom.
Properties and distribution of ionic conductances generating electroresponsiveness of inferior olivary neurons in vitro.
J. Physiol. London
in press.
|
162. |
Lorente de Nó, R.
Action potential of the motoneurones of the hypoglossus nucleus.
J. Cell Comp. Physiol.
29:
207–288,
1947.
|
163. |
Maekawa, K., and
T. Takeda.
Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway.
Brain Res.
98:
590–595,
1975.
|
164. |
Magendie, F.
Précis élémentaire de physiologic
Paris:
Meguiguon‐Marvis,
1825,
vols. I and II.
|
165. |
Maler, L.,
H. J. Karten, and
M. V. L. Bennett.
The central connections of the posterior lateral line nerve of Gnathonemus petersii.
J. Comp. Neurol.
151:
57–66,
1973.
|
166. |
Maler, L.,
H. J. Karten, and
M. V. L. Bennett.
The central connections of the anterior lateral line nerve of Gnathonemus petersii.
J. Comp. Neurol.
151:
67–84,
1973.
|
167. |
Mano, N.
Simple and complex spike activities of the cerebellar Purkinje cell in relation to selective alternate movements in intact monkey.
Brain Res.
70:
381–393,
1974.
|
168. |
Marr, D.
A theory of cerebellar cortex.
J. Physiol. London
202:
437–470,
1969.
|
169. |
Marshall, K. C.,
J. M. Wojtowicz, and
W. J. Hendelman.
Patterns of functional synaptic connections in organized cultures of cerebellum.
Neuroscience
5:
1847–1857,
1980.
|
170. |
Mason, S. T., and
S. D. Iverson.
An investigation of the role of cortical and cerebellar noradrenaline in associative motor learning in the rat.
Brain Res.
134:
513–527,
1977.
|
171. |
Matsushita, M., and
Y. Hosoya.
The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat: a study with the horseradish peroxidase technique.
Brain Res.
142:
237–248,
1978.
|
172. |
Matsushita, M., and
M. Ikeda.
Olivary projections to the cerebellar nuclei in the cat.
Exp. Brain Res.
10:
488–500,
1970.
|
173. |
Matthews, P. B. C.,
C. G. Phillips, and
G. Rushworth.
Afferent systems converging upon cerebellar Purkinje cells in the frog.
Q. J. Exp. Physiol.
43:
38–52,
1958.
|
174. |
McBride, W. J., and
R. C. A. Frederickson.
Taurine as a possible inhibitory transmitter in the cerebellum.
Federation Proc.
39:
2701–2705,
1980.
|
175. |
McCarley, R. W., and
J. A. Hobson.
Simple spike firing patterns of cat cerebellar Purkinje cells in sleep and waking.
Electroencephalogr. Clin. Neurophysiol.
33:
471–483,
1972.
|
176. |
de Montigny, C., and
Y. Lamarre.
Activity in the olivocerebello‐bulbar system of the cat during ibogaline‐ and oxotremorine‐induced tremor.
Brain Res.
82:
369–373,
1974.
|
177. |
Moruzzi, G.
Effects at different frequencies of cerebellar stimulation upon postural tonus and myotatic reflexes.
Electroencephalogr. Clin. Neurophysiol.
2:
463–469,
1950.
|
178. |
Mugnaini, E.,
Ultrastructural studies on the cerebellar histogenesis. II. Maturation of nerve cell populations and establishment of synaptic connections in the cerebellar cortex of the chick.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 749–782.
|
179. |
Mugnaini, E.,
The histology and cytology of the cerebellar cortex.
In: The Comparative Anatomy and Histology of the Cerebellum: Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex,
edited by
O. Larsell and
J. Jansen.
Minneapolis:
Univ. of Minnesota Press,
1972,
p. 201–262.
|
180. |
Mugnaini, E.,
R. L. Atluri, and
J. C. Hour.
Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli.
J. Neurophysiol.
37:
1–29,
1974.
|
181. |
Mugnaini, E., and
A. L. Dahl.
Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken.
J. Comp. Neurol.
162:
417–432,
1975.
|
182. |
Murphy, J. T., and
N. H. Sabah.
Spontaneous firing of cerebellar Purkinje cells in decerebrate and barbiturate anesthetized cats.
Brain Res.
17:
515–519,
1970.
|
183. |
Nacimiento, A. C.,
Spontaneous and evoked discharges of cerebellar Purkinje cells in the frog.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 373–395.
|
184. |
Narahashi, T.,
J. W. Moore, and
W. R. Scott.
Tetrodotoxin blockage of sodium conductance increase in lobster giant axons.
J. Gen. Physiol.
47:
965–974,
1964.
|
185. |
Nicholson, C.,
G. ten Bruggencate,
R. Steinberg, and
H. Stoeckle.
Calcium modulation in brain extracellular microenvironment demonstrated with ion‐selective micropipette.
Proc. Natl. Acad. Sci. USA
74:
1287–1290,
1977.
|
186. |
Nicholson, C.,
G. ten Bruggencate,
H. Stöckle, and
R. Steinberg.
Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex.
J. Neurophysiol.
41:
1026–1039,
1978.
|
187. |
Nicholson, C., and
J. A. Freeman.
Theory of current source‐density analysis and determination of conductivity tensor for anuran cerebellum.
J. Neurophysiol.
38:
356–368,
1975.
|
188. |
Nicholson, C., and
R. Llinás.
Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes.
J. Neurophysiol.
34:
509–531,
1971.
|
189. |
Nicholson, C., and
R. Llinás.
Real time current source‐density analysis using multi‐electrode array in cat cerebellum.
Brain Res.
100:
418–424,
1975.
|
190. |
Nicholson, C.,
R. Llinás, and
W. Precht.
Neural elements of the cerebellum in elasmobranch fishes: structural and functional characteristics.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 215–243.
|
191. |
Nieuwenhuys, R.,
Comparative anatomy of the cerebellum.
In Progress in Brain Research. The Cerebellum,
edited by
C. A. Fox and
R. S. Snider.
Amsterdam:
Elsevier,
1967,
vol. 25,
p. 1–83.
|
192. |
Nieuwenhuys, R., and
C. Nicholson.
A survey of the general morphology of the fiber connections and the possible functional significance of the giganto‐cerebellum of mormyrid fishes.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 107–134.
|
193. |
Nieuwenhuys, R., and
C. Nicholson.
Aspects of the histology of the cerebellum of mormyrid fishes.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 135–169.
|
194. |
Obata, K.,
M. Ito,
R. Ochi, and
N. Sato.
Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ‐aminobutyric acid on Deiters' neurones.
Exp. Brain Res.
4:
43–57,
1967.
|
195. |
Oscarsson, O.,
The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 525–537.
|
196. |
Oscarsson, O.,
Functional organization of spinocerebellar paths.
In: Handbook of Sensory Physiology. Somatosensory System,
edited by
A. Iggo.
New York:
Springer‐Verlag,
1973,
vol. II,
p. 339–380.
|
197. |
Oscarsson, O.,
Functional organization of olivary projection to the cerebellar anterior lobe.
In: The Inferior Olivary Nucleus: Anatomy and Physiology,
edited by
J. Courville,
C. de Montigny, and
Y. Lamarre.
New York:
Raven,
1980,
p. 279–289.
|
198. |
Oscarsson, O., and
B. Sjölund.
The ventral spino‐olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe.
Exp. Brain Res.
28:
469–486,
1977.
|
199. |
Oscarsson, O., and
B. Sjölund.
The ventral spino‐olivocerebellar system in the cat. III. Functional characteristics of the five paths.
Exp. Brain Res.
28:
505–520,
1977.
|
200. |
Palay, S. L., and
V. Chan‐Palay.
Cerebellar Cortex; Cytology and Organization.
Berlin:
Springer‐Verlag,
1974.
|
201. |
Palkovits, M.,
P. Magyar, and
J. Szentágothai.
Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer.
Brain Res.
32:
15–30,
1971.
|
202. |
Palkovits, M.,
P. Magyar, and
J. Szentágothai.
Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer.
Brain Res.
34:
1–18,
1971.
|
203. |
Paul, D. H.
Electrical activity in the cerebellum of the spiny dogfish (Squalus acanthias).
J. Physiol. London
191:
68P–70P,
1967.
|
204. |
Paul, D. H.,
Electrophysiological studies on parallel fibers of the corpus cerebelli of the dogfish Scyliorhinus canicula.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 245–249.
|
205. |
Pearson, A. A.
The acustico‐lateral centers and the cerebellum, with fiber connections, of fishes.
J. Comp. Neurol.
65:
201–294,
1936.
|
206. |
Pellet, J.,
M. F. Tardy,
F. Harlay,
S. Dubrocar, and
J. C. Gilhodes.
Activité spontanée des cellules de Purkinje chez le chat chronique: étude statistique des spikes complexes.
Brain Res.
81:
75–95,
1974.
|
207. |
Pellionisz, A.
Cerebellar control theory.
Recent Dev. Neurobiol. Hung.
8:
211–243,
1978.
|
208. |
Pellionisz, A., and
R. Llinás.
Brain modeling by tensor network theory and computer simulation. The cerebellum: parallel processor for predictive coordination.
Neuroscience
4:
323–348,
1979.
|
209. |
Pellionisz, A., and
R. Llinás.
Tensorial approach to the geometry of brain function: cerebellar coordination via metric tensor.
Neuroscience
5:
1125–1136,
1980.
|
210. |
Pellionisz, A.,
R. Lliná and
D. H. Perkel.
A computer model of the cerebellar cortex of the frog.
Neuroscience
2:
19–36,
1977.
|
211. |
Peterson, R.
Electrical response of the goldfish cerebellum. I. Response to parallel fiber and peduncle stimulation.
Brain Res.
47:
67–79,
1972.
|
212. |
Pompeiano, O.
Responses to electrical stimulation of the intermediate part of the cerebellar anterior lobe in the decerebrate cat.
Arch. Ital. Biol.
96:
330–360,
1958.
|
213. |
Precht, W.
Neuronal Operations in the Vestibular System.
Berlin:
Springer‐Verlag,
1978.
|
214. |
Precht, W., and
R. Llinás.
Comparative aspects of the vestibular input to the cerebellum.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 677–702.
|
215. |
Ramón Y Cajal, S.
Histologic du système nerveux de l'homme et des vertébrés.
Paris:
Maloine,
1909–1911,
vols. I and II.
|
216. |
Rolando, L.
Experience sur les fonctions du système nerveux.
J. Physiol. Exp.
3:
113–114,
1823.
|
217. |
Rubia, F. J.,
U. Hoeppener, and
H. Langhof.
Lateral inhibition of Purkinje cells through climbing fiber afferents.
Brain Res.
70:
153–156,
1974.
|
218. |
Rubia, F. J., and
W. Lange.
Lateral inhibition of Purkinje cells via climbing fibres.
Pfluegers Arch.
347:
R51,
1974.
|
219. |
Rushmer, D. S., and
D. J. Woodward.
Inhibition of Purkinje cells in the frog cerebellum. I. Evidence for a stellate cell inhibitory pathway.
Brain Res.
33:
83–90,
1971.
|
220. |
Schaper, A.
The finer structure of the selachian cerebellum (Mustelus vulgaris) as shown by chrome‐silver preparation.
J. Comp. Neurol.
8:
1–20,
1898.
|
221. |
Schlegel, P. A.
Perception of objects in weakly electric fish Gymnotus carapo as studied in recordings from rhombencephalic neurons.
Exp. Brain Res.
18:
340–354,
1973.
|
222. |
Schnitzlein, H. N., and
J. R. Faucette.
General morphology of the fish cerebellum.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 77–106.
|
223. |
Schwartzkroin, P. A., and
M. Slawsky.
Probable calcium spikes in hippocampal neurons.
Brain Res.
135:
157–161,
1977.
|
224. |
Shambes, G. M.,
J. M. Gibson, and
W. Welker.
Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping.
Brain Behav. Evol.
15:
94–140,
1978.
|
225. |
Shinoda, Y., and
K. Yoshida.
Neural pathways from the vestibular labyrinths to the flocculus in the cat.
Exp. Brain Res.
22:
97–111,
1975.
|
226. |
Siggins, G. R.,
B. J. Hoffer,
A. P. Oliver, and
F. E. Bloom.
Activation of a central noradrenergic projection to the cerebellum.
Nature London
233:
481–483,
1971.
|
227. |
Simpson, J. I.,
W. Precht, and
R. Llinás.
Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum.
Pfluegers Arch.
351:
183–193,
1974.
|
228. |
Smolyaninov, V. A.,
Some special features of organization of the cerebellar cortex.
In: Models of the Structural‐Functional Organization of Certain Biological Systems,
edited by
I. M. Gel'fand,
V. S. Gurfinkel',
S. V. Fomin, and
M. L. Tsetlin.
Cambridge:
MIT Press,
1971,
p. 251–325.
{Transl. from Russian by Carol R. Beard, 1966.}.
|
229. |
Sotelo, C.,
Ultrastructural aspects of the cerebellar cortex of the frog.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 327–371.
|
230. |
Sotelo, C.,
D. E. Hillman,
A. J. Zamora, and
R. Llinás.
Climbing fiber deafferentation: its action on Purkinje cell dendritic spines.
Brain Res.
98:
574–581,
1975.
|
231. |
Sotelo, C., and
R. Llinás.
Specialized membrane junctions between neurons in the vertebrate cerebellar cortex.
J. Cell Biol.
53:
271–289,
1972.
|
232. |
Sotelo, C.,
R. Llinás, and
R. Baker.
Structural study of the inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling.
J. Neurophysiol.
37:
541–559,
1974.
|
233. |
Spencer, W. A.,
The physiology of supraspinal neurons in mammals.
In: Handbook of Physiology. The Nervous System,
edited by
J. M. Brookhart and
V. B. Mountcastle.
Bethesda, MD:
Am. Physiol. Soc.,
1977,
sect. 1,
vol. I,
pt. 2, chapt. 26,
p. 969–1021.
|
234. |
Spira, M. E., and
M. V. L. Bennett.
Synaptic control of electrotonic coupling between neurons.
Brain Res.
37:
294–300,
1972.
|
235. |
Stensiö, E.
The brain and the cranial nerves in fossil, lower craniate vertebrates.
Skr. Nor. Vidensk. Akad. Oslo
13:
1–120,
1963.
|
236. |
Sugimori, M., and
R. Llinás.
Lidocaine differentially blocks fast and slowly inactivating sodium conductance in Purkinje cells: an in vitro study in guinea pig cerebellum using iontophoretic glutamic acid.
Soc. Neurosci. Abstr.
6:
468,
1980.
|
237. |
Szentágothai, J.
Structuro‐functional considerations of the cerebellar neuron network.
Proc. IEEE
56:
960–968,
1968.
|
238. |
Szentágothai, J.,
Glomerular synapses, complex synaptic arrangements, and their operational significance.
In: The Neurosciences: Second Study Program,
edited by
F. O. Schmitt.
New York:
Rockefeller Univ. Press,
1970,
p. 427–443.
|
239. |
Szentágothai, J., and
K. Rajkovitz.
Ueber den Ursprung der Kletterfasern des Kleinhirns.
Z. Anat. Entwicklungsgesch.
121:
130–141,
1959.
|
240. |
Terzuolo, C. A.
Cerebellar inhibitory and excitatory actions upon spinal extensor motoneurons.
Arch. Ital. Biol.
97:
316–339,
1959.
|
241. |
Thach, W. T.
Somatosensory receptive fields of single units in cat cerebellar cortex.
J. Neurophysiol.
30:
675–696,
1967.
|
242. |
Thach, W. T.
Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey.
J. Neurophysiol.
31:
785–797,
1968.
|
243. |
Thach, W. T.
Cerebellar output: properties, synthesis and uses.
Brain Res.
40:
89–97,
1972.
|
244. |
Tolbert, D. L.,
H. Bantli, and
J. R. Bloedel.
Anatomical and physiological evidence for a cerebellar nucleocortical projection in the cat.
Neuroscience
1:
205–217,
1976.
|
245. |
Tsukahara, N.,
Electrophysiological study of cerebellar nucleus neurones in the dogfish, Mustelus canis.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 251–256.
|
246. |
Tsukahara, N.,
K. Toyama,
K. Kosaka, and
M. Udo.
Disfacilitation of red nucleus neurones.
Experientia
21:
544,
1965.
|
247. |
Tuge, H.
Studies on cerebellar function in the teleost. II. Is there a cerebello‐tectal path? Marchi method.
J. Comp. Neurol.
61:
225–251,
1934.
|
248. |
Voogd, J.,
The importance of fiber connections in the comparative anatomy of the mammalian cerebellum.
In: Neurobiology of Cerebellar Evolution and Development,
edited by
R. Llinás.
Chicago:
Am. Med. Assoc.,
1969,
p. 493–514.
|
249. |
Waespe, W., and
V. Henn.
The velocity response of vestibular nucleus neurons during vestibular, visual and combined angular acceleration.
Exp. Brain Res.
37:
337–347,
1979.
|
250. |
Walsh, J. V.,
J. C. Houk, and
E. Mugnaini.
Identification of unitary potentials in turtle cerebellum and correlations with structures in granular layer.
J. Neurophysiol.
37:
30–47,
1974.
|
251. |
Whitlock, D. G.
A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum.
J. Comp. Neurol.
97:
567–635,
1952.
|
252. |
Willis, T.
Cerebri anatome; cui accessit nervorum descripto et usus.
Amsterdam:
Schagen,
1664.
|
253. |
Wilson, V. J.,
M. Maeda, and
J. I. Franck.
Input from neck afferents to the cat flocculus.
Brain Res.
89:
133–138,
1975.
|
254. |
Wong, R. K. S.,
D. A. Prince, and
A. I. Basbaum.
Intradendritic recordings from hippocampal neurons.
Proc. Natl. Acad. Sci. USA.
76:
986–990,
1979.
|
255. |
Yarom, Y., and
R. Llinás.
Electrophysiological properties of mammalian inferior olive neuron in in vitro brain stem slices and in vitro whole brain stem.
Soc. Neurosci. Abstr.
5:
109,
1979.
|
256. |
Young, W.
Field potential analysis in elasmobranch cerebellum.
Brain Res.
199:
101–112,
1980.
|