Comprehensive Physiology Wiley Online Library

Anatomy of the Corpus Striatum and Brain Stem Integrating Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Striatum
1.1 Caudate Nucleus
1.2 Putamen
1.3 Cytology
1.4 Striatal Connections
2 Globus Pallidus
2.1 Cytology
2.2 Pallidal Connections
3 Substantia Nigra
3.1 Cytology
3.2 Nigral Afferent Fibers
3.3 Nigral Efferent Fibers
4 Subthalamic Nucleus
4.1 Cytology
4.2 Connections of the Subthalamic Nucleus
4.3 Lesions in the Subthalamic Nucleus
5 Red Nucleus
5.1 Cytology
5.2 Afferent Fiber Systems
5.3 Efferent Projections
6 Summary
Figure 1. Figure 1.

Horizontal section through the corpus striatum, internal capsule, and thalamus of the human. Weigert stain.

Figure 2. Figure 2.

Montage of a spiny type I striatal neuron of monkey. Note high density of spines on secondary and tertiary dendrites and the axon (arrows), which was traced for 350 μm without evidence of termination. Golgi preparation.

From DiFiglia et al. 67
Figure 3. Figure 3.

Camera lucida drawing of an aspiny type II striatal neuron of monkey seen in a Golgi preparation. This is an example of the largest cell type in the striatum; note thick and thin dendrites with varicosities which surround the soma. No identifiable axon was impregnated.

From DiFiglia et al. 67
Figure 4. Figure 4.

A: photomicrograph of a spiny caudate neuron in a cat injected with horseradish peroxidase (HRP). Bar, 10 μm. B: drawing of a spiny striatal neuron injected with HRP revealing features similar to those seen in Golgi preparations. C: drawing of same cell as in B, showing coiled and circuitous course of long axon. Bar, 20 μm.

From Kitai et al. 166
Figure 5. Figure 5.

Schematic diagram of striatal afferent systems of human, except those arising from raphe nuclei of midbrain. CM, centromedian nucleus; DM, dorsomedial nucleus; GP, globus pallidus; IC, internal capsule; PUT, putamen; RN, red nucleus; SN, substantia nigra; VPL, ventral posterolateral nucleus; VPM, ventral posteromedial nucleus.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore
Figure 6. Figure 6.

A: dark‐field photomicrograph of autoradiograph of a portion of the putamen in a monkey showing burstlike terminal label in corticostriate fibers. GP, globus pallidus; P, putamen; EC, external capsule. ×28. B: photomicrograph of cortical injection site in sagittal section (3H‐amino acids injected into area 1), which produced the isotope transport to putamen in A. Counterstained with thionin. ×10. C: cortical injection site in area 3a with diffusion into areas 3b and 4, which resulted in strips or bands of terminal label in putamen. Sagittal section counterstained with thionin. ×12.

From Jones et al. 145
Figure 7. Figure 7.

Projection drawings of frontal sections of monkey revealing complex and extensive pattern of terminal distribution of labeled corticostriate fibers in putamen resulting from injection of 3H‐amino acids in ipsilateral cortical areas 3a and 4 (shown in Fig. 6C). Numbers refer to individual sections. AC, anterior commissure; CN, caudate nucleus; GP, globus pallidus; LGN, lateral geniculate nucleus; OT, optic tract; P, putamen; VA, ventral anterior nucleus thalamus; VLo, ventral lateral nucleus thalamus, pars oralis; VLc, ventral lateral nucleus thalamus, pars caudalis; VPLo, ventral posterolateral nucleus thalamus, pars oralis; SN, substantia nigra.

From Jones et al. 145
Figure 8. Figure 8.

Diagram of topographical distribution of isotope transported bilateral to striatum following localized unilateral injections of 3H‐amino acids into motor cortex of monkey. Cl, claustrum; Cd, caudate nucleus; GP, globus pallidus; Pu, putamen.

From Künzle 176
Figure 9. Figure 9.

Dark‐field photomicrographs of autoradiographs demonstrating nigrostriate and nigrothalamic projections in monkey. Tritiated amino acids, evidenced by silver grains, labeled lateral portions of substantia nigra. A: isotope was transported to dorsal regions of putamen and to medial part of ventral lateral (VLm) and paralaminar part of dorsomedial thalamic nuclei. ×6. B: restricted area of isotope transport to putamen. ×16.

From Carpenter et al. 42
Figure 10. Figure 10.

Photomicrograph of a sagittal section of human brain through corpus striatum, internal capsule, and thalamus. Segments of globus pallidus are clearly delineated.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore
Figure 11. Figure 11.

Camera lucida drawings from Golgi preparations of 10 neurons in monkey globus pallidus. A: medial pallidal segment. B: lateral pallidal segment. No discernible morphological differences were found in these cells, though density is not the same in the two segments. Small arrows indicate identified initial portion of axons.

From Fox et al. 93
Figure 12. Figure 12.

Projection drawings in horizontal sections of thalamic degeneration resulting from a small lesion, mainly in rostral parts of medial pallidal segment, lateral to accessory medullary lamina in a monkey. Note that most profuse degeneration is in ventral anterior nucleus, pars principalis. AD, anterodorsal nucleus; AM, anteromedial nucleus; A V, anteroventral nucleus; BIC, brachium of inferior colliculus; BSC, brachium of superior colliculus; CI, inferior colliculus; CL, subthalamic nucleus; CLN, central lateral nucleus; CM, centromedial nucleus; CN, caudate nucleus; CS, superior colliculus; CSC, commissure of superior colliculus; DM, dorsomedial nucleus; DSCP, decussation of superior cerebellar peduncle; FR, fasciculus retroflexus; FX, fornix; H2, lenticular fasciculus; HB, habenular nucleus; IC, internal capsule; LG, lateral geniculate; LPS, lateral pallidal segment; MG, medial geniculate; ML, medial lemniscus; MPS, medial pallidal segment; MTT, mammillothalamic tract; PC, posterior commissure; PF, parafascicular nucleus; PUL, pulvinar; PUT, putamen; RN, red nucleus; SM, stria medullaris; SN, substantia nigra; VAmc, ventral anterior nucleus, pars magnocellularis; VApc, ventral anterior nucleus, pars principalis; VLc, ventral lateral nucleus, pars caudalis; VLm, ventral lateral nucleus, pars medialis; VLo, ventral lateral nucleus, pars oralis; VPLc, ventral posterolateral nucleus, pars caudalis; VPLo, ventral posterolateral nucleus, pars oralis; VPM, ventral posteromedial nucleus; X, area X; ZI zona incerta.

From Kuo and Carpenter 180
Figure 13. Figure 13.

Projection drawings of thalamic degeneration in monkey resulting from a small lesion in posterior part of medial pallidal segment, medial to the accessory medullary lamina. Degeneration in rostral ventral tier thalamic nuclei was restricted to the ventral lateral pars oralis and passed to this nucleus via lenticular fasciculus. Abbreviations are same as in Figure 12.

From Kuo and Carpenter 180
Figure 14. Figure 14.

Schematic diagrams of origin and course of fibers forming ansa lenticularis (ansa lent.) and lenticular fasciculus (lent. fasc.) in monkey. Fibers of ansa lenticularis arise from outer portions of medial pallidal segment, lateral to accessory medullary lamina (dashed tine), and course rostrally, ventrally, and medially. Fibers forming lenticular fasciculus arise from parts of medial pallidal segment medial to accessory medullary lamina, and course dorsally and medially through internal capsule. CL, subthalamic nucleus; FX, fornix; IC, internal capsule; LPS, lateral pallidal segment; MPS, medial pallidal segment; SN, substantia nigra.

From Kuo and Carpenter 180
Figure 15. Figure 15.

Dark‐field photomicrographs of sections through the diencephalon demonstrating transport of 3H‐amino acids from portions of medial pallidal segment in monkey (rhesus C‐1360). A: label in virtually all parts of medial pallidal segment was transported profusely, but in a patchy fashion, to ventral anterior, pars principalis and ventral lateral, pars oralis. B: label was transported in a more diffuse and less intense fashion to rostral parts of centromedian nucleus. Transport of isotope to these thalamic nuclei was via both ansa lenticularis and lenticular fasciculus. Cresyl violet stain. ×3.5.

From Kim, Carpenter, et al. 160
Figure 16. Figure 16.

Dark‐field photomicrographs of sections through diencephalon in rhesus C‐1369 demonstrating transport of isotope predominantly from outer part of the medial pallidal segment via ansa lenticularis. A: intense patchy pallidothalamic terminations are seen in ventral anterior nucleus pars principalis (VApc). B: very little transport of isotope was found in other ventral tier thalamic nuclei, suggesting a preferential projection from outer part of medial pallidal segment to VApc. ×3.5.

From Kim, Carpenter, et al. 160
Figure 17. Figure 17.

Dark‐field photomicrographs of sagittal sections in rhesus C‐1350. A: 3H‐amino acids labeling cells in inner part of medial pallidal segment resulted in transport via lenticular fasciculus to ventral lateral nucleus (pars oralis) of thalamus. ×3.5. Although there was no transport of isotope to subthalamic nucleus, isotope was identified in two locations within the substantia nigra (A, B). In the substantia nigra isotope was seen most intensely caudal to subthalamic nucleus; from this region some fibers passed to more caudal regions of the substantia nigra. B: faint streaks of radioactivity connect these two regions. ×6.

From Kim, Carpenter, et al. 160
Figure 18. Figure 18.

Photomicrographs of autoradiography of portions of substantia nigra of monkey labeled by injected 3H‐amino acids. A: cells in caudal, dorsal, and lateral portions of the substantia nigra were labeled. B: cells in medial and dorsal regions were labeled. Transport of label from the nigral neurons in A to thalamic nuclei is shown in Figure 19. Counterstained with cresyl violet. ×6.

From Carpenter et al. 42
Figure 19. Figure 19.

Dark‐field photomicrograph of a sagittal section of monkey through the thalamus showing transport of isotope from the region of the substantia nigra labeled in Figure 18A. Nigrothalamic terminations were seen in two thalamic nuclei in this section: 1) in a crescent‐shaped area of the dorsomedial nucleus, paralaminar part (DMpl), and 2) in the magnocellular part of the ventral anterior nucleus (VAmc), a nucleus that surrounds the mammillothalamic tract (MTT). ×16.

From Carpenter et al. 42
Figure 20. Figure 20.

Schematic diagrams of axoplasmic transport of isotope from substantia nigra to portions of striatum and to ventral lateral nucleus of thalamus, medial part (VLm). The portion of the substantia nigra labeled is shown in Figure 18B. Abbreviations used are as in Figure 12, except for: NST, nuclei of stria terminalis; Ret, reticular nucleus of thalamus; SNc, substantia nigra, pars compacta; SNr, substantia nigra, pars reticulata. Letters and numbers identify tissue blocks and sections.

From Carpenter et al. 42
Figure 21. Figure 21.

Schematic diagram of nigrotectal projections in monkey (C‐1374) demonstrated by axoplasmic transport of 3H‐amino acids. Isotope infiltrated the crus cerebri, pontine nuclei, and pregeniculate nucleus as well as most parts of substantia nigra. Majority of nigrotectal fibers terminate in middle gray layers of caudal two‐thirds of superior colliculus but some fibers appear to end in lateral parts of central gray. Although most nigrotectal fibers are ipsilateral, some enter the opposite superior colliculus. Abbreviations used are as in Figure 12, except for: CG, central gray; IC, inferior colliculus; IN, interstitial nucleus of Cajal; IPN, interpeduncular nucleus; MLF, medial longitudinal fasciculus; NPC, nuclei of the posterior commissure; PG, pontine gray; PGE, efferent fibers from the pregeniculate nucleus which terminate in rostral, superficial layers of the ipsilateral superior colliculus; SC, superior colliculus; SNpc, substantia nigra, pars compacta; SNpr, substantia nigra, pars reticulata; III, oculomotor nucleus; IV, trochlear nucleus.

From Jayaraman, Batton, and Carpenter 143
Figure 22. Figure 22.

Dark‐field photomicrographs of 3H‐labeled nigrotectal projections to middle gray layers of caudal two‐thirds of superior colliculus in rhesus monkey. A: terminal fibers appear arranged in patches or columns with the greatest radioactivity in medial regions. × 16. B: transtegmental course and terminations of nigrotectal fibers. The most profuse radioactivity appears in lateral portions of superior colliculus. ×10.

From Jayaraman, Batton, and Carpenter 143
Figure 23. Figure 23.

Sagittal section through medial regions of human corpus striatum, diencephalon, and upper brain stem. Continuity of putamen and caudate nucleus is evident as well as relationships of subthalamic nucleus, substantia nigra, and red nucleus. Weigert's stain.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore
Figure 24. Figure 24.

Transverse section of diencephalon of human through subthalamic nucleus and Forel's field H. Weigert's stain.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore
Figure 25. Figure 25.

Dark‐field photomicrographs of transverse sections of cat brain. A: globus pallidus is labeled with 3H‐amino acids. This portion of globus pallidus corresponds to lateral pallidal segment in primates and is separated from entopeduncular nucleus (medial pallidal segment) by fibers of internal capsule. ×5. B, C: profuse transport of isotope, evidenced by dense silver grains, is seen in terminals in subthalamic nucleus. B, ×4; C, ×12.

Figure 26. Figure 26.

A: outline drawings of cortical sites in which 3H‐amino acids were injected in the monkey. Dark circles represent areas that transported isotope to portions of subthalamic nucleus. B: summary diagram of regions of precentral, premotor, and prefrontal cortex that project to different regions of subthalamic nucleus. Ci, internal capsule; CM, centromedian nucleus; H1, Forel's field H1; H2, Forel's field H2; HYP, hypothalamus; Nc, substantia nigra, pars compacta; Nd, substantia nigra, pars reticulata; PCN, paracentral nucleus; PP, peduncular part of internal capsule; R, reticular nucleus of thalamus; RP, prerubral area; STN, subthalamic nucleus; TMT, mammillothalamic tract; VA, ventral anterior nucleus; VLm, ventral lateral nucleus, pars medialis; VLo, ventral lateral nucleus, pars oralis; VPLo, ventral posterolateral nucleus, pars oralis; VPI, ventral posterior inferior nucleus; Zi, zona incerta. F + 10.5, F + 9.3, and F + 7.5 refer to stereotaxic frontal planes rostral to interaural reference plane.

From Hartmann‐von Monakow et al. 120
Figure 27. Figure 27.

Low‐power photomicrograph of autoradiograph of 3H‐amino acids injected into subthalamic nucleus of the monkey.

From Nauta and Cole 227
Figure 28. Figure 28.

Dark‐field photomicrograph of a section from same monkey as shown in Figure 26, demonstrating transport of isotope to both segments of globus pallidus. White arrow indicates position of medial medullary lamina separating medial and lateral pallidal segments.

From Nauta and Cole 227
Figure 29. Figure 29.

Photomicrograph of a discrete lesion in subthalamic nucleus of monkey. Lesion produced contralateral subthalamic dyskinesia.

From Carpenter et al. 39
Figure 30. Figure 30.

Transverse section through junction of the human midbrain and diencephalon demonstrating red nucleus, portions of substantia nigra, and caudal pole of subthalamic nucleus.



Figure 1.

Horizontal section through the corpus striatum, internal capsule, and thalamus of the human. Weigert stain.



Figure 2.

Montage of a spiny type I striatal neuron of monkey. Note high density of spines on secondary and tertiary dendrites and the axon (arrows), which was traced for 350 μm without evidence of termination. Golgi preparation.

From DiFiglia et al. 67


Figure 3.

Camera lucida drawing of an aspiny type II striatal neuron of monkey seen in a Golgi preparation. This is an example of the largest cell type in the striatum; note thick and thin dendrites with varicosities which surround the soma. No identifiable axon was impregnated.

From DiFiglia et al. 67


Figure 4.

A: photomicrograph of a spiny caudate neuron in a cat injected with horseradish peroxidase (HRP). Bar, 10 μm. B: drawing of a spiny striatal neuron injected with HRP revealing features similar to those seen in Golgi preparations. C: drawing of same cell as in B, showing coiled and circuitous course of long axon. Bar, 20 μm.

From Kitai et al. 166


Figure 5.

Schematic diagram of striatal afferent systems of human, except those arising from raphe nuclei of midbrain. CM, centromedian nucleus; DM, dorsomedial nucleus; GP, globus pallidus; IC, internal capsule; PUT, putamen; RN, red nucleus; SN, substantia nigra; VPL, ventral posterolateral nucleus; VPM, ventral posteromedial nucleus.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore


Figure 6.

A: dark‐field photomicrograph of autoradiograph of a portion of the putamen in a monkey showing burstlike terminal label in corticostriate fibers. GP, globus pallidus; P, putamen; EC, external capsule. ×28. B: photomicrograph of cortical injection site in sagittal section (3H‐amino acids injected into area 1), which produced the isotope transport to putamen in A. Counterstained with thionin. ×10. C: cortical injection site in area 3a with diffusion into areas 3b and 4, which resulted in strips or bands of terminal label in putamen. Sagittal section counterstained with thionin. ×12.

From Jones et al. 145


Figure 7.

Projection drawings of frontal sections of monkey revealing complex and extensive pattern of terminal distribution of labeled corticostriate fibers in putamen resulting from injection of 3H‐amino acids in ipsilateral cortical areas 3a and 4 (shown in Fig. 6C). Numbers refer to individual sections. AC, anterior commissure; CN, caudate nucleus; GP, globus pallidus; LGN, lateral geniculate nucleus; OT, optic tract; P, putamen; VA, ventral anterior nucleus thalamus; VLo, ventral lateral nucleus thalamus, pars oralis; VLc, ventral lateral nucleus thalamus, pars caudalis; VPLo, ventral posterolateral nucleus thalamus, pars oralis; SN, substantia nigra.

From Jones et al. 145


Figure 8.

Diagram of topographical distribution of isotope transported bilateral to striatum following localized unilateral injections of 3H‐amino acids into motor cortex of monkey. Cl, claustrum; Cd, caudate nucleus; GP, globus pallidus; Pu, putamen.

From Künzle 176


Figure 9.

Dark‐field photomicrographs of autoradiographs demonstrating nigrostriate and nigrothalamic projections in monkey. Tritiated amino acids, evidenced by silver grains, labeled lateral portions of substantia nigra. A: isotope was transported to dorsal regions of putamen and to medial part of ventral lateral (VLm) and paralaminar part of dorsomedial thalamic nuclei. ×6. B: restricted area of isotope transport to putamen. ×16.

From Carpenter et al. 42


Figure 10.

Photomicrograph of a sagittal section of human brain through corpus striatum, internal capsule, and thalamus. Segments of globus pallidus are clearly delineated.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore


Figure 11.

Camera lucida drawings from Golgi preparations of 10 neurons in monkey globus pallidus. A: medial pallidal segment. B: lateral pallidal segment. No discernible morphological differences were found in these cells, though density is not the same in the two segments. Small arrows indicate identified initial portion of axons.

From Fox et al. 93


Figure 12.

Projection drawings in horizontal sections of thalamic degeneration resulting from a small lesion, mainly in rostral parts of medial pallidal segment, lateral to accessory medullary lamina in a monkey. Note that most profuse degeneration is in ventral anterior nucleus, pars principalis. AD, anterodorsal nucleus; AM, anteromedial nucleus; A V, anteroventral nucleus; BIC, brachium of inferior colliculus; BSC, brachium of superior colliculus; CI, inferior colliculus; CL, subthalamic nucleus; CLN, central lateral nucleus; CM, centromedial nucleus; CN, caudate nucleus; CS, superior colliculus; CSC, commissure of superior colliculus; DM, dorsomedial nucleus; DSCP, decussation of superior cerebellar peduncle; FR, fasciculus retroflexus; FX, fornix; H2, lenticular fasciculus; HB, habenular nucleus; IC, internal capsule; LG, lateral geniculate; LPS, lateral pallidal segment; MG, medial geniculate; ML, medial lemniscus; MPS, medial pallidal segment; MTT, mammillothalamic tract; PC, posterior commissure; PF, parafascicular nucleus; PUL, pulvinar; PUT, putamen; RN, red nucleus; SM, stria medullaris; SN, substantia nigra; VAmc, ventral anterior nucleus, pars magnocellularis; VApc, ventral anterior nucleus, pars principalis; VLc, ventral lateral nucleus, pars caudalis; VLm, ventral lateral nucleus, pars medialis; VLo, ventral lateral nucleus, pars oralis; VPLc, ventral posterolateral nucleus, pars caudalis; VPLo, ventral posterolateral nucleus, pars oralis; VPM, ventral posteromedial nucleus; X, area X; ZI zona incerta.

From Kuo and Carpenter 180


Figure 13.

Projection drawings of thalamic degeneration in monkey resulting from a small lesion in posterior part of medial pallidal segment, medial to the accessory medullary lamina. Degeneration in rostral ventral tier thalamic nuclei was restricted to the ventral lateral pars oralis and passed to this nucleus via lenticular fasciculus. Abbreviations are same as in Figure 12.

From Kuo and Carpenter 180


Figure 14.

Schematic diagrams of origin and course of fibers forming ansa lenticularis (ansa lent.) and lenticular fasciculus (lent. fasc.) in monkey. Fibers of ansa lenticularis arise from outer portions of medial pallidal segment, lateral to accessory medullary lamina (dashed tine), and course rostrally, ventrally, and medially. Fibers forming lenticular fasciculus arise from parts of medial pallidal segment medial to accessory medullary lamina, and course dorsally and medially through internal capsule. CL, subthalamic nucleus; FX, fornix; IC, internal capsule; LPS, lateral pallidal segment; MPS, medial pallidal segment; SN, substantia nigra.

From Kuo and Carpenter 180


Figure 15.

Dark‐field photomicrographs of sections through the diencephalon demonstrating transport of 3H‐amino acids from portions of medial pallidal segment in monkey (rhesus C‐1360). A: label in virtually all parts of medial pallidal segment was transported profusely, but in a patchy fashion, to ventral anterior, pars principalis and ventral lateral, pars oralis. B: label was transported in a more diffuse and less intense fashion to rostral parts of centromedian nucleus. Transport of isotope to these thalamic nuclei was via both ansa lenticularis and lenticular fasciculus. Cresyl violet stain. ×3.5.

From Kim, Carpenter, et al. 160


Figure 16.

Dark‐field photomicrographs of sections through diencephalon in rhesus C‐1369 demonstrating transport of isotope predominantly from outer part of the medial pallidal segment via ansa lenticularis. A: intense patchy pallidothalamic terminations are seen in ventral anterior nucleus pars principalis (VApc). B: very little transport of isotope was found in other ventral tier thalamic nuclei, suggesting a preferential projection from outer part of medial pallidal segment to VApc. ×3.5.

From Kim, Carpenter, et al. 160


Figure 17.

Dark‐field photomicrographs of sagittal sections in rhesus C‐1350. A: 3H‐amino acids labeling cells in inner part of medial pallidal segment resulted in transport via lenticular fasciculus to ventral lateral nucleus (pars oralis) of thalamus. ×3.5. Although there was no transport of isotope to subthalamic nucleus, isotope was identified in two locations within the substantia nigra (A, B). In the substantia nigra isotope was seen most intensely caudal to subthalamic nucleus; from this region some fibers passed to more caudal regions of the substantia nigra. B: faint streaks of radioactivity connect these two regions. ×6.

From Kim, Carpenter, et al. 160


Figure 18.

Photomicrographs of autoradiography of portions of substantia nigra of monkey labeled by injected 3H‐amino acids. A: cells in caudal, dorsal, and lateral portions of the substantia nigra were labeled. B: cells in medial and dorsal regions were labeled. Transport of label from the nigral neurons in A to thalamic nuclei is shown in Figure 19. Counterstained with cresyl violet. ×6.

From Carpenter et al. 42


Figure 19.

Dark‐field photomicrograph of a sagittal section of monkey through the thalamus showing transport of isotope from the region of the substantia nigra labeled in Figure 18A. Nigrothalamic terminations were seen in two thalamic nuclei in this section: 1) in a crescent‐shaped area of the dorsomedial nucleus, paralaminar part (DMpl), and 2) in the magnocellular part of the ventral anterior nucleus (VAmc), a nucleus that surrounds the mammillothalamic tract (MTT). ×16.

From Carpenter et al. 42


Figure 20.

Schematic diagrams of axoplasmic transport of isotope from substantia nigra to portions of striatum and to ventral lateral nucleus of thalamus, medial part (VLm). The portion of the substantia nigra labeled is shown in Figure 18B. Abbreviations used are as in Figure 12, except for: NST, nuclei of stria terminalis; Ret, reticular nucleus of thalamus; SNc, substantia nigra, pars compacta; SNr, substantia nigra, pars reticulata. Letters and numbers identify tissue blocks and sections.

From Carpenter et al. 42


Figure 21.

Schematic diagram of nigrotectal projections in monkey (C‐1374) demonstrated by axoplasmic transport of 3H‐amino acids. Isotope infiltrated the crus cerebri, pontine nuclei, and pregeniculate nucleus as well as most parts of substantia nigra. Majority of nigrotectal fibers terminate in middle gray layers of caudal two‐thirds of superior colliculus but some fibers appear to end in lateral parts of central gray. Although most nigrotectal fibers are ipsilateral, some enter the opposite superior colliculus. Abbreviations used are as in Figure 12, except for: CG, central gray; IC, inferior colliculus; IN, interstitial nucleus of Cajal; IPN, interpeduncular nucleus; MLF, medial longitudinal fasciculus; NPC, nuclei of the posterior commissure; PG, pontine gray; PGE, efferent fibers from the pregeniculate nucleus which terminate in rostral, superficial layers of the ipsilateral superior colliculus; SC, superior colliculus; SNpc, substantia nigra, pars compacta; SNpr, substantia nigra, pars reticulata; III, oculomotor nucleus; IV, trochlear nucleus.

From Jayaraman, Batton, and Carpenter 143


Figure 22.

Dark‐field photomicrographs of 3H‐labeled nigrotectal projections to middle gray layers of caudal two‐thirds of superior colliculus in rhesus monkey. A: terminal fibers appear arranged in patches or columns with the greatest radioactivity in medial regions. × 16. B: transtegmental course and terminations of nigrotectal fibers. The most profuse radioactivity appears in lateral portions of superior colliculus. ×10.

From Jayaraman, Batton, and Carpenter 143


Figure 23.

Sagittal section through medial regions of human corpus striatum, diencephalon, and upper brain stem. Continuity of putamen and caudate nucleus is evident as well as relationships of subthalamic nucleus, substantia nigra, and red nucleus. Weigert's stain.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore


Figure 24.

Transverse section of diencephalon of human through subthalamic nucleus and Forel's field H. Weigert's stain.

From Carpenter 37, © 1976, The Williams & Wilkins Co., Baltimore


Figure 25.

Dark‐field photomicrographs of transverse sections of cat brain. A: globus pallidus is labeled with 3H‐amino acids. This portion of globus pallidus corresponds to lateral pallidal segment in primates and is separated from entopeduncular nucleus (medial pallidal segment) by fibers of internal capsule. ×5. B, C: profuse transport of isotope, evidenced by dense silver grains, is seen in terminals in subthalamic nucleus. B, ×4; C, ×12.



Figure 26.

A: outline drawings of cortical sites in which 3H‐amino acids were injected in the monkey. Dark circles represent areas that transported isotope to portions of subthalamic nucleus. B: summary diagram of regions of precentral, premotor, and prefrontal cortex that project to different regions of subthalamic nucleus. Ci, internal capsule; CM, centromedian nucleus; H1, Forel's field H1; H2, Forel's field H2; HYP, hypothalamus; Nc, substantia nigra, pars compacta; Nd, substantia nigra, pars reticulata; PCN, paracentral nucleus; PP, peduncular part of internal capsule; R, reticular nucleus of thalamus; RP, prerubral area; STN, subthalamic nucleus; TMT, mammillothalamic tract; VA, ventral anterior nucleus; VLm, ventral lateral nucleus, pars medialis; VLo, ventral lateral nucleus, pars oralis; VPLo, ventral posterolateral nucleus, pars oralis; VPI, ventral posterior inferior nucleus; Zi, zona incerta. F + 10.5, F + 9.3, and F + 7.5 refer to stereotaxic frontal planes rostral to interaural reference plane.

From Hartmann‐von Monakow et al. 120


Figure 27.

Low‐power photomicrograph of autoradiograph of 3H‐amino acids injected into subthalamic nucleus of the monkey.

From Nauta and Cole 227


Figure 28.

Dark‐field photomicrograph of a section from same monkey as shown in Figure 26, demonstrating transport of isotope to both segments of globus pallidus. White arrow indicates position of medial medullary lamina separating medial and lateral pallidal segments.

From Nauta and Cole 227


Figure 29.

Photomicrograph of a discrete lesion in subthalamic nucleus of monkey. Lesion produced contralateral subthalamic dyskinesia.

From Carpenter et al. 39


Figure 30.

Transverse section through junction of the human midbrain and diencephalon demonstrating red nucleus, portions of substantia nigra, and caudal pole of subthalamic nucleus.

References
 1. Adey, W. R., and D. F. Lindsley. On the role of subthalamic areas in the maintenance of brain‐stem reticular excitability. Exp. Neurol. 1: 407–426, 1959.
 2. Adinolfi, A. M., and G. D. Pappas. The fine structure of the caudate nucleus of the cat. J. Comp. Neurol. 133: 167–184, 1968.
 3. Afifi, A., and W. W. Kaelber. Efferent connections of the substantia nigra in the cat. Exp. Neurol. 11: 474–482, 1965.
 4. Aghajanian, G. K., and D. W. Gallager. Raphe origin of serotonergic nerves terminating in the cerebral ventricles. Brain Res. 88: 221–231, 1975.
 5. Andén, N. E., A. Carlsson, A. Dahlström, K. Fuxe, N.‐Å. Hillarp, and K. Larsson. Demonstration and mapping out of nigro‐neostriatal dopamine neurons. Life Sci. 3: 523–530, 1964.
 6. Andén, N. E., A Dahlström, K. Fuxe, K. Larsson, L. Olson, and U. Y. Ungerstedt. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand. 67: 313–326, 1966.
 7. Anderson, M. Cerebellar and cerebral inputs to physiologically identified efferent cell groups in the red nucleus of the rat. Brain Res. 30: 49–66, 1971.
 8. Angaut, P. The ascending projections of the nucleus interpositus posterior of the cat cerebellum: an experimental anatomical study using silver impregnation methods. Brain Res. 24: 377–394, 1970.
 9. Angaut, P., and D. Bowsher. Cerebellorubral connections in the cat. Nature 208: 1002–1003, 1965.
 10. Bak, I. J. The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines. Exp. Brain Res. 3: 40–57, 1967.
 11. Bak, I. J., W. B. Choi, Ft. Hassler, K. G. Usunoff, and A. Wagner. Fine structural synaptic organization of the corpus striatum and substantia nigra in rat and cat. In: Dopaminergic Mechanisms, edited by D. Calne, T. N. Chase, and A. Barbeau. New York: Raven, 1975, p. 25–41. (Adv. Neurol. Ser., vol. 9.).
 12. Balcom, G. J., R. H. Lennox, and J. L. Meyerhoff. Regional γ‐aminobutyric acid levels in rat brain determined by microwave fixation. J. Neurochem. 24: 609–613, 1975.
 13. Balthasar, K. Über die Beteiligung des Globus Pallidus bei Athetose und Paraballismus. Dtsch. Z. Nervenheilkd. 148: 243–261, 1939.
 14. von Bechterew, W. Die Leitungsbahnen im Gehirn und Rückenmark (2nd ed.). Leipzig: A. Georgi, 1899, p. 402–406.
 15. Bédard, P., H. Larochelle, A. Parent, and L. J. Poirier. The nigrostriatal pathway: a correlative study based on neuroanatomical and neurochemical criteria in the cat and monkey. Exp. Neurol. 25: 365–377, 1969.
 16. Bentivoglio, M., D. van der Kooy, and H. G. J. M. Kuypers. The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labeling study. Brain Res. 174: 1–17, 1979.
 17. Bird, E. D., and L. L. Iversen. Huntington's chorea: postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97: 457–472, 1974.
 18. Björklund, A., C. Owman, and K. A. West. Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Z. Zellforsch. Mikrosk. Anat. 127: 570–579, 1972.
 19. Bloom, F. E., E. Costa, and G. C. Salmoiraghi. Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 150: 244–252, 1965.
 20. Bobillier, P., F. Petitjean, D. Salvert, M. Ligier, and S. Sequin. Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res. 85: 205–210, 1975.
 21. Bodian, D. Studies on the diencephalon of the Virginia opossum. Part III. The thalamocortical projection. J. Comp. Neurol. 77: 525–576, 1942.
 22. von Bonin, G., and G. A. Shariff. Extrapyramidal nuclei among mammals. A quantitative study. J. Comp. Neurol. 94: 427–438, 1951.
 23. Bowsher, D. J. Projection of the gracile and cuneate nuclei in Macaca mulatto: an exeprimental degeneration study. J. Comp. Neurol. 110: 135–156, 1958.
 24. Bowsher, D. J., Some afferent and efferent connections of the parafascicular‐center median complex. In: The Thalamus, edited by M. D. Yahr and D. P. Purpura. New York: Columbia Univ. Press, 1966, p. 99–108.
 25. Brodal, A. Neurological Anatomy in Relation to Clinical Medicine. Oxford: Oxford Univ. Press, 1948, p. 75–77.
 26. Brodal, A., and A. C. Gogstad. Rubrocerebellar connections. An experimental study in the cat. Anat. Rec. 118: 455–486, 1954.
 27. Brown, L. T. Corticorubral projections in the rat. J. Comp. Neurol. 154: 149–167, 1974.
 28. Brownstein, M. J., M. Palkovits, J. M. Saavedra, and J. S. Kizer. Tryptophan hydroxylase in the rat brain. Brain Res. 97: 163–166, 1975.
 29. Bunney, B. S., and G. K. Aghajanian. The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res. 117: 423–435, 1976.
 30. Cajal, S. Ramón Y. Histologic du système nerveux de l'homme et des vertèbrés. Paris: Maloine, 1911.
 31. Carman, J. B., W. M. Cowan, and T. P. S. Powell. The organization of corticostriate connexions in the rabbit. Brain 86: 525–562, 1963.
 32. Carman, J. B., W. M. Cowan, T. P. S. Powell, and K. E. Webster. A bilateral cortico‐striate projection. J. Neurol. Neurosurg. Psychiatry 28: 71–77, 1965.
 33. Carpenter, M. B. Ballism associated with partial destruction of the subthalamic nucleus of Luys. Neurology 5: 479–489, 1955.
 34. Carpenter, M. B. A study of the red nucleus in the rhesus monkey. Anatomic degenerations and physiologic effects resulting from localized lesions of the red nucleus. J. Comp. Neurol. 105: 195–250, 1956.
 35. Carpenter, M. B. Brain stem and infratentorial neuraxis in experimental dyskinesia. AMA Arch. Neurol. 5: 504–524, 1961.
 36. Carpenter, M. B. Anatomical organization of the corpus striatum and related nuclei. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 55: 1–36, 1976.
 37. Carpenter, M. B. Human Neuroanatomy (7th ed.). Baltimore: Williams & Wilkins, 1976.
 38. Carpenter, M. B., and C. S. Carpenter. Analysis of somatotopic relations of the corpus Luysii in man and monkey. Relation between the site of dyskinesia and distribution of lesions within the subthalamic nucleus. J. Comp. Neurol. 95: 349–370, 1951.
 39. Carpenter, M. B., J. W. Correll, and A. Hinman. Spinal tracts mediating subthalamic hyperkinesia. Physiological effects of selective partial cordotomies upon dyskinesia in rhesus monkey. J. Neurophysiol. 23: 288–304, 1960.
 40. Carpenter, M. B., R. A. R. Fraser, and J. E. Shriver. The organization of the pallidosubthalamic fibers in the monkey. Brain Res. 11: 522–559, 1968.
 41. Carpenter, M. B., and R. E. McMasters. Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am. J. Anat. 114: 293–320, 1964.
 42. Carpenter, M. B., K. Nakano, and R. Kim. Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. J. Comp. Neurol. 165: 401–416, 1976.
 43. Carpenter, M. B., and P. Peter. Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J. Comp. Neurol. 144: 93–116, 1972.
 44. Carpenter, M. B., and N. L. Strominger. Efferent fiber projections of the subthalamic nucleus in the rhesus monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am. J. Anat. 121: 41–72, 1967.
 45. Carpenter, M. B., J. R. Whittier, and F. A. Mettler. Analysis of choreoid hyperkinesia in the rhesus monkey. Surgical and pharmacological analysis of hyperkinesia resulting from lesions of the subthalamic nucleus of Luys. J. Comp. Neurol. 92: 293–331, 1950.
 46. Chang, M. M., S. W. Leeman, and H. D. Niall. Amino acid sequence of substance P. Nature Lond. New Biol. 232: 86–87, 1971.
 47. Chow, K. L., and K. H. Pribram. Cortical projection of the thalamic ventrolateral nuclear group in monkeys. J. Comp. Neurol. 104: 57–75, 1956.
 48. Cole, M., W. J. H. Nauta, and W. R. Mehler. The ascending efferent projections of the substantia nigra. Trans. Am. Neurol. Assoc. 89: 74–78, 1964.
 49. Condé, R., and H. Condé. Étude de la morphologie des cellules du noyau rouge du chat par la méthode de Golgi‐Cox. Brain Res. 53: 249–271, 1973.
 50. Connor, J. D. Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. London 208: 691–703, 1970.
 51. Conrad, C. A. L., C. M. Leonard, and D. W. Pfaff. Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J. Comp. Neurol. 156: 179–206, 1974.
 52. Cooper, E. R. A. Development of the human red nucleus and corpus striatum. Brain 69: 34–43, 1946.
 53. Cooper, S., and C. S. Sherrington. Gower's tract and spinal border cells. Brain 63: 123–134, 1940.
 54. Courville, J. Rubrobulbar fibers to the facial nucleus and the lateral reticular nucleus (nucleus of the lateral funiculus). An experimental study in the cat with silver impregnation methods. Brain Res. 1: 317–337, 1966.
 55. Courville, J. The nucleus of the facial nerve. The relation between cellular groups and peripheral branches of the nerve. Brain Res. 1: 338–354, 1966.
 56. Courville, J. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Exp. Brain Res. 2: 191–215, 1966.
 57. Courville, J., and A. Brodal. Rubro‐cerebellar connections in the cat: an experimental study with silver impregnation methods. J. Comp. Neurol. 126: 471–486, 1966.
 58. Courville, J., and S. Otabe. The rubro‐olivary projection in the Macaque: an experimental study with silver impregnation methods. J. Comp. Neurol. 158: 494–497, 1974.
 59. Cowan, W. M., and T. P. S. Powell. Striopallidal projection in the monkey. J. Neurol. Neurosurg. Psychiatry 29: 426–439, 1966.
 60. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62: (Suppl. 232) 1–55, 1964.
 61. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamines in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 64: (Suppl. 247) 1–36, 1965.
 62. Darkschewitsch, L., and G. Pribytkow. Über die Fasersysteme am Boden des dritten Hirnventrikels. Neurol. Centralbl. 10: 417–429, 1891.
 63. Davenport, H. A., and S. W. Ranson. The red nucleus and adjacent cell groups. Arch. Neurol. Psychiatry 24: 257–266, 1930.
 64. Davies, J., and A. Dray. Substance P in the substantia nigra. Brain Res. 107: 623–627, 1976.
 65. Desiraju, T., and D. P. Purpura. Synaptic convergence of cerebellar and lenticular projections to thalamus. Brain Res. 15: 544–547, 1969.
 66. DeVito, J. Projections from the cerebral cortex to intralaminar nuclei in the monkey. J. Comp. Neurol. 136: 193–202, 1969.
 67. DiFiglia, M., P. Pasik, and T. Pasik. A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res. 114: 245–256, 1976.
 68. Dray, A., T. J. Gonye, N. R. Oakley, and T. Tanner. Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res. 113: 45–57, 1976.
 69. Dresel, K., and H. Rothman. Völliger Ausfall der Substantia nigra nach Exstirpation von Grosshirn and Striatum. Z. Gesamte Neurol. Psychiatr. 94: 781–789, 1925.
 70. Droogleever‐Fortuyn, J., and R. Stefens. On the anatomical relations of the intralaminar and midline cells of the thalamus. Electroencephalogr. Clin. Neurophysiol. 3: 393–400, 1951.
 71. Duffy, M. J., D. Mulhall, and D. Powell. Subcellular distribution of substance P in bovine hypothalamus and substantia nigra. J. Neurochem. 25: 305–307, 1975.
 72. Edwards, S. B. The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res. 48: 45–63, 1972.
 73. Ehringer, H., and O. Hornykiewicz. Verteilung von Noradrenalin und Dopamin (3‐Hydroxytyramin) in Gehirn des Menschen und ihr Verhalten bei Erkrankungen des Extrapiramidalen Systems. Klin. Wochenschr. 38: 1236–1239, 1960.
 74. Enna, S. J., J. P. Bennett, D. B. Bylund, S. H. Snyder, E. D. Bird, and L. L. Iversen. Alterations of brain neurotransmitter receptor binding in Huntington's chorea. Brain Res. 116: 531–537, 1976.
 75. Enna, S. J., M. J. Kuhar, and S. H. Snyder. Regional distribution of postsynaptic receptor binding for gamma‐aminobutyric acid (GABA) in monkey brain. Brain Res. 93: 168–174, 1975.
 76. von Euler, U. S., and J. H. Gaddum. An unidentified depressor substance in certain tissue extracts. J. Physiol. London 72: 74–87, 1931.
 77. Fahn, S., Regional distribution studies of GABA and other putative neurotransmitters and their enzymes. In: GABA in Nervous System Function, edited by E. Roberts. New York: Raven, 1976, p. 169–186. (Kroc Found. Ser., vol. 5.).
 78. Fahn, S., and L. J. Côté. Regional distribution of γ‐aminobutyric acid (GABA) in brain of the rhesus monkey. J. Neurochem. 15: 209–213, 1968.
 79. Falck, B. Observations on the possibilities of the cellular localization of monoamines by a fluorescent method. Acta Physiol. Scand. 56: (Suppl. 197) 1–25, 1962.
 80. Falck, B., N.‐Å. Hillarp, G. Thieme, and A. Torp. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10: 348–354, 1962.
 81. Faull, R. L. M., and J. B. Carman. Ascending projections of the substantia nigra in the rat. J. Comp. Neurol. 132: 73–92, 1968.
 82. Faull, R. L. M., and W. R. Mehler. Studies of the fiber connections of the substantia nigra in the rat using the method of retrograde transport of horseradish peroxidase. Neurosci. Abstr. 1: 62, 1976.
 83. Ferraro, A. Contribute sperimentale allo studio della substantia nigra normale e dei suoi rapporti con la corteccia cerebrale e con il corpo striato. Arch. Gen. Neurol. Psichiatr. 6: 26–117, 1925.
 84. Fibiger, H. C., E. G. McGeer, and S. Atmadja. Axoplasmic transport of dopamine in nigro‐striatal neurons. J. Neurochem. 21: 373–385, 1973.
 85. Fibiger, H. C., R. E. Pudritz, P. L. McGeer, and E. G. McGeer. Axonal transport in nigro‐striatal and nigrothalamic neurons: effects of medial forebrain bundle lesions and 6‐hydroxydopamine. J. Neurochem. 19: 1697–1708, 1972.
 86. Flechsig, P. Die myelogenetische Gliederung der Leitungsbahnen des Linsenkern beim Menschen. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math. Phys. Kl. 73: 295–302, 1921.
 87. Flumerfelt, B. A., S. Otabe, and J. Courville. Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res. 50: 408–414, 1973.
 88. Foix, C., and J. Nicolesco. Les Noyaux Gris Centraux et la Région Mesencephalo‐sous‐optique. Paris: Masson et Cie, 1925.
 89. Fonnum, F., I. Grofová, E. Rinvik, J. Storm‐Mathisen, and F. Walberg. Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res. 71: 77–92, 1974.
 90. Fonnum, F., and J. Storm‐Mathisen. High affinity uptake of glutamate in terminals of corticostriate axons. Nature London 266: 377–378, 1977.
 91. Forel, A. Untersuchungen über die Haubenregion und ihre oberen Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch. Psychiatr. 7: 393–495, 1877.
 92. Fox, C. A., A. N. Andrade, D. E. Hillman, and R. C. Schwyn. The spiny neurons in the primate striatum: a Golgi and electron microscopic study. J. Hirnforsch. 13: 181–201, 1971.
 93. Fox, C. A., A. N. Andrade, I. J. Lu Qui, and J. A. Rafols. The primate globus pallidus: a Golgi and electron microscopic study. J. Hirnforsch. 15: 75–93, 1974.
 94. Fox, C. A., A. N. Andrade, R. C. Schwyn, and J. A. Rafols. The aspiny neurons and the glia in the primate striatum: a Golgi and electron microscopic study. J. Hirnforsch. 13: 341–362, 1971/1972.
 95. Fox, C. A., and J. A. Rafols. The radial fibers in the globus pallidus. J. Comp. Neurol. 159: 177–200, 1975.
 96. Fox, C. A., J. A. Rafols, and W. M. Cowan. Computer measurements of axis cylinder dismeters of radial fibers and “comb” bundle fibers. J. Comp. Neurol. 159: 201–224, 1975.
 97. Fox, C. A., and J. T. Schmitz. The substantia nigra and the entopeduncular nucleus in the cat. J. Comp. Neurol. 80: 323–334, 1944.
 98. Fraser, E. H. A further note on the prepyramidal tract (Monakow's) bundle. J. Physiol. London 28: 366–374, 1902.
 99. Freeman, W., and J. W. Watts. Retrograde degeneration of the thalamus following prefrontal lobotomy. J. Comp. Neurol. 86: 65–93, 1947.
 100. Fuse, G. Beiträge zur Anatomie der Regiones rubra et oculomotoria bei den Säugetieren: Über eine innige Verbindung des roten Kerns mit den Nebenokulomotoriuskernen (Bechterew, Darkschewitsch) und den Fontanenkernen (von Monakow) beim Seebären. Arb. Anat. Inst. Kais. Jpn. Univ. Sendai 20: 115–123, 1937.
 101. Fuse, G. Ein neuer Versuch zur Unterteilung des Nucleus ruber tegmenti bei den Karnivoren und zur phylogenetischen Bewertung seiner Entwicklung unter Berücksichtigung der an Karnivoren und Affen gewonnenen Ergebnisse. Arb. Anat. Inst. Kais. Jpn. Univ. Sendai. 20: 123–188, 1937.
 102. Fuxe, K. Evidence for the existence of monoamine neurones in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64: (Suppl. 247) 37–85, 1965.
 103. Fuxe, K., and N. E. Andén. Studies on the central monoamine neurons with special reference to the nigro‐neostriatal dopamine neuron system. In: Biochemistry and Pharmacology of the Basal Ganglia, edited by E. Costa, L. J. Cote, and M. D. Yahr. Hewlett, NY: Raven, 1966, p. 123–129. (Proc. Symp. Parkinson's Dis. Inf. Res. Cent., Columbia Univ., 1965.).
 104. Gale, K., A. Guidotti, and E. Costa. Dopamine‐sensitive adenylate cyclase: location in substantia nigra. Science 195: 503–505, 1977.
 105. Gale, K., J.‐S. Hong, and A. Guidotti. Presence of substance P and GABA in separate striatonigral neurons. Brain Res. 136: 371–375, 1977.
 106. van Gehuchten, A. Les voies ascendantes du cordon latéral de la moëlle épinière et leurs rapports avec le faisceau rubrospinal. Nevraxe 3: 157–201, 1901.
 107. Geyer, M. A., A. Puerto, W. J. Dawsey, S. Knapp, W. P. Bullard, and A. J. Mandell. Histologic and enzymatic studies of the mesolimbic and mesostriatal serotoninergic pathways. Brain Res. 106: 241–256, 1976.
 108. Glees, P. The interrelation of the striopallidum and the thalamus in the macaque monkey. Brain 68: 331–346, 1945.
 109. Glees, P., and P. D. Wall. Fiber connections of the subthalamic region and the centromedian nucleus of the thalamus. Brain 69: 195–209, 1946.
 110. Goldman, P. S., and W. J. H. Nauta. An intricately patterned prefronto‐caudate projection in the rhesus monkey. J. Comp. Neurol. 171: 369–386, 1977.
 111. Gorry, J. D. Studies on the comparative anatomy of the ganglion basal of Meynert. Acta Anat. 55: 51–104, 1963.
 112. Gottsfeld, Z., J. V. Massari, E. A. Muth, and D. M. Jacobowitz. Stria medullaris: a possible pathway containing GABA‐ergic afferents to the lateral habenula. Brain Res. 130: 184–189, 1977.
 113. Graybiel, A. M., and T. R. Sciascia. Origin and distribution of nigrotectal fibers in the cat. Neurosci. Abstr. 1: 271, 1975.
 114. Grofová, I. The identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 91: 286–291, 1975.
 115. Grofová, I., and E. Rinvik. An experimental study on the striatonigral projection in the cat. Exp. Brain Res. 11: 249–262, 1970.
 116. Gulley, R. L., and R. L. Wood. The fine structure of the neurons in the rat substantia nigra. Tissue Cell 3: 675–690, 1971.
 117. Gwyn, D. G., and B. A. Flumerfelt. A comparison of the distribution of cortical and cerebellar afferents in the red nucleus of the cat. Brain Res. 69: 130–135, 1974.
 118. Hajdu, F., R. Hassler, and I. J. Bar. Electron microscopic study of the substantia nigra and the stria‐nigral projection in the rat. Z. Zellforsch. Mikrosk. Anat. 146: 207–221, 1973.
 119. Hamilton, W. J., and H. W. Mossman. Human Embryology. Baltimore: Williams & Wilkins, 1972, p. 478–481.
 120. Hartmann‐von Monakow, K., K. Akert, and H. Künzle. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33: 395–403, 1978.
 121. Hartmann‐von Monakow, K., K. Akert, and H. Künzle. Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp. Brain Res. 34: 91–105, 1979.
 122. Hatschek, R. Zur vergleichenden Anatomie des Nucleus ruber tegmenti. Arb. Neurol. Inst. Wiener Univ. 15: 89–135, 1907.
 123. Hattori, T., H. C. Fibiger, and P. L. McGeer. Demonstration of a pallidonigral projection innervating dopaminergic neurons. J. Comp. Neurol. 162: 487–504, 1975.
 124. Hattori, T., H. C. Fibiger, P. L. McGeer, and L. Malwr. Analysis of the fine structure of the dopaminergic nigrostriatal projection by electron microscopic autoradiography. Exp. Neurol. 41: 599–611, 1973.
 125. Hattori, T., P. L. McGeer, H. C. Fibiger, and E. G. McGeer. On the source of GABA‐containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain Res. 54: 103–114, 1973.
 126. Herkenham, M. Intralaminar and parafascicular efferents to the striatum and cortex in the rat; an autoradiographic study. Anat. Rec. 190: 420, 1978.
 127. Herkenham, M., and W. J. H. Nauta. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem. J. Comp. Neurol. 173: 123–145, 1977.
 128. Herz, A., and W. Zieglgänsberger. The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int. J. Neuropharmacol. 7: 221–230, 1968.
 129. Hinman, A., and M. B. Carpenter. Efferent fiber projections of the red nucleus in the cat. J. Comp. Neurol. 113: 61–82, 1959.
 130. Hirosawa, K. Electron microscopic studies on pigment granules in the substantia nigra and locus coeruleus of the Japanese monkey (Macaca fuscata yakui). Z. Zellforsch. Mikrosk. Anat. 88: 187–203, 1968.
 131. Hökfelt, T., O. Johansson, J.‐O. Kellerth, Å. Ljungdahl, G. Nilsson, A. Nygords, and B. Pernow. Immunohistochemical distribution of substance P. In: Substance P, edited by U. S. von Euler and B. Pernow. New York: Raven, 1977, p. 117–145. (Nobel Symp. Ser., no. 37.).
 132. Hökfelt, T., J. O. Kellerth, G. Nilsson, and B. Pernow. Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190: 889–890, 1975.
 133. Hökfelt, T., and U. Ungerstedt. Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of ascending nigro‐neostriatal dopamine neurons. Acta Physiol. Scand. 76: 415–426, 1969.
 134. Holmes, G. The nervous system of the dog without a forebrain. J. Physiol. London 27: 1–25, 1901.
 135. Hong, J. S., H.‐Y. T. Yang, G. Racagni, and E. Costa. Projections of substance P‐containing neurons from neostriatum to substantia nigra. Brain Res. 122: 541–544, 1977.
 136. Hopkins, D. A., and L. W. Niessen. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett. 2: 253–259, 1976.
 137. Hornykiewicz, O. Dopamin (3‐Hydroxytyramin) im Zentralnervensystem und seine Beziehung zum Parkinson‐Syndrome des Menschen. Dtsch. Med. Wochenschr. 87: 1807–1810, 1962.
 138. Hornykiewicz, O., Metabolism of brain dopamine in human parkinsonism: neurochemical and clinical aspects. In: Biochemistry and Pharmacology of the Basal Ganglia, edited by E. Costa, L. J. Cote, and M. D. Yahr. Hewlett, NY: Raven, 1966, p. 171–185. (Proc. Symp. Parkinson's Dis. Inf. Res. Cent., Columbia Univ., 1965.).
 139. Hough, H. B., and H. G. Wolff. The relative vascularity of subcortical ganglia of the cat's brain; the putamen, globus pallidus, substantia nigra, red nucleus and geniculate bodies. J. Comp. Neurol. 71: 427–436, 1939.
 140. Hull, C. D., G. A. Bernardi, and N. A. Buchwald. Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22: 163–179, 1970.
 141. Iwahori, N. A Golgi study on the subthalamic nucleus of the cat. J. Comp. Neurol. 182: 383–397, 1978.
 142. Jacobowitz, D. M., and M. Palkovitz. Topographic atlas of catecholamine and acetylcholinesterase‐containing neurons in the rat brain. J. Comp. Neurol. 157: 13–28, 1974.
 143. Jayaraman, A., R. R. Batton, and M. B. Carpenter. Nigrotectal projections in the monkey. an autoradiographic study. Brain Res. 135: 147–152, 1977.
 144. Johnson, T. N., and C. D. Clemente. An experimental study of the fiber connections between the putamen, globus pallidus, ventral thalamus, and midbrain tegmentum in cat. J. Comp. Neurol. 113: 83–101, 1959.
 145. Jones, E. G., J. D. Coulter, H. Burton, and R. Porter. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory‐motor cortex of monkeys. J. Comp. Neurol. 173: 53–80, 1977.
 146. Jones, E. G., and R. Y. Leavitt. Retrograde axonal transport and the demonstration of non‐specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol. 154: 349–378, 1974.
 147. Jones, E. G., and S. P. Wise. Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of monkeys. J. Comp. Neurol. 175: 391–438, 1977.
 148. Kaelber, W. W. Tremor at rest from tegmental lesions in the cat. J. Neuropathol. Exp. Neurol. 22: 695–701, 1963.
 149. Kanazawa, I., P. C. Emson, and A. C. Cuello. Evidence for the existence of substance P‐containing fibers in striato‐nigral and pallido‐nigral pathways in rat brain. Brain Res. 119: 447–453, 1977.
 150. Kanazawa, I., G. R. Marshall, and J. S. Kelly. Afferents to the rat substantia nigra studied with horseradish peroxidase, with special reference to fibres from the subthalamic nucleus. Brain Res. 115: 485–491, 1976.
 151. Kataoka, K., I. J. Bak, R. Hassler, J. S. Kim, and A. Wagner. L‐Glutamate decarboxylase and choline acetyltransferase activity in the substantia nigra and striatum after surgical interruption of strio‐nigral fibers of the baboon. Exp. Brain Res. 19: 217–227, 1974.
 152. Kemp, J. M. An electron microscopic study of the terminations of afferent fibers in the caudate nucleus. Brain Res. 11: 464–467, 1968.
 153. Kemp, J. M. Observations on the caudate nucleus of the cat impregnated with the Golgi method. Brain Res. 11: 467–470, 1968.
 154. Kemp, J. M. The site of termination of afferent fibers on the neurons of the caudate nucleus. J. Physiol. London 210: 17–18, 1970.
 155. Kemp, J. The termination of strio‐pallidal and strio‐nigral fibers. Brain Res. 17: 125–128, 1970.
 156. Kemp, J. M., and T. P. S. Powell. The corticostriate projection in the monkey. Brain 93: 525–546, 1970.
 157. Kemp, J. M., and T. P. S. Powell. The structure of the caudate nucleus of the cat: light and electron microscopy. Philos. Trans. R. Soc. London Ser. B 262: 383–401, 1971.
 158. Kemp, J. M., and T. P. S. Powell. The site of termination of afferent fibres in the caudate nucleus. Philos. Trans. R. Soc. London Ser. B 262: 429–439, 1971.
 159. Kim, J. S., I. J. Bak, R. Hassler, and Y. Okada. Role of γ‐aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence of a type of GABA‐rich strio‐nigral neurons. Exp. Brain Res. 14: 95–104, 1971.
 160. Kim, R., K. Nakano, A. Jayaraman, and M. B. Carpenter. Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J. Comp. Neurol. 169: 263–289, 1976.
 161. King, J. S., M. H. Bowman, and G. F. Martin. The red nucleus of the opossum (Didelphis marsupialis virginiana): a light and electron microscopic study. J. Comp. Neurol. 143: 157–184, 1971.
 162. King, J., R. Dom, J. Conner, and G. Martin. An experimental light and electron microscope study of cerebellorubral projections in the opossum. Brain Res. 52: 61–78, 1973.
 163. King, J. S., R. M. Dom, and G. F. Martin. Anatomical evidence for an intrinsic neuron in the red nucleus. Brain Res. 67: 317–323, 1974.
 164. King, J. S., G. F. Martin, and J. B. Conner. A light and electron microscopic study of corticorubral projections in the opossum, Didelphis marsupialis virginiana. Brain Res. 38: 251–265, 1972.
 165. King, J. S., R. C. Schwyn, and C. A. Fox. The red nucleus in the monkey (Macaca mulatto): a Golgi and electron microscopic study. J. Comp. Neurol. 142: 75–108, 1971.
 166. Kitai, S. T., J. D. Kocsis, R. J. Preston, and M. Sugimori. Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res. 109: 601–606, 1976.
 167. Knook, H. L. The Fibre‐Connections of the Forebrain. Assen, The Netherlands: Van Gorcum, 1965.
 168. Kodama, S. Über die sogenannten Basal ganglien. II. Pathologisch anatomische Untersuchungen mit Bezug auf die sogenannten Basalganglien und ihre Adnexe. Schweiz. Arch. Neurol. Psychiatr. 23: 38–100, 179–265, 1928.
 169. von Koelliker, A. Handbuch der Gewebelehre des Menschen. (6th ed.). Leipzig: W. Englemann, 1896, vol. 2, p. 447–470.
 170. Konishi, S., and M. Otsuka. The effects of substance P and other peptides on spinal neurons of the frog. Brain Res. 65: 397–410, 1974.
 171. Konishi, S., and M. Otsuka. Excitatory action of hypothalamic substance P on spinal motoneurones of newborn rats. Nature London 252: 734–735, 1974.
 172. van der Kooy, D., H. G. J. M. Kuypers, and C. E. Catsman‐Berrevoets. Single mammillary body cells with divergent axon collaterals. Demonstration by a simple, fluorescent retrograde double labeling technique in the rat. Brain Res. 158: 189–196, 1978.
 173. Kuhar, M. J., G. K. Aghajanian, and R. H. Roth. Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesions: correlations with serotonin levels and histochemical fluorescence. Brain Res. 44: 165–176, 1972.
 174. Kuhlenbeck, H. The derivatives of the thalamus ventralis in the human brain and their relation to the so‐called subthalamus. Mil. Surg. 102: 433–447, 1948.
 175. Kuhlenbeck, H., and W. Haymaker. The derivatives of the hypothalamus in the human brain: their relation to the extrapyramidal and autonomic systems. Mil. Surg. 105: 26–52, 1949.
 176. Künzle, H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 88: 195–209, 1975.
 177. Künzle, H. Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res. 105: 253–267, 1976.
 178. Künzle, H. An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 15: 135–234, 1978.
 179. Künzle, H., and K. Akert. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J. Comp. Neurol. 173: 147–164, 1977.
 180. Kuo, J. S., and M. B. Carpenter. Organization of pallidothalamic projections in the rhesus monkey. J. Comp. Neurol. 151: 201–236, 1973.
 181. Kuypers, H. G. J. M., W. R. Fleming, and J. Farinholt. Subcorticospinal projections in the rhesus monkey. J. Comp. Neurol. 118: 107–137, 1962.
 182. Kuypers, H. G. J. M., and D. G. Lawrence. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res. 4: 151–188, 1967.
 183. Larsen, K. D., and R. L. McBride. The organization of feline entopeduncular nucleus projections: anatomical studies. J. Comp. Neurol. 184: 293–308, 1979.
 184. LaVail, J. H., and M. M. LaVail. Retrograde axonal transport in the central nervous system. Science 176: 1416–1417, 1972.
 185. LaVail, J. H., K. R. R. Winston, and A. Tish. A method based on retrograde intraaxonal transport of protein for identification of cell bodies of origin of axons terminating with the CNS. Brain Res. 58: 470–477, 1973.
 186. Levin, P. M., Efferent fibers. In: Precentral Motor Cortex (2nd ed.), edited by P. C. Bucy. Urbana, IL: Univ. Illinois Press, 1949, p. 133–148.
 187. Lorente de Nó, R., The structure of the cerebral cortex. In: Physiology of the Nervous System (3rd ed.), edited by J. F. Fulton. New York: Oxford Univ. Press, 1949, p. 288–330.
 188. Luys, J. Recherches sur le Système Nerveux Cerebrospinal, sa Structure, ses Functions et ses Maladies. Paris: J. B. Ballière et Fils, 1865.
 189. Mabuchi, M., and T. Kusama. The cortico‐rubral projection in the cat. Brain Res. 2: 254–273, 1966.
 190. Mahaim, A. Recherches sur la structure anatomique du noyau rouge et ses connexions avec le pédoncule cerebelleux supérieur. Memoires Couronnes Acad. R. Méd. Belg. 13: 1–44, 1894.
 191. Martin, G. F., and R. Dom. Rubrobulbar projections of the opossum (Didelphia virginiana). J. Comp. Neurol. 139: 199–214, 1970.
 192. Massari, V. J., Z. Gottesfeld, and D. M. Jacobowitz. Distribution of glutamic acid decarboxylase in certain rhombencephalic and thalamic nuclei of the rat. Brain Res. 118: 147–151, 1976.
 193. Massion, J. The mammalian red nucleus. Physiol. Rev. 47: 383–436, 1967.
 194. Matzke, H. W. The course of the fibers arising from the nucleus gracilis and cuneatus of the cat. J. Comp. Neurol. 94: 439–452, 1951.
 195. McGeer, P. L., H. C. Fibiger, L. Maler, T. Hattori, and E. G. McGeer. Evidence for descending pallido‐nigral GABA‐containing neurons. Adv. Neurol. 5: 153–160, 1974.
 196. McGeer, P. L., E. G. McGeer, J. A. Wada, and E. Jung. Effects of globus pallidus lesions and Parkinson's disease on brain glutamic acid decarboxylase. Brain Res. 32: 425–431, 1971.
 197. McLardy, T. Projection of the centromedian nucleus of the human thalamus. Brain 71: 244–290, 1948.
 198. McLennan, H., and D. H. York. The action of dopamine on neurons of the caudate nucleus. J. Physiol. London 189: 393–402, 1967.
 199. Mehler, W. R., Further notes on the centre median nucleus of Luys. In: The Thalamus, edited by M. D. Yahr and D. P. Purpura. New York: Columbia Univ. Press, 1966, p. 109–127.
 200. Mettler, F. A. Relation between pyramidal and extrapyramidal function. Res. Publ. Assoc. Nerv. Ment. Dis. 21: 150–227, 1942.
 201. Mettler, F. A. Extensive unilateral cerebral removals in the primate. Physiological effects and resultant degeneration. J. Comp. Neurol. 79: 185–243, 1943.
 202. Mettler, F. A. The tegmento‐olivary and central tegmental fasciculi. J. Comp. Neurol. 80: 149–175, 1944.
 203. Mettler, F. A. Extracortical connections of the primate frontal cerebral cortex. I. Thalamocortical connections. J. Comp. Neurol. 86: 95–118, 1947.
 204. Mettler, F. A., Anatomy of the basal ganglia. In: Handbook of Clinical Neurology, edited by P. J. Vinken and G. W. Bruyn. Amsterdam: North‐Holland, 1968, vol. 6, p. 1–55.
 205. Mettler, F. A. Nigrofugal connections in the primate brain. J. Comp. Neurol. 138: 291–320, 1970.
 206. Miller, J. J., T. L. Richardson, H. C. Fibiger, and H. McLennan. Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate putamen in the rat. Brain Res. 97: 133–138, 1975.
 207. Miller, R. A., and N. L. Strominger. Efferent connections of the red nucleus in the brain stem and spinal cord of the rhesus monkey. J. Comp. Neurol. 152: 327–346, 1973.
 208. Mirto, D. Sulla fina anatomia delle regioni peduncolare e subthalamica nell'uomo. Riv. Patol. Nerv. Ment. 1: 57–60, 1896.
 209. von Monakow, C. Experimentelle und pathologischanatomische Untersuchungen über die Haubenregion, Sehhügel und die Regio subthalamica. Arch. Psychiatr. Nervenkr. '21: 1–129, 1895.
 210. von Monakow, C. Der rote Kern, die Haube und die Regio hypothalamica bei einigen Säugetieren und beim Menschen. I. Teil: Anatomisches und Experimentelles. Arb. Hirnanat. Inst. Zurich 3: 51–267, 1909.
 211. Moore, R. Y., R. K. Bhatnagar, and A. Heller. Anatomical and chemical studies of a nigro‐neostriatal projection in the cat. Brain Res. 30: 119–135, 1971.
 212. Morgan, L. O. Symptoms and fiber degeneration following experimental lesions in the subthalamic nucleus of Luys in the dog. J. Comp. Neurol. 44: 379–397, 1927.
 213. Morrison, L. R. Anatomical Studies of the Central Nervous System of Dogs without Forebrain or Cerebellum. Haarlem: Bohn, 1929. (Reviewed in Arch. Neurol. Psychiatry 24: 218–220, 1930.).
 214. Mroz, E. A., M. J. Brownstein, and S. Leeman. Distribution of immunoassayable substance P in the rat brain: evidence for the existence of substance P‐containing tracts. In: Substance P, edited by U. S. von Euler and B. Pernow. New York: Raven, 1977, p. 147–154. (Nobel Symp. Ser., no. 37.).
 215. Murray, M. Degeneration of some intralaminar thalamic nuclei after cortical removals in the cat. J. Comp. Neurol. 127: 341–368, 1966.
 216. Muskens, L. J. J. The central connections of the vestibular nuclei with the corpus striatum and their significance for ocular movements and for locomotion. Brain 45: 454–478, 1922.
 217. Nakamura, Y. An electron microscopic study of the red nucleus in the cat, with special reference to the quantitative analysis of the axosomatic synapses. Brain Res. 94: 1–17, 1975.
 218. Nakamura, Y., N. Mizuno, and A. Konishi. A quantitative electron microscope study of cerebellar axon terminals on the magnocellular red nucleus neurons in the cat. Brain Res. 147: 17–27, 1978.
 219. Nakamura, S., and J. Sutin. The pattern of termination of pallidal axons upon cells of the subthalamic nucleus. Exp. Neurol. 35: 254–264, 1972.
 220. von Namba, M. Cytoarchitektonische Untersuchungen am Striatum. J. Hirnforsch. 3: 24–48, 1957.
 221. Nashold, B. S., J. Hanbery, and J. Olszewski. Observations on the efferent connections of the thalamus. Anat. Rec. 118: 332–333, 1954.
 222. Nashold, B. S., J. Hanbery, and J. Olszewski. Observations on the diffuse thalamic projections. Electroencephalogr. Clin. Neurophysiol. 7: 609–620, 1955.
 223. Nathan, P. W., and M. C. Smith. Long descending tracts in man. I. Review of present knowledge. Brain 78: 248–303, 1955.
 224. Nauta, H. J. W. Efferent projections of the caudate nucleus, pallidal complex and subthalamic nucleus in the cat. Cleveland: Case Western Reserve Univ., 1974. Dissertation, no. 4322.
 225. Nauta, H. J. W. Evidence of a pallidohabenular pathway in the cat. J. Comp. Neurol. 156: 19–28, 1974.
 226. Nauta, H. J. W., and M. Cole. Efferent projections of the subthalamic nucleus. Trans. Am. Neurol. Assoc. 99: 170–173, 1974.
 227. Nauta, H. J. W., and M. Cole. Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J. Comp. Neurol. 180: 1–16, 1978.
 228. Nauta, H. J. W., I. R. Kaiserman‐Abramof, and R. J. Laser. Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: possible involvement of the agranular reticulum. Brain Res. 85: 373–384, 1975.
 229. Nauta, H. J. W., M. B. Pritz, and R. J. Laser. Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method. Brain Res. 67: 219–238, 1974.
 230. Nauta, W. J. H., and P. Gygax. Silver impregnation axons in the central nervous system: a modified technique. Stain Technol. 29: 91–93, 1954.
 231. Nauta, W. J. H., and W. R. Mehler. Projections of the lentiform nucleus in the monkey. Brain Res. 1: 3–42, 1966.
 232. Niimi, K., K. Katayama, T. Kanaseki, and K. Morimoto. Studies on the derivation of the centre median nucleus of Luys. Tokushima J. Exp. Med. 6: 261–268, 1960.
 233. Nyberg‐Hansen, R., and A. Brodal. Sites and mode of termination of rubrospinal fibres in the cat. J. Anat. 98: 235–253, 1964.
 234. Orada, Y., C. Nitsch‐Hassler, J. S. Kim, I. J. Bar, and R. Hassler. The role of γ‐aminobutyric acid (GABA) in the extrapyramidal motor system. 1. Regional distribution of GABA in rabbit, rat and guinea pig brain. Exp. Brain Res. 13: 514–518, 1971.
 235. Olpe, H.‐R. and W. P. Koella. The response of striatal cells upon stimulation of the dorsal and median raphe nuclei. Brain Res. 122: 357–360, 1977.
 236. Olszewski, J., and D. Baxter. Cytoarchitecture of the Human Brain Stem. Philadelphia: Lippincott, 1954.
 237. Orioli, F. L., and F. A. Mettler. The rubro‐spinal tract in Macaca mulatta. J. Comp. Neurol. 106: 299–318, 1956.
 238. Orioli, F. L., and F. A. Mettler. Effect of rubrospinal tract section on ataxia. J. Comp. Neurol. 107: 305–314, 1957.
 239. Orlovsky, G. M., and M. L. Shik. Control of locomotion: a neurophysiological analysis of the cat locomotor system. In: International Review of Physiology. Neurophysiology II, edited by R. Porter. Baltimore: Univ. Park, 1976, vol. 10, p. 281–317. (Int. Rev. Physiol. Series.).
 240. Palkovitz, M., M. Brownstein, and J. M. Saavedra. Serotonin content of the brain stem nuclei in the rat. Brain Res. 80: 237–249, 1974.
 241. Palkovitz, M., J. M. Saaveda, R. M. Kobayaski, and M. J. Brownstein. Choline acetyltransferase content of limbic nuclei of the rat. Brain Res. 79: 443–450, 1974.
 242. Papez, J. W. Thalamic connections in a hemidecorticate dog. J. Comp. Neurol. 69: 103–120, 1938.
 243. Papez, J. W. Reciprocal connections of the striatum and pallidum in the brain of Pithecus (Macacus) rhesus. J. Comp. Neurol. 69: 329–349, 1938.
 244. Papez, J. W. A summary of fiber connections of the basal ganglia with each other and with other portions of the brain. Res. Publ. Assoc. Nerv. Ment. Dis. 21: 21–68, 1942.
 245. Papez, J. W., and W. Stotler. Connections of the red nucleus. AMA Arch. Neurol. Psychiatry 44: 776–791, 1940.
 246. Parizek, J., R. Hassler, and I. J. Bak. Light and electron microscopic autoradiography of substantia nigra of rat after intraventricular administration of tritium labelled norepinephrine, dopamine, serotonin and the precursors. Z. Zellforsch. Mikrosk. Anat. 115: 137–148, 1971.
 247. Pasik, P., T. Pasik, and M. DiFiglia. Quantitative aspects of neuronal organization in the neostriatum of the Macaque monkey. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 55: 57–90, 1976.
 248. Peacock, J. H., and C. M. Combs. Retrograde cell degeneration in diencephalic and other structures after hemidecortication of rhesus monkeys. Exp. Neurol. 11: 367–399, 1965.
 249. Petras, J. M. Some fiber connections of the precentral and postcentral cortex with the basal ganglia, thalamus and subthalamus. Trans. Am. Neurol. Assoc. 90: 274–275, 1965.
 250. Petras, J. M. Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann. NY Acad. Sci. 167: 469–505, 1969.
 251. Poggio, G. F., M. Ribstein, G. B. Udvarhelyi, and A. E. Walder. Subcortical response to focal epileptic discharges in the monkey motor cortex. Electroencephalogr. Clin. Neurophysiol. 9: 164, 1957.
 252. Poirier, L. J., and G. Bouvier. The red nucleus and its efferent nervous pathways in the monkey. J. Comp. Neurol. 128: 223–244, 1966.
 253. Poirier, L. J., P. Singh, R. Boucher, G. Bouvier, A. Oliver, and P. Larochelle. Effect of brain lesions on striatal monoamines in the cat. Arch. Neurol. 17: 601–608, 1957.
 254. Poirier, L. J., and T. L. Sourkes. Influences of the substantia nigra on catecholamine content of the striatum. Brain 88: 181–192, 1965.
 255. Pompeiano, O. Analisi degli effetti della stimolazione elettrica del nucleo rosso nel gatto decerebrato Rend. Accad. Naz. Unci Cl. Sci. Fis. Mat. Naples 22: 100–103, 1957.
 256. Pompeiano, O., and A. Brodal. Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J. Comp. Neurol. 108: 225–252, 1957.
 257. Powell, D., S. E. Leeman, G. W. Tregear, H. D. Niall, and J. T. Potts. Radioimmunoassay for substance P. Nature London New Biol. 241: 252–254, 1973.
 258. Powell, T. P. S. Residual neurones in the human thalamus following hemidecortication. Brain 75: 571–584, 1952.
 259. Powell, T. P. S., and W. M. Cowan. The connexions of the midline and intralaminar nuclei of the thalamus of the rat. J. Anat. 88: 307–319, 1954.
 260. Powell, T. P. S., and W. M. Cowan. A study of the thalamostriate relations in the monkey. Brain 79: 364–390, 1956.
 261. Powell, T. P. S., and W. M. Cowan. The interpretation of the degenerative changes in the intralaminar nuclei of the thalamus. J. Neurol. Neurosurg. Psychiatry 30: 140–153, 1967.
 262. Presig, H. Le noyau rouge et al pédoncule cérébelleux supérieur. J. Psychol. Neurol. Leipzig 3: 215–230, 1904.
 263. Pycock, C., R. W. Horton, and C. D. Marsden. The behavioural effects of manipulating GABA function in the globus pallidus. Brain Res. 116: 353–359, 1976.
 264. Rafols, J. A., and C. A. Fox. The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J. Comp. Neurol. 168: 75–112, 1976.
 265. Ranson, S. W., and M. Ranson. Pallidofugal fibers in the monkey. Arch. Neurol. Psychiatry 42: 1059–1067, 1939.
 266. Ranson, S. W., and S. W. Ranson, Jr.. Efferent fibers of the corpus striatum. Res. Publ. Assoc. Nerv. Ment. Dis. 21: 69–76, 1942.
 267. Ranson, S. W., S. W. Ranson, Jr., and M. Ranson. Fiber connections of the corpus striatum as seen in Marchi preparations. Arch. Neurol. Psychiatry 46: 230–249, 1941.
 268. Rasminsky, M., A. Mauro, and D. Albe‐Fessard. Projections of medial thalamic nuclei to the putamen and cerebral frontal cortex in the cat. Brain Res. 61: 69–77, 1973.
 269. Reid, J. M., B. A. Flumerfelt, and D. G. Gwyn. An ultra‐structural study of the red nucleus in the rat. J. Comp. Neurol. 162: 363–386, 1975.
 270. Reid, J. M., D. G. Gwyn, and B. A. Flumerfelt. A cytoarchitectonic and Golgi study of the red nucleus of the rat. J. Comp. Neurol. 162: 337–362, 1975.
 271. Richter, E. Die Entwicklung des Globus Pallidus und des Corpus Subthalamicum. Berlin: Springer‐Verlag, 1965.
 272. Riese, W. Über faseranatomische Verbindungen im “striären System” der wasserlebenden Säuger. Z. Gesamte Neurol. Psychiatr. 90: 591–598, 1924.
 273. Rinvik, E. The corticorubral projection in the cat: further observations. Exp. Neurol. 12: 278–291, 1965.
 274. Rinvik, E. The cortico‐nigral projection in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 126: 241–254, 1966.
 275. Rinvik, E. The corticothalamic projection from the pericruciate and coronal gyri in the cat. An experimental study with silver‐impregnation methods. Brain Res. 10: 79–119, 1968.
 276. Rinvik, E. Demonstration of nigro‐thalamic connections in the cat by retrograde axonal transport of horseradish peroxidase. Brain Res. 90: 313–318, 1975.
 277. Rinvik, E., and I. Grofová. Observations on the fine structure of the substantia nigra in the cat. Exp. Brain Res. 11: 229–248, 1970.
 278. Rinvik, E., I. Grofová, and O. P. Ottersen. Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res. 112: 388–394, 1976.
 279. Rinvik, E., and F. Walberg. Demonstration of a somatotopically arranged cortico‐rubral projection in the cat. An experimental study with silver methods. J. Comp. Neurol. 120: 393–407, 1963.
 280. Rinvik, E., and F. Walberg. Is there a cortico‐nigral tract? A comment based on experimental electron microscopic observations in the cat. Brain Res. 11: 742–744, 1969.
 281. Robertson, R. T., and J. T. Travers. Brain stem projections to the striatum. Experimental morphological studies in the rat. Exp. Neurol. 48: 447–459, 1975.
 282. Rosegay, H. An experimental investigation of the connections between the corpus striatum and the substantia nigra in the cat. J. Comp. Neurol. 80: 293–310, 1944.
 283. Rundles, R. W., and J. W. Papez. Connections between the striatum and the substantia nigra in a human brain. Arch. Neurol. Psychiatry 38: 550–563, 1937.
 284. Sadun, A. Differential distribution of cortical terminations in the cat red nucleus. Brain Res. 99: 145–151, 1975.
 285. Sadun, A. A., and G. D. Pappas. Development of distinct cell types in the feline red nucleus: a Golgi‐Cox and electron microscopic study. J. Comp. Neurol. 182: 315–366, 1978.
 286. Sano, T. Beitrag zur vergleichenden Anatomie der Substantia nigra, des Corpus Luysii und der Zona incerta. Monatsschr. Psychiatr. Neurol. 27: 110–127; 28: 26–34, 129–133, 269–278, 367–375, 1910.
 287. Sasaki, K., A. Namikawa, and S. Hashiramoto. The effect of midbrain stimulation upon alpha motoneurons in lumbar spinal cord of the cat. Jpn. J. Physiol. 10: 303–316, 1960.
 288. Schröder, K. F., A. Hopf, H. Lange, and G. Thörner. Morphometrisch‐statistische Strukturanalysen des Striatum, Pallidum und Nucleus Subthalamicus beim Menschen. J. Hirnforsch. 16: 333–350, 1975.
 289. Schwyn, R. C., and C. A. Fox. A Golgi and electron microscopic study of the substantia nigra in Macaca mulatto and Saimiri sciureus (Abstract). Anat. Rec. 163: 342, 1969.
 290. Schwyn, R. C., and C. A. Fox. The primate substantia nigra: a Golgi and electron microscopic study. J. Hirnforsch. 15: 95–126, 1974.
 291. Scollo‐Lavizzar, G., and A. Akert. Cortical area 8 and its thalamic projection in Macaca mulatto. J. Comp. Neurol. 121: 259–270, 1963.
 292. Siggins, G. R., B. J. Hoffer, F. E. Bloom, and U. Ungerstedt. Cytochemical and electrophysiological studies of dopamine in the caudate nucleus. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 55: 227–248, 1976.
 293. Souges, A., and I. Bertrand. Sur la fonction motrice du corps strié, a propos d'un cas d'hemichorée suivi d'autopsi. Rev. Neurol. 45: 988–1002, 1926.
 294. Spehlmann, R. The effects of acetylcholine and dopamine on the caudate nucleus depleted of biogenic amines. Brain 98: 219–230, 1975.
 295. Spencer, H. J. Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 102: 91–101, 1976.
 296. Stefens, R., and J. Droogleever‐Fortuyn. Contribution à l'étude de la structure et de quelques connexions des noyaux intermédiaires du thalamus chez le lapin. Schweiz. Arch. Neurol. Psychiatr. 72: 299–318, 1953.
 297. Stengel, E. Vergleichend‐anatomische Studien über die Kerne an der hinteren Kommissur und im Urspungsgebiete des hinteren Langsbündels. Arb. Neurol. Inst. Wiener Univ. 26: 419–454, 1924.
 298. Stern, K. Note on the nucleus ruber magnocellularis and its efferent pathway in man. Brain 61: 284–289, 1938.
 299. Strominger, N. L., T. C. Truscott, R. A. Miller, and G. J. Royce. An autoradiographic study of the rubroolivary tract in the rhesus monkey. J. Comp. Neurol. 183: 33–46, 1979.
 300. Swanson, L. W., and W. M. Cowan. A note on the connections and development of the nucleus accumbens. Brain Res. 92: 324–330, 1975.
 301. Szabo, J. Topical distribution of striatal efferents in the monkey. Exp. Neurol. 5: 21–36, 1962.
 302. Szabo, J. The efferent projections of the putamen in the monkey. Exp. Neurol. 19: 463–476, 1967.
 303. Szabo, J. Projections from the body of the caudate nucleus in the rhesus monkey. Exp. Neurol. 27: 1–15, 1970.
 304. Taber, E., A. Brodal, and A. Walberg. The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion. J. Comp. Neurol. 114: 161–187, 1960.
 305. Tappaz, M., M. Brownstein, and M. Palkovitz. Distribution of glutamate decarboxylase in discrete brain nuclei. Brain Res. 108: 371–379, 1976.
 306. Ternaux, J. P., F. Héry, S. Bourgoin, J. Adrien, J. Glowinski, and M. Hamon. The topographical distribution of serotoninergic terminals in the neostriatum of the rat and the caudate nucleus of the cat. Brain Res. 121: 311–326, 1977.
 307. Thörner, G., H. Lange, and A. Hopf. Morphometrischstatistische Strukturanalysen Striatum, Pallidum und Nucleus Subthalamicus beim Menschen. J. Hirnforsch. 16: 401–413, 1975.
 308. Toyama, K., N. Tsukahara, and M. Udo. Nature of the cerebellar influences upon the red nucleus neurons. Exp. Brain Res. 4: 292–309, 1968.
 309. Tregear, G. W., H. D. Niall, J. T. Potts, S. E. Leeman, and M. M. Chang. Synthesis of substance P. Nature London New Biol. 232: 87–89, 1971.
 310. Trueman, T., and J. Herbert. The distribution of monoamines and acetylcholinesterase in the pineal gland and habenula of the ferret. J. Anat. 106: 406, 1970.
 311. Tsubokawa, T., and J. Sutin. Subthalamic neurons: response to joint movement. Brain Res. 10: 463–466, 1968.
 312. Tsubokawa, T., and J. Sutin. Pallidal and tegmental inhibition of oscillatory slow waves and unit activity in the subthalamic nucleus. Brain Res. 41: 101–118, 1972.
 313. Tsukahara, N., and K. Kosaka. The mode of cerebral excitation of red nucleus neurons. Exp. Brain Res. 5: 102–117, 1968.
 314. Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl. 367: 1–48, 1971.
 315. Uno, M., and M. Yoshida. Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res. 99: 377–380, 1975.
 316. Verhaart, W. J. C. A comparison between the corpus striatum and the red nucleus as subcortical center of the cerebral motor system. Psychiatr. Neurol. Bladen Amsterdam 32: 676–737, 1938.
 317. Verhaart, W. J. C. Fiber analysis of the basal ganglia. J. Comp. Neurol. 93: 425–440, 1950.
 318. Verhaart, W. J. C., and M. A. Kennard. Corticofugal degeneration following thermocoagulation of areas 4, 6, and 4S in Macaca mulatto. J. Anat. 74: 239–254, 1940.
 319. Vogt, C., and O. Vogt. Zur Lehre der Erkankungen des striären Systems. J. Psychol. Neurol. 25: 627–846, 1920.
 320. Vogt, C., and O. Vogt. Thalamusstudien I–III. J. Psychol. Neurol. 50: 32–154, 1941.
 321. Voneida, T. J. An experimental study of the course and destination of fibers arising in the head of caudate nucleus in the cat and monkey. J. Comp. Neurol. 115: 75–87, 1960.
 322. Voogd, J. The Cerebellum of the Cat. Structure and Fibre Connexions. Leiden: Van Gorcum, 1964.
 323. Walberg, F. On the termination of rubrobulbar fibers. Experimental observations in the cat. J. Comp. Neurol. 110: 66–73, 1958.
 324. Walberg, F., and J. Jansen. Cerebellar cortico‐nuclear projection studied experimentally with silver impregnation methods. J. Hirnforsch. 6: 338–354, 1964.
 325. Walker, A. E. The retrograde cell degeneration in the thalamus of Macacus rhesus following hemidecortication. J. Comp. Neurol. 62: 407–419, 1935.
 326. Walker, A. E. The Primate Thalamus. Chicago: Univ. of Chicago Press, 1938.
 327. Walker, A. E., Afferent connections. In: The Precentral Motor Cortex (2nd ed.), edited by P. C. Bucy. Urbana: Univ. Illinois Press, 1949, p. 112–132.
 328. Walker, A. E., Internal structure and afferent‐efferent relations of the thalamus. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 1–12.
 329. Webster, K. E. Cortico‐striate interrelations in the albino rat. J. Anat. 95: 532–544, 1961.
 330. Webster, K. E. The cortico‐striatal projection in the cat. J. Anat. 99: 329–337, 1965.
 331. Whittier, J. R. Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysi). Arch. Neurol. Psychiatry 58: 672–692, 1947.
 332. Whittier, J. R., and F. A. Mettler. Studies on the subthalamus of the rhesus monkey. I. Anatomy and fiber connections of the subthalamic nucleus of Luys. J. Comp. Neurol. 90: 281–317, 1949.
 333. Whittier, J. R., and F. A. Mettler. Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiological effects of subthalamic lesions with special reference to the subthalamic nucleus of Luys. J. Comp. Neurol. 90: 319–372, 1949.
 334. Wiitanen, J. T. Selective silver impregnation of degenerating axons and axon terminals in the central nervous system of the monkey (Macaca mulatto). Brain Res. 14: 546–548, 1969.
 335. Wilson, S. A. K. Progressive lenticular degeneration; a familial nervous disease associated with cirrhosis of the liver. Brain 34: 295–509, 1912.
 336. Wilson, S. A. K. An experimental research into the anatomy and physiology of the corpus striatum. Brain 36: 427–492, 1914.
 337. Winkler, C. Manuel de Neurologic Bohn: Haarlem, 1929, vol. 1, pt. 4.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Malcolm B. Carpenter. Anatomy of the Corpus Striatum and Brain Stem Integrating Systems. Compr Physiol 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control: 947-995. First published in print 1981. doi: 10.1002/cphy.cp010219