Comprehensive Physiology Wiley Online Library

Organization of the Thalamocortical Complex and its Relation to Sensory Processes

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Perspective
2 Basic Subdivisions of Thalamus in Representative Mammals
3 Sensory Relay Nuclei
3.1 Topographic Organization
3.2 Cell Types
3.3 Afferent Axons
3.4 Synaptic Organization
4 Subdivisions in Relation to Afferent Pathways and Cortical Projections
4.1 Medial Geniculate Complex
4.2 Somatic Sensory Relay Nuclei
4.3 Gustatory Nucleus
4.4 Vestibular Relay
4.5 Visual Relay Nuclei
4.6 Geniculostriate System
4.7 Extrageniculostriate System
5 Corticothalamic Reciprocity
6 Finer Organization of Thalamocortical Projection
6.1 Axon Bundling
6.2 Laminar Terminations
7 Other Relay Nuclei
7.1 Mediodorsal Nucleus
7.2 Ventral Lateral Complex
7.3 Pulvinar
7.4 Suprageniculate‐Limitans Nucleus
7.5 Anterior Group and Lateral Dorsal Nucleus
7.6 Other Principal Nuclei
8 Intralaminar Nuclei
9 Other Diffuse Thalamocortical Systems
10 Ventral Thalamus
10.1 Ventral Lateral Geniculate Nucleus
10.2 Zona Incerta and Fields of Forel
10.3 Reticular Nucleus
11 Thalamic Inputs from Brain Stem Reticular Formation
Figure 1. Figure 1.

AI: frontal sections through thalamus of a cat showing in rostrocaudal sequence the nuclei mentioned in text.1 Thionine stain; × 10.

Photographed from material kindly provided by Dr. A. L. Berman
Figure 2. Figure 2.

AD: frontal sections in rostrocaudal order through posterior half of the thalamus of a rhesus monkey showing subdivisions of pulvinar, ventral, and medial geniculate complexes and certain related nuclei. For abbreviations see footnote to Fig. 1 legend. Thionine stain; × 8.

Figure 3. Figure 3.

Sagittal section, A, and frontal sections, B, C, rostral to Fig. 2A showing certain more anterior subdivisions of the ventral nuclear complex of monkey. For abbreviations see footnote to Fig. 1 legend. Thionine stain; A: × 15; B, C: × 12.

Figure 4. Figure 4.

Horizontal section through ventral nuclear complex of a cynomolgus monkey. For abbreviations see footnote to Fig. 1 legend. Thionine stain; × 18.

Figure 5. Figure 5.

Ventral medial geniculate nucleus of cat. A: bundling of afferent fibers. B: overlap of terminal clusters of individual fibers. C: distribution of a single fiber to more than one lamellar arrangement of thalamocortical relay cells. D: parallel, lamellar configuration of dendritic fields of thalamocortical relay cells, with ventromedial ends of lamellae coiled.

From Morest 352, by permission of Cambridge University Press
Figure 6. Figure 6.

Systemic, low to high progression of best frequencies recorded from single units in ventral medial geniculate nucleus of a cat, in electrode penetration oriented across rows of cells and fibers illustrated in Fig. 5. For abbreviations see footnote to Fig. 1 legend

From Aitkin and Webster 5
Figure 7. Figure 7.

Rostral (R) to caudal (C) series of schematic sections through ventrobasal complex of a raccoon showing typical mammalian plan of representation of body parts as defined in a systematic microelectrode mapping study

From Welker 531
Figure 8. Figure 8.

A: Golgi preparation from a horizontal section through mouse ventrobasal complex, showing lamellar distribution of aggregations of lemniscal fibers (left), of corticothalamic fibers (middle), and of thalamocortical relay cells (right) upon which the fibers terminate. B, C: single medial lemniscal fibers anterogradely labeled by injection of horseradish peroxidase in medial lemniscus of cats. Sagittal sections

A: from Cajal 413 by permission of Instituto Cajal, Madrid; B, C: from unpublished material of W. T. Rainey and E. G. Jones
Figure 9. Figure 9.

A: schematic drawings on horizontal (left) and frontal (right) sections of monkey ventrobasal complex, showing division of complex into a large cutaneous and a smaller deep component. In cutaneous portion, body parts are represented as a series of lamellae, as determined from microelectrode recordings. B: horizontal section showing labeling of terminal ramifications of lemniscal fibers arising from small group of cells in dorsal column nuclei, and extending as a rod that follows contours of a lamella. Horseradish peroxidase, no counterstain; × 300. C: dark‐field photomicrograph from a frontal section showing anterograde labeling of terminal aggregations of lemniscal fibers; each cluster represents a rod, like that in B, cut in cross section. For abbreviations see footnote to Fig. 1 legend. Autoradiograph × 200

A: from Jones and Friedman 245; B: from Jones et al. 246; C: from Tracey, Jones, et al. 513
Figure 10. Figure 10.

Oblique parasagittal section showing (arrows) six rows of cells in VPM nucleus of a marsupial phalanger, each providing input to similar clumps of cortical cells that represent the mystacial vibrissae. For abbreviations see footnote to Fig. 1 legend. Thionine stain, × 12.

Figure 11. Figure 11.

Receptive fields of selected sequences of units recorded from two electrode penetrations made horizontally from behind through the VPLc (1) and VPM (2) nuclei of a monkey. In sequences illustrated, units had very similarly situated peripheral receptive fields and responded to same type of stimulus (see key figure). Units for which no receptive fields are illustrated were related to other body parts. For abbreviations see footnote to Fig. 1 legend

From Jones et al. 246
Figure 12. Figure 12.

Series of vertical penetrations through monkey ventrobasal complex records single units (bars) and multiunit activity (stipple or lines) related to same body part at a constant depth implying rodlike representation of smaller body parts within broader lamellar pattern. Stipple indicates cutaneous, lines deep receptive fields

From Jones and Friedman 245
Figure 13. Figure 13.

Upper and middle: schematic sagittal (upper) and frontal (middle) sections of laminar dorsal lateral geniculate nucleus of a cat. Upper: projection columns representing degrees of visual‐field eccentricity above and below horizontal meridian (0). Middle: projection columns representing points of increasing eccentricity from vertical meridian (0). Disc, zone of absent cells representing relative position of the optic disk. Lower: mode of projection of visual half‐field onto individual laminae. Each projection column seems to form a part of a lamellar distribution of afferent fibers and the cells upon which they terminate, which in turn, represent an arclike portion of visual field. Note larger representation of parts of field closest to fixation point. Laminae A1 and C1, in receiving fibers only from ipsilateral eye, represent a smaller part of hemifield and are thus shorter than laminae A, C, and C2, which receive fibers from the contralateral eye. HM: horizontal meridian; VM: vertical meridian

Upper and middle figures: from Kaas et al. 260,261
Figure 14. Figure 14.

Columnlike zone of retrograde degeneration extending across all laminae of lateral geniculate nucleus of a monkey following a small lesion in one part of visual‐field representation in striate cortex. Arrow indicates an unrelated region of additional degeneration

From Kaas et al. 261
Figure 15. Figure 15.

Drawings of Golgi preparations from lateral geniculate nucleus of a cat showing two types of thalamocortical relay neurons. Larger type is typical of such neurons in most principal thalamic nuclei. Dendritic protrusions and appendages are major sites of synaptic contact with ascending afferent fibers. × −300

From Guillery 187
Figure 16. Figure 16.

Golgi preparation of a typical thalamic interneuron showing interrelationship of grapelike dendritic appendages and axonal branches (F. Ax) with one another in formation of synaptic islands or glomeruli (Glo). × ∼300

From Szentágothai 500
Figure 17. Figure 17.

Drawings of Golgi preparations showing terminal portions of type I, or corticothalamic, and of type II, or retinal afferent fibers, from lateral geniculate nucleus of the cat. These are typical of comparable fibers in other principal thalamic nuclei

From Guillery 187
Figure 18. Figure 18.

A: photomicrograph of one of the terminal branches of a medial lemniscal axon filled with horseradish peroxidase in cat ventrobasal complex. × 400. B: electron micrograph of labeled terminals (T1) from a similar axon. Arrowheads, points of synaptic contact on a dendrite (D) and on a dendritic terminal (T2). × 50,000

From unpublished material of W. T. Rainey and E. G. Jones
Figure 19. Figure 19.

Ventrobasal complexes of monkeys after large injections of tracer in hand representations of somatic sensory cortex. A: lamellar configurations of thalamocortical relay cells retrogradely labeled with horseradish peroxidase. B: lamellar configurations of corticothalamic fiber terminations anterogradely labeled with tritiated amino acids. For abbreviations see footnote to Fig. 1 legend. A: × 12; B: × 17.

Figure 20. Figure 20.

A: dark‐field photomicrograph showing thalamocortical relay cells, retrogradely labeled with horseradish peroxidase after a single relatively small injection in the hand area of SI. Though falling within a lamella in an appropriate part of body representation in ventrobasal complex (B), the cells form subsidiary clusters. These may correspond to groups of cells receiving input from individual bundles of afferent types. For abbreviations see footnote to Fig. 1 legend. A: × 20; B: × 5

From Jones et al. 257
Figure 21. Figure 21.

Electron micrograph from the ventrobasal complex of a cat showing some of characteristic features of synaptic aggregations found in most thalamic nuclei. Dendritic protrusion (D) is postsynaptic (arrowheads) to terminals (T1) of ascending afferent fibers and to presumed presynaptic dendrites (T2). Presynaptic dendrites are themselves postsynaptic to ascending afferent terminals and to flattened vesicle‐containing terminals (F). Both presynaptic dendrites and F‐type terminals appear to be derived from interneurons of type illustrated in Fig. 14. G indicates ensheathing astroglial processes. × 20,000.

Figure 22. Figure 22.

Electron micrograph from ventrobasal complex of cat showing a medial lemniscal terminal (large arrow) degenerating 4 days after destruction of contralateral dorsal column nuclei. This terminal is making synaptic contact (arrowheads) with a presynaptic dendrite containing ribosomes (T2) and with a proximal dendrite (D) close to its point of origin from its parent cell soma (S). Presumed axon terminals (F) of interneurons arise as dilatations (smaller arrows) of a single axon. Small terminal (C) is a presumed corticothalamic fiber terminal; M indicates a microglial cell. × 10,000.

Figure 23. Figure 23.

Drawing (above) and photomicrograph (below) showing a thalamocortical relay cell injected with horseradish peroxidase in cat ventrobasal complex. Axon (A) gives off a collateral (C) within nucleus.

By courtesy of Dr. B. Walmsley
Figure 24. Figure 24.

Schematic drawing indicating synaptic relationships typical of majority of thalamic nuclei. Dendritic protrusions (D) of thalamocortical relay cells (R) receive terminals (T1) of ascending afferent fibers (A) and presynaptic dendrites (T2) of interneurons (I). Presynaptic dendrites and probably conventional dendrites of interneurons are also postsynaptic to afferent fiber terminal and sometimes to one another (not shown). Axons of interneurons also terminate (F) mainly on presynaptic dendrites. The complex synaptic aggregation tends to be ensheathed in astrocytic processes (G). Outside this, corticothalamic terminals (C) end on relay cell dendrites and on presynaptic dendrites of interneurons. On the relay cell, most cortical terminals are distally situated. Terminals of reticular nucleus axons (Rt) also terminate on or close to somata of relay neurons.

Figure 25. Figure 25.

Orthographic reconstruction of cytoarchitectonic fields in vicinity of lateral and superior temporal sulci of rhesus monkey. Method of making the reconstruction is as illustrated at left. Thalamic nuclei projecting to individual fields are indicated by letters in small boxes. For abbreviations see footnote to Fig. 1 legend

From Jones and Burton 239
Figure 26. Figure 26.

Data from experiments in cats in which cells of ventrobasal complex projecting to SII were retrogradely labeled with horseradish peroxidase (right) in a normal animal and (left) in an animal in which SI had been removed 6 months previously. Retrogradely labeled cells (stipple), in comparison with unlabeled cells in ventrobasal complex of contralateral side (hatching), are markedly shrunken on side on which SI was ablated, indicating that normally these cells have collateral axon branches to both areas. For abbreviations see footnote to Fig. 1 legend

From Jones 233
Figure 27. Figure 27.

Schematic figure showing on sagittal sections the pattern of input‐output connections of ventrobasal complex and certain adjacent thalamic nuclei in monkey. For abbreviations see footnote to Fig. 1 legend

From Jones and Friedman 245
Figure 28. Figure 28.

Left: distribution (stipple) of cortical projections of posterior complex of thalamic nuclei in cats. Right: distribution of neurons with lemniscal (VB‐type) and nonlemniscal (Po‐type) response properties in anterior ectosylvian gyrus of cat. These occupy different parts of area previously designated SII on basis of surface‐evoked potentials and correspond to regions receiving from ventrobasal and posterior complexes of thalamus. A, B, C are previously identified zones of Carreras and Andersson 81. For abbreviations see footnote to Fig. 1 legend

From Haight 196
Figure 29. Figure 29.

Cytoarchitecture of two regions receiving spinothalamic terminals in the cat. These include medial division of posterior complex (Pom) and a group of large cells of central lateral nucleus (arrows) that are often mistakenly regarded as belonging to the centre médian nucleus (CM). Thionine stain; × 10. For other abbreviations see footnote to Fig. 1 legend

From Jones and Burton 238
Figure 30. Figure 30.

Frontal sections through thalamus of cat showing schematically the differential distribution of fibers from retina (stipple), from certain pretectal nuclei (cross hatching), from visual areas of cortex (vertical hatching), and from superficial layers of superior colliculus (oblique hatching). Compare Fig. 1F. For abbreviations see footnote to Fig. 1 legend.

Figure 31. Figure 31.

Schematic diagram illustrating patterns of afferent and thalamocortical connectivity in geniculocortical and extrageniculocortical parts of visual system as currently understood in cat. A, A1, C: layers of dorsal lateral geniculate nucleus; Lat. SS: lateral suprasylvian area; LP & PNR: lateral posterior nucleus and posterior nucleus of Rioch; MIN: medial interlaminar nucleus of dorsal lateral geniculate; NOT: nucleus of optic tract; SGS: stratum griseum superficiale of superior colliculus; VLGN: ventral lateral geniculate nucleus.

Figure 32. Figure 32.

Dark‐field photomicrograph from ventrobasal complex of a rat in which tritiated amino acids and horseradish peroxidase were injected at same site in SI cortex. Grains representing anterograde labeling of terminal ramifications of corticothalamic fibers have same distribution as retrogradely labeled thalamocortical relay cells projecting to same cortical site. × 50.

Figure 33. Figure 33.

Left: dark‐field (upper) and bright‐field (lower) photomicrographs at same magnification and from same field showing retrograde labeling of many corticothalamic cells in layer VI with a smaller number in layer V. SI cortex of a squirrel monkey. Thionine counterstain, × 50. Right: retrograde labeling of corticothalamic neurons in layer VI of monkey SI cortex following injection of [3H]D‐aspartate in the ventrobasal complex. × 200

Left: from Jones and Wise 256; right: from Jones 237
Figure 34. Figure 34.

Dark‐field photomicrograph from part of thalamus of an infant rat shown in inset. Thalamocortical relay cells are retrogradely labeled both in ventrobasal complex and in central lateral nucleus following injection of horseradish peroxidase in maturing SI cortex. Note clustering of cells in VB, which is thought to be basis of axonal bundling in the cortex. Thionine counterstain; × 75; inset × 30. For abbreviations see footnote to Fig. 1 legend

From Wise and Jones 549
Figure 35. Figure 35.

Dark‐field and bright‐field photomicrographs from immediately adjacent sections through first and second somatic sensory areas (SI and SII) of cortex of a rat, stained for degenerating axons (left) and with thionine (right) 4 days after destruction of thalamic ventrobasal complex. Arrows indicate same blood vessels. Note clustered nature of terminal ramifications of thalamocortical fibers and in SI their restriction to zones of aggregated granule cells. × 150

From Wise and Jones 549
Figure 36. Figure 36.

A: punctate injection of retrograde tracer in one field (area 3b) of monkey SI cortex leads to retrograde labeling of rod of cells in ventrobasal complex of the thalamus. B: focal injections of tritiated amino acids in the ventrobasal complex leads to anterograde labeling of focal zones of termination in the SI cortex. C: when reconstructed on an unfolded surface map, foci are seen to form parts of short strips. For abbreviations see footnote to Fig. 1 legend

A: from Jones 567; B: from Friedman and Jones 564; C: from Jones et al. 246
Figure 37. Figure 37.

Schematic figures indicating basis for thalamic projection to columns in somatic sensory cortex. A bundle of lemniscal axons, of like place and modality properties, terminates along length of a rod of thalamocortical relay cells (A) whose bundled axons (B, C) project to a common focus in a field of the postcentral gyrus. For abbreviations see footnote to Fig. 1 legend

From Jones et al. 246
Figure 38. Figure 38.

Dark‐field and bright‐field photomicrographs from same part of area 5 of a monkey in which tritiated amino acids were injected in lateral posterior nucleus. Autoradiographically labeled terminal ramifications of thalamocortical fibers are predominately distributed to large‐celled part of layer III (layer IIIB) instead of to layer IV. Thionine counterstain. × 70

From Jones and Burton 239
Figure 39. Figure 39.

Grain density counts across thickness of cortex in areas 3b and 1–2 of SI of a rhesus monkey following injection of tritiated amino acids in the thalamic ventrobasal complex. Peaks of grain density are either in layer IIIB alone or at border of layers IIIB and IV. Additional small peaks are seen in layer V or VI. Background indicated by stipple. For abbreviations see footnote to Fig. 1 legend

From Jones and Burton 239
Figure 40. Figure 40.

A: dark‐field photomicrograph from area 3b of squirrel monkey showing labeling of terminal ramifications in layer VI as well as in layers III‐IV following injection of tritiated amino acids in ventrobasal complex. × 70. B: dark‐field photomicrograph from cingulate cortex of cat following injection of tritiated amino acids in thalamic intralaminar nuclei. Unlike that in A, major cortical projection demonstrated is to outer part of layer I. There is labeling of fibers in layer VI and in underlying white matter. × 50.

A: from Jones and Burton 239
Figure 41. Figure 41.

Differential laminar distributions of thalamocortical fibers arising from A‐ and C‐laminae of cat lateral geniculate nucleus. For abbreviations see footnote to Fig. 1 legend

From LeVay and Gilbert 306
Figure 42. Figure 42.

Laminar distribution in visual cortex of single thalamocortical fibers thought to arise from Y‐type (this page) and X‐type (facing page) relay neurons in A‐laminae of cat lateral geniculate nucleus

From Ferster and LeVay 148
Figure 43. Figure 43.

Left: dark‐field, A, and bright‐field, B, photomicrographs showing anterograde labeling of dentatothalamic axons in patches confined to common VPLo‐VLc nucleus of monkey. Sagittal section, anterior to left. Arrows, same blood vessels. Right: adjacent uncounterstained, A, and counterstained, B, sagittal sections showing retrograde labeling of thalamic cells restricted to common VPLo‐VLc nucleus following an injection of tracer in cortical area 4. Arrows, same blood vessels. Blood to left is in electrode tracks; anterior is to right. For abbreviations see footnote to Fig. 1 legend

From Asanuma, Thach, and Jones 20
Figure 44. Figure 44.

Schematic outline of input‐output connections of thalamic relay to area 4 of motor cortex in monkeys. Also illustrated are differential distributions of dorsal column‐lemniscal and spinothalamic terminations in thalamus. Vest, vestibular input. For other abbreviations see footnote to Fig. 1 legend

Adapted from Asanuma, Thach, and Jones 20
Figure 45. Figure 45.

Dark‐field photomicrograph (right) from region indicated by box in bright‐field photomicrograph of a thionine‐counterstained autoradiograph (left), showing labeling of terminal ramifications of corticothalamic fibers in thalamic reticular nucleus (R) of rat following injection of tritiated amino acids in the SI cortex. For other abbreviations see footnote to Fig. 1 legend. Left, × 90

From Jones 234
Figure 46. Figure 46.

Projection drawings of series of frontal sections at intervals indicated by numbers, showing overlapping sectors of cat reticular nucleus related to different groups of dorsal thalamic nuclei. For clarity, symbol related to one particular group of dorsal thalamic nuclei appears on one section only. For abbreviations see footnote to Fig. 1 legend

From Jones 234
Figure 47. Figure 47.

Heavy immunocytochemical staining of GABAergic neurons in reticular nucleus (Rt) of rat thalamus. Antiserum to glutamic acid decarboxylase. For abbreviations see footnote to Fig. 1 legend

From Houser et al. 224


Figure 1.

AI: frontal sections through thalamus of a cat showing in rostrocaudal sequence the nuclei mentioned in text.1 Thionine stain; × 10.

Photographed from material kindly provided by Dr. A. L. Berman


Figure 2.

AD: frontal sections in rostrocaudal order through posterior half of the thalamus of a rhesus monkey showing subdivisions of pulvinar, ventral, and medial geniculate complexes and certain related nuclei. For abbreviations see footnote to Fig. 1 legend. Thionine stain; × 8.



Figure 3.

Sagittal section, A, and frontal sections, B, C, rostral to Fig. 2A showing certain more anterior subdivisions of the ventral nuclear complex of monkey. For abbreviations see footnote to Fig. 1 legend. Thionine stain; A: × 15; B, C: × 12.



Figure 4.

Horizontal section through ventral nuclear complex of a cynomolgus monkey. For abbreviations see footnote to Fig. 1 legend. Thionine stain; × 18.



Figure 5.

Ventral medial geniculate nucleus of cat. A: bundling of afferent fibers. B: overlap of terminal clusters of individual fibers. C: distribution of a single fiber to more than one lamellar arrangement of thalamocortical relay cells. D: parallel, lamellar configuration of dendritic fields of thalamocortical relay cells, with ventromedial ends of lamellae coiled.

From Morest 352, by permission of Cambridge University Press


Figure 6.

Systemic, low to high progression of best frequencies recorded from single units in ventral medial geniculate nucleus of a cat, in electrode penetration oriented across rows of cells and fibers illustrated in Fig. 5. For abbreviations see footnote to Fig. 1 legend

From Aitkin and Webster 5


Figure 7.

Rostral (R) to caudal (C) series of schematic sections through ventrobasal complex of a raccoon showing typical mammalian plan of representation of body parts as defined in a systematic microelectrode mapping study

From Welker 531


Figure 8.

A: Golgi preparation from a horizontal section through mouse ventrobasal complex, showing lamellar distribution of aggregations of lemniscal fibers (left), of corticothalamic fibers (middle), and of thalamocortical relay cells (right) upon which the fibers terminate. B, C: single medial lemniscal fibers anterogradely labeled by injection of horseradish peroxidase in medial lemniscus of cats. Sagittal sections

A: from Cajal 413 by permission of Instituto Cajal, Madrid; B, C: from unpublished material of W. T. Rainey and E. G. Jones


Figure 9.

A: schematic drawings on horizontal (left) and frontal (right) sections of monkey ventrobasal complex, showing division of complex into a large cutaneous and a smaller deep component. In cutaneous portion, body parts are represented as a series of lamellae, as determined from microelectrode recordings. B: horizontal section showing labeling of terminal ramifications of lemniscal fibers arising from small group of cells in dorsal column nuclei, and extending as a rod that follows contours of a lamella. Horseradish peroxidase, no counterstain; × 300. C: dark‐field photomicrograph from a frontal section showing anterograde labeling of terminal aggregations of lemniscal fibers; each cluster represents a rod, like that in B, cut in cross section. For abbreviations see footnote to Fig. 1 legend. Autoradiograph × 200

A: from Jones and Friedman 245; B: from Jones et al. 246; C: from Tracey, Jones, et al. 513


Figure 10.

Oblique parasagittal section showing (arrows) six rows of cells in VPM nucleus of a marsupial phalanger, each providing input to similar clumps of cortical cells that represent the mystacial vibrissae. For abbreviations see footnote to Fig. 1 legend. Thionine stain, × 12.



Figure 11.

Receptive fields of selected sequences of units recorded from two electrode penetrations made horizontally from behind through the VPLc (1) and VPM (2) nuclei of a monkey. In sequences illustrated, units had very similarly situated peripheral receptive fields and responded to same type of stimulus (see key figure). Units for which no receptive fields are illustrated were related to other body parts. For abbreviations see footnote to Fig. 1 legend

From Jones et al. 246


Figure 12.

Series of vertical penetrations through monkey ventrobasal complex records single units (bars) and multiunit activity (stipple or lines) related to same body part at a constant depth implying rodlike representation of smaller body parts within broader lamellar pattern. Stipple indicates cutaneous, lines deep receptive fields

From Jones and Friedman 245


Figure 13.

Upper and middle: schematic sagittal (upper) and frontal (middle) sections of laminar dorsal lateral geniculate nucleus of a cat. Upper: projection columns representing degrees of visual‐field eccentricity above and below horizontal meridian (0). Middle: projection columns representing points of increasing eccentricity from vertical meridian (0). Disc, zone of absent cells representing relative position of the optic disk. Lower: mode of projection of visual half‐field onto individual laminae. Each projection column seems to form a part of a lamellar distribution of afferent fibers and the cells upon which they terminate, which in turn, represent an arclike portion of visual field. Note larger representation of parts of field closest to fixation point. Laminae A1 and C1, in receiving fibers only from ipsilateral eye, represent a smaller part of hemifield and are thus shorter than laminae A, C, and C2, which receive fibers from the contralateral eye. HM: horizontal meridian; VM: vertical meridian

Upper and middle figures: from Kaas et al. 260,261


Figure 14.

Columnlike zone of retrograde degeneration extending across all laminae of lateral geniculate nucleus of a monkey following a small lesion in one part of visual‐field representation in striate cortex. Arrow indicates an unrelated region of additional degeneration

From Kaas et al. 261


Figure 15.

Drawings of Golgi preparations from lateral geniculate nucleus of a cat showing two types of thalamocortical relay neurons. Larger type is typical of such neurons in most principal thalamic nuclei. Dendritic protrusions and appendages are major sites of synaptic contact with ascending afferent fibers. × −300

From Guillery 187


Figure 16.

Golgi preparation of a typical thalamic interneuron showing interrelationship of grapelike dendritic appendages and axonal branches (F. Ax) with one another in formation of synaptic islands or glomeruli (Glo). × ∼300

From Szentágothai 500


Figure 17.

Drawings of Golgi preparations showing terminal portions of type I, or corticothalamic, and of type II, or retinal afferent fibers, from lateral geniculate nucleus of the cat. These are typical of comparable fibers in other principal thalamic nuclei

From Guillery 187


Figure 18.

A: photomicrograph of one of the terminal branches of a medial lemniscal axon filled with horseradish peroxidase in cat ventrobasal complex. × 400. B: electron micrograph of labeled terminals (T1) from a similar axon. Arrowheads, points of synaptic contact on a dendrite (D) and on a dendritic terminal (T2). × 50,000

From unpublished material of W. T. Rainey and E. G. Jones


Figure 19.

Ventrobasal complexes of monkeys after large injections of tracer in hand representations of somatic sensory cortex. A: lamellar configurations of thalamocortical relay cells retrogradely labeled with horseradish peroxidase. B: lamellar configurations of corticothalamic fiber terminations anterogradely labeled with tritiated amino acids. For abbreviations see footnote to Fig. 1 legend. A: × 12; B: × 17.



Figure 20.

A: dark‐field photomicrograph showing thalamocortical relay cells, retrogradely labeled with horseradish peroxidase after a single relatively small injection in the hand area of SI. Though falling within a lamella in an appropriate part of body representation in ventrobasal complex (B), the cells form subsidiary clusters. These may correspond to groups of cells receiving input from individual bundles of afferent types. For abbreviations see footnote to Fig. 1 legend. A: × 20; B: × 5

From Jones et al. 257


Figure 21.

Electron micrograph from the ventrobasal complex of a cat showing some of characteristic features of synaptic aggregations found in most thalamic nuclei. Dendritic protrusion (D) is postsynaptic (arrowheads) to terminals (T1) of ascending afferent fibers and to presumed presynaptic dendrites (T2). Presynaptic dendrites are themselves postsynaptic to ascending afferent terminals and to flattened vesicle‐containing terminals (F). Both presynaptic dendrites and F‐type terminals appear to be derived from interneurons of type illustrated in Fig. 14. G indicates ensheathing astroglial processes. × 20,000.



Figure 22.

Electron micrograph from ventrobasal complex of cat showing a medial lemniscal terminal (large arrow) degenerating 4 days after destruction of contralateral dorsal column nuclei. This terminal is making synaptic contact (arrowheads) with a presynaptic dendrite containing ribosomes (T2) and with a proximal dendrite (D) close to its point of origin from its parent cell soma (S). Presumed axon terminals (F) of interneurons arise as dilatations (smaller arrows) of a single axon. Small terminal (C) is a presumed corticothalamic fiber terminal; M indicates a microglial cell. × 10,000.



Figure 23.

Drawing (above) and photomicrograph (below) showing a thalamocortical relay cell injected with horseradish peroxidase in cat ventrobasal complex. Axon (A) gives off a collateral (C) within nucleus.

By courtesy of Dr. B. Walmsley


Figure 24.

Schematic drawing indicating synaptic relationships typical of majority of thalamic nuclei. Dendritic protrusions (D) of thalamocortical relay cells (R) receive terminals (T1) of ascending afferent fibers (A) and presynaptic dendrites (T2) of interneurons (I). Presynaptic dendrites and probably conventional dendrites of interneurons are also postsynaptic to afferent fiber terminal and sometimes to one another (not shown). Axons of interneurons also terminate (F) mainly on presynaptic dendrites. The complex synaptic aggregation tends to be ensheathed in astrocytic processes (G). Outside this, corticothalamic terminals (C) end on relay cell dendrites and on presynaptic dendrites of interneurons. On the relay cell, most cortical terminals are distally situated. Terminals of reticular nucleus axons (Rt) also terminate on or close to somata of relay neurons.



Figure 25.

Orthographic reconstruction of cytoarchitectonic fields in vicinity of lateral and superior temporal sulci of rhesus monkey. Method of making the reconstruction is as illustrated at left. Thalamic nuclei projecting to individual fields are indicated by letters in small boxes. For abbreviations see footnote to Fig. 1 legend

From Jones and Burton 239


Figure 26.

Data from experiments in cats in which cells of ventrobasal complex projecting to SII were retrogradely labeled with horseradish peroxidase (right) in a normal animal and (left) in an animal in which SI had been removed 6 months previously. Retrogradely labeled cells (stipple), in comparison with unlabeled cells in ventrobasal complex of contralateral side (hatching), are markedly shrunken on side on which SI was ablated, indicating that normally these cells have collateral axon branches to both areas. For abbreviations see footnote to Fig. 1 legend

From Jones 233


Figure 27.

Schematic figure showing on sagittal sections the pattern of input‐output connections of ventrobasal complex and certain adjacent thalamic nuclei in monkey. For abbreviations see footnote to Fig. 1 legend

From Jones and Friedman 245


Figure 28.

Left: distribution (stipple) of cortical projections of posterior complex of thalamic nuclei in cats. Right: distribution of neurons with lemniscal (VB‐type) and nonlemniscal (Po‐type) response properties in anterior ectosylvian gyrus of cat. These occupy different parts of area previously designated SII on basis of surface‐evoked potentials and correspond to regions receiving from ventrobasal and posterior complexes of thalamus. A, B, C are previously identified zones of Carreras and Andersson 81. For abbreviations see footnote to Fig. 1 legend

From Haight 196


Figure 29.

Cytoarchitecture of two regions receiving spinothalamic terminals in the cat. These include medial division of posterior complex (Pom) and a group of large cells of central lateral nucleus (arrows) that are often mistakenly regarded as belonging to the centre médian nucleus (CM). Thionine stain; × 10. For other abbreviations see footnote to Fig. 1 legend

From Jones and Burton 238


Figure 30.

Frontal sections through thalamus of cat showing schematically the differential distribution of fibers from retina (stipple), from certain pretectal nuclei (cross hatching), from visual areas of cortex (vertical hatching), and from superficial layers of superior colliculus (oblique hatching). Compare Fig. 1F. For abbreviations see footnote to Fig. 1 legend.



Figure 31.

Schematic diagram illustrating patterns of afferent and thalamocortical connectivity in geniculocortical and extrageniculocortical parts of visual system as currently understood in cat. A, A1, C: layers of dorsal lateral geniculate nucleus; Lat. SS: lateral suprasylvian area; LP & PNR: lateral posterior nucleus and posterior nucleus of Rioch; MIN: medial interlaminar nucleus of dorsal lateral geniculate; NOT: nucleus of optic tract; SGS: stratum griseum superficiale of superior colliculus; VLGN: ventral lateral geniculate nucleus.



Figure 32.

Dark‐field photomicrograph from ventrobasal complex of a rat in which tritiated amino acids and horseradish peroxidase were injected at same site in SI cortex. Grains representing anterograde labeling of terminal ramifications of corticothalamic fibers have same distribution as retrogradely labeled thalamocortical relay cells projecting to same cortical site. × 50.



Figure 33.

Left: dark‐field (upper) and bright‐field (lower) photomicrographs at same magnification and from same field showing retrograde labeling of many corticothalamic cells in layer VI with a smaller number in layer V. SI cortex of a squirrel monkey. Thionine counterstain, × 50. Right: retrograde labeling of corticothalamic neurons in layer VI of monkey SI cortex following injection of [3H]D‐aspartate in the ventrobasal complex. × 200

Left: from Jones and Wise 256; right: from Jones 237


Figure 34.

Dark‐field photomicrograph from part of thalamus of an infant rat shown in inset. Thalamocortical relay cells are retrogradely labeled both in ventrobasal complex and in central lateral nucleus following injection of horseradish peroxidase in maturing SI cortex. Note clustering of cells in VB, which is thought to be basis of axonal bundling in the cortex. Thionine counterstain; × 75; inset × 30. For abbreviations see footnote to Fig. 1 legend

From Wise and Jones 549


Figure 35.

Dark‐field and bright‐field photomicrographs from immediately adjacent sections through first and second somatic sensory areas (SI and SII) of cortex of a rat, stained for degenerating axons (left) and with thionine (right) 4 days after destruction of thalamic ventrobasal complex. Arrows indicate same blood vessels. Note clustered nature of terminal ramifications of thalamocortical fibers and in SI their restriction to zones of aggregated granule cells. × 150

From Wise and Jones 549


Figure 36.

A: punctate injection of retrograde tracer in one field (area 3b) of monkey SI cortex leads to retrograde labeling of rod of cells in ventrobasal complex of the thalamus. B: focal injections of tritiated amino acids in the ventrobasal complex leads to anterograde labeling of focal zones of termination in the SI cortex. C: when reconstructed on an unfolded surface map, foci are seen to form parts of short strips. For abbreviations see footnote to Fig. 1 legend

A: from Jones 567; B: from Friedman and Jones 564; C: from Jones et al. 246


Figure 37.

Schematic figures indicating basis for thalamic projection to columns in somatic sensory cortex. A bundle of lemniscal axons, of like place and modality properties, terminates along length of a rod of thalamocortical relay cells (A) whose bundled axons (B, C) project to a common focus in a field of the postcentral gyrus. For abbreviations see footnote to Fig. 1 legend

From Jones et al. 246


Figure 38.

Dark‐field and bright‐field photomicrographs from same part of area 5 of a monkey in which tritiated amino acids were injected in lateral posterior nucleus. Autoradiographically labeled terminal ramifications of thalamocortical fibers are predominately distributed to large‐celled part of layer III (layer IIIB) instead of to layer IV. Thionine counterstain. × 70

From Jones and Burton 239


Figure 39.

Grain density counts across thickness of cortex in areas 3b and 1–2 of SI of a rhesus monkey following injection of tritiated amino acids in the thalamic ventrobasal complex. Peaks of grain density are either in layer IIIB alone or at border of layers IIIB and IV. Additional small peaks are seen in layer V or VI. Background indicated by stipple. For abbreviations see footnote to Fig. 1 legend

From Jones and Burton 239


Figure 40.

A: dark‐field photomicrograph from area 3b of squirrel monkey showing labeling of terminal ramifications in layer VI as well as in layers III‐IV following injection of tritiated amino acids in ventrobasal complex. × 70. B: dark‐field photomicrograph from cingulate cortex of cat following injection of tritiated amino acids in thalamic intralaminar nuclei. Unlike that in A, major cortical projection demonstrated is to outer part of layer I. There is labeling of fibers in layer VI and in underlying white matter. × 50.

A: from Jones and Burton 239


Figure 41.

Differential laminar distributions of thalamocortical fibers arising from A‐ and C‐laminae of cat lateral geniculate nucleus. For abbreviations see footnote to Fig. 1 legend

From LeVay and Gilbert 306


Figure 42.

Laminar distribution in visual cortex of single thalamocortical fibers thought to arise from Y‐type (this page) and X‐type (facing page) relay neurons in A‐laminae of cat lateral geniculate nucleus

From Ferster and LeVay 148


Figure 43.

Left: dark‐field, A, and bright‐field, B, photomicrographs showing anterograde labeling of dentatothalamic axons in patches confined to common VPLo‐VLc nucleus of monkey. Sagittal section, anterior to left. Arrows, same blood vessels. Right: adjacent uncounterstained, A, and counterstained, B, sagittal sections showing retrograde labeling of thalamic cells restricted to common VPLo‐VLc nucleus following an injection of tracer in cortical area 4. Arrows, same blood vessels. Blood to left is in electrode tracks; anterior is to right. For abbreviations see footnote to Fig. 1 legend

From Asanuma, Thach, and Jones 20


Figure 44.

Schematic outline of input‐output connections of thalamic relay to area 4 of motor cortex in monkeys. Also illustrated are differential distributions of dorsal column‐lemniscal and spinothalamic terminations in thalamus. Vest, vestibular input. For other abbreviations see footnote to Fig. 1 legend

Adapted from Asanuma, Thach, and Jones 20


Figure 45.

Dark‐field photomicrograph (right) from region indicated by box in bright‐field photomicrograph of a thionine‐counterstained autoradiograph (left), showing labeling of terminal ramifications of corticothalamic fibers in thalamic reticular nucleus (R) of rat following injection of tritiated amino acids in the SI cortex. For other abbreviations see footnote to Fig. 1 legend. Left, × 90

From Jones 234


Figure 46.

Projection drawings of series of frontal sections at intervals indicated by numbers, showing overlapping sectors of cat reticular nucleus related to different groups of dorsal thalamic nuclei. For clarity, symbol related to one particular group of dorsal thalamic nuclei appears on one section only. For abbreviations see footnote to Fig. 1 legend

From Jones 234


Figure 47.

Heavy immunocytochemical staining of GABAergic neurons in reticular nucleus (Rt) of rat thalamus. Antiserum to glutamic acid decarboxylase. For abbreviations see footnote to Fig. 1 legend

From Houser et al. 224
References
 1. Ablanalp, P. Some subcortical connections of the visual system in tree shrews and squirrels. Brain. Behav. Evol. 3: 155–168, 1970.
 2. Ahlsen, G., S. Lindstrom, and E. Sybirska. Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Res. 156: 106–109, 1978.
 3. Aitkin, L. M. Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J. Neurophysiol. 36: 275–283, 1973.
 4. Aitkin, L. M., and C. W. Dunlop. Inhibition in the medial geniculate body of the cat. Exp. Brain Res. 7: 68–83, 1969.
 5. Aitkin, L. M., and W. R. Webster. Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J. Neurophysiol. 35: 365–380, 1972.
 6. Akert, K. Comparative anatomy of frontal cortex and thalamofrontal connections. In: The Frontal Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 372–396.
 7. Akert, K., and K. Hartman‐von Monakow. Relationships of precentral, premotor and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus. Acta. Neurobiol. Exp. 40: 7–25, 1980.
 8. Albe‐Fessard, D., and L. Kruger. Duality of unit discharges from cat centrum medianum in response to natural and electrical stimulation. J. Neurophysiol. 25: 3–20, 1962.
 9. Allman, J. M., J. H. Kaas, R. M. Lane, and F. M. Miezin. A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). Brain Res. 40: 291–302, 1972.
 10. Amaral, D. G., and W. M. Cowan. Subcortical afferents to the hippocampal formation in the monkey. J. Comp. Neurol. 189: 573–592, 1980.
 11. Andersen, P., S. A. Andersson, and S. Landgren. Some properties of the thalamic relay cells in the spino‐cervicolemniscal path. Acta. Physiol. Scand. 68: 72–83, 1966.
 12. Andersen, P., J. C. Eccles, and T. A. Sears. The ventro‐basal nucleus of the thalamus: types of cells, their responses and their functional organization. J. Physiol. London 174: 370–399, 1964.
 13. Andersen, P., K. Junge, and O. Sveen. Cortico‐thalamic facilitation of somatosensory impulses. Nature London 214: 1011–1012, 1967.
 14. Andersen, R. A., P. L. Knight, and M. M. Merzenich. The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J. Comp. Neurol. 194: 663–701, 1980.
 15. Andersen, R. A., G. L. Roth, L. M. Aitkin, and M. M. Merzenich. The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 194: 649–662, 1980.
 16. Andersson, S., and B. E. Gernandt. Cortical projection of vestibular nerve in cat. Acta Otolaryngol. 116: 10–18, 1954.
 17. Andersson, S. A., S. Landgren, and D. Wolsk. The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J. Physiol. London 183: 576–591, 1976.
 18. Applebaum, A. E., R. B. Leonard, D. R. Kenshalo, Jr., R. F. Martin, and W. D. Willis. Nuclei in which functionally identified spinothalamic tract neurons terminate. J. Comp. Neurol. 188: 575–586, 1979.
 19. Asanuma, C., W. T. Thach, and E. G. Jones. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway. Brain Res. Rev. 5: 267–297, 1983.
 20. Asanuma, C., W. T. Thach, and E. G. Jones. Distribution of cerebellar terminations and their relation to other afferent terminations in the thalamic ventral lateral region of the monkey. Brain Res. Rev. 5: 237–265, 1983.
 21. Asanuma, C., W. T. Thach, and E. G. Jones. Cytoarchitectonic delineation of the ventral lateral thalamic region in monkeys. Brain Res. Rev. 5: 219–235, 1983.
 22. Asanuma, H., J. Fernandez, M. E. Scheibel, and A. B. Scheibel. Characteristics of projections from the nucleus ventralis lateralis to the motor cortex in the cat: an anatomical and physiological study. Exp. Brain Res. 20: 315–330, 1974.
 23. Asanuma, H., and I. Rosén. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp. Brain Res. 14: 243–256, 1972.
 24. Auer, J. Terminal degeneration in the diencephalon after ablation of frontal cortex in the cat. J. Anat. 90: 30–41, 1956.
 25. Barbas, H., and M.‐M. Mesulam. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200: 407–433, 1981.
 26. Baughman, R. W., and C. D. Gilbert. Aspartate and glutamate as possible neurotransmitters in the visual cortex. J. Neurosci. 4: 427–439, 1981.
 27. Beckstead, R. M. Convergent thalamic mesencephalic projections to the anterior medial cortex in the rat. J. Comp. Neurol. 166: 403–416, 1976.
 28. Beckstead, R. M. An autoradiographic examination of corticocortical and subcortical projections of the medio‐dorsal projection (prefrontal) cortex in rat. J. Comp. Neurol. 184: 43–62, 1979.
 29. Beckstead, R. M., V. B. Domesick, and W. J. H. Nauta. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175: 191–218, 1979.
 30. Beckstead, R. M., J. R. Morse, and R. Norgren. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190: 259–282, 1980.
 31. Ben‐Ari, Y., R. Dingledine, I. Kanazawa, and J. S. Kelly. Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami. J. Physiol. London 261: 647–671, 1976.
 32. Bender, D. B. Retinotopic organization of macaque pulvinar. J. Neurophysiol. 46: 672–693, 1981.
 33. Benevento, L. A., and J. H. Fallon. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 160: 339–361, 1975.
 34. Benevento, L. A., and M. Rezak. Extrageniculate projections to layers VI and I of striate cortex (area 17) in the rhesus monkey (Macaca mulatta). Brain Res. 96: 51–55, 1975.
 35. Benevento, L. A., and M. Rezak. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res. 108: 1–24, 1976.
 36. Benevento, L. A., M. Rezak, and R. Santos‐Anderson. An autoradiographic study of the projections of the pretectum in the rhesus monkey (Macaca mulatta): evidence for sensorimotor links to the thalamus and oculomotor nuclei. Brain Res. 127: 197–218, 1977.
 37. Benjamin, R. M., and K. Akert. Cortical and thalamic areas involved in taste discrimination in the albino rat. J. Comp. Neurol. 111: 231–260, 1959.
 38. Benjamin, R. M., and H. Burton. Projection of taste nerve afferents to anterior opercular‐insular cortex in squirrel monkey (Saimiri sciureus). Brain Res. 7: 221–231, 1968.
 39. Bentivoglio, M., G. Macchi, and A. Albanese. The cortical projections of the thalamic intralaminar nuclei, as studied in cat and rat with the multiple fluorescent retrograde tracing technique. Neurosci. Lett. 26: 5–10, 1981.
 40. Bentivoglio, M., D. Van der Kooy, and H. G. J. M. Kuypers. The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labeling study. Brain Res. 174: 1–17, 1979.
 41. Beresford, W. A. Fiber degeneration following lesions of the visual cortex of the cat. In: Neurophysiologie und Psychophysik des visuallen Systems, edited by R. Jung and H. Kornhuber. Berlin: Springer‐Verlag, 1961, pp. 247–255.
 42. Berkley, K. J. Different targets of different neurons in nucleus gracilis of the cat. J. Comp. Neurol. 163: 285–303, 1975.
 43. Berkley, K. J. Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J. Comp. Neurol. 193: 283–317, 1980.
 44. Berkley, K. J., A. Blomqvist, A. Pelt, and R. Flink. Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: an anatomical study using two different double‐labeling techniques. Brain Res. 202: 273–290, 1980.
 45. Berkley, K. J., J. Graham, and E. G. Jones. Differential incorporation of tritiated proline and leucine by neurons of the dorsal column nuclei in the cat. Brain Res. 132: 485–505, 1977.
 46. Berlucchi, G., J. M. Sprague, J. Levy, and A. C. Di‐Berardino. Pretectum and superior colliculus in visually guided behavior and in flux and form discrimination in the cat. J. Comp. Physiol. Psychol. 78: 123–172, 1972.
 47. Berman, A. L., and E. G. Jones. The Thalamus and Basal Telencephalon of the Cat. A Cytoarchitectonic Atlas With Sterotaxic Coordinates. Madison: Univ. of Wisconsin Press, 1982.
 48. Berman, N. Connections of the pretectum in the cat. J. Comp. Neurol. 174: 227–254, 1977.
 49. Berman, N., and E. G. Jones. A retino‐pulvinar projection in the cat. Brain Res. 134: 237–248, 1977.
 50. Bignall, K. E. Comparison of optic efferents to primary visual and polysensory areas of cat neocortex. Exp. Neurol. 17: 327–343, 1967.
 51. Billings‐Gagliardi, S., V. Chan‐Palay, and S. L. Palay. A review of lamination in area 17 of the visual cortex of Macaca mulatta. J. Neurocytol. 3: 619–629, 1974.
 52. Bishop, P. O., W. Kozak, W. R. Levick, and G. J. Vakkur. The determination of the projection of the visual field onto the lateral geniculate nucleus in the cat. J. Physiol. London 163: 503–539, 1962.
 53. Blomquist, A. J., R. M. Benjamin, and R. Emmers. Thalamic localization of afferents from the tongue in squirrel monkey (Saimiri sciureus) J. Comp. Neurol. 118: 77–87, 1962.
 54. Blomquist, A. J., and C. A. Lorenzini. Projection of dorsal roots and sensory nerves to cortical sensory motor regions of squirrel monkey. J. Neurophysiol. 28: 1195–1205, 1965.
 55. Bobillier, P., S. Seguin, F. Petitjean, D. Salvert, M. Touret, and M. Jouvet. The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113: 449–486, 1976.
 56. Bodian, D. Studies on the diencephalon of the Virginia opossum. Part I. The nuclear pattern in the adult. J. Comp. Neurol. 71: 259–324, 1939.
 57. Boivie, J. The termination of the cervicothalamic tract in the cat. An experimental study with silver impregnation methods. Brain Res. 19: 333–360, 1970.
 58. Boivie, J. The termination in the thalamus and zona incerta of fibres from the dorsal column nuclei (DCN) in the cat. An experimental study with silver impregnation methods. Brain Res. 28: 459–490, 1971.
 59. Boivie, J. The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 112: 331–353, 1971.
 60. Boivie, J. Anatomical observations on the dorsal column nuclei, their thalamic projection and the cytoarchitecture of some somatosensory thalamic nuclei in the monkey. J. Comp. Neurol. 178: 17–48, 1978.
 61. Boivie, J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J. Comp. Neurol. 186: 343–370, 1979.
 62. Boivie, J. Thalamic projections from lateral cervical nucleus in monkey. A degeneration study. Brain Res. 198: 13–26, 1980.
 63. Boivie, J., and K. Boman. Termination of a separate (proprioceptive?) cuneothalamic tract from external cuneate nucleus in monkey. Brain Res. 224: 235–246, 1981.
 64. Bos, J., and L. A. Benevento. Projections of the medial pulvinar to orbital cortex and frontal eye fields in the rhesus monkey (Macaca mulatta). Exp. Neurol. 49: 487–496, 1975.
 65. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth, 1909, p. 324.
 66. Brown, T. S., and L. A. Marco. Effects of stimulation of the superior colliculus and lateral thalamus on visual evoked potentials. Electroencephalogr. Clin. Neurophysiol. 22: 150–158, 1967.
 67. Bullier, J., and G. H. Henry. Ordinal position and afferent input of neurons in monkey striate cortex. J. Comp. Neurol. 193: 913–936, 1980.
 68. Burchfiel, J. E., and F. H. Duffy. Corticofugal influence upon cat thalamic ventrobasal complex. Brain Res. 70: 395–411, 1974.
 69. Burke, W., and A. M. Cole. Extraretinal influences on the lateral geniculate nucleus. Rev. Physiol. Biochem. Pharmacol. 70: 395–411, 1974.
 70. Burke, W., and A. J. Sefton. Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat. J. Physiol. London 187: 201–212, 1966.
 71. Burton, H., and R. M. Benjamin. Central projections of the gustatory system. In: Handbook of Sensory Physiology. Chemical Senses. Taste, edited by L. M. Beidler. New York: Springer‐Verlag, vol. 4, pt. 2, p. 148–164.
 72. Burton, H., and F. Earls. Cortical representation of the ipsilateral chorda tympani nerve in the cat. Brain Res. 16: 520–523, 1969.
 73. Burton, H., D. J. Forbes, and R. M. Benjamin. Thalamic neurons responsive to temperature changes of glabrous hand and foot skin in squirrel monkey. Brain Res. 24: 179–180, 1970.
 74. Burton, H., and E. G. Jones. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168: 249–301, 1976.
 75. Buser, P., and K. E. Bignall. Nonprimary sensory projections on the cat neocortex. Int. Rev. Neurobiol. 10: 111–165, 1965.
 76. Büttner, U., and V. Henn. Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res. 103: 127–132, 1976.
 77. Caldwell, R. B., and R. R. Mize. Superior colliculus neurons which project to the cat lateral posterior nucleus have varying morphologies. J. Comp. Neurol. 203: 53–66, 1981.
 78. Campbell, C. B. G. The visual system of insectivores and primates. Ann. NY Acad. Sci. 167: 388–403, 1969.
 79. Campos‐Ortega, J. A., and W. R. Hayhow. On the organization of the visual cortical projection to the pulvinar in Macaca mulatta. Brain Behav. Evol. 6: 394–423, 1973.
 80. Carey, R. G., D. Fitzpatrick, and I. T. Diamond. Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 186: 393–438, 1979.
 81. Carman, J. B., W. M. Cowan, and T. P. S. Powell. Cortical connexions of the thalamic reticular nucleus. J. Anat. 98: 587–598, 1964.
 82. Carpenter, M. B., K. Nakano, and R. Kim. Nigrothalamic projections in the monkey demonstrated by autoradiographic techniques. J. Comp. Neurol. 165: 401–415, 1976.
 83. Carreras, M., and S. A. Andersson. Functional properties of neurons of the anterior ectosylvian gyrus of the cat. J. Neurophysiol. 26: 100–126, 1963.
 84. Carstens, E., and D. Trevino. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182: 151–165, 1978.
 85. Casagrande, V. A., and I. T. Diamond. Ablation study of the superior colliculus in the tree shrew (Tupaia glis). J. Comp. Neurol. 156: 207–237, 1974.
 86. Casey, K. L. Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J. Neurophysiol. 29: 727–750, 1966.
 87. Casseday, J. H., I. T. Diamond, and J. K. Harting. Auditory pathways to the cortex in Tupaia glis. J. Comp. Neurol. 166: 303–340, 1976.
 88. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey. Brain Res. 154: 359–365, 1978.
 89. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. A search for cortico‐spinal collaterals to thalamus and mesencephalon by means of multiple retrograde fluorescent tracers in cat and rat. Brain Res. 218: 15–34, 1981.
 90. Caviness, V. S., Jr., and D. O. Frost. Tangential organization of thalamic projections to the neocortex in the mouse. J. Comp. Neurol. 194: 335–369, 1980.
 91. Chow, K. L. Regional degeneration of the thalamic reticular nucleus following cortical ablations in monkeys. J. Comp. Neurol. 92: 227–240, 1952.
 92. Clark, W. E. LeGros. The structure and connections of the thalamus. Brain 55: 406–470, 1932.
 93. Clark, W. E. LeGros, and R. H. Boggon. The thalamic connections of the parietal and frontal lobes of the brain in the monkey. Philos. Trans. R. Soc. London Ser. B 224: 313–359, 1935.
 94. Clark, W. E. LeGros, and D. W. C. Northfield. The cortical projection of the pulvinar in the macaque monkey. Brain 60: 126–142, 1937.
 95. Clark, W. E. LeGros, and T. P. S. Powell. On the thalamocortical connexions of the general sensory cortex of Macaca. Proc. R. Soc. London Ser. B 141: 467–487, 1953.
 96. Clarke, E. C., and C. D. O'Malley. The Human Brain and Spinal Cord. Berkeley: Univ. of California Press, 1968.
 97. Cleland, B. G., R. Morstyn, H. C. Wagner, and W. R. Levick. Long‐latency retinal input to lateral geniculate neurones of the cat. Brain Res. 91: 306–310, 1975.
 98. Cole, M., W. J. H. Nauta, and W. R. Mehler. The ascending efferent projections of the substantia nigra. Trans. Am. Neurol. Assoc. 89: 74–78, 1964.
 99. Colonnier, M., and R. W. Guillery. Synaptic organization in the lateral geniculate nucleus of the monkey. Z. Zellforsch. Mikrosk. Anat. 62: 333–355, 1964.
 100. Conrad, L. C., C. M. Leonard, and D. W. Pfaff. Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J. Comp. Neurol. 156: 179–205, 1974.
 101. Costanzo, R. M., and E. P. Gardner. Multiple‐joint neurons in somatosensory cortex of awake monkeys. Brain Res. 214: 321–333, 1981.
 102. Coulter, J. D., L. Ewing, and C. Carter. Origin of primary sensorimotor cortical projections to lumbar spinal cord of cat and monkey. Brain Res. 103: 366–372, 1976.
 103. Cowan, W. M., and T. P. S. Powell. The projection of the midline and intralaminar nuclei of the thalamus of the rabbit. J. Neurol. Neurosurg. Psychiatry 18: 266–279, 1955.
 104. Cralg, A. D., and H. Burton. Spinothalamic terminations in the ventroposterolateral nucleus of the cat. Soc. Neurosci. Abstr. 5: 705, 1979.
 105. Curry, M. J. The exteroceptive properties of neurones in the somatic part of the posterior group (PO). Brain Res. 44: 439–462, 1972.
 106. Darian‐Smith, I., J. Isbister, H. Mok, and T. Yokota. Somatic sensory cortical projection areas excited by tactile stimulation of the cat: a triple representation. J. Physiol. London 182: 671–689, 1966.
 107. Davies, L. P., and G. A. R. Johnston. Uptake and release of D‐ and L‐aspartate by rat brain. J. Neurochem. 26: 1007–1014, 1976.
 108. Deecke, L., D. W. F. Schwarz, and J. M. Fredrickson. Nucleus ventroposterior inferior (VPI) as the vestibular thalamic relay in the rhesus monkey. I. Field potential investigation. Exp. Brain Res. 20: 83–100, 1975.
 109. Dekker, J. J., and H. G. J. M. Kuypers. Quantitative EM study of projection terminals in the rat's AV thalamic nucleus. Autoradiographic and degeneration techniques compared. Brain Res. 117: 399–422, 1976.
 110. Dell, P. Corrélations entre le système végétif et le système de la vie de relation. Mésencéphale, diencéphale et cortex cérébral. J. Physiol. Paris 44: 471–557, 1952.
 111. Denavit, M., and E. Kosinski. Somatic afferents to the cat subthalamus. Arch. Ital. Biol. 106: 391–411, 1968.
 112. De Vito, J. L. Projections from the cerebral cortex to intralaminar nuclei in monkey. J. Comp. Neurol. 136: 193–201, 1969.
 113. D'Hollander, F. Recherches anatomiques sur les couches optiques. La Topographie des noyaux thalamiques. Névraxe 14, 15: 469–519, 1913.
 114. D'Hollander, F., and A. Gerebtzoff. Les couches optiques et leurs connexions. Synthèse de nos recherches anatomie‐expérimentales. Bull. Acad. R. Med. Belg. 4: 305–314, 1939.
 115. Diamond, I. T., E. G. Jones, and T. P. S. Powell. The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Res. 15: 205–340, 1969.
 116. Di Chiara, G., M. L. Porceddu, M. Morelli, M. L. Mulas, and G. L. Gessa. Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain. Res. 176: 273–284, 1979.
 117. Divac, I. Magnocellular nuclei of the basal forebrain project to neocortex, brain stem and olfactory bulb. Review of some functional correlates. Brain Res. 93: 385–398, 1975.
 118. Divac, I., J. H. La Vail, P. Rakic, and K. R. Winston. Heterogeneous afferents to the inferior parietal lobule of the rhesus monkey revealed by the retrograde transport method. Brain Res. 123: 197–207, 1977.
 119. Domesick, V. B. Projections from the cingulate cortex in the rat. Brain Res. 12: 296–320, 1969.
 120. Domesick, V. B. Thalamic relationships of the medial cortex in the rat. Brain Behav. Evol. 6: 457–483, 1972.
 121. Donaldson, L., P. J. Hand, and A. R. Morrison. Cortical‐thalamic relationships in the rat. Exp. Neurol. 47: 448–458, 1975.
 122. Donoghue, J. P., and F. F. Ebner. The laminar distribution and ultrastructure of fibers projecting from three thalamic nuclei to the somatic sensory‐motor cortex of the opossum. J. Comp. Neurol. 198: 389–420, 1981.
 123. Donoghue, J. P., and F. F. Ebner. The organization of thalamic projections to the parietal cortex of the Virginia opossum. J. Comp. Neurol. 198: 365–388, 1981.
 124. Donoghue, J. P., K. L. Kerman, and F. F. Ebner. Evidence for two organizational plans within the somatic sensory‐motor cortex of the rat. J. Comp. Neurol. 183: 647–664, 1979.
 125. Doty, R. W., P. D. Wilson, J. R. Bartlet, and J. Pecci‐Saavedra. Mesencephalic control of lateral geniculate nucleus in primates. I. Electrophysiology. Exp. Brain Res. 18: 189–203, 1973.
 126. Dräger, U. C. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res. 82: 284–292, 1974.
 127. Dreher, B., Y. Fukada, and R. W. Rodieck. Identification, classification, and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of Old World primates. J. Physiol. London 258: 433–452, 1976.
 128. Dreher, B., and A. J. Sefton. Properties of neurons in cat's dorsal lateral geniculate nucleus: a comparison between medial interlaminar and laminated parts of the nucleus. J. Comp. Neurol. 183: 47–64, 1979.
 129. Dreyer, D. A., R. J. Schneider, C. B. Metz, and B. L. Whitsel. Differential contribution of spinal pathways to body representation in postcentral gyrus of Macaca mulatta. J. Neurophysiol. 37: 119–145, 1974.
 130. Droogleever‐Fortuyn, A. E. Die Ontogenie der Kerne des Zwischenhirns beim Kaninchen. Arch. Anat. Physiol. Anat. Abt. 303–352, 1912.
 131. Droogleever‐Fortuyn, J. Anatomical basis of cortico‐subcortical relationships. Electroencephalogr. Clin. Neurophysiol. 4: 149–162, 1953.
 132. Droogleever‐Fortuyn, J., and R. Stefens. On the anatomical relations of the intralaminar and midline cells of the thalamus. Electroencephalogr. Clin. Neurophysiol. 3: 393–400, 1951.
 133. Dubin, M. W., and B. G. Cleland. The organization of visual inputs to interneurons of the lateral geniculate nucleus of the cat. J. Neurophysiol. 40: 410–427, 1977.
 134. Dubner, R. Single cell analysis of sensory interaction in anterior lateral and suprasylvian gyri of the cat cerebral cortex. Exp. Neurol. 15: 255–273, 1966.
 135. Dubner, R., and F. J. Brown. Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20: 70–86, 1968.
 136. Dubner, R., and L. T. Rutledge. Recording and analysis of converging input upon neurons in cat association cortex. J. Neurophysiol. 27: 620–634, 1964.
 137. Dubner, R., and L. T. Rutledge. Intracellular recording of the convergence of input upon neurons in cat association cortex. Exp. Neurol. 12: 349–369, 1965.
 138. Dudel, J., and S. W. Kuffler. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. London 155: 543–562, 1961.
 139. Dykes, R. W., J. D. Dudar, D. G. Tanji, and N. G. Publicover. Somatotopic projections of mystacial vibrissae on cerebral cortex of cats. J. Neurophysiol. 40: 997–1014, 1977.
 140. Dykes, R. W., D. D. Rasmusson, and P. B. Hoeltzell. Organization of primary somatosensory cortex in the cat. J. Neurophysiol. 43: 1527–1546, 1980.
 141. Dykes, R. W., M. Sur, M. M. Merzenich, J. H. Kaas, and R. J. Nelson. Regional segregation of neurons responding to quickly adapting, slowly adapting, deep and Pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey (Samiri sciureus). Neuroscience 6: 1687–1692, 1981.
 142. Eccles, J. C., R. M. Eccles, and F. Magni. Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. London 159: 147–166, 1961.
 143. Edwards, S. B. The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res. 48: 45–63, 1972.
 144. Edwards, S. B., and J. S. de Olmos. Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J. Comp. Neurol. 165: 417–431, 1976.
 145. Edwards, S. B., A. C. Rosenquist, and L. A. Palmer. An autoradiographic study of the ventral lateral geniculate projections in the cat. Brain Res. 72: 282–287, 1974.
 146. Emmers, R. Localization of thalamic projections of afferents from the tongue in the cat. Anat. Rec. 148: 67–74, 1964.
 147. Emmers, R. Organization of the first and second somesthetic regions (SI and SII) in the rat thalamus. J. Comp. Neurol. 124: 215–227, 1965.
 148. Emmers, R., and K. Akert. A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Saimiri sciureus). Madison: Univ. of Wisconsin Press, 1963, p. 102.
 149. Enroth‐Cugell, C. C., and J. G. Robson. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. London 187: 517–534, 1966.
 150. Famiglietti, E. V., Jr., and A. Peters. The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 144: 285–334, 1972.
 151. Faull, R. L. M., and J. B. Carman. Ascending projections of the substantia nigra in the rat. J. Comp. Neurol. 132: 73–92, 1968.
 152. Faull, R. L. M., and W. R. Mehler. The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3: 989–1002, 1978.
 153. Feldman, S. G., and L. Kruger. An axonal transport study of the ascending projection of medial lemniscal neurons in the rat. J. Comp. Neurol. 192: 427–454, 1980.
 154. Ferster, D., and S. Le Vay. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol. 182: 923–944, 1978.
 155. Finley, J. C. W., J. L. Maderdrut, and P. Petrusz. The immunocytochemical localization of enkephalin in the central nervous system of the rat. J. Comp. Neurol. 198: 541–565, 1981.
 156. Fitzpatrick, D., and I. T. Diamond. Distribution of acetylcholinesterase in the geniculostriate system of Galago senegalensis and Aotus trivirgatus: evidence for the origin of the reaction product in the lateral geniculate body. J. Comp. Neurol. 194: 703–719, 1980.
 157. Fitzpatrick, D., K. Itoh, M. Conley, and I. T. Diamond. The projection of the lateral geniculate body to extrastriate cortex in the owl monkey and squirrel monkey. Soc. Neurosci. Abstr. 7: 830, 1981.
 158. Fitzpatrick, K., and T. J. Imig. Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J. Comp. Neurol. 177: 437–556, 1978.
 159. Fonnum, F., J. Storm‐Mathisen, and I. Divac. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6: 863–873, 1981.
 160. Foote, W. E., R. J. Maciewicz, and J. P. Mordes. Effect of midbrain raphe and lateral mesencephalic stimulation on spontaneous and evoked activity in the lateral geniculate of the cat. Exp. Brain Res. 19: 124–130, 1974.
 161. Friedemann, M. Die Cytoarchitektonik des Zwischenhirns der Cercopitheken mit besonderer Berücksichtigung des Thalamus opticus. J. Psychol. Neurol. Leipzig 18: 309–378, 1911.
 162. Friedlander, M. J., C.‐S. Lin, L. R. Stanford, and S. M. Sherman. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J. Neurophysiol. 46: 80–129, 1981.
 163. Friedman, D. P., and E. G. Jones. Focal projection of electrophysiologically defined groupings of thalamic cells on the monkey somatic sensory cortex. Brain Res. 191: 249–252, 1980.
 164. Friedman, D. P., and E. G. Jones. Thalamic input to areas 3a and 2 in monkeys. J. Neurophysiol. 45: 59–85, 1981.
 165. Frigyesi, T. L., and R. Schwartz. Cortical control of thalamic sensorimotor relay activities in the cat and the squirrel monkey. In: Corticothalamic Projections and Sensorimotor Activities, edited by T. L. Frigyesi, E. Rinvik, and M. D. Yahr. New York: Raven, 1972, p. 161–195.
 166. Frost, D. O., and V. S. Caviness, Jr. Radial organization of thalamic projections to the neocortex in the mouse. J. Comp. Neurol. 194: 369–394, 1980.
 167. Fukuda, Y., and J. Stone. Retinal distribution and central projections of Y‐, X‐, and W‐cells of the cat's retina. J. Neurophysiol. 37: 749–772, 1974.
 168. Funkushima, T., and F. W. L. Kerr. Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: presence of gelatinosa neurons with thalamic connections. J. Comp. Neurol. 183: 169–184, 1979.
 169. Ganchrow, D. Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri scuireus): a degeneration and autoradiographic study. J. Comp. Neurol. 178: 281–312, 1978.
 170. Gardner, E. P., and R. M. Costanzo. Properties of kinesthetic neurons in somatosensory cortex of awake monkeys. Brain Res. 214: 301–320, 1981.
 171. Garey, L. J., E. G. Jones, and T. P. S. Powell. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiatry 31: 135–157, 1968.
 172. Garey, L. J., and T. P. S. Powell. The projection of the lateral geniculate nucleus upon the cortex in the cat. Proc. R. Soc. London Ser. B 169: 107–126, 1967.
 173. Garey, L. J., and T. P. S. Powell. The projection of the retina in the cat. J. Anat. 102: 189–222, 1968.
 174. Gatass, R., E. Oswaldo‐Cruz, and A. P. B. Sousa. Visuotopic organization of the cebus pulvinar: a double representation of the contralateral hemifield. Brain Res. 152: 1–16, 1978.
 175. Geisert, E. E., Jr. Cortical projections of the lateral geniculate nucleus in the cat. J. Comp. Neurol. 190: 793–812, 1980.
 176. Geisler, G. J., Jr., D. Menetrey, and A. I. Basbaum. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184: 107–126, 1979.
 177. Gerebtzoff, M. A. Systèmatisation des connections thalamocorticales. Cellule 46: 5–54, 1937.
 178. Gilbert, C. D. Laminar differences in receptive field properties of cells in the cat primary visual cortex. J. Physiol. London 268: 391–421, 1977.
 179. Gilbert, C. D., and J. P. Kelly. The projections of cells in different layers of the cat's visual cortex. J. Comp. Neurol. 163: 81–105, 1975.
 180. Gilbert, C. D., and T. N. Wiesel. Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex. Nature 280: 120–125, 1979.
 181. Giolli, R. A., and M. D. Guthrie. The primary optic projections in the rabbit. An experimental degeneration study. J. Comp. Neurol. 136: 99–126, 1969.
 182. Giolli, R. A., and J. E. Pope. The mode of innervation of the dorsal lateral geniculate nucleus and the pulvinar of the rabbit by axons arising from the visual cortex. J. Comp. Neurol. 147: 129–143, 1973.
 183. Glendenning, K. K., J. A. Hall, I. T. Diamond, and W. C. Hall. The pulvinar nucleus of Galago senegalensis. J. Comp. Neurol. 161: 419–457, 1975.
 184. Godfraind, J. M., M. Meulders, and C. Veraart. Visual properties of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami in the cat. I. Qualitative investigation. Brain Res. 44: 503–526, 1972.
 185. Graham, J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. J. Comp. Neurol. 173: 629–654, 1977.
 186. Graham, J., and V. A. Casagrande. A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis). J. Comp. Neurol. 191: 133–151, 1980.
 187. Graham, J., C.‐S. Lin, and J. H. Kaas. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. Comp. Neurol. 187: 557–580, 1979.
 188. Grant, G., J. Boivie, and H. Silfvenius. Course and termination of fibres from the nucleus Z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res. 55: 55–70, 1973.
 189. Graybiel, A. M. Some extrageniculate visual pathways in the cat. Invest. Opthalmol. 11: 322–332, 1972.
 190. Graybiel, A. M. Some thalamocortical projections of the pulvinar‐posterior system of the thalamus in the cat. Brain Res. 22: 131–136, 1970.
 191. Graybiel, A. M. Studies on the anatomical organization of posterior association cortex. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, MA: MIT Press, 1974, p. 205–214.
 192. Graybiel, A. M., and D. M. Berson. Autoradiographic evidence for a projection from the pretectal nucleus of the optic tract to the dorsal lateral geniculate complex in the cat. Brain Res. 195: 1–12, 1980.
 193. Graybiel, A. M., and D. M. Berson. Histochemical identification and afferent connections of subdivisions in the lateralis posterior‐pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5: 1175–1238, 1980.
 194. Groenewegen, H. J., A. J. P. Boesten, and J. Voogd. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J. Comp. Neurol. 162: 505–517, 1975.
 195. Grofová, I., and E. Rinvik. An experimental electron microscopic study on the striatonigral projection in the cat. Exp. Brain. Res. 11: 249–262, 1970.
 196. Guillery, R. W. A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. Comp. Neurol. 128: 21–50, 1966.
 197. Guillery, R. W. Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. J. Comp. Neurol. 130: 197–222, 1967.
 198. Guillery, R. W. The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. Mikrosk. Anat. 96: 1–38, 1969.
 199. Guillery, R. W. The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat: a new interpretation. J. Comp. Neurol. 138: 339–367, 1970.
 200. Guillery, R. W., H. O. Adrian, C. N. Woolsey, and J. E. Rose. Activation of somatosensory areas I and II of cat's cerebral cortex by focal stimulation of the ventrobasal complex. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 197–206.
 201. Guillery, R. W., and M. Colonnier. Synaptic patterns in the dorsal lateral geniculate nucleus of the monkey. Z. Zellforsch. Mikrosk. Anat. 103: 90–108, 1970.
 202. Guillery, R. W., E. E. Geisert, Jr., E. H. Polley, and C. A. Mason. An analysis of the retinal afferents to the cat's medial interlaminar nucleus and its rostral thalamic extension, the “geniculate wing”. J. Comp. Neurol. 194: 117–142, 1980.
 203. Guillery, R. W., and J. H. Kaas. A study of normal and congenitally abnormal retinogeniculate projections in cats. J. Comp. Neurol. 143: 73–100, 1971.
 204. Gurdjian, E. S. The diencephalon of the albino rat. Studies on the brain of the rat No. 2. J. Comp. Neurol. 43: 1–114, 1927.
 205. Haight, J. R. The general organization of somatotopic projections to SII cerebral neocortex in the cat. Brain Res. 44: 483–502, 1972.
 206. Hajdu, F., G. Somogyi, and T. Tömböl. Neuronal and synaptic arrangements in the lateralis posterior‐pulvinar complex of the thalamus in the cat. Brain Res. 73: 89–104, 1974.
 207. Halaris, A. E., B. E. Jones, and R. Y. Moore. Axonal transport in serotonin neurons of the midbrain raphe. Brain Res. 107: 555–574, 1976.
 208. Hand, P. J., and A. R. Morrison. Thalamocortical projections from the ventrobasal complex to somatic sensory areas I and II. Exp. Neurol. 26: 291–308, 1970.
 209. Hand, P. J., and T. Van Winkle. The efferent connections of the feline nucleus cuneatus. J. Comp. Neurol. 171: 83–109, 1977.
 210. Harding, B. N., and T. P. S. Powell. An electron microscopic study of the centre‐median and ventrolateral nuclei of the thalamus in the monkey. Philos. Trans. R. Soc. London Ser. B 279: 357–412, 1977.
 211. Harting, J. K., W. C. Hall, and I. T. Diamond. Evolution of the pulvinar. Brain Behav. Evol. 6: 424–452, 1973.
 212. Harting, J. K., W. C. Hall, I. T. Diamond, and G. F. Martin. Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J. Comp. Neurol. 143: 361–386, 1973.
 213. Harvey, A. R. A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J. Physiol. London 302: 507–534, 1980.
 214. Hayhow, W. R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. Comp. Neurol. 110: 1–64, 1958.
 215. Hazlett, J. C., C. R. Dutta, and C. A. Fox. The neurons in the centromedian‐parafascicular complex of the monkey (Macaca mulatta): a Golgi study. J. Comp. Neurol. 168: 41–73, 1976.
 216. Heath, C. J. Distribution of axonal degeneration following lesions of the posterior group of thalamic nuclei in the cat. Brain Res. 21: 435–438, 1970.
 217. Heath, C. J., J. Hore, and C. G. Phillips. Inputs from low threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon's cerebral cortex. J. Physiol. London 257: 199–227, 1976.
 218. Heath, C. J., and E. G. Jones. Anatomical organization of the suprasylvian gyrus of the cat. Ergeb. Anat. Entwicklungsgesch. 45: 3–64, 1971.
 219. Heath, C. J., and E. G. Jones. An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. J. Comp. Neurol. 141: 397–426, 1971.
 220. Hendrickson, A., M. E. Wilson, and M. J. Toyne. The distribution of optic nerve fibers in Macaca mulatta. Brain Res. 23: 425–427, 1970.
 221. Hendry, S. H. C., E. G. Jones, and J. Graham. Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J. Comp. Neurol. 185: 679–714, 1979.
 222. Herkenham, M. The connections of the nucleus reuniens thalami: evidence for a direct thalamo‐hippocampal pathway in the rat. J. Comp. Neurol. 177: 589–610, 1978.
 223. Herkenham, M. The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183: 487–517, 1979.
 224. Herkenham, M. Laminar organization of thalamic projections to the rat neocortex. Science 207: 532–534, 1980.
 225. Herrick, C. J. An Introduction to Neurology (2nd ed.). Philadelphia, PA: Saunders, 1918, p. 394.
 226. Hickey, T. L., and R. W. Guillery. An autoradiographic study of retinogeniculate pathways in the cat and the fox. J. Comp. Neurol. 156: 239–253, 1974.
 227. Hoffman, K. P., J. Stone, and S. M. Sherman. Relay of receptive‐field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 35: 518–531, 1972.
 228. Holländer, H. On the origin of the corticotectal projections in the cat. Exp. Brain Res. 21: 433–439, 1974.
 229. Holländer, H. Projections from the striate cortex to the diencephalon in the squirrel monkey (Saimiri sciureus). A light microscopic radioautographic study following intracortical injections of 3H leucine. J. Comp. Neurol. 155: 425–440, 1974.
 230. Holländer, H., and L. Martinez‐Millan. Autoradiographic evidence for a topographically organized projection from the striate cortex to the lateral geniculate nucleus in the rhesus monkey. (Macaca mulatta). Brain Res. 100: 407–411, 1975.
 231. Holländer, H., and D. Sanides. The retinal projection to the ventral part of the lateral geniculate nucleus. An experimental study with silver‐impregnation methods and axoplasmic protein tracing. Exp. Brain Res. 26: 329–342, 1976.
 232. Holländer, H., J. Tietze, and H. Distel. An autoradiographic study of the subcortical projections of the rabbit striate cortex in the adult and during postnatal development. J. Comp. Neurol. 184: 783–794, 1979.
 233. Hopkins, D. A., and D. G. Lawrence. On the absence of a rubrothalamic projection in the monkey with observations on some ascending mesencephalic projections. J. Comp. Neurol. 161: 269–293, 1975.
 234. Houser, C. R., J. E. Vaughn, R. P. Barber, and E. Roberts. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 200: 341–354, 1980.
 235. Hubel, D. H. An autoradiographic study of the retino‐cortical projections in the tree shrew (Tupaia glis) Brain Res. 96: 41–50, 1975.
 236. Hubel, D. H., and T. N. Wiesel. Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey. J. Comp. Neurol. 146: 421–450, 1972.
 237. Iwamura, Y., and S. Inubushi. Regional diversity in excitatory and inhibitory receptive‐field organization of cat thalamic ventrobasal neurons. J. Neurophysiol. 37: 910–919, 1974.
 238. Jacobson, S., and J. Q. Trojanowski. Corticothalamic neurons and thalamocortical terminal fields: an investigation in rat using horseradish peroxidase and autoradiography. Brain Res. 85: 385–401, 1975.
 239. Jackson, J. C., and R. M. Benjamin. Unit discharges in the mediodorsal nucleus of the rabbit evoked by electrical stimulation of the olfactory bulb. Brain Res. 75: 193–201, 1974.
 240. Jasper, H. H. Unspecific thalamocortical relations. In: Handbook of Physiology. Neurophysiology, edited by J. Field, H. W. Magoun, and V. E. Hall. Washington, DC: Am. Physiol. Soc, 1960, sect. 1, vol. II, chapt. 53, p. 1307–1321.
 241. Jones, E. G. The anatomy of extrageniculostriate visual mechanisms. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, MA: MIT Press, 1974, p. 215–227.
 242. Jones, E. G. Lamination and differential distribution of thalamic afferents within the sensory‐motor cortex of the squirrel monkey. J. Comp. Neurol. 160: 167–203, 1975.
 243. Jones, E. G. Possible determinants of the degree of retrograde neuronal labeling with horseradish peroxidase. Brain Res. 85: 249–253, 1975.
 244. Jones, E. G. Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol. 162: 285–308, 1975.
 245. Jones, E. G. Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey. J. Comp. Neurol. 160: 205–267, 1975.
 246. Jones, E. G. Functional subdivision and synaptic organization of the mammalian thalamus. In: International Review of Physiology. Neurophysiology IV, edited by R. Porter. Baltimore, MD: University Park, 1980, p. 173–245.
 247. Jones, E. G. Anatomy of cerebral cortex: columnar input‐output organization. In: Organization of the Cerebral Cortex, edited by F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis. Cambridge, MA: MIT Press, 1981, p. 199–235.
 248. Jones, E. G. The thalamus. In: Biochemical Neuroanatomy, edited by P. Emson. New York: Raven, 1982.
 249. Jones, E. G., and H. Burton. Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J. Comp. Neurol. 154: 395–432, 1974.
 250. Jones, E. G., and H. Burton. Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J. Comp. Neurol. 168: 197–247, 1976.
 251. Jones, E. G., and H. Burton. A projection from the medial pulvinar to the amygdala in primates. Brain Res. 104: 142–147, 1976.
 252. Jones, E. G., H. Burton, and R. Porter. Commissural and cortico‐cortical “columns” in the somatic sensory cortex of primates. Science 190: 572–574, 1975.
 253. Jones, E. G., H. Burton, C. B. Saper, and L. Swanson. Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and related structures in primates. J. Comp. Neurol. 167: 385–419, 1976.
 254. Jones, E. G., J. D. Coulter, H. Burton, and R. Porter. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory‐motor cortex of monkeys. J. Comp. Neurol. 173: 53–80, 1977.
 255. Jones, E. G., J. D. Coulter, and S. H. C. Hendry. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J. Comp. Neurol. 181: 291–347, 1978.
 256. Jones, E. G., and D. P. Friedman. Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J. Neurophysiol. 48: 521–544, 1982.
 257. Jones, E. G., D. P. Friedman, and S. H. C. Hendry. Thalamic basis of place‐ and modality‐specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J. Neurophysiol. 48: 545–568, 1982.
 258. Jones, E. G., and R. Y. Leavitt. Demonstration of thalamocortical connectivity in the cat somato‐sensory system by retrograde axonal transport of horseradish peroxidase. Brain Res. 63: 414–418, 1973.
 259. Jones, E. G., and R. Y. Leavitt. Retrograde axonal transport and the demonstration of non‐specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol. 154: 349–377, 1974.
 260. Jones, E. G., and T. P. S. Powell. The projections of the somatic sensory cortex upon the thalamus in the cat. Brain Res. 10: 369–391, 1968.
 261. Jones, E. G., and T. P. S. Powell. The cortical projection of the ventroposterior nucleus of the thalamus in the cat. Brain Res. 12: 127–151, 1969.
 262. Jones, E. G., and T. P. S. Powell. An electron microscopic study of the mode of termination of cortico‐thalamic fibres in the thalamic relay nuclei of the cat. Proc. R. Soc. London Ser. B 172: 173–185, 1969.
 263. Jones, E. G., and T. P. S. Powell. Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat. Proc. R. Soc. London Ser. B 172: 153–171, 1969.
 264. Jones, E. G., and T. P. S. Powell. Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions. Brain 93: 37–56, 1970.
 265. Jones, E. G., and T. P. S. Powell. Anatomical organization of the somatosensory cortex. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. New York: Springer‐Verlag, 1973, vol. 2, p. 579–620.
 266. Jones, E. G., and A. J. Rockel. The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Z. Zellforsch. Mikrosk. Anat. 113: 44–66, 1971.
 267. Jones, E. G., and S. P. Wise. Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of primates. J. Comp. Neurol. 175: 391–438, 1977.
 268. Jones, E. G., S. P. Wise, and J. D. Coulter. Differential thalamic relationships of sensory‐motor and parietal cortical fields in monkeys. J. Comp. Neurol. 183: 833–882, 1979.
 269. Jordan, H. The structure of the medial geniculate nucleus (MGN): a cyto and myeloarchitectonic study in the squirrel monkey. J. Comp. Neurol. 148: 469–479, 1973.
 270. Jordan, H., and H. Holländer. The structure of the ventral part of the lateral geniculate nucleus. A cyto‐ and myeloarchitectonic study in the cat. J. Comp. Neurol. 145: 259–271, 1972.
 271. Kaas, J. H., R. W. Guillery, and J. M. Allman. Discontinuities in the dorsal lateral geniculate nucleus corresponding to the optic disc: a comparative study. J. Comp. Neurol. 147: 163–179, 1973.
 272. Kaas, J. H., R. W. Guillery, and J. M. Allman. Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav. Evol. 6: 253–299, 1973.
 273. Kaas, J. H., C.‐S. Lin, and V. A. Casagrande. The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study. Brain Res. 106: 371–378, 1976.
 274. Kaas, J. H., R. J. Nelson, M. Sur, C. H. Lin, and M. M. Merzenich. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204: 521–523, 1979.
 275. Kaitz, S. S., and R. T. Robertson. Thalamic connections with limbic cortex. II. Corticothalamic projections. J. Comp. Neurol. 195: 527–545, 1981.
 276. Kalil, K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J. Comp. Neurol. 195: 25–50, 1981.
 277. Kalil, R. E., and R. Chase. Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33: 459–474, 1970.
 278. Kanaseki, T., and J. M. Sprague. Anatomical organization of pretectal nuclei and tectal laminae in the cat. J. Comp. Neurol. 158: 319–337, 1974.
 279. Kasdon, D. L., and S. Jacobson. The thalamic afferents to the inferior parietal lobule of the rhesus monkey. J. Comp. Neurol. 177: 685–706, 1978.
 280. Kawamura, S., J. M. Sprague, and K. Niimi. Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J. Comp. Neurol. 158: 339–362, 1974.
 281. Kelly, J. P., and C. D. Gilbert. The projections of different morphological types of ganglion cells in the cat retina. J. Comp. Neurol. 163: 65–80, 1975.
 282. Kelly, J. P., and D. Wong. Laminar connections of the cat's auditory cortex. Brain Res. 212: 1–16, 1981.
 283. Kemp, J. M., and T. P. S. Powell. The cortico‐striate projection in the monkey. Brain 93: 525–546, 1970.
 284. Kenshalo, D. R., Jr., G. J. Giesler, R. B. Leonard, and W. D. Willis. Responses of VPLc neurons in the primate thalamus to noxious thermal stimuli. Soc. Neurosci. Abstr. 5: 612, 1979.
 285. Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Comp. Neurol. 159: 335–356, 1975.
 286. Kerr, F. W. L., and H. H. Lippman. The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. Adv. Neurol. 4: 147–156, 1974.
 287. Kievit, J., and H. G. J. M. Kuypers. Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187: 660–662, 1975.
 288. Killackey, H. P., and S. Leshin. The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex. Brain Res. 86: 469–472, 1975.
 289. Kilpatrick, I. C., M. S. Starr, A. Fletcher, T. A. James, and N. K. MacLeod. Evidence for a GABAergic nigrothalamic pathway in the rat. I. Behavioral and biochemical studies. Exp. Brain Res. 40: 45–54, 1980.
 290. Kim, R., K. Nakano, A. Jayaraman, and M. B. Carpenter. Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J. Comp. Neurol. 169: 263–290, 1976.
 291. King, G. W. Topology of ascending brainstem projections to nucleus parabrachialis in the cat. J. Comp. Neurol. 615–638, 1980.
 292. Kinston, W. J., M. A. Vadas, and P. O. Bishop. Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J. Comp. Neurol. 136: 295–315, 1969.
 293. Kosar, E., and P. J. Hand. First somatosensory cortical columns and associated neuronal clusters of nucleus ventralis posterolateralis of the cat: an anatomical demonstration. J. Comp. Neurol., 198: 515–539, 1981.
 294. Kotchabhakdi, N., E. Rinvik, K. Yingchareon, and F. Walberg. Afferent projections to the thalamus from the perihypoglossal nuclei. Brain Res. 187: 457–462, 1980.
 295. Krettek, J. E., and J. L. Price. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol. 171: 157–191, 1977.
 296. Krettek, J. E., and J. L. Price. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol. 172: 687–722, 1977.
 297. Kudo, M., and K. Niimi. Ascending projections of the inferior colliculus in the cat: an autoradiographic study. J. Comp. Neurol. 191: 545–556, 1980.
 298. Kumazawa, T., E. R. Perl, P. R. Burgess, and D. Whitehorn. Ascending projections from marginal zone (Lamina I) neurons of the spinal dorsal horn. J. Comp. Neurol. 162: 1–12, 1975.
 299. Künzle, H. Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res. 105: 253–267, 1976.
 300. Künzle, H. An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 15: 185–234, 1978.
 301. Kuo, J. S., and M. B. Carpenter. Organization of pallidothalamic projections in the rhesus monkey. J. Comp. Neurol. 151: 201–236, 1973.
 302. Kusama, T., K. Otani, and E. Kawana. Projections of the motor, somatic sensory, auditory and visual cortices in cats. In: Progress in Brain Research. Correlative Neurosciences. Fundamental Mechanisms, edited by T. Tokizane and J. P. Schadé. Amsterdam: Elsevier, 1966, vol. 21A, pt. A, p. 292–322.
 303. Kuypers, H. G. J. M. Discussion. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 122–127.
 304. Kuypers, H. G. J. M., J. Kievet, and A. C. Groen‐Klevant. Retrograde axonal transport of horseradish peroxidase in the rat's forebrain. Brain Res. 67: 211–218, 1974.
 305. Kuypers, H. G. J. M., and V. A. Maisky. Retrograde axonal transport of horesradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett. 1: 9–14, 1975.
 306. Laemle, L. K. Cell populations of the lateral geniculate nucleus of the cat as determined with horesradish peroxidase. Brain Res. 100: 650–656, 1975.
 307. Landgren, S. Thalamic neurons responding to cooling of the cat's tongue. Acta. Physiol. Scand. 48: 255–267, 1960.
 308. Landgren, S., A. Nordwall, and C. Wengström. The location of the thalamic relay in the spino‐cervico‐lemniscal path. Acta. Physiol. Scand. 65: 165–175, 1965.
 309. Landgren, S., and H. Silfvenius. Projection to cerebral cortex of group I muscle afferents from the cat's hind limb. J. Physiol. London 200: 353–372, 1969.
 310. Landgren, S., and H. Silfvenius. Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat's hindlimb. J. Physiol. London 218: 551–571, 1971.
 311. Landgren, S., H. Silfvenius, and D. Wolsk. Vestibular, cochlear and trigeminal projections to the cortex in the anterior suprasylvian sulcus of the cat. J. Physiol. London 191: 561–573, 1967.
 312. Landry, P., and M. Deschěnes. Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J. Comp. Neurol. 199: 345–372, 1981.
 313. Lange, W., J. A. Büttner‐Ennever, and U. Büttner. Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res. 177: 3–18, 1979.
 314. Laties, A. M., and J. M. Sprague. The projection of optic fibers to the visual centers in the cat. J. Comp. Neurol. 127: 35–70, 1966.
 315. Leger, L., K. Sakai, D. Salvert, M. Touret, and M. Jouvet. Delineation of dorsal lateral geniculate afferents from the cat brain stem as visualized by the horseradish peroxidase technique. Brain Res. 93: 490–496, 1975.
 316. Leonard, C. M. The prefrontal cortex in the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res. 12: 321–343, 1969.
 317. Leontovich, T. A., and G. P. Zhukova. The specificity of neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivora. J. Comp. Neurol. 121: 347–380, 1963.
 318. Le Vay, S., and D. Ferster. Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. Comp. Neurol. 172: 563–584, 1977.
 319. Le Vay, S., and C. D. Gilbert. Laminar patterns of geniculocortical projection in the cat. Brain Res. 113: 1–19, 1976.
 320. Le Vay, S., D. H. Hubel, and T. N. Wiesel. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159: 559–576, 1975.
 321. Lieberman, A. R., and K. E. Webster. Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res. 42: 196–200, 1972.
 322. Lin, C. S., and J. H. Kaas. Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. J. Comp. Neurol. 173: 457–474, 1977.
 323. Lin, C. S., and J. H. Kaas. The inferior pulvinar complex in owl monkeys: architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J. Comp. Neurol. 187: 655–678, 1979.
 324. Lin, C. S., K. E. Kratz, and S. M. Sherman. Percentage of relay cells in the cat's lateral geniculate nucleus. Brain Res. 131: 167–173, 1978.
 325. Lindvall, O., and A. Björklund. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta. Physiol. Scand. Suppl. 412: 1–48, 1974.
 326. Lindvall, O., A. Björklund, R. Y. Moore, and U. Stenevi. Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81: 325–331, 1974.
 327. Loe, P. R., B. L. Whitsel, D. A. Dreyer, and C. B. Metz. Body representation in ventrobasal thalamus of macaque: a single‐unit analysis. J. Neurophysiol. 40: 1339–1355, 1977.
 328. Loewy, A. D., J. H. Wallach, and S. McKellar. Efferent connections of the ventral medulla oblongata in the rat. Brain Res. Rev. 3: 63–80, 1981.
 329. Lorente de Nó, R. Cerebral cortex: architectonics, intracortical connections. In: Physiology of the Nervous System, edited by J. F. Fulton. London: Oxford, 1949, p. 274–301.
 330. Lucier, G. E., D. C. Rüegg, and M. Weisendanger. Responses of neurones in motor cortex and in area 3A to controlled stretches of forelimb muscles in cebus monkeys. J. Physiol. London 251: 833–853, 1975.
 331. Lund, J. S., R. D. Lund, A. E. Hendrickson, A. H. Bunt, and A. F. Fuchs. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164: 287–303, 1975.
 332. Lund, R. D., and K. E. Webster. Thalamic afferents from the dorsal column nuclei. An experimental anatomical study in the rat. J. Comp. Neurol. 130: 301–312, 1967.
 333. Lund, R. D., and K. E. Webster. Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J. Comp. Neurol. 130: 313–328, 1967.
 334. Lund‐Karlsen, R., and F. Fonnum. Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats. Brain Res. 151: 457–468, 1978.
 335. Macchi, G., A. Quattrini, P. Chinzari, G. Machesi, and G. Capocchi. Quantitative data on cell loss and cellular atrophy of intralaminar nuclei following cortical and subcortical lesions. Brain Res. 89: 43–59, 1975.
 336. Maciewicz, R. J. Thalamic afferents to areas 17, 18, and 19 of cat cortex traced with horseradish peroxidase. Brain Res. 84: 308–312, 1975.
 337. MacLeod, N. K., T. A. James, I. C. Kilpatrick, and M. S. Starr. Evidence for a GABAergic nigrothalamic pathway in the rat. II. Electrophysiological studies. Exp. Brain Res. 40: 55–61, 1980.
 338. Majorossy, K., and M. Réthélyi. Synaptic architecture in the medial geniculate body (ventral division). Exp. Brain Res. 6: 306–323, 1968.
 339. Malpeli, J. G., and F. H. Baker. The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J. Comp. Neurol. 161: 569–594, 1975.
 340. Manson, J. The somatosensory cortical projections of single nerve cells in the thalamus of the cat. Brain Res. 12: 489–492, 1969.
 341. Mason, C. A., and J. A. Robson. Morphology of retinogeniculate axons in the cat. Neuroscience 4: 79–97, 1979.
 342. Mason, R. Functional organization in the cat's pulvinar complex. Exp. Brain Res. 31: 51–66, 1978.
 343. Mathers, L. H. The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. J. Comp. Neurol. 146: 43–60, 1972.
 344. Mathers, L. H. Ultrastructure of the pulvinar of the squirrel monkey. J. Comp. Neurol. 146: 15–42, 1972.
 345. McBride, R. L., and J. Sutin. Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J. Comp. Neurol. 165: 265–284, 1975.
 346. McGuiness, C. M., and G. M. Krauthamer. The afferent projections to the centrum medianium of the cat as demonstrated by retrograde transport of horseradish peroxidase. Brain Res. 184: 255–270, 1980.
 347. McLeod, J. G. The representation of the splanchnic afferent pathways in the thalamus of the cat. J. Physiol. London 140: 462–478, 1958.
 348. Mehler, W. R. Further notes on the center median nucleus of Luys. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 109–122.
 349. Mehler, W. R. Some observations on secondary ascending afferent systems in the central nervous system. In: Pain, edited by R. S. Knighton and P. R. Dumke. Boston: Little, Brown, 1966, p. 11–32.
 350. Mehler, W. R. Some neurological species differences—α posteriori. Ann. NY Acad. Sci. 167: 424–468, 1969.
 351. Mehler, W. R., M. E. Feferman, and W. J. H. Nauta. Ascending axon degeneration following anterolateral chordotomy. An experimental study in the monkey. Brain 83: 718–750, 1960.
 352. Merzenich, M. M., and J. F. Brugge. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50: 275–296, 1973.
 353. Mesulam, M. M., and G. W. Van Hoesen. Acetylcholines‐terase‐rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res. 109: 152–157, 1976.
 354. Meyer, A. Historical Aspects of Cerebral Anatomy. London: Oxford, 1971, p. 230.
 355. Meyer, G., and K. Albus. Topography and cortical projections of morphologically identified neurons in the visual thalamus of the cat. J. Comp. Neurol. 201: 353–374, 1981.
 356. Mickle, W. A., and H. W. Ades. A composite sensory projection area in the cerebral cortex of the cat. Am. J. Physiol. 170: 682–689, 1952.
 357. Mickle, W. A., and H. W. Ades. Rostral projection pathway of the vestibular system. Am. J. Physiol. 176: 243–246, 1954.
 358. Monakow, C. von. Weitere Mittheilungen über durch Exstirpation circumscripter Hirnrindenregionen bedingte Entwick‐elungshemmungen des Kaninchengehirns. Arch. Psychiatr. Nervenkr. 12: 141–156, 535–549, 1882.
 359. Monakow, C. von. Experimentelle und pathologisch‐anatomische Untersuchungen über die Haubenregion, den Sehügel und Beiträgen zur Kenntniss früh erworbener Gross‐ und Kleinhirndefecte. Arch. Psychiatr. Nervenkr. 27: 1–128, 386–478, 1895.
 360. Montero, V. M., and R. W. Guillery. Degeneration in the dorsal lateral geniculate nucleus of the rat following interruption of the retinal or cortical connections. J. Comp. Neurol. 134: 211–242, 1968.
 361. Montero, V. M., R. W. Guillery, and C. N. Woolsey. Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res. 138: 407–422, 1977.
 362. Montero, V. M., and G. L. Scott. Synaptic terminals in dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus: an electron microscope autoradiographic study. Soc. Neurosci. Abstr. 6: 838, 1980.
 363. Mooney, R. D., M. W. Dubin, and A. C. Rusoff. Interneuron circuits in the lateral geniculate nucleus of monocularly deprived cats. J. Comp. Neurol. 187: 533–544, 1979.
 364. Moore, R. Y., and J. M. Goldberg. Ascending projections of the inferior colliculus in the cat. J. Comp. Neurol. 121: 109–135, 1963.
 365. Morest, D. K. The neuronal architecture of the medial geniculate body of the cat. J. Anat. 98: 611–630, 1964.
 366. Morest, D. K. The laminar structure of the medial geniculate body of the cat. J. Anat. 99: 143–160, 1965.
 367. Morest, D. K. The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. J. Anat. 99: 611–634, 1965.
 368. Morest, D. K. Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J. Comp. Neurol. 162: 157–193, 1975.
 369. Morrison, A. R., P. J. Hand, and J. O'Donoghue. Contrasting projections from the posterior and ventrobasal thalamic nuclear complexes to the anterior ectosylvian gyrus of the cat. Brain Res. 21: 115–121, 1970.
 370. Moruzzi, G., and H. W. Magoun. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1: 455–473, 1949.
 371. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.
 372. Mountcastle, V. B., and E. Henneman. Pattern of tactile representation in thalamus of cat. J. Neurophysiol. 12: 85–100, 1949.
 373. Murray, M. Degeneration of some intralaminar thalamic nuclei after cortical removals in the cat. J. Comp. Neurol. 127: 341–368, 1966.
 374. Nauta, H. J. W., M. B. Pritz, and R. J. Lasek. Afferents to the rat caudatoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuronanatomical method. Brain Res. 67: 219–238, 1974.
 375. Nauta, W. J. H. An experimental study of the fornix system in the rat. J. Comp. Neurol. 104: 247–272, 1976.
 376. Nauta, W. J. H., and H. G. J. M. Kuypers. Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello. Boston, MA: Little, Brown, 1958, p. 3–20.
 377. Nauta, W. J. H., and W. R. Mehler. Projections of the lentiform nucleus in the monkey. Brain Res. 1: 3–42, 1966.
 378. Nauta, W. J. H., and D. G. Whitlock. An anatomical analysis of the nonspecific thalamic projection system. In: Brain Mechanisms and Consciousness, edited by J. F. Delafresnaye. Springfield, IL: Thomas, 1954, p. 81–116.
 379. Nelson, P. G., and S. D. Erulkar. Synaptic mechanisms of excitation and inhibition in the central auditory pathway. J. Neurophysiol. 26: 908–923, 1963.
 380. Nelson, R. J., and J. H. Kaas. Connections of the ventroposterior nucleus of the thalamus with the body surface representations in cortical areas 3b and 1 of the cynomologus macque (Macaca fascicularis). J. Comp. Neurol. 199: 29–64, 1981.
 381. Niimi, K., T. Kanaseki, and T. Takimoto. The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals. J. Comp. Neurol. 121: 313–323, 1963.
 382. Niimi, K., T. K. Niimi, K. M. Niimi, and Y. Okada. Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of horesradish peroxidase. Brain Res. 145: 225–238, 1978.
 383. Nissl, F. Die Kerne des Thalamus beim Kaninchen. Neurol. Zentralbl. 8: 549–550, 1889.
 384. Nissl, F. Die Grosshirnanteile des Kaninchens. Arch. Psychiatr. Nervenkr. 52: 867–953, 1913.
 385. Norden, J. J., and J. H. Kaas. The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. J. Comp. Neurol. 182: 707–726, 1978.
 386. Norgren, R. Taste pathways to hypothalamus and amygdala. J. Comp. Neurol. 166: 17–30, 1976.
 387. Norgren, R., and C. M. Leonard. Ascending central gustatory pathways. J. Comp. Neurol. 150: 217–237, 1973.
 388. Ogren, M. P., and A. E. Hendrickson. The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res. 137: 343–350, 1977.
 389. Ogren, M. P., and A. E. Hendrickson. The morphology and distribution of striate cortex terminals in the inferior and lateral subdivisions of the Macaca monkey pulvinar. J. Comp. Neurol. 188: 179–199, 1979.
 390. Ogren, M. P., and A. E. Hendrickson. The structural organization of the inferior and lateral subdivisions of the Macaca monkey pulvinar. J. Comp. Neurol. 188: 147–178, 1979.
 391. O'Hara, P. T., and A. R. Lieberman. Thalamic reticular nucleus: anatomical evidence that cortico‐reticular axons establish monosynaptic contact with reticulo‐geniculate projection cells. Brain Res. 207: 153–156, 1981.
 392. O'Hara, P. T., A. J. Sefton, and A. R. Lieberman. Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Res. 197: 503–506, 1980.
 393. O'Leary, J. L. A structural analysis of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 73: 405–430, 1940.
 394. Oliver, D. L., and W. C. Hall. Subdivisions of the medial geniculate body in the tree shrew (Tupaia glis) Brain Res. 86: 217–227, 1975.
 395. Oliver, D. L., and W. C. Hall. The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections. J. Comp. Neurol. 182: 423–458 1978.
 396. Oliver, D. L., and W. C. Hall. The medial geniculate body of the tree shrew, Tupaia glis. II. Connections with the neocortex. J. Comp. Neurol. 182: 459–494, 1978.
 397. Oscarsson, O., and I. Rosén. Short‐latency projections in the cat's cerebral cortex from skin and muscle afferents in the contralateral forelimb. J. Physiol. London 182: 164–184, 1966.
 398. Palacios, J. M., J. K. Wamsley, and M. J. Kuhar. High affinity GABA receptors—autoradiographic localization. Brain Res. 222: 285–307, 1981.
 399. Palmer, L. A., and A. C. Rosenquist. Visual receptive fields of single striate cortical units projecting to the superior colliculus in the rat. Brain Res. 67: 27–42, 1974.
 400. Palmer, L. A., A. C. Rosenquist, and R. J. Tusa. The retinotopic organization of lateral suprasylvian visual areas in the cat. J. Comp. Neurol. 177: 237–256, 1978.
 401. Partlow, G. D., M. Colonnier, and J. Szabo. Thalamic projections of the superior colliculus in the rhesus monkey, Macaca mulatta. A light and electron microscopic study. J. Comp. Neurol. 72: 285–318, 1977.
 402. Pasik, P., T. Pasik, J. Hámori, and J. Szentágothai. Golgi type II interneurons in the neuronal circuit of the monkey lateral geniculate nucleus. Exp. Brain Res. 17: 18–34, 1973.
 403. Paul, R. L., M. Merzenich, and H. Goodman. Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann's areas 3 and 1 of Macaca mulatta. Brain Res. 36: 229–249, 1972.
 404. Pearson, J. C., and D. E. Haines. Somatosensory thalamus of a prosimian primate (Galago senegalensis). II. An HRP and Golgi study of the ventral postero‐lateral nucleus (VPL). J. Comp. Neurol. 190: 559–580, 1980.
 405. Pecci Saavedra, J., O. L. Vaccarezza, and T. A. Reader. Ultrastructure of cells and synapses in the parvocellular portion of the cebus monkey lateral geniculate nucleus. Z. Zellforsch. Mikrosk. Anat. 89: 462–477, 1968.
 406. Penfield, W., and H. Jasper. Epilepsy and the Functional Anatomy of the Human Brain. Boston, MA: Little, Brown, 1954.
 407. Penny, G. R., K. Itoh, and I. T. Diamond. Thalamic cells of different sizes project to different layers of the somatic cortex. Soc. Neurosci. Abstr. 7: 834, 1981.
 408. Peters, A., and S. L. Palay. The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat. 100: 451–486, 1966.
 409. Pettigrew, J. D. The importance of early visual experience for neurons of the developing geniculo‐striate system. Invest. Ophthalmol. 11: 386–393, 1972.
 410. Phillips, C. G., T. P. S. Powell, and M. Wiesendanger. Projection from low‐threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J. Physiol. London 217: 419–446, 1971.
 411. Pines, J. L. Zur Architectonik des Thalamus opticus beim Halbaffen (Lemur catta). J. Psychol. Neurol. Leipzig 33: 31–72, 1927.
 412. Poggio, G. F., and V. B. Mountcastle. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bull. Johns Hopkins Hosp. 106: 266–316, 1960.
 413. Poggio, G. F., and V. B. Mountcastle. The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J. Neurophysiol. 26: 775–806, 1963.
 414. Powell, T. P. S., and W. M. Cowan. The connexions of the midline and intralaminar nuclei of the thalamus of the rat. J. Anat. 88: 307–319, 1954.
 415. Powell, T. P. S., and W. M. Cowan. A study of thalamostriate relations in the monkey. Brain 79: 364–390, 1956.
 416. Powell, T. P. S., and W. M. Cowan. The interpretation of the degenerative changes in the intralaminar nuclei of the thalamus. J. Neurol. Neurosurg. Psychiatry 30: 140–153, 1967.
 417. Powell, T. P. S., and V. B. Mountcastle. Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105: 133–162, 1959.
 418. Price, D. D., R. Dubner, and J. W. Hu. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey's face. J. Neurophysiol. 39: 936–953, 1976.
 419. Purpura, D. P. Intracellular studies of synaptic organization in the mammalian brain. In: Structure and Function of Synapses, edited by G. D. Pappas and D. P. Purpura. New York: Raven, 1972, p. 257–302.
 420. Purpura, D. P., J. G. McMurtry, and K. Maekawa. Synaptic events in ventrolateral thalamic neurons during suppression of recruiting responses by brain stem reticular stimulation. Brain Res. 1: 63–76, 1966.
 421. Raczkowski, D., and I. T. Diamond. Projections from the superior colliculus and the neocortex to the pulvinar nucleus in Galago. J. Comp. Neurol. 200: 231–254, 1981.
 422. Raczkowski, D., and A. C. Rosenquist. Connections of the parvocellular C laminae of the dorsal lateral geniculate nucleus with the visual cortex in the cat. Brain Res. 199: 447–451, 1980.
 423. Raczkowski, D., and A. C. Rosenquist. Retinotopic organization in the cat lateral posterior‐pulvinar complex. Brain Res. 221: 185–191, 1981.
 424. Ralston, H. J. III.. The synaptic organization of lemniscal projections to the ventrobasal thalamus of the cat. Brain Res. 14: 99–115, 1969.
 425. Ralston, H. J., III. Evidence for presynaptic dendrites and a proposal for their mechanism of action. Nature London 230: 585–587, 1971.
 426. Ralston, H. J., III, and K. L. Chow. Synaptic reorganization in the degenerating lateral geniculate nucleus of the rabbit. J. Comp. Neurol. 147: 321–350, 1973.
 427. Ralston, H. J., III, and M. M. Herman. The fine structure of neurons and synapses in the ventrobasal thalamus of the cat. Brain Res. 14: 77–97, 1969.
 428. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés (transl. by S. Azoulay). Paris: Maloine, 1909–1911.
 429. Ramón‐Moliner, E. Specialized and generalized dendritic patterns. In: Golgi Centennial Symposium: Perspectives in Neurobiology, edited by M. Santini. New York: Raven, 1975, p. 87–100.
 430. Ramón‐Moliner, E., and W. J. H. Nauta. The isodendritic core of the brain stem. J. Comp. Neurol. 126: 311–335, 1966.
 431. Raymond, J., D. Deměmes, and R. Marty. Voies et projections vestibulaires ascendantes émanant des noyaux primaires: étude radioautographique. Brain Res. 111: 1–12, 1976.
 432. Rezak, M., and L. A. Benevento. A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 167: 19–40, 1979.
 433. Richardo, J. A. Efferent connections of the subthalamic region in the rat. I. The subthalamic nucleus of Luys. Brain Res. 202: 257–272, 1980.
 434. Rinvik, E. The corticothalamic projection from the pericruciate and coronal gyri in the cat. An experimental study with silver‐impregnation methods. Brain Res. 10: 79–119, 1968.
 435. Rinvik, E. The corticothalamic projection from the second somatosensory cortical area in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 5: 153–172, 1968.
 436. Rinvik, E. Organization of thalamic connections from motor and somatosensory cortical areas in the cat. In: Corticothalamic Projections and Sensorimotor Activities, edited by T. Frigyesi, E. Rinvik, and M. D. Yahr. New York: Raven, 1972, p. 57–90.
 437. Rinvik, E. Demonstration of nigrothalamic connections in the cat by retrograde axonal transport of horseradish peroxidase. Brain Res. 90: 313–318, 1975.
 438. Rioch, D. McK. Studies on the diencephalon of carnivora. I. Nuclear configurations of the thalamus, epithalamus and hypothalamus of dog and cat. J. Comp. Neurol. 49: 1–120, 1979.
 439. Roberts, T. S., and K. Akert. Insular and opercular cortex and its thalamic projection in Macaca mulatta. Schweiz. Arch. Neurol. Neurochir. Psychiatr. 92: 1–43, 1963.
 440. Robertson, R. T., and T. J. Cunningham. Organization of corticothalamic projections from parietal cortex in cat. J. Comp. Neurol. 199: 569–586, 1981.
 441. Robertson, R. T., and S. S. Kaitz. Thalamic connections with limbic cortex. I. Thalamocortical projections. J. Comp. Neurol. 195: 501–527, 1981.
 442. Robertson, R. T., and E. Rinvik. The corticothalamic projections from parietal regions of the cerebral cortex. Experimental degeneration studies in the cat. Brain Res. 51: 61–79, 1973.
 443. Robson, J. A., and W. C. Hall. Connections of layer VI in striate cortex of the grey squirrel (Sciurus carolinensis). Brain Res. 93: 133–139, 1975.
 444. Robson, J. A., and W. C. Hall. The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). I. Cytoarchitecture and connections. J. Comp. Neurol. 173: 355–388, 1977.
 445. Rockel, A. J., C. J. Heath, and E. G. Jones. Afferent connections to the diencephalon in the marsupial phalanger and the question of sensory convergence in the “posterior group” of the thalamus. J. Comp. Neurol. 145: 105–129, 1972.
 446. Romagnano, M. A., and R. J. Maciewicz. Peroxidase labeling of motor cortex neurons projecting to ventrolateral nucleus in the cat. Brain Res. 83: 469–473, 1975.
 447. Rose, J. E. The ontogenetic development of the rabbit's diencephalon. J. Comp. Neurol. 77: 61–129, 1942.
 448. Rose, J. E. The thalamus of the sheep: cellular and fibrous structure and comparison with pig, rabbit and cat. J. Comp. Neurol. 77: 469–523, 1942.
 449. Rose, J. E. The cortical connections of the reticular complex of the thalamus. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 452–479, 1952.
 450. Rose, J. E., and V. B. Mountcastle. The thalamic tactile region in rabbit and cat. J. Comp. Neurol. 97: 441–489, 1952.
 451. Rose, J. E., and V. B. Mountcastle. Activity of single neurons in the tactile thalamic region of the cat in response to a transient peripheral stimulus. Bull. Johns Hopkins Hosp. 94: 238–282, 1954.
 452. Rose, J. E., and V. B. Mountcastle. Touch and kinesthesis. In: Handbook of Physiology. Neurophysiology, edited by J. Field, H. W. Magoun, and V. E. Hall. Washington DC: Am. Physiol. Soc., 1959, sect. 1, vol. I, chapt. 17, p. 387–429.
 453. Rose, J. E., and C. N. Woolsey. A study of thalamocortical relations in the rabbit. Bull. Johns Hopkins Hosp. 73: 65–128, 1943.
 454. Rose, J. E., and C. N. Woolsey. The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 210–232, 1948.
 455. Rose, J. E., and C. N. Woolsey. Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J. Comp. Neurol. 89: 279–347, 1948.
 456. Rose, J. E., and C. N. Woolsey. Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 1: 391–403, 1949.
 457. Rose, J. E., and C. N. Woolsey. The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J. Comp. Neurol. 91: 441–466, 1949.
 458. Rose, J. E., and C. N. Woolsey. Cortical connections and functional organization of the thalamic auditory system of the cat. In: Biological and Biochemical Bases of Behavior, edited by H. F. Harlow and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, p. 127–150.
 459. Rose, M. Das Zwischenhirn des Kaninchens. Mem. Acad. Pol. Sci. Lett. Ser. B 8: 1–108, 1935.
 460. Rosenquist, A. C., S. B. Edwards, and L. A. Palmer. An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res. 80: 71–93, 1974.
 461. Rotter, A., N. J. M. Birdsall, A. S. V. Burgen, P. M. Field, E. C. Hulme, and G. Raisman. Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain. Brain Res. Rev. 1: 141–165, 1979.
 462. Rowe, M. J., and B. J. Sessle. Somatic afferent input to posterior thalamic neurones and their axon projection to the cerebral cortex in the cat. J. Physiol. London 196: 19–35, 1968.
 463. Ryugo, D. K., and H. P. Killackey. Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Res. 82: 173–177, 1974.
 464. Sakata, H., T. Ishijima, and Y. Toyoda. Single unit studies on ventrolateral nucleus of the thalamus in the cat: its relation to the cerebellum, motor cortex and basal ganglia. Jpn. J. Physiol. 16: 42–60, 1966.
 465. Sanderson, K. J. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol. 143: 101–108, 1971.
 466. Saper, C. B., and A. F. Loewy. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197: 291–318, 1980.
 467. Saporta, S., and L. Kruger. The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 174: 187–208, 1977.
 468. Saporta, S., and L. Kruger. The organization of projections to selected points of somatosensory cortex from the cat ventrobasal complex. Brain Res. 178: 275–298, 1979.
 469. Sasaki, K., Y. Matsuda, S. Kawaguchi, and N. Mizuno. On the cerebellothalamo‐cerebral pathway for the parietal cortex. Exp. Brain Res. 16: 89–103, 1972.
 470. Sasaki, K., Y. Matsuda, H. Oka, and N. Mizuno. Thalamocortical projections for recruiting responses and spindling‐like responses in the parietal cortex. Exp. Brain Res. 22: 87–96, 1975.
 471. Sasaki, K., T. Shimono, H. Oka, T. Yamamoto, and Y. Matsuda. Effects of stimulation of the midbrain reticular formation upon thalamocortical neurones responsible for cortical recruiting responses. Exp. Brain Res. 26: 261–273, 1976.
 472. Scheibel, M. E., and A. B. Scheibel. The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1: 43–62, 1966.
 473. Scheibel, M. E., and A. B. Scheibel. Patterns of organization in specific and nonspecific thalamic fields. In: The Thalamus, edited by D. P. Purpura, and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 13–46.
 474. Schiller, P. H., and J. G. Malpeli. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol. 41: 788–797, 1978.
 475. Schlag, J., I. Lethinen, and M. Schlag‐Rey. Neuronal activity before and during eye movements in thalamic internal medullary lamina of the cat. J. Neurophysiol. 37: 982–995, 1974.
 476. Schlag, J., and M. Schlag‐Rey. Induction of oculomotor responses from thalamic internal medullary lamina in the cat. Exp. Neurol. 33: 498–508, 1971.
 477. Schlag, J., and M. Waszak. Characteristics of unit responses in nucleus reticularis thalami. Brain Res. 21: 286–288, 1970.
 478. Schmielau, F., and W. Singer. The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res. 120: 359–361, 1977.
 479. Schneider, G. E. Two visual systems. Science 163: 895–902, 1969.
 480. Schwarz, D. W. F., and J. M. Fredrickson. Rhesus monkey vestibular cortex: a bimodal primary projection field. Science 172: 280–281, 1971.
 481. Scollo‐Lavizzari, G. S., and K. Akert. Cortical area 8 and its thalamic projection in Macaca mulatta. J. Comp. Neurol. 121: 259–269, 1963.
 482. Sefton, A. J., and W. Burke. Reverberatory inhibitory circuits in the lateral geniculate nucleus of the rat. Nature London 205: 1325–1326, 1965.
 483. Shanks, M. F., and T. P. S. Powell. An electron microscopic study of the termination of thalamocortical fibres in areas 3b, 1 and 2 of the somatic sensory cortex in the monkey. Brain Res. 218: 35–48, 1981.
 484. Shatz, C. J., S. Lindström, and T. N. Wiesel. The distribution of afferents representing the right and left eyes in the cat's visual cortex. Brain Res. 131: 103–116, 1972.
 485. Sherman, S. M., J. R. Wilson, J. H. Kaas, and S. V. Webb. X‐ and Y‐cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 192: 475–477, 1976.
 486. Shimazu, H., N. Yanagisawa, and B. Garoutte. Corticopyramidal influences on thalamic somatosensory transmission in the cat. Jpn. J. Physiol. 15: 101–124, 1965.
 487. Shipley, M. T., and K. E. Sørenson. On the laminar organization of the anterior thalamus projections to the presubiculum in the guinea pig. Brain Res. 86: 473–477, 1975.
 488. Singer, W. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol. Rev. 57: 386–420, 1977.
 489. Smith, R. L. The ascending fiber projections from the principal sensory trigeminal nucleus in the rat. J. Comp. Neurol. 148: 423–445, 1973.
 490. Smith, R. L. Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J. Comp. Neurol. 163: 347–375, 1975.
 491. Sousa‐Pinto, A. Cortical projections of the medial geniculate body in the cat. Ergeb. Anat. Entwicklungsgesch. 48: 1–40, 1973.
 492. Spatz, W. B. Thalamic and other subcortical projections to area MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus. Brain Res. 99: 129–134, 1975.
 493. Spatz, W. B., and G. Erdmann. Striate cortex projections to the lateral geniculate and other thalamic nuclei: a study using degeneration and autoradiographic tracing methods in the marmoset (Callithrix jacchus). Brain Res. 82: 91–108, 1974.
 494. Spatz, W. B., J. Tigges, and M. Tigges. Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol. 140: 155–174, 1970.
 495. Sprague, J. M., J. Levy, A. Di Berardino, and G. Berlucchi. Visual cortical areas mediating form discrimination in the cat. J. Comp. Neurol. 172: 441–488, 1977.
 496. Spreafico, R., N. L. Hayes, and A. Rustioni. Thalamic projections to the primary and secondary somato‐sensory cortices in cat: single and double retrograde tracer studies. J. Comp. Neurol. 203: 67–90, 1981.
 497. Stanton, G. B. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta. An anterograde degeneration study. J. Comp. Neurol. 190: 699–733, 1980.
 498. Steriade, M., G. Oakson, and A. Diallo. Reticular influences on lateralis posterior thalamic neurons. Brain Res. 131: 55–71, 1977.
 499. Sterling, P., and T. L. Davis. Neurons in cat lateral geniculate nucleus that concentrate [3H]‐gamma‐aminobutyric acid (GABA). J. Comp. Neurol. 192: 737–749, 1980.
 500. Stone, J., and B. Dreher. Projection of X‐ and Y‐cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol. 36: 551–567, 1973.
 501. Streit, P. Selective retrograde labeling indicating the trasmitter of neuronal pathways. J. Comp. Neurol. 191: 429–464, 1980.
 502. Strick, P. L. Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat. Brain Res. 55: 1–24, 1975.
 503. Strick, P. L. Multiple sources of thalamic input to the primate motor cortex. Brain Res. 88: 372–377, 1975.
 504. Strick, P. L. Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J. Neurophysiol. 39: 1020–1031, 1976.
 505. Sugitani, M. Electrophysiological and sensory properties of the thalamic reticular neurons related to somatic sensation in rats. J. Physiol. London 290: 79–95, 1979.
 506. Sumitomo, I., M. Nakamura, and K. Iwana. Location and function of the so‐called interneurons of rat lateral geniculate body. Exp. Neurol. 51: 110–173, 1976.
 507. Swanson, L. W. An autoradiographic study of the efferent connections of the preoptic region in the rat. J. Comp. Neurol. 167: 227–256, 1976.
 508. Swanson, L. W., and W. M. Cowan. A note on the connections and development of the nucleus accumbens. Brain Res. 92: 324–330, 1975.
 509. Swanson, L. W., and W. M. Cowan. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 172: 49–84, 1977.
 510. Swanson, L. W., and W. M. Cowan. The connections of the septal region in the rat. J. Comp. Neurol. 186: 621–656, 1979.
 511. Swanson, L. W., W. M. Cowan, and E. G. Jones. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J. Comp. Neurol. 156: 143–163, 1974.
 512. Swanson, L. W., and B. K. Hartman. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine‐beta‐hydroxylase as a marker. J. Comp. Neurol. 163: 467–505, 1975.
 513. Symonds, L. L., A. C. Rosenquist, S. B. Edwards, and L. A. Palmer. Projections of the pulvinar‐lateral posterior complex to visual cortical areas in the cat. Neuroscience 6: 1995–2020, 1981.
 514. Szentágothai, J. The structure of the synapse in the lateral geniculate body. Acta Anat. 55: 166–185, 1963.
 515. Szentágothai, J. Models of specific neuron arrays in thalamic relay nuclei. Acta Morphol. Acad. Sci. Hung. 15: 113–124, 1967.
 516. Szentágothai, J. Neuronal and synaptic architecture of the lateral geniculate body. In: Handbook of Sensory Physiology. Visual Centers of the Brain, edited by R. Jung. New York: Springer‐Verlag, 1973, vol. 7, pt. 3B, p. 141–176.
 517. Szentágothai, J., J. Hámori, and T. Tömböl. Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2: 283–301, 1966.
 518. Tanji, D. G., S. P. Wise, R. W. Dykes, and E. G. Jones. Cytoarchitecture and thalamic connectivity of third somatosensory area of cat cerebral cortex. J. Neurophysiol. 41: 268–284, 1978.
 519. Tarlov, E. The rostral projections of the primate vestibular nuclei: an experimental study in macaque, baboon and chimpanzee. J. Comp. Neurol. 135: 27–56, 1969.
 520. Tarlov, E. C., and R. Y. Moore. The tecto‐thalamic connections in the brain of the rabbit. J. Comp. Neurol. 126: 403–435, 1966.
 521. Tello, F. Disposición microscopica y estructura del cuerpo geniculado externo. Trab. Lab. Invest. Biol. Univ. Madrid 3: 39–62, 1904.
 522. Thach, W. T., and E. G. Jones. The cerebellar dentatothalamic connection: terminal field, lamellae, rods and somatotopy. Brain Res. 169: 168–172, 1979.
 523. Thompson, R. F. Foundations of Physiological Psychology. New York: Harper & Row, 1967, p. 474–528.
 524. Thompson, R. F., R. M. Johnson, and J. J. Hoopes. Organization of auditory, somatic sensory, and visual projections to association fields of cerebral cortex in the cat. J. Neurophysiol. 26: 343–364, 1963.
 525. Tomasulo, K. C., and R. Emmers. Spinal afferents to SI and SII of the rat thalamus. Exp. Neurol. 26: 482–497, 1970.
 526. Tömböl, T. Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3: 307–326, 1967.
 527. Tömböl, T., F. Hajdu, and G. Somogyi. Identification of the Golgi picture of the layer VI cortico‐geniculate projection neurons. Exp. Brain Res. 24: 107–110, 1975.
 528. Torrealba, F., G. D. Partlow, and R. W. Guillery. Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat. Neuroscience 6: 1341–1360, 1981.
 529. Tracey, D. J., C. Asanuma, E. G. Jones, and R. Porter. Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J. Neurophysiol. 44: 532–554, 1980.
 530. Trevino, D. L., and E. Carstens. Confirmation of the location of spinothalamic neurons in cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res. 98: 177–182, 1975.
 531. Trojanowski, J. Q., and S. Jacobson. Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. Brain Res. 80: 395–411, 1974.
 532. Trojanowski, J. Q., and S. Jacobson. A combined horseradish peroxidase‐autoradiographic investigation of reciprocal connections between superior temporal gyrus and pulvinar in squirrel monkey. Brain Res. 85: 347–353, 1975.
 533. Updyke, B. V. The patterns of projection of cortical areas 17, 18 and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 163: 377–395, 1975.
 534. Updyke, B. V. Topographic organization of the projections from cortical areas 17, 18 and 19 onto the thalamus, pretectum and superior colliculus in the cat. J. Comp. Neurol. 173: 81–122, 1977.
 535. Updyke, B. V. A Golgi study of the class V cell in the visual thalamus of the cat. J. Comp. Neurol. 186: 603–620, 1979.
 536. Updyke, B. V. Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. J. Comp. Neurol. 201: 477–506, 1981.
 537. Valenstein, E. S., and W. J. H. Nauta. A comparison of the distribution of the fornix system in the rat, guinea pig, cat and monkey. J. Comp. Neurol. 113: 337–364, 1959.
 538. Van der Loos, H. Barreloids in mouse somatosensory thalamus. Neurosci. Lett. 2: 1–6, 1976.
 539. Vogt, C. La myéloarchitecture du thalamus du cercopithéque. J. Psychol. Neurol. Leipzig 12: 285–324, 1909.
 540. Walker, A. E. The Primate Thalamus. Chicago: Univ. of Chicago Press, 1938, p. 321.
 541. Walzl, E. M., and V. B. Mountcastle. Projection of vestibular nerve to cerebral cortex of cat (Abstract). Am. J. Physiol. 159: 595, 1949.
 542. Watanabe, T., K. Yanagisawa, J. Kanzaki, and Y. Katsuki. Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp. Brain Res. 2: 302–317, 1966.
 543. Weber, J. T., and J. K. Harting. The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis. Brain Res. 194: 1–28, 1980.
 544. Webster, K. E. The cortico‐striatal projection in the cat. J. Anat. 99: 329–337, 1965.
 545. Weiskrantz, L. The interaction between occipital and temporal cortex in vision: an overview. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt, and F. G. Worden. Cambridge, MA: MIT Press, 1974, p. 189–204.
 546. Welker, C. Receptive fields of barrels in the somatosensory neocortex of the rat. J. Comp. Neurol. 166: 173–189, 1976.
 547. Welker, W. I. Principles of organization of the ventrobasal complex in mammals. Brain Behav. Evol. 7: 253–336, 1974.
 548. Werner, G., and B. L. Whitsel. Topology of the body representation in somatosensory area I of primates. J. Neurophysiol. 31: 856–869, 1968.
 549. Whitlock, D. G., and E. R. Perl. Afferent projections through ventrolateral funiculi to thalamus of cat. J. Neurophysiol. 22: 133–148, 1959.
 550. Whitsel, B. L., L. M. Petrucelli, and G. Werner. Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J. Neurophysiol. 32: 170–183, 1969.
 551. Wiesel, T. N., D. H. Hubel, and D. Lam. Autoradiographic demonstration of ocular‐dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 79: 273–279, 1974.
 552. Willis, W. D., R. B. Leonard, and D. R. Kenshalo, Jr. Spinothalamic tract neurons in the substantia gelatinosa. Science 202: 986–988, 1978.
 553. Willis, W. D., D. L. Trevino, J. D. Coulter, and R. A. Maunz. Responses of primate spinothalamic tract neurons to natural stimulation of the hindlimb. J. Neurophysiol. 37: 358–372, 1974.
 554. Wilson, M. E., and B. G. Cragg. Projections from the medial geniculate body to the cerebral cortex in the cat. Brain Res. 13: 462–475, 1969.
 555. Wilson, P. D., J. Pecci‐Saavedra, and R. W. Doty. Mesencephalic control of lateral geniculate nucleus in primates. II. Effective loci. Exp. Brain Res. 18: 204–213, 1973.
 556. Wilson, P. D., M. H. Rowe, and J. Stone. Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W‐cells with X‐ and Y‐cells. J. Neurophysiol. 39: 1193–1209, 1976.
 557. Wilson, P. D., and J. Stone. Evidence of W‐cell input to the cat's visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 92: 472–478, 1975.
 558. Winer, J. A., I. T. Diamond, and D. Raczkowski. Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J. Comp. Neurol. 176: 337–418, 1977.
 559. Winfield, D. A. The synaptic organization of glomeruli in the magnocellular and parvocellular laminae of the lateral geniculate nucleus in the monkey. Brain Res. 198: 55–62, 1980.
 560. Winfield, D. A., K. C. Gatter, and T. P. S. Powell. An electron microscopic study of retrograde and orthograde transport of horseradish peroxidase to the lateral geniculate nucleus of the monkey. Brain Res. 92: 462–467, 1975.
 561. Wise, S. P. The laminar organization of certain afferent and efferent fiber systems in the rat somatosensory cortex. Brain Res. 90: 139–142, 1975.
 562. Wise, S. P., S. H. C. Hendry, and E. G. Jones. Prenatal development of sensorimotor cortical projections in cats. Brain Res. 138: 538–544, 1977.
 563. Wise, S. P., and E. G. Jones. Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J. Comp. Neurol. 175: 129–157, 1977.
 564. Wise, S. P., and E. G. Jones. Topographic and columnar distribution of the corticotectal projection from the rat somatic sensory cortex. Brain Res. 133: 223–235, 1977.
 565. Wise, S. P., and E. G. Jones. Developmental studies of thalamocortical and commissural connections of the rat somatic sensory cortex. J. Comp. Neurol. 178: 187–208, 1978.
 566. Wong‐Riley, M. T. T. Neuronal and synaptic organization of the normal dorsal lateral geniculate nucleus of the squirrel monkey, Saimiri sciureus. J. Comp. Neurol. 144: 25–59, 1972.
 567. Wong‐Riley, M. T. T. Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 79: 267–272, 1974.
 568. Woolsey, C. N. Organization of somatic sensory and motor areas of the cerebral cortex. In: Biological and Biochemical Bases of Behavior, edited by H. F. Harlow, and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, p. 63–81.
 569. Woolsey, C. N. Electrophysiological studies on thalamocortical relations in the auditory system. In: Unfinished Tasks in the Behavioral Sciences, edited by A. Abrams, H. H. Garner, and J. E. Toman. Baltimore: Williams & Wilkins, 1964, p. 45–57.
 570. Wyss, J. M., L. W. Swanson, and W. M. Cowan. A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4: 463–476, 1979.
 571. Yingling, C. D., and J. E. Skinner. Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalogr. Clin. Neurophysiol. 41: 476–482, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

E. G. Jones. Organization of the Thalamocortical Complex and its Relation to Sensory Processes. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 149-212. First published in print 1984. doi: 10.1002/cphy.cp010305