Comprehensive Physiology Wiley Online Library

Auditory Perception

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 General Anatomy
1.1 Outer Ear
1.2 Middle Ear
1.3 Inner Ear
1.4 Cochlear Innervation
1.5 Contrast With Eye
2 Background of Auditory Research
2.1 Before 1800
2.2 Nineteenth Century
2.3 Electronic Era
2.4 World War II to Present
2.5 null
3 Discrimination
3.1 Discrimination of Signal From Internal Noise—Absolute Threshold
3.2 Detection of Sinusoids in Noise
3.3 Intensity Discrimination of a Noise Increment
3.4 Intensity Discrimination of an Increment in a Sinusoid
3.5 Detection of One Sinusoid in the Presence of Another
3.6 Psychophysical Tuning Curves
3.7 Frequency Discrimination
4 Space Perception
4.1 Localization in an Anechoic Environment
4.2 Rayleigh—The Duplex Theory
4.3 Modern Work on the Duplex Theory
4.4 Envelope Cues
4.5 Localization in Natural Environments
4.6 Transient Signals
4.7 Binaural Masking Level Differences
5 Temporal Properties
5.1 Temporal Integration
5.2 Temporal Masking
5.3 Temporal Acuity and Temporal Order
5.4 Frequency Channels and Auditory Stream Segregation
6 Pitch Perception
6.1 Wave Form Analysis
6.2 History
6.3 Psychoacoustic Characteristics of Hearing‐Impaired Ears
7 Animal Psychophysical Data
7.1 Absolute Thresholds
7.2 Critical Bands and Critical Ratios
7.3 Frequency Discrimination
7.4 Intensity Discrimination
7.5 Temporal Integration
7.6 Conclusions
Figure 1. Figure 1.

Major divisions of peripheral auditory system. A: outer, middle, and inner ear. B: enlarged portion of middle ear showing the three major bones. C: mechanical analogues of outer and middle ear.[Adapted from Green 79.]

Figure 2. Figure 2.

Average gain in acoustic pressure for each anatomical component of external human ear for an azimuth of 45°, assuming they were added in order shown. Total gain, T, is pressure transformation from free field to eardrum at azimuth of 45°. Curve 1, data from spherical head; curve 2, from torso and neck; curve 3, from concha; curve 4, from pinna flange; curve 5, from ear canal and eardrum.

Adapted from Shaw 221
Figure 3. Figure 3.

Structural features of cochlea. A: cochlea in relation to middle ear, vestibular channels (partially illustrated), and the auditory nerve. B: cross section of cochlea. C: structures within the scala media.

Adapted from Green 79
Figure 4. Figure 4.

Schematic representation of afferent cochlear innervation. Note that preponderance of afferents innervate a nearby inner hair cell. Only 1 in 20 cross to diffusely innervate the outer hair cells.

Adapted from Spoendlin 233
Figure 5. Figure 5.

Mean values of ΔI/I (smallest detectable intensity change vs. base intensity of sine wave) as a function of sensation level (SL) in dB. Data are means of 3 subjects. The parameter is the frequency of the sinusoid. Error bars indicate ± 3 SEM, and are displayed when the standard error exceeds the size of the symbol. Solid lines represent the identical function fit to all 8 frequency conditions.

From data of Jesteadt, Wier, and Green 120
Figure 6. Figure 6.

Masker is a sinusoid of 1,200 Hz at a sensation level of 80 dB. Line shows threshold value of the signal in sensation level as a function of frequency. Signal can be heard in the presence of the masker above the solid line but not below it. [A single condition from an experiment by Wegel and Lane 269.]

Figure 7. Figure 7.

Change in threshold for a signal as a function of the sensation level of a 1,200‐Hz masker. Parameter is signal frequency (in Hz). Near the masker frequency there is almost a linear increase in signal threshold with increased masker level.

[Adapted from Wegel and Lane 269
Figure 8. Figure 8.

Masker level (sound pressure level) needed to just mask a fixed signal level as a function of the masker frequency. Signal levels: •, 15 dB; ○, 30 dB. Signal frequency 6,400 Hz.

Adapted from Small 228
Figure 9. Figure 9.

The just detectable change in frequency (Δf) as a function of signal frequency for a 40‐dB sensation level sinusoid. Heavy line is empirical function fit to data of Wier, Jesteadt, and Green 275. Nordmark's data 167 were multiplied by to try to adjust for differences in procedure 274. Data were obtained from the following sources: •, Wier, Jesteadt, and Green 275; ○, Henning 104; □, Harris 92; Δ, Nordmark 167; ▿, Rosenblith and Stevens 205; ⋄, Moore 160; +, Shower and Biddulph 222. All data were obtained with gated sinusoids except those of Shower and Biddulph, who used a modulation procedure.

Figure 10. Figure 10.

The just detectable change in frequency (Δf) as a function of signal frequency. Mean data from 4 subjects. Parameter is sensation level (SL) of the sinusoid. Error bars indicate ±3 SEM, where the standard error exceeds the size of symbol.

From data of Wier, Jesteadt, and Green 275
Figure 11. Figure 11.

Stimulus conditions in the “precedence experiment.” Two clicks are presented, within a brief interval, to both ears. First click to left ear arrives Δ1 before first click to right ear. Second click to right ear arrives Δt2 before second click to left ear. The subject hears a single sound, and by adjusting Δt2, can “center” the image, thus offsetting Δt1.

Adapted from Green 79
Figure 12. Figure 12.

The just detectable difference in intensity (ΔI/I) as a function of signal duration. Parameter is signal frequency. Stimulus power was held constant as duration changed. ○, 250 Hz; □, 1,000 Hz; ▵, 8,000 Hz; ⋄, 4,000 Hz.

From data of Henning 104
Figure 13. Figure 13.

The just detectable change in frequency (Δf/f) as a function of signal duration. Parameter is signal frequency. ○, Mean of 2 subjects, using a two‐alternative forced‐choice procedure, from data of Henning 104. ▵, From 1 subject; ▿, mean of 2 subjects using a two‐alternative forced‐choice procedure; from data of Moore 160. ♦, Plotted values of Δf/f normalized with regard to data for 40‐dB sensation level, 500‐ms tones, from Wier, Jesteadt, and Green 275.

Figure 14. Figure 14.

A periodic pulse train. If Ta = Tb = 2 ms, the pitch is 500 Hz; if Ta = 2 ms + 50 μs and Tb = 2 ms − 50 μs, the pitch is an octave lower, namely 250 Hz.

Figure 15. Figure 15.

Mean results from 3 groups of subjects of cross‐modality matching on an auditory stimulus (1,000‐Hz tone) of various inten‐ sities with magnitude of vibration (150 Hz)applied to middle finger of the hand.

Adapted from Stevens 241,based on data of Thalmann 251
Figure 16. Figure 16.

A: audiogram of an 80‐yr‐old man showing the descending pattern of loss characteristic of presbycusis. Darkened areas in the 3 bar graphs indicate areas of abnormality found upon histological examination. There are small areas of hair cell loss at basal end of the 10–15 mm region; there is striking diffuse loss of cochlear neurons, most severe at the basal end. B: audiogram of a 27‐yr‐old female patient with severe renal failure who received an initial dose of 1 g kanamycin followed by 0.25 g every other day for a total of 3 g over a period of 18 days. Tinnitus and high‐frequency hearing loss developed on the 18th day, after which there was no further change on repeated testing. She died two weeks after completion of therapy. Histology shows a severe loss of hair cells in the basal 15 mm of the cochlea. The population of cochlear neurons was normal. C: audiogram of a 28‐yr‐old man in the early stages of Ménière's disease in which hearing loss is only at low frequencies. D: audiogram of a 20‐yr‐old patient before administration of salicylates (top), during salicylate intoxication (bottom), and 24 h after discontinuing administration of salicylates (middle).

Adapted from Schuknecht 215
Figure 17. Figure 17.

Thresholds of detectability in sound pressure level (SPL) in dB. ○, Cat, free field, monaural listening, from data of Elliott et al. 48; □, chinchilla, free field, monaural listening, from data of Miller 151; ▿, guinea pig, free field, binaural listening, from data of Heffner et al. 95; ⋄, squirrel monkey, free field, binaural listening, from data of Beecher 3; ▵, macaque, earphones, binaural listening, from data of Stebbins, Green, and Miller 235; heavy line, human, free field, monaural listening, from data of Sivian and White 227.

Figure 18. Figure 18.

Critical bands (open symbols) and critical ratios (closed symbols). ▵, ▴, Cat, free field, monaural listening, from data of Pickles 180; ▪, chinchilla, free field, monaural listening, from data of Miller 150,151; ▿, monkey, earphones, monaural listening, from data of Gourevitch 74; ⋄, ♦, chinchilla, free field, monaural listening, from data of Seaton and Trahiotis 216; •, cat, free‐field, monaural listening, from data of Watson 263. Solid line fit to data of Zwicker 283 expressed in equation , where f is frequency in Hz and Δf is bandwidth in Hz.

Figure 19. Figure 19.

The just detectable change in frequency, Δf as a function of stimulus frequency. •, Cat, free field, monaural listening, 40‐dB sensation level, from data of Elliott et al. 48; ▪, guinea pig, free field, binaural listening, 30‐dB sensation level, from data of Heffner et al. 95; ♦, chinchilla, free field, binaural listening, 70‐dB sensation level, from data of Nelson and Kiester 165; ▴, monkey, earphones, binaural listening, 60‐dB sensation level, from data of Stebbins 234. Heavy line is empirical function fitted to the human data from Wier, Jesteadt, and Green 275.

Figure 20. Figure 20.

The just detectable change in intensity (ΔI/I) as a function of stimulus frequency. ○, Cat, free field, monaural listening, 60‐dB sensation level, from data of Elliott and McGee 47; •, monkey, earphones, binaural listening, 60 dB sensation level, from data of Stebbins 234. Dot‐dash line is from prediction equation [ΔI/I = 0.463 (I/I0)−0.072, where I0 is 0‐dB sensation level], fitted to human data from Jesteadt, Wier, and Green 120, evaluated for 60‐dB sensation level.

Figure 21. Figure 21.

Detection thresholds as a function of signal duration for 2,000‐Hz sinusoid. ○, Henderson's data 102 from chinchilla; •, Plomp and Bouman's data 183 from human listeners.



Figure 1.

Major divisions of peripheral auditory system. A: outer, middle, and inner ear. B: enlarged portion of middle ear showing the three major bones. C: mechanical analogues of outer and middle ear.[Adapted from Green 79.]



Figure 2.

Average gain in acoustic pressure for each anatomical component of external human ear for an azimuth of 45°, assuming they were added in order shown. Total gain, T, is pressure transformation from free field to eardrum at azimuth of 45°. Curve 1, data from spherical head; curve 2, from torso and neck; curve 3, from concha; curve 4, from pinna flange; curve 5, from ear canal and eardrum.

Adapted from Shaw 221


Figure 3.

Structural features of cochlea. A: cochlea in relation to middle ear, vestibular channels (partially illustrated), and the auditory nerve. B: cross section of cochlea. C: structures within the scala media.

Adapted from Green 79


Figure 4.

Schematic representation of afferent cochlear innervation. Note that preponderance of afferents innervate a nearby inner hair cell. Only 1 in 20 cross to diffusely innervate the outer hair cells.

Adapted from Spoendlin 233


Figure 5.

Mean values of ΔI/I (smallest detectable intensity change vs. base intensity of sine wave) as a function of sensation level (SL) in dB. Data are means of 3 subjects. The parameter is the frequency of the sinusoid. Error bars indicate ± 3 SEM, and are displayed when the standard error exceeds the size of the symbol. Solid lines represent the identical function fit to all 8 frequency conditions.

From data of Jesteadt, Wier, and Green 120


Figure 6.

Masker is a sinusoid of 1,200 Hz at a sensation level of 80 dB. Line shows threshold value of the signal in sensation level as a function of frequency. Signal can be heard in the presence of the masker above the solid line but not below it. [A single condition from an experiment by Wegel and Lane 269.]



Figure 7.

Change in threshold for a signal as a function of the sensation level of a 1,200‐Hz masker. Parameter is signal frequency (in Hz). Near the masker frequency there is almost a linear increase in signal threshold with increased masker level.

[Adapted from Wegel and Lane 269


Figure 8.

Masker level (sound pressure level) needed to just mask a fixed signal level as a function of the masker frequency. Signal levels: •, 15 dB; ○, 30 dB. Signal frequency 6,400 Hz.

Adapted from Small 228


Figure 9.

The just detectable change in frequency (Δf) as a function of signal frequency for a 40‐dB sensation level sinusoid. Heavy line is empirical function fit to data of Wier, Jesteadt, and Green 275. Nordmark's data 167 were multiplied by to try to adjust for differences in procedure 274. Data were obtained from the following sources: •, Wier, Jesteadt, and Green 275; ○, Henning 104; □, Harris 92; Δ, Nordmark 167; ▿, Rosenblith and Stevens 205; ⋄, Moore 160; +, Shower and Biddulph 222. All data were obtained with gated sinusoids except those of Shower and Biddulph, who used a modulation procedure.



Figure 10.

The just detectable change in frequency (Δf) as a function of signal frequency. Mean data from 4 subjects. Parameter is sensation level (SL) of the sinusoid. Error bars indicate ±3 SEM, where the standard error exceeds the size of symbol.

From data of Wier, Jesteadt, and Green 275


Figure 11.

Stimulus conditions in the “precedence experiment.” Two clicks are presented, within a brief interval, to both ears. First click to left ear arrives Δ1 before first click to right ear. Second click to right ear arrives Δt2 before second click to left ear. The subject hears a single sound, and by adjusting Δt2, can “center” the image, thus offsetting Δt1.

Adapted from Green 79


Figure 12.

The just detectable difference in intensity (ΔI/I) as a function of signal duration. Parameter is signal frequency. Stimulus power was held constant as duration changed. ○, 250 Hz; □, 1,000 Hz; ▵, 8,000 Hz; ⋄, 4,000 Hz.

From data of Henning 104


Figure 13.

The just detectable change in frequency (Δf/f) as a function of signal duration. Parameter is signal frequency. ○, Mean of 2 subjects, using a two‐alternative forced‐choice procedure, from data of Henning 104. ▵, From 1 subject; ▿, mean of 2 subjects using a two‐alternative forced‐choice procedure; from data of Moore 160. ♦, Plotted values of Δf/f normalized with regard to data for 40‐dB sensation level, 500‐ms tones, from Wier, Jesteadt, and Green 275.



Figure 14.

A periodic pulse train. If Ta = Tb = 2 ms, the pitch is 500 Hz; if Ta = 2 ms + 50 μs and Tb = 2 ms − 50 μs, the pitch is an octave lower, namely 250 Hz.



Figure 15.

Mean results from 3 groups of subjects of cross‐modality matching on an auditory stimulus (1,000‐Hz tone) of various inten‐ sities with magnitude of vibration (150 Hz)applied to middle finger of the hand.

Adapted from Stevens 241,based on data of Thalmann 251


Figure 16.

A: audiogram of an 80‐yr‐old man showing the descending pattern of loss characteristic of presbycusis. Darkened areas in the 3 bar graphs indicate areas of abnormality found upon histological examination. There are small areas of hair cell loss at basal end of the 10–15 mm region; there is striking diffuse loss of cochlear neurons, most severe at the basal end. B: audiogram of a 27‐yr‐old female patient with severe renal failure who received an initial dose of 1 g kanamycin followed by 0.25 g every other day for a total of 3 g over a period of 18 days. Tinnitus and high‐frequency hearing loss developed on the 18th day, after which there was no further change on repeated testing. She died two weeks after completion of therapy. Histology shows a severe loss of hair cells in the basal 15 mm of the cochlea. The population of cochlear neurons was normal. C: audiogram of a 28‐yr‐old man in the early stages of Ménière's disease in which hearing loss is only at low frequencies. D: audiogram of a 20‐yr‐old patient before administration of salicylates (top), during salicylate intoxication (bottom), and 24 h after discontinuing administration of salicylates (middle).

Adapted from Schuknecht 215


Figure 17.

Thresholds of detectability in sound pressure level (SPL) in dB. ○, Cat, free field, monaural listening, from data of Elliott et al. 48; □, chinchilla, free field, monaural listening, from data of Miller 151; ▿, guinea pig, free field, binaural listening, from data of Heffner et al. 95; ⋄, squirrel monkey, free field, binaural listening, from data of Beecher 3; ▵, macaque, earphones, binaural listening, from data of Stebbins, Green, and Miller 235; heavy line, human, free field, monaural listening, from data of Sivian and White 227.



Figure 18.

Critical bands (open symbols) and critical ratios (closed symbols). ▵, ▴, Cat, free field, monaural listening, from data of Pickles 180; ▪, chinchilla, free field, monaural listening, from data of Miller 150,151; ▿, monkey, earphones, monaural listening, from data of Gourevitch 74; ⋄, ♦, chinchilla, free field, monaural listening, from data of Seaton and Trahiotis 216; •, cat, free‐field, monaural listening, from data of Watson 263. Solid line fit to data of Zwicker 283 expressed in equation , where f is frequency in Hz and Δf is bandwidth in Hz.



Figure 19.

The just detectable change in frequency, Δf as a function of stimulus frequency. •, Cat, free field, monaural listening, 40‐dB sensation level, from data of Elliott et al. 48; ▪, guinea pig, free field, binaural listening, 30‐dB sensation level, from data of Heffner et al. 95; ♦, chinchilla, free field, binaural listening, 70‐dB sensation level, from data of Nelson and Kiester 165; ▴, monkey, earphones, binaural listening, 60‐dB sensation level, from data of Stebbins 234. Heavy line is empirical function fitted to the human data from Wier, Jesteadt, and Green 275.



Figure 20.

The just detectable change in intensity (ΔI/I) as a function of stimulus frequency. ○, Cat, free field, monaural listening, 60‐dB sensation level, from data of Elliott and McGee 47; •, monkey, earphones, binaural listening, 60 dB sensation level, from data of Stebbins 234. Dot‐dash line is from prediction equation [ΔI/I = 0.463 (I/I0)−0.072, where I0 is 0‐dB sensation level], fitted to human data from Jesteadt, Wier, and Green 120, evaluated for 60‐dB sensation level.



Figure 21.

Detection thresholds as a function of signal duration for 2,000‐Hz sinusoid. ○, Henderson's data 102 from chinchilla; •, Plomp and Bouman's data 183 from human listeners.

References
 1. Adrian, E. D. The microphonic action of the cochlea: an interpretation of Wever and Bray's experiments. J. Physiol. London 71: 28P–29P, 1931.
 2. Adrian, E. D., and A. forbes. The all‐or‐nothing response of sensory nerve fibres. J. Physiol. London 56: 301–330, 1922.
 3. Beecher, M. D. Pure‐tone thresholds of the squirrel monkey (Saimiri sciureus). J. Acoust. Soc. Am. 55: 196, 1974.
 4. Békésy, G. von Zur Theorie des Hörens: Die Schwingungsform der Basilarmembran. Phys. Z. 29: 793–810, 1928.
 5. Békésy, G. von. Über die Schwingungen der Schneckentrennwand beim Präparat und Ohrenmodell. Akust. Z. 7: 173–186, 1942.
 6. Békésy, G. von. Über die Resonanzkurve und die Abklingzeit der verschiedenen Stellen der Schneckentrennwand. Akust. Z. 8: 66–76, 1943.
 7. Békésy, G. von, and W. A. Rosenblith. The early history of hearing—observations and theories. J. Acoust. Soc. Am. 20: 727–748, 1948.
 8. Beranek, L. L. Acoustic Measurements. New York: Wiley, 1949.
 9. Bilger, R. C. A revised critical‐band hypothesis. In: Hearing and Davis: Essays Honoring Hallowell Davis, edited by S. K. Hirsh, Donald H. Eldredge, Ira J. Hirsh, and S. Richard Silverman. St. Louis, MO: Washington Univ. Press, 1976.
 10. Bilger, R. C., and R. V. Wolf. Level dependence in the two‐tone masking experiment. J. Acoust. Soc. Am. 56: S36, 1974.
 11. Boring, E. G. Sensation and Perception in the History of Experimental Psychology. New York: Appleton, 1942.
 12. Boyle, R. New Experiments Physico‐Mechanical, Touching the Spring of Air, and its Effects, Made, for the Most Part, in a New Pneumatical Engine. Oxford, England: H. Hall, Printer to the University, 1660.
 13. Bregman, A. S., and J. Campbell. Primary auditory stream segregation and perception of order in rapid sequences of tones. J. Exp. Psychol. 89: 244–249, 1971.
 14. Brigham, E. O. The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice‐Hall, 1974.
 15. Broadbent, D. E. Perception and Communication. New York: Pergamon, 1958.
 16. Buunen, T. J. F. Two hypotheses on monaural phase effects. Acustica 34: 98–105, 1975.
 17. Buunen, T. J. F., J. M. Festen, F. A. Bilsen, and G. van den Brink. Phase effects in a three‐component signal. J. Acoust. Soc. Am. 55: 297–303, 1974.
 18. Campbell, R. A., and E. Z. Lasky. Masker level and sinusoidal signal detection. J. Acoust. Soc. Am. 42: 972–976, 1967.
 19. Cherry, E. C. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 25: 975–979, 1953.
 20. Chistovich, L. A. Frequency characteristics of the masking effect [Engl. transl.]. Biophysics USSR 2: 714–725, 1957.
 21. Chow, K. L. Numerical estimates of the auditory central nervous system of the rhesus monkey. J. Comp. Neurol. 95: 159–175, 1951.
 22. Colburn, H. S. Theory of binaural interaction based on auditory‐nerve data. II. Detection of tones in noise. J. Acoust. Soc. Am. 61: 525–533, 1977.
 23. Colburn, H. S., and N. I. Durlach. Models of binaural interaction. In: Handbook of Perception, edited by E. C. Carterette and M. P. Friedman. New York: Academic, 1978, vol. 4, p. 467–518.
 24. Corliss, E. L. R., E. D. Burnett, and H. F. Stimson. “Polyacusis,” a hearing anomaly. J. Acoust. Soc. Am. 43: 1231–1236, 1968.
 25. Corti, A. Recherches sur l'organe de l'ouie des mammiferes. Z. Wiss. Zool. Abt. A 3: 109–169, 1851.
 26. Crowe, S. J., S. R. Guild, and L. M. Polvogt. Observations on the pathology of high‐tone deafness. Bull. Johns Hopkins Hosp. 54: 315–379, 1934.
 27. Culler, E. A. Symposium: tone localization in the cochlea. Ann. Otol. Rhinol. Laryngol. 44: 809–815, 1935.
 28. Dallos, P. The Auditory Periphery. New York: Academic, 1973.
 29. Danaher, E. M., and J. M. Pickett. Temporal masking in sensorineural subjects and its effect on syllable discrimination. In: Speech Communication: Speech and Hearing, Defects and Aids, Language Acquisition, edited by G. Fant. New York: Halsted, 1975, vol. 4, p. 63–68.
 30. Davis, H., C. T. Morgan, J. E. Hawkins, R. Galambos, and F. Smith. Temporary deafness following exposure to loud tones and noise. Acta Oto‐Laryngol. Suppl. 88: 1950, p. 1–57.
 31. Davis, H., and L. J. Saul. Action currents in the auditory tracts of the midbrain of the cat. Science 74: 205–206, 1931.
 32. Davis, H., and S. R. Silverman. Hearing and Deafness. New York: Holt, Rinehart, & Winston, 1960.
 33. Deboer, E. On the Residue in Hearing. Amsterdam: Univ. of Amsterdam, 1956. Ph.D. thesis.
 34. Deboer, E. Measurement of critical band‐width in cases of perception deafness. Proc. Int. Congr. Acoust., 3rd, Stuttgart. Amsterdam: Elsevier, 1959, p. 100–102.
 35. Deboer, E., and J. Bouwmeester. Critical bands and sensorineural hearing loss. Audiology Basel 13: 236–259, 1974.
 36. Dimmick, F. L., and R. M. Olson. The intensive difference limen in audition. J. Acoust. Soc. Am. 12: 517–525, 1941.
 37. Divenyi, P. L., and I. J. Hirsh. Identification of temporal order in three‐tone sequences. J. Acoust. Soc. Am. 56: 144–151, 1974.
 38. Doughty, J. M., and W. R. Garner. Pitch characteristics of short tones. I. Two kinds of pitch threshold. J. Exp. Psychol. 37: 351–365, 1947.
 39. Duifhuis, H. Consequences of peripheral frequency selectivity for nonsimultaneous masking. J. Acoust. Soc. Am. 54: 1471–1488, 1973.
 40. Durlach, N. I. Note on the equalization and cancellation theory of binaural masking‐level differences. J. Acoust. Soc. Am. 35: 1206–1218, 1963.
 41. Durlach, N. I. Binaural signal detection: equalization and cancellation theory. In: Foundations of Modern Auditory Theory, edited by J. V. Tobias. New York: Academic, 1972, vol. 2, p. 369–462.
 42. Durlach, N. I., and L. D. Braida. Intensity perception. I. Preliminary theory of intensity resolution. J. Acoust. Soc. Am. 46: 372–383, 1969.
 43. Durlach, N. I., and H. S. Colburn. Binaural phenomena. In: Handbook of Perception, edited by E. C. Carterette and M. J. Friedman. New York: Academic, 1978, vol. 4, p. 365–466.
 44. Duverney, J. G. Traité de l'organe de l'ouie. Paris, 1683.
 45. Egan, J. P. Auditory masking and signal detection theory. Audiology Basel 10: 41–47, 1971.
 46. Ehmer, R. H. Masking patterns of tone. J. Acoust. Soc. Am. 31: 1115–1120, 1959.
 47. Elliott, D. N., and T. M. Mcgee. Effect of cochlear lesions upon audiograms and intensity discrimination in cats. Ann. Otol. Rhinol. Laryngol. 74: 386–408, 1965.
 48. Elliott, D. N., L. Stein, and M. J. Harrison. Determination of absolute‐intensity threshold and frequency‐difference threshold in cats. J. Acoust. Soc. Am. 32: 380–384, 1960.
 49. Elliott, L. L. Temporal and masking phenomena in persons with sensorineural hearing loss. Audiology Basel 14: 336–353, 1975.
 50. Evans, E. F. The frequency response and other properties of single fibers in the guinea pig cochlear nerve. J. Physiol. London 226: 263–287, 1972.
 51. Evans, E. F. Auditory frequency selectivity and the cochlear nerve. In: Communication and Cybernetics. Facts and Models in Hearing, edited by E. Zwicker and E. Terhardt. New York: Springer‐Verlag, 1974, vol. 8, p. 118–131.
 52. Evans, E. F. Cochlear nerve and cochlear nucleus. In: Handbook of Sensory Physiology. Behavioural Studies and Psychoacoustics, edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 4–108.
 53. Evans, E. F., J. Rosenberg, and J. P. Wilson. The effective bandwidth of cochlea nerve fibers (Abstract). J. Physiol. London 207: 62P–63P, 1970.
 54. Evans, E. F., and J. P. Wilson. The frequency selectivity of the cochlea. In: Basic Mechanisms in Hearing, edited by A. R. Møller and P. Boston. New York: Academic, 1973, p. 519–554.
 55. Feddersen, W. E., T. T. Sandel, D. C. Teas, and L. A. Jeffress. Localization of high‐frequency tones. J. Acoust. Soc. Am. 29: 988–991, 1957.
 56. Fidell, S., K. S. Pearsons, M. Grignetti, and D. M. Green. The noisiness of impulsive sounds. J. Acoust. Soc. Am. 48: 1304–1310, 1970.
 57. Fletcher, H. Physical measurements of audition and their bearing on the theory of hearing. J. Franklin Inst. 196: 289–326, 1923.
 58. Fletcher, H. A space‐time pattern theory of hearing. J. Acoust. Soc. Am. 1: 311–343, 1930.
 59. Fletcher, H. Auditory patterns. Rev. Mod. Phys. 12: 47–65, 1940.
 60. Fletcher, H., and W. A. Munson. Loudness, its definition, measurement, and calculation. J. Acoust. Soc. Am. 5: 82–105, 1933.
 61. Forbes, A., and A. Gregg. Electrical studies in mammalian reflexes. Am. J. Physiol. 39: 172–235, 1915.
 62. Fourier, J. B. The Analytical Theory of Heat. (Originally published La théorie analytique de la chaleur. Paris: Gauthier‐Villars, 1822.) (Reprint: New York: Dover, 1955.)
 63. Galambos, R., and H. Davis. The response of single auditory‐nerve fibers to acoustic stimulation. J. Neurophysiol. 6: 39–57, 1943.
 64. Gardner, M. B. Short duration auditory fatigue as a method of classifying hearing impairment. J. Acoust. Soc. Am. 19: 178–190, 1947.
 65. Gardner, M. B. Historical background of the Haas and/or precedence effect. J. Acoust. Soc. Am. 43: 1243–1248, 1968.
 66. Garner, W. R. Auditory thresholds of short tones as a function of repetition rates. J. Acoust. Soc. Am. 19: 600–608, 1947.
 67. Garner, W. R. The effect of frequency spectrum on temporal integration of energy in the ear. J. Acoust. Soc. Am. 19: 808–815, 1947.
 68. Garner, W. R., and G. A. Miller. The masked threshold of pure tones as a function of duration. J. Exp. Psychol. 37: 293–303, 1947.
 69. Gengel, R. W. Auditory temporal integration at relatively high masked‐threshold levels. J. Acoust. Soc. Am. 51: 1849–1851, 1972.
 70. Gengel, R. W., and I. J. Hirsh. Temporal order: The effect of single versus repeated presentations, practice, and verbal feedback. Percept. Psychophys. 1: 209–211, 1970.
 71. Gengel, R. W., and C. S. Watson. Temporal integration. I. Clinical implications of a laboratory study. II. Additional data from hearing‐impaired subjects. J. Speech Hear. Disord. 36: 213–224, 1971.
 72. Goldstein, J. L. Auditory spectral filtering and monaural phase perception. J. Acoust. Soc. Am. 41: 458–479, 1967.
 73. Goldstein, J. L. An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54: 1496–1516, 1973.
 74. Gourevitch, G. M. Detectability of tones in quiet and in noise by rats and monkeys. In: Animal Psychophysics, edited by W. C. Stebbins. New York: Appleton, 1970, p. 67–97.
 75. Green, D. M. Auditory detection of a noise signal. J. Acoust. Soc. Am. 32: 121–131, 1960.
 76. Green, D. M. Psychophysical comparison methods. In: Transportation Noises, edited by J. D. Chalupnik. Seattle: Univ. of Washington Press, 1970, p. 153–164.
 77. Green, D. M. Temporal auditory acuity. Psychol. Rev. 78: 540–551, 1971.
 78. Green, D. M. Minimum integration time. In: Basic Mechanisms in Hearing, edited by A. R. Møller and P. Boston. New York: Academic, 1973, p. 829–846.
 79. Green, D. M. An Introduction to Hearing. Hillsdale, NJ: Erlbaum, 1976.
 80. Green, D. M., T. G. Birdsall, and W. P. Tanner, JR. Signal detection as a function of signal intensity and duration. J. Acoust. Soc. Am. 29: 523–531, 1957.
 81. Green, D. M., and G. B. Henning. Audition. Annu. Rev. Psychol. 20: 105–128, 1969.
 82. Green, D. M., and R. D. Luce. Counting and timing mechanisms in auditory discrimination and reaction time. In: Contemporary Developments in Mathematical Psychology, edited by D. H. Krantz, R. C. Atkinson, R. D. Luce, and P. Suppes. San Francisco, CA: Freeman, 1974.
 83. Green, D. M., M. J. Mckey, and J. C. R. Licklider. Detection of a pulsed sinusoid in noise as a function of frequency. J. Acoust. Soc. Am. 31: 1446–1452, 1959.
 84. Green, D. M., and J. A. Swets. Signal Detection Theory and Psychophysics. New York: Wiley, 1966. (Reprint: Huntington, NY: Krieger, 1974.)
 85. Green, D. M., and W. A. Yost. Binaural analysis. In: Handbook of Sensory Physiology. Auditory System. Behavioural Studies and Psychoacoustics, edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 461–480.
 86. Greenwood, D. D. Aural combination tones and auditory masking. J. Acoust. Soc. Am. 50: 502–543, 1971.
 87. Haas, H. Ueber den Einfluss eines Einfachechos auf die Horsamkeit von Sprache. Göttingen, West Germany: Univ. of Göttingen, 1949, p. 1–53. Dissertation.
 88. Hafter, E. R., W. T. Bourbon, A. S. Blocker, and A. Tucker. Direct comparison between lateralization and detection under conditions of antiphasic masking. J. Acoust. Soc. Am. 46: 1452–1457, 1969.
 89. Hall, J. L. Auditory distortion products f2 − f1 and 2f1 − f2. J. Acoust. Soc. Am. 51: 1863–1871, 1972.
 90. Hall, J. L. Monaural phase effect: cancellation and reinforcement of distortion products f2 − f1 and 2f1 − f2. J. Acoust. Soc. Am. 51: 1872–1881, 1972.
 91. Harris, G. G. Brownian motion in the cochlear partition. J. Acoust. Soc. Am. 44: 176–186, 1968.
 92. Harris, J. D. Pitch discrimination. J. Acoust. Soc. Am. 24: 750–755, 1952.
 93. Harris, J. D., H. L. Haines, and C. K. Myers. Brief‐tone audiometry. Arch. Otolaryngol. 67: 699–713, 1958.
 94. Hawkins, J. E., and S. S. Stevens. The masking of pure tones and of speech by white noise. J. Acoust. Soc. Am. 22: 6–13, 1950.
 95. Heffner, R., H. Heffner, and B. Masterton. Behavioral measurements of absolute and frequency‐difference thresholds in guinea pig. J. Acoust. Soc. Am. 49: 1888–1895, 1971.
 96. Heise, G. A., and G. A. Miller. An experimental study of auditory patterns. Am. J. Psychol. 64: 68–77, 1951.
 97. Hellman, R. P. Effect of spread of excitation on the loudness function at 250 Hz. In: Sensation and Measurement—Papers in Honor of S. S. Stevens, edited by H. R. Moskowitz, B. Scharf, and J. C. Stevens. Dordrecht, Netherlands: Reidel, 1974, p. 241–249.
 98. Hellman, R. P. Dependence of loudness growth on skirts of excitation patterns. J. Acoust. Soc. Am. 59: 8–16, 1976.
 99. Hellman, R. P. Growth of loudness at 1000 and 3000 Hz. J. Acoust. Soc. Am. 60: 672–678, 1976.
 100. Hellman, R. P., and J. J. Zwislocki. Monaural loudness function at 1000 cps and interaural summation. J. Acoust. Soc. Am. 35: 856–865, 1963.
 101. Helmholtz, H. L. F. von. On the Sensation of Tone as a Physiological Basis for the Theory of Music. Brunswick: Vieweg, 1863. New York: Dover reprint, 1954.
 102. Henderson, D. Temporal summation of acoustic signals by the chinchilla. J. Acoust. Soc. Am. 46: 474–475, 1969.
 103. Henderson, D., R. P. Hamernik, D. S. Dosanjh, and J. H. Mills (editors). Effects of Noise on Hearing. New York: Raven, 1976.
 104. Henning, G. B. A comparison of the effects of signal duration on frequency and amplitude discrimination. In: Frequency Analysis and Periodicity Detection in Hearing, edited by R. Plomp and G. F. Smoorenburg. Leiden: Sijthoff, 1970, p. 350–361.
 105. Henning, G. B. Detectability of interaural delay in high‐frequency complex waveforms. J. Acoust. Soc. Am. 55: 84–90, 1974.
 106. Henning, G. B. Lateralization and the binaural masking‐level difference. J. Acoust. Soc. Am. 55: 1259–1262, 1974.
 107. Hensen, V. Zur Morphologie der Schnecke des Menschen und der Säugethiere. Z. Wiss. Zool. Abt. A 13: 481–512, 1863.
 108. Hind, J. E., D. J. Anderson, J. F. Brugge, and J. E. Rose. Coding of information pertaining to paired low‐frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30: 794–816, 1967.
 109. Hirsh, I. J. The influence of interaural phase on interaural summation and inhibition. J. Acoust. Soc. Am. 20: 536–544, 1948.
 110. Hirsh, I. J. Auditory perception of temporal order. J. Acoust. Soc. Am. 31: 759–767, 1959.
 111. Hirsh, I. J. Temporal order and auditory perception. In: Sensation and Measurement—Papers in Honor of S. S. Stevens, edited by H. R. Moskowitz, B. Scharf, and J. C. Stevens. Dordrecht, Netherlands: Reidel, 1974, p. 251–257.
 112. Houtgast, T. Psychophysical experiments on “tuning curves” and “two‐tone inhibition.” Acustica 29: 168–179, 1973.
 113. Houtgast, T. Lateral Suppression in Hearing. Soesterberg, Netherlands: Institute for Perception, 1974. Ph.D. thesis.
 114. Houtsma, A. J. M., and J. L. Goldstein. The central origin of the pitch of complex tones: evidence from musical interval recognition. J. Acoust. Soc. Am. 51: 520–529, 1972.
 115. Jeffress, L. A. Variations in pitch. Am. J. Psychol. 57: 63–76, 1944.
 116. Jeffress, L. A. Masking. In: Foundations of Modern Auditory Theory, edited by J. V. Tobias. New York: Academic, 1970, vol. 1, p. 85–114.
 117. Jeffress, L. A. Binaural signal detection: Vector theory. In: Foundations of Modern Auditory Theory, edited by J. V. Tobias. New York: Academic, 1972, vol. 2, p. 349–368.
 118. Jerger, J. Comparative evaluation of some auditory measures. J. Speech Hear. Res. 5: 3–17, 1962.
 119. Jerger, J., J. Shedd, and E. Harford. On the detection of extremely small changes in sound intensity. Arch. Otolaryngol. 69: 200–211, 1959.
 120. Jesteadt, W., R. C. Bilger, D. M. Green, and J. H. Patterson. Temporal acuity in listeners with sensorineural hearing loss. J. Speech Hear. Res. 19: 357–370, 1976.
 121. Jesteadt, W., C. C. Wier, and D. M. Green. Intensity discrimination as a function of frequency and sensation level. J. Acoust. Soc. Am. 61: 169–177, 1977.
 122. Johnstone, B. M., and A. J. Boyle. Basilar membrane vibration examined with the Mössbauer technique. Science 158: 389–390, 1967.
 123. Johnstone, B. M., K. J. Taylor, and A. J. Boyle. Mechanics of the guinea pig cochlea. J. Acoust. Soc. Am. 47: 504–509, 1970.
 124. Kiang, N. Y.‐S. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve. Cambridge, MA: MIT Press, 1965. (Research Monograph 35.)
 125. Kiang, N. Y.‐S. A survey of recent developments in the study of auditory physiology. Ann. Otol. Rhinol. Laryngol. 77: 656–676, 1968.
 126. Klump, R. G., and H. R. Eady. Some measurements of interval time difference thresholds. J. Acoust. Soc. Am. 28: 859–860, 1956.
 127. Knudsen, V. O. The sensibility of the ear to small differences of intensity and frequency. Phys. Rev. 21: 84–103, 1923.
 128. Koyter (coiter), V. De auditus instrumento. In: Externarum et internarum principalium humani corporis partium tabulae, by V. Coiter. Nuremberg: Theodorik Gerlatzen, 1572.
 129. Licklider, J. C. R. The influence of interaural phase relations upon the masking of speech by white noise. J. Acoust. Soc. Am. 20: 150–159, 1948.
 130. Licklider, J. C. R. Basic correlates of the auditory stimulus. In: Handbook of Experimental Psychology, edited by S. S. Stevens. New York: Wiley, 1951, p. 985–1039.
 131. Licklider, J. C. R. A duplex theory of pitch perception. Experientia 7: 128–134, 1951.
 132. Licklider, J. C. R. Periodicity pitch and place pitch (Abstract). J. Acoust. Soc. Am. 26: 945A, 1954.
 133. Licklider, J. C. R. Auditory frequency analysis. In: Information Theory, edited by C. Cherry. New York: Academic, 1956, p. 253–268.
 134. Licklider, J. C. R., and G. A. Miller. The perception of speech. In: Handbook of Experimental Psychology, edited by S. S. Stevens. New York: Wiley, 1951, p. 1040–1074.
 135. Licklider, J. C. R., and J. C. Webster. The discriminability of interaural phase relations in two‐component tones. J. Acoust. Soc. Am. 22: 191–195, 1950.
 136. Lindsay, R. B. (editor). Acoustics: Historical and Philosophical Development. Stroudsburg, PA: Dowden, Hutchinson, & Ross, 1973.
 137. Lüscher, E., and J. Zwislocki. The decay of sensation and the remainder of adaptation after short pure‐tone impulses on the ear. Acta Oto‐Laryngol. 35: 428–445, 1947.
 138. Marks, L. E. Sensory Processes: The New Psychophysics. New York: Academic, 1974.
 139. Mayer, A. M. Research in acoustics. Philos. Mag. 2: 500–507, 1876.
 140. Mcfadden, D. Precedence effects and auditory cells with long characteristic delays. J. Acoust. Soc. Am. 54: 528–530, 1973.
 141. Mcfadden, D., and E. G. Pasanen. Lateralization at high frequencies based on interaural time differences. J. Acoust. Soc. Am. 59: 634–639, 1976.
 142. Mcfadden, D., and K. A. Pulliam. Lateralization and detection of noise‐masked tones of different durations. J. Acoust. Soc. Am. 49: 1191–1194, 1971.
 143. Mcgee, T. M., F. L. Wightman, and M. B. Kramer. Relations between suppression and masking in normal hearing‐impaired listeners. J. Acoust. Soc. Am. 60, Suppl.: S103–S104, 1976.
 144. Mcgill, W. J., and J. P. Goldberg. Pure‐tone intensity discrimination and energy detection. J. Acoust. Soc. Am. 44: 576–581, 1968.
 145. Mcnicol, D. A Primer of Signal Detection Theory. London: Allen & Unwin, 1972. Sydney: Australasian, 1972.
 146. Meurmann, O. H. The difference limen of frequency in tests of auditory function. Acta Oto‐Laryngol. Suppl. 118: 144–155, 1954.
 147. Miller, D. C. Anecdotal History of the Science of Sound. New York: Macmillan, 1935.
 148. Miller, G. A. Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. J. Acoust. Soc. Am. 19: 609–619, 1947.
 149. Miller, G. A. The perception of short bursts of noise. J. Acoust. Soc. Am. 20: 160–170, 1948.
 150. Miller, G. A. Language and Communication. New York: McGraw‐Hill, 1951.
 151. Miller, G. A., and G. A. Heise. The trill threshold. J. Acoust. Soc. Am. 22: 637–638, 1950.
 152. Miller, J. D. Auditory sensitivity of the chinchilla in quiet and in noise (Abstract). J. Acoust. Soc. Am. 36: 2010A, 1964.
 153. Miller, J. D. Audibility curve of the chinchilla. J. Acoust. Soc. Am. 48: 513–523, 1970.
 154. Miller, J. D. Effects of noise on people. J. Acoust. Soc. Am. 56: 729–764, 1974.
 155. Miller, J. D. Possible importance of head‐diffraction and ear canal resonance for speech perception and hearing‐aid design (Abstract). J. Acoust. Soc. Am. 55: 462A, 1974.
 156. Miller, J. D., C. C. Wier, R. E. Pastore, W. J. Kelly, and R. J. Dooling. Discrimination and labeling of noise‐buzz sequences with varying noise‐lead times: an example of categorical perception. J. Acoust. Soc. Am. 60: 410–417, 1976.
 157. Miller, R. L. Masking effect of periodically pulsed tones as a function of time and frequency. J. Acoust. Soc. Am. 19: 798–807, 1947.
 158. Mills, A. W. On the minimum audible angle. J. Acoust. Soc. Am. 30: 237–246, 1958.
 159. Mills, A. W. Lateralization of high‐frequency tones. J. Acoust. Soc. Am. 32: 132–134, 1960.
 160. Mills, A. W. Auditory localization. In: Foundations of Modern Auditory Theory, edited by J. V. Tobias. New York: Academic, 1972, vol. 2, p. 301–348.
 161. MIskolczy‐Fodor, F. Monaural loudness‐balance test and determination of recruitment‐degree with short sound‐impulses. Acta Oto‐Laryngol. 43: 573–595, 1953.
 162. Moore, B. C. J. Frequency‐difference limens for short duration tones. J. Acoust. Soc. Am. 54: 610–619, 1973.
 163. Müller, J. Handbuch der Physiologie des Menschen für Vorlesungen. Coblenz: J. Hölscher, 1834–1840.
 164. Munson, W. A. The growth of auditory sensation. J. Acoust. Soc. Am. 19: 584–591, 1947.
 165. Munson, W. A., and M. B. Gardner. Loudness patterns—a new approach. J. Acoust. Soc. Am. 22: 177–190, 1950.
 166. Nelson, D. A., and R. C. Bilger. Pure‐tone octave masking in listeners with sensorineural hearing loss. J. Speech Hear. Res. 17: 252–269, 1974.
 167. Nelson, D. A., and T. E. Kiester. Frequency discrimination in the chinchilla. J. Acoust. Soc. Am. 64: 114–126, 1978.
 168. Nickerson, R. S., and B. Freeman. Discrimination of the order of the components of repeating tone sequence: effects of frequency separation and extensive practice. Percept. Psychophys. 16: 471–477, 1974.
 169. Nordmark, J. O. Mechanisms of frequency discrimination. J. Acoust. Soc. Am. 44: 1533–1540, 1968.
 170. Ohm, G. S. Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Phys. Chem. 59: 497–565, 1843.
 171. Osman, E. A correlation model of binaural masking level difference. J. Acoust. Soc. Am. 50: 1494–1511, 1971.
 172. Palva, T., A. Goodman, and I. J. Hirsh. Critical evaluation of noise audiometry. Laryngoscope 63: 842–860, 1953.
 173. Pascoe, D. P. Frequency responses of hearing aids and their effects on the speech perception of hearing‐impaired subjects. Ann. Otol. Rhinol. Laryngol. 84, Suppl.: S23, 1975.
 174. Patterson, J. H., and D. M. Green. Discrimination of transient signals having identical energy spectra. J. Acoust. Soc. Am. 48: 894–905, 1970.
 175. Patterson, R. D. Noise masking of a change in residue pitch. J. Acoust. Soc. Am. 45: 1520–1524, 1969.
 176. Patterson, R. D., and D. M. Green. Auditory masking. In: Handbook of Perception, edited by E. C. Carterette and M. P. Friedman. New York: Academic, 1978, vol. 4, p. 337–361.
 177. Pedersen, C. B. Brief‐tone‐audiometry in patients with acoustic trauma. Acta Oto‐Laryngol. 75: 332–333, 1973.
 178. Penner, M. J., B. Leshowitz, E. Cudahy, and G. Ricard. Intensity discrimination for pulsed sinusoids of various frequencies. Percept. Psychophys. 15: 568–570, 1974.
 179. Peterson, W. W., T. G. Birdsall, and W. C. Fox. The theory of signal detectability. Trans. IRE Prof. Group Inf. Theory. 4: 171–212, 1954.
 180. Pfafflin, S. M., and M. V. Mathews. Energy detection model for monaural auditory detection. J. Acoust. Soc. Am. 34: 1842–1852, 1962.
 181. Pickett, J. M. Backward masking. J. Acoust. Soc. Am. 31: 1613–1615, 1959.
 182. Pickles, J. O. Normal critical bands in the cat. Acta Oto‐Laryngol. 80: 245–254, 1975.
 183. Plomp, R. Hearing threshold for periodic tone pulses. J. Acoust. Soc. Am. 33: 1561–1569, 1961.
 184. Plomp, R. Rate of decay of auditory sensation. J. Acoust. Soc. Am. 36: 277–282, 1964.
 185. Plomp, R., and M. A. Bouman. Relation between hearing threshold and duration for tone pulses. J. Acoust. Soc. Am. 31: 749–758, 1959.
 186. Pollack, I. The effect of white noise on the loudness of speech of assigned average level. J. Acoust. Soc. Am. 21: 255–258, 1949.
 187. Pollack, I. Loudness of periodically interrupted white noise. J. Acoust. Soc. Am. 30: 181–185, 1958.
 188. Portmann, M., J.‐M. Aran, and P. Lagourgue. Testing for “recruitment” by electrocochleography: preliminary results. Ann. Otol. Rhinol. Laryngol. 82: 36–43, 1973.
 189. Rasmussen, G. The olivary peduncle and other fiber projections of the superior olivary complex. J. Comp. Neurol. 84: 141–219, 1946.
 190. Rayleigh, lord, (J. W. Strutt) On our perception of the direction of a source of sound. Proc. R. Musical Assoc. 75–84, 1876.
 191. Rayleigh, lord. Acoustical observations. Philos. Mag. 3: 456–464, 1877.
 192. Rayleigh, lord. On an instrument capable of measuring the intensity of aerial vibrations. Philos. Mag. 14: 186–187, 1882.
 193. RAyleigh, Lord. On our perception of sound direction. Philos. Mag. 13: 214–232, 1907.
 194. Rayleigh, LORD. Scientific Papers of Lord Rayleigh. New York: Dover, 1964, vol. 5, p. 357.
 195. Reed, C. M., and R. C. Bilger. A comparative study of S/N0 and E/N0. J. Acoust. Soc. Am. 53: 1039–1044, 1973.
 196. Rees, J. N., and J. Botwinick. Detection and decision factors in auditory behavior of the elderly. J. Gerontol. 26: 133–136, 1971.
 197. Reissner, E. De auris internae formatione. Dorpat, Estonia: 1851.
 198. Reissner, E. Zur Kenntniss der Schnecke im Gehörorgan der Säugetiere und des Menschen. Arch. Anat. Physiol. Wiss. Med. 420–427, 1854.
 199. Reisz, R. R. Differential sensitivity of the ear for pure tones. Phys. Rev. 31: 867–875, 1928.
 200. Retzius, G. Das Gehörorgan der Wirbeltiere, II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Stockholm: Samson & Wallin, 1884.
 201. Rhode, W. S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am. 49: 1218–1231, 1971.
 202. Riesz, R. R. Differential intensity sensitivity of the ear for pure tones. Phys. Rev. 31: 867–875, 1928.
 203. Rinne, H. A. Beitrag zur Physiologie des menschlichen Ohres. Rationelle Med., ser 3, 24: 12–64, 1865.
 204. Ritsma, R. J. Existence region of the tonal residue. I. J. Acoust. Soc. Am. 34: 1224–1229, 1962.
 205. Robinson, D. W., and L. S. Whittle. The loudness of octave‐bands of noise. Acustica 14: 24–35, 1964.
 206. Rose, J. E., J. F. Brugge, D. J. Anderson, and J. E. Hind. Phase‐locked response to low‐frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30: 769–793, 1967.
 207. Rosenblith, W. A., and K. N. Stevens. On the DL for frequency. J. Acoust. Soc. Am. 25: 980–985, 1953.
 208. Rutherford, W. A new theory of hearing. J. Anat. Physiol. 21: 166–168, 1886.
 209. Sachs, M. B., and P. J. Abbas. Rate versus level functions for auditory‐nerve fibers in cats: tone‐burst stimuli. J. Acoust. Soc. Am. 56: 1835–1847, 1974.
 210. Sachs, M. B., and N. Y.‐S. Kiang. Two‐tone inhibition in auditory nerve fibers. J. Acoust. Soc. Am. 43: 1120–1128, 1968.
 211. Samoilova, I. K. Masking of short tone signals as a function of the time interval between masked and masking sounds [English transl.]. Biofizika 4: 44–52, 1959.
 212. Schacknow, P. N., and D. H. Raab. Effect of noise bandwidth on auditory intensity discrimination (Abstract). J. Acoust. Soc. Am. 55: S31A, 1974.
 213. Schacknow, P. N., and D. H. Raab. Noise‐intensity discrimination: Effects of bandwidth conditions and mode of masker presentation. J. Acoust. Soc. Am. 60: 893–905, 1976.
 214. Scharf, B., and R. Hellman. Model of loudness summation applied to impaired ears. J. Acoust. Soc. Am. 40: 71–78, 1966.
 215. Schoeny, Z. G., and R. Carhart. Effects of unilateral Ménieres disease on masking‐level differences. J. Acoust. Soc. Am. 50: 1143–1150, 1971.
 216. Schouten, J. F. Five Articles on the Perception of Sound. Eindhoven, Netherlands: Institute for Perception, 1938‐‐1940.
 217. Schuknecht, H. E. Pathology of the Ear. Cambridge, MA: Harvard Univ. Press, 1974.
 218. Seaton, W. H., and C. Trahiotis. Comparison of critical ratios and critical bands in the monaural chinchilla. J. Acoust. Soc. Am. 57: 193–199, 1975.
 219. Seebeck, A. Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. Chem. 53: 417–436, 1841.
 220. Seebeck, A. Ueber die Sirene. Ann. Phys. Chem. 60: 449–481, 1843.
 221. Shannon, R. V. Suppression of Forward Masking. San Diego: Univ. of California, 1975. Ph.D. thesis.
 222. Shannon, R. V. Two‐tone unmasking and suppression in a forward‐masking situation. J. Acoust. Soc. Am. 59: 1460–1470, 1976.
 223. Shaw, E. A. G. The external ear. In: Handbook of Sensory Physiology. Auditory System, Anatomy and Physiology, edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1974, vol. 5, pt. 1, p. 455–490.
 224. Shower, E. G., and R. Biddulph. Differential pitch sensitivity of the ear. J. Acoust. Soc. Am. 3: 275–287, 1931.
 225. Siebert, W. M. Stimulus transformations in the peripheral auditory system. In: Recognizing Patterns: Studies in Living and Automatic Systems, edited by P. A. Kolers and M. Eden. Cambridge, MA: MIT Press, 1968, p. 104–133.
 226. Siebert, W. M. Frequency discrimination in the auditory system: Place or periodicity mechanisms?. Proc. IEEE 58: 723–730, 1970.
 227. Siebert, W. M. Stochastic limitations on sensory performance. In: Some Mathematical Questions in Biology, IV, edited by J. Cowan. Providence, RI: Am. Math. Soc., 1973, vol. 5, p. 47–74.
 228. Simon, G. The critical bandwidth level in recruiting ears and its relation to temporal summation. J. Aud. Res. 3: 109–119, 1963.
 229. Sivian, L. J., and S. D. White. On minimum audible sound fields. J. Acoust. Soc. Am. 4: 288–321, 1933.
 230. Small, A. M., Jr. Pure‐tone masking. J. Acoust. Soc. Am. 31: 1619–1625, 1959.
 231. Small, A. M., Jr., J. F. Brandt, and P. G. Cox. Loudness as a function of signal duration. J. Acoust. Soc. Am. 34: 513–514, 1962.
 232. Smoorenburg, G. F. Pitch perception of two‐frequency stimuli. J. Acoust. Soc. Am. 48: 924–942, 1970.
 233. Smoorenburg, G. F. Audibility region of combination tones. J. Acoust. Soc. Am. 52: 603–614, 1972.
 234. Smoorenburg, G. F. Combination tones and their origin. J. Acoust. Soc. Am. 52: 615–632, 1972.
 235. Spoendlin, H. Structural basis of peripheral frequency analysis. In: Frequency Analysis and Periodicity Detection in Hearing, edited by R. Plomp and G. F. Smoorenburg. Leiden: Sijthoff, 1970, p. 2–40.
 236. Stebbins, W. C. Hearing of Old World monkeys (Cercopithecidae). Am. J. Phys. Anthropol. 38: 357–364, 1973.
 237. Stebbins, W. C., S. Green, and F. L. Miller. Auditory sensitivity of the monkey. Science 153: 1646–1647, 1966.
 238. Stevens, J. C., and J. W. Hall. Brightness and loudness as functions of stimulus duration. Percept. Psychophys. 1: 319–327, 1966.
 239. Stevens, S. S. (editor). Handbook of Experimental Psychology. New York: Wiley, 1951.
 240. Stevens, S. S. The measurement of loudness. J. Acoust. Soc. Am. 27: 815–829, 1955.
 241. Stevens, S. S. Calculation of the loudness of complex noise. J. Acoust. Soc. Am. 28: 807–832, 1956.
 242. Stevens, S. S. Perceived level of noise by Mark VII and Decibels (E). J. Acoust. Soc. Am. 51: 575–601, 1972.
 243. Stevens, S. S. Psychophysics. New York: Wiley, 1975.
 244. Stevens, S. S., and H. Davis. Hearing: Its Psychology and Physiology. New York: Wiley, 1938.
 245. Stevens, S. S., H. Davis, and M. H. Lurie. The localization of pitch perception on the basilar membrane. J. Gen. Psychol. 13: 297–315, 1935.
 246. Stevens, S. S., and J. P. Egan. Diplacusis in “normal” ears (Abstract). Psychol. Bull. 38: 548A, 1941.
 247. Stevens, S. S., and E. B. Newman. The localization of actual sources of sound. Am. J. Psychol. 48: 297–306, 1936.
 248. Stiegel, M. S., and R. C. Bilger. Temporal summation as a function of signal definition and psychophysical method (Abstract). J. Acoust. Soc. Am. 57: S6A, 1975.
 249. Swisher, L. P. Response to intensity change in cochlear pathology. Laryngoscope 76: 1706–1713, 1966.
 250. Swisher, L. P., M. M. Stephens, and D. G. Doehring. The effects of hearing level and normal variability on sensitivity to intensity change. J. Aud. Res. 6: 249–259, 1966.
 251. Tanner, W. P., Jr., and J. A. Swets. A decision‐making theory of visual detection. Psychol. Rev. 61: 401–409, 1954.
 252. Tanner, W. P., Jr., and J. A. Swets. The human use of information: I. Signal detection for the case of the signal known exactly. Trans. IRE Prof. Group Inf. Theory. 4: 213–221, 1954.
 253. Thalmann, R. Cross‐modality matching in the study of abnormal loudness functions. Laryngoscope 75: 1708–1726, 1965.
 254. Tonndorf, J. Pathophysiology of the hearing loss in Ménière's disease. In: Ménière's Disease, edited by J. L. Pulec. Philadelphia, PA: Saunders, 1968, p. 375–388.
 255. Vanmeter, D., and D. Middleton. Modern statistical approaches to reception in communication theory. Trans. IRE Prof. Group Inf. Theory. 4: 119–141, 1954.
 256. Vesalius, A. De humani corporis fabrica. Basel: 1543.
 257. Viemeister, N. F. Intensity discrimination of pulsed sinusoids: The effects of filtered noise. J. Acoust. Soc. Am. 51: 1265–1269, 1972.
 258. Vonguericke, O. Experimenta nova magdeburgica de vacuo spatio. Amsterdam: Janssonium a Waesberge, 1672.
 259. Vonport, E. Uber die Lautstärke einzelner kurzer Schallimpulse. Acustica 13: 211–223, 1963.
 260. Wald, A. Sequential Analysis. New York: Chapman & Hall, 1947.
 261. Wallach, H., E. B. Newman, and M. R. Rosenzweig. The precedence effect in sound localization. Am. J. Psychol. 52: 315–316, 1949.
 262. Ward, W. D. Tonal monaural diplacusis. J. Acoust. Soc. Am. 27: 365–372, 1955.
 263. Warren, R. M. Auditory temporal discrimination by trained listeners. Cognitive Psychol. 6: 237–256, 1974.
 264. Warren, R. M., C. J. Obusek, R. M. Farmer, and R. P. Warren. Auditory sequences: confusion of patterns other than speech and music. Science 164: 586–587, 1969.
 265. Watson, C. S. Masking of tones by noise for the cat. J. Acoust. Soc. Am. 35: 167–172, 1963.
 266. Watson, C. S. Psychophysics. In: Handbook of General Psychology, edited by B. B. Wolman. Englewood Cliffs, NJ: Prentice‐Hall, 1973, p. 275–306.
 267. Watson, C. S., J. R. Franks, and D. C. Hood. Detection of tones in the absence of external masking noise. I. Effects of signal intensity and signal frequency. J. Acoust. Soc. Am. 52: 633–643, 1972.
 268. Watson, C. S., and R. W. Gengel. Signal duration and signal frequency in relation to auditory sensitivity. J. Acoust. Soc. Am. 46: 989–997, 1969.
 269. Watson, C. S., W. J. Kelley, and H. W. Wroton. Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. J. Acoust. Soc. Am. 60: 1176–1186, 1976.
 270. Wegel, R. L. The physical examination of hearing and binaural aids for the deaf. Proc. Natl. Acad. Sci. USA 8: 155–160, 1922.
 271. Wegel, R. L., and C. E. Lane. The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Physiol. Rev. 23: 266–285, 1924.
 272. Weissler, P. G. International standard reference zero for audiometers. J. Acoust. Soc. Am. 44: 264–275, 1968.
 273. Wever, E. G. Theory of Hearing. New York: Wiley, 1949.
 274. Wever, E. G., and C. Bray. Action currents in the auditory nerve in response to acoustic stimulation. Proc. Natl. Acad. Sci. USA 16: 344–350, 1930.
 275. Wier, C. C., and D. M. Green. Temporal acuity as a function of frequency difference. J. Acoust. Soc. Am. 57: 1512–1515, 1975.
 276. Wier, C. C., W. Jesteadt, and D. M. Green. A comparison of method‐of‐adjustment and forced‐choice procedures in frequency discrimination. Percept. Psychophys. 19: 75–79, 1976.
 277. Wier, C. C., W. Jesteadt, and D. M. Green. Frequency discrimination as a function of frequency and sensation level. J. Acoust. Soc. Am. 61: 178–184, 1977.
 278. Wightman, F. L. Pitch and stimulus fine structure. J. Acoust. Soc. Am. 54: 397–406, 1973.
 279. Yantis, P. A., and R. L. Decker. On the short increment sensitivity index (SISI Test). J. Speech Hear. Disord. 29: 231–246, 1964.
 280. Yoshii, U. Experimentelle Untersuchungen über die Schädigung des Gehörorgans durch Schalleinwirkung. Z. Ohrenheilk. Kronkheit. Luftwege 58: 201–251, 1909.
 281. Yost, W. A., F. L. Wightman, and D. M. Green. Lateralization of filtered clicks. J. Acoust. Soc. Am. 50: 1526–1531, 1971.
 282. Young, R. W., and A. Peterson. On estimating noisiness of aircraft sounds. J. Acoust. Soc. Am. 45: 834–838, 1969.
 283. Zwicker, E. Der Ungewöhnliche Amplitudengang der Nichtlinearen Verzerrungen des Ohres. Acustica 5: 67–74, 1955.
 284. Zwicker, E. Über Psychologische and Methodische Grundlagen der Lautheit. Acustica 8: Akus. Beih. 1: 237–258, 1958.
 285. Zwicker, E. Subdivision of the audible frequency range into critical bands (Frequenzgruppen) [Letter to Editor]. J. Acoust. Soc. Am. 33: 248, 1961.
 286. Zwicker, E. On a psychoacoustical equivalent of a tuning curve. In: Facts and Models in Hearing, edited by E. Zwicker and E. Terhardt. New York: Springer, 1974, p. 132–141.
 287. Zwicker, E., G. Flottorp, and S. S. Stevens. Critical band width in loudness summation. J. Acoust. Soc. Am. 29: 548–557, 1957.
 288. Zwislocki, J. Theory of auditory summation. J. Acoust. Soc. Am. 32: 1046–1060, 1960.
 289. Zwislocki, J. Temporal summation of loudness, an analysis. J. Acoust. Soc. Am. 46: 431–441, 1969.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David M. Green, Craig C. Wier. Auditory Perception. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 557-594. First published in print 1984. doi: 10.1002/cphy.cp010313