Comprehensive Physiology Wiley Online Library

The Vestibular System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Peripheral Receptor Mechanisms
1.1 Morphology of Vestibular Apparatus
1.2 Mechanisms of Sensory Transduction
1.3 Resting Discharge
1.4 Fiber Caliber and Afferent Response
1.5 Physiology of Semicircular Canals
1.6 Physiology of Otolith Organs
2 Centrifugal Systems
2.1 Efferent System
2.2 Sympathetic Innervation
2.3 Receptor‐Receptor Neurons
3 Vestibular Nuclei
3.1 Functional Organization
3.2 Physiology of Canal‐Related Secondary Neurons
3.3 Physiology of Otolith‐Related Secondary Neurons
3.4 Sensitivity to Nonlabyrinthine Inputs
3.5 Vestibuloocular Reflexes
3.6 Canal‐Related Reflexes
3.7 Otolith‐Related Reflexes
3.8 Barbecue Nystagmus
3.9 Vestibulospinal Relations
3.10 Lateral Vestibulospinal Tract
3.11 Medial Vestibulospinal Tract
3.12 Functional Considerations
3.13 Vestibulocerebellar Relations
3.14 Inputs to Vestibulocerebellum
3.15 Cerebellar Influences on Vestibular Pathways
4 Vestibulocortical Projections
4.1 Cortical Representation
4.2 Thalamic Representation and Brain Stem Pathways
5 Plasticity in Vestibular Pathways
5.1 Compensation from Labyrinthectomy
5.2 Habituation
5.3 Adaptive Control of Vestibuloocular Reflex
Figure 1. Figure 1.

Gross anatomy of membranous labyrinth and its innervation in mammals, c.r., Canal reuniens; e.d., endolymphatic duct; H, P, and S, horizontal, posterior, and superior semicircular canals, respectively; Sa, sacculus; SG, Scarpa's ganglion; U, utriculus; VII, facial nerve. Superior vestibular nerve innervates superior and horizontal canals and utriculus; a small branch (Voigt's anastomosis) runs to the sacculus. Inferior vestibular nerve supplies sacculus and posterior semicircular canal; a small branch (Oort's anastomosis) contains auditory efferents destined for the cochlea.

From Hardy 135
Figure 2. Figure 2.

Structure of crista ampullaris in mammals. A: relation of sensory hair cells to their innervation (bottom) and to the cupula (top). B: ultrastructural organization of type I and type II hair cells and their innervation.

From Wersäll and Bagger‐Sjöbäck 349
Figure 3. Figure 3.

Structural organization of A: mammalian saccular macula; B: utricular macula. Illustrated are regional differences in otolithic membranes and otoconia, in structure and type of hair cells, and in patterns of afferent innervation. Note reversal in morphological polarization of sensory cells in region of each striola.

From Lindeman 189
Figure 4. Figure 4.

Organization of mammalian vestibular nerve. EF, efferent nerve fibers; H.C.A., P.C.A., and S.C.A., horizontal, posterior, and superior canal ampullae, respectively; P.C.N., Sacc.N., and Utric.N., posterior canal, saccular, and utricular nerves, respectively; Sacc., sacculus; S.G., Scarpa's ganglion; Utr., utriculus.

From Gacek 101
Figure 5. Figure 5.

Morphological polarization of sensory cells and polarization maps of mammalian sensory epithelia. A: section of sensory epithelium. Kinocilium (filled bars) and stereocilia (open bars) are seen. Arrow indicates direction of excitatory polarization. B: section through sensory hair bundles showing relative locations of kinocilium and stereocilia. C: sensory cells of each crista ampullaris are all polarized in same direction (arrows). D, E: in each otolith organ the polarization reverses in region of striola (dashed line).

From Lindeman 189
Figure 6. Figure 6.

Resting discharge of two semicircular canal units recorded in squirrel monkey. Though both afferents have a similar firing rate (close to 100 spikes/s), they differ in the regularity of their discharge patterns.

From Goldberg and Fernández 116
Figure 7. Figure 7.

Calculated displacement of cupula and endolymph (in arbitrary units) to A: long‐duration acceleration step; to B: brief, bidirectional head rotation. Below each figure are shown velocity profile (solid line) and acceleration profile (dashed line).

Figure 8. Figure 8.

Calculated response to sinusoidal inputs of the cupula and endolymph based on the torsion‐pendulum model. Log gains and phases with respect to angular head velocity. LF, MF, HF: low‐, medium‐, high‐frequency ranges, respectively. Gains are expressed relative to their value in the MF range; phase leads are negative.

From Melvill‐Jones and Milsum 236
Figure 9. Figure 9.

Response of semicircular canal neurons to velocity trapezoids. Bars, periods of constant angular acceleration or deceleration. A‐B: responses of a regular unit to (A) 5‐s, 60°/s2, and (B) to 40‐s, 7.5°/s2 acceleration steps. C, D: responses of an irregular unit to same stimulus conditions. Note adaptive phenomena.

From Goldberg and Fernández 116
Figure 10. Figure 10.

Responses of semicircular canal neurons to sinusoidal rotations. Data are for a regular (○) and an irregular (•) unit. Log gains and phases (——) predicted from torsion‐pendulum model; curves based on empirical transfer functions, (—–) and (——‐). Gains and phases are expressed relative to angular head velocities and gains are normalized at 0.25 Hz.

From Fernández and Goldberg 81
Figure 11. Figure 11.

Responses of an otolith neuron to linear forces. A: discharge rate vs. angle of static head tilt. Direction of gravity relative to head was changed by sequentially tilting the animal in 45° steps around either pitch, •, or roll, ○, axes. At each position a 10‐s sample of activity was taken. Positive tilt angles correspond to forward pitches and ipsilateral rolls. Solid and dashed lines are best fitting trigonometric functions for pitch and roll points, respectively. From the data, a functional polarization vector was calculated. B: response to centrifugal force trapezoids with a peak force of 1.23 g; bars, periods of force transition. Force was directed parallel, •, and antiparallel, ○, to unit's polarization vector. Note asymmetry in corresponding excitatory and inhibitory responses. C: force‐response relations, based on data in A and B. The force, xlg, is calculated from Equation 8 and the solid curve is based on Equation 7. There is good agreement between the force‐response relations for static tilts, ○, and for centrifugal force, •.

From Fernández and Goldberg 82
Figure 12. Figure 12.

Origin and course of efferent vestibular system in cat. A: distribution of neurons retrogradely labeled after unilateral horseradish peroxidase injection into labyrinth of a newborn animal. Efferent neurons are seen in horizontal plan view. Top of diagram, rostral direction. Each dot, •, approximately 5 labeled neurons; bar, 1 mm; SVN, LVN, DVN, MVN: superior, lateral, descending, and medial vestibular nuclei, respectively; VI, abducens nucleus. B: frontal section (see arrow in part A) from same animal. Each dot, •, one labeled neuron; Sp. Tr. V, trigeminal spinal tract; V, spinal trigeminal nucleus; VII, facial nerve; MLF, medial longitudinal fasciculus; BC, brachium conjunctivum; all other parts identified under A. C: intramedullary course of efferent pathways based on acetylcholinesterase histochemistry. RB, restiform body; CN, cochlear nuclei; all other parts identified under A and B.

Figure 13. Figure 13.

Afferent and efferent innervation in mammalian sensory epithelium. One efferent nerve fiber is shown making both pre‐ and postsynaptic contacts by means of vesiculated boutons, VB. BM, basement membrane; C, afferent nerve chalice; SB, synaptic bar.

From Smith and Rasmussen 311
Figure 14. Figure 14.

Topography and cytoarchitecture of vestibular nuclear complex in the cat as seen in transverse sections. B.c., brachium conjunctivum; C.r., restiform body; D., descending vestibular nucleus; L., lateral vestibular nucleus; M., medial vestibular nucleus; N.cu.e., external cuneate nucleus; N.i.n. VIII, interstitial nucleus of vestibular nerve; N.V, VII, VIII, IX, XII, cranial nerves; p.h., nucleus praepositus hypoglossi; S., superior vestibular nucleus; Tr.sp. V, spinal tract of trigeminal nerve; V, VI, VII, X, XII, motor cranial nerve nuclei; f, g, l, Sv, x, y, z, small cell groups.

From Brodal and Pompeiano 45, by permission of Cambridge Univ. Press
Figure 15. Figure 15.

Responses of several secondary, horizontal‐canal‐related neurons (denoted by different symbols) to sinusoidal rotations. Log gains and phase leads are plotted with respect to angular head velocity. Dashed lines, expected behavior of the torsion pendulum model with time constants, T1.

From Melvill‐Jones and Milsum 236
Figure 16. Figure 16.

A: field potentials recorded from vestibular nuclei upon electrical stimulation of ipsilateral vestibular nerve. Upward is negative. Calibrations: 1 ms and 1 mV. B: organization of commissural pathways. Inhibitory neurons are shown as filled circles. Dashed line indicates midline. V.n., vestibular nerve; Ik and It, kinetic and tonic type I neurons, respectively.

A: from Precht and Shimazu 269; B: from Precht 380
Figure 17. Figure 17.

Eye‐head coordination in intact and labyrinthectomized monkey. A: normal monkey. The animal fixates a new visual target by making an eye movement, E, and a slower head movement, H. During head movement the eyes move backward relative to the head so that the gaze, G, remains constant. B, C: 40 and 120 days, respectively, after labyrinthectomy.

From Dichgans et al. 66
Figure 18. Figure 18.

Eye movements evoked in cat by electrical stimulation of ampullary nerves. A‐C: unilateral stimulation. D‐F: bilateral stimulation. Eyes are seen from the front; arrows, direction of movement. Primary excitation of individual extraocular muscles in black; secondary excitation indicated by stippling.

From Cohen et al. 57
Figure 19. Figure 19.

Block diagram of vestibuloocular reflex. It is assumed that the head moves through an angle θ = sin ωt. Output of each component is shown below the corresponding arrow; gains and phase leads with respect to angular head position are in parentheses.

Figure 20. Figure 20.

Dynamics of various components of vestibuloocular reflex expressed as phase leads relative to angular head position (θh). Upper border of figure represents the physical stimulus (head acceleration, Θh), which leads θh by 180°. Top curve, Rv shows phase lag, α, contributed by the semicircular canals. Middle curve, EOM, includes the phase lag, γ, introduced by extraocular muscles and orbital mechanics. Bottom curve, θe/h, represents actual performance of the reflex and requires that a phase lag, β, be inserted by the central pathways.

From Skavenski and Robinson 306
Figure 21. Figure 21.

Rhythmic changes in intracellular potential of abducens motoneuron and motor nerve discharges during nystagmus. Responses during high‐frequency electrical stimulation to A: left vestibular nerve; B: right vestibular nerve. Top traces in A and B, records from a motoneuron, on right side; middle traces, from left abducens nerve; bottom traces, from right abducens nerve. Upward deflection indicates positivity.

From Maeda et al. 215
Figure 22. Figure 22.

Uncoordinated eye movements elicited in anesthetized cat by focal stimulation of corresponding part of A: left utricular macula, or B: left saccular macula. Eyes are viewed from the front. Arrows, motions of the right, Rt, and left, Lt, eyes. A.L., A.M., M.L., P.L., and P.M. refer to anterolateral, anteromedial, mediolateral, posterolateral, and posteromedial parts of utricular macula, respectively; SUP. and INF., superior and inferior parts of saccular macula, respectively.

A: adapted from Fluur and Mellström 90; B: adapted from Fluur and Mellström 91
Figure 23. Figure 23.

Connections between ipsilateral and contralateral ampullae and neck extensor motoneurons in the cat. A, H, P are anterior, horizontal, and posterior ampullae; VN, vestibular nuclei. Inhibitory neurons and their terminals shown in filled symbols, excitatory neurons in open symbols.

From Wilson and Maeda 357
Figure 24. Figure 24.

Vestibulocerebellar relations in cat. A: vestibular nerve is shown to send projections to flocculus, Flocc., to dorsal, Pfl.d., and ventral, Pfl.v., paraflocculus; to uvula, IX(Uv.), and nodulus, X(Nod.), to lingula, I; and to parvocellular region, p, of lateral cerebellar nucleus, Nl. B: secondary vestibular projection from medial, M, descending, D, superior, S, and lateral, L, vestibular nuclei, and x group to flocculus, Flocc.; Nod., nodulus; Uv., uvula; and N. fast., fastigial nucleus. C: projections from vestibulocerebellum to vestibular nuclei; f and x, small cell groups; other nuclei identified in part B.

A: from Brodal and Høivik 44; B: from Brodal 42; C: from Angaut and Brodal 17


Figure 1.

Gross anatomy of membranous labyrinth and its innervation in mammals, c.r., Canal reuniens; e.d., endolymphatic duct; H, P, and S, horizontal, posterior, and superior semicircular canals, respectively; Sa, sacculus; SG, Scarpa's ganglion; U, utriculus; VII, facial nerve. Superior vestibular nerve innervates superior and horizontal canals and utriculus; a small branch (Voigt's anastomosis) runs to the sacculus. Inferior vestibular nerve supplies sacculus and posterior semicircular canal; a small branch (Oort's anastomosis) contains auditory efferents destined for the cochlea.

From Hardy 135


Figure 2.

Structure of crista ampullaris in mammals. A: relation of sensory hair cells to their innervation (bottom) and to the cupula (top). B: ultrastructural organization of type I and type II hair cells and their innervation.

From Wersäll and Bagger‐Sjöbäck 349


Figure 3.

Structural organization of A: mammalian saccular macula; B: utricular macula. Illustrated are regional differences in otolithic membranes and otoconia, in structure and type of hair cells, and in patterns of afferent innervation. Note reversal in morphological polarization of sensory cells in region of each striola.

From Lindeman 189


Figure 4.

Organization of mammalian vestibular nerve. EF, efferent nerve fibers; H.C.A., P.C.A., and S.C.A., horizontal, posterior, and superior canal ampullae, respectively; P.C.N., Sacc.N., and Utric.N., posterior canal, saccular, and utricular nerves, respectively; Sacc., sacculus; S.G., Scarpa's ganglion; Utr., utriculus.

From Gacek 101


Figure 5.

Morphological polarization of sensory cells and polarization maps of mammalian sensory epithelia. A: section of sensory epithelium. Kinocilium (filled bars) and stereocilia (open bars) are seen. Arrow indicates direction of excitatory polarization. B: section through sensory hair bundles showing relative locations of kinocilium and stereocilia. C: sensory cells of each crista ampullaris are all polarized in same direction (arrows). D, E: in each otolith organ the polarization reverses in region of striola (dashed line).

From Lindeman 189


Figure 6.

Resting discharge of two semicircular canal units recorded in squirrel monkey. Though both afferents have a similar firing rate (close to 100 spikes/s), they differ in the regularity of their discharge patterns.

From Goldberg and Fernández 116


Figure 7.

Calculated displacement of cupula and endolymph (in arbitrary units) to A: long‐duration acceleration step; to B: brief, bidirectional head rotation. Below each figure are shown velocity profile (solid line) and acceleration profile (dashed line).



Figure 8.

Calculated response to sinusoidal inputs of the cupula and endolymph based on the torsion‐pendulum model. Log gains and phases with respect to angular head velocity. LF, MF, HF: low‐, medium‐, high‐frequency ranges, respectively. Gains are expressed relative to their value in the MF range; phase leads are negative.

From Melvill‐Jones and Milsum 236


Figure 9.

Response of semicircular canal neurons to velocity trapezoids. Bars, periods of constant angular acceleration or deceleration. A‐B: responses of a regular unit to (A) 5‐s, 60°/s2, and (B) to 40‐s, 7.5°/s2 acceleration steps. C, D: responses of an irregular unit to same stimulus conditions. Note adaptive phenomena.

From Goldberg and Fernández 116


Figure 10.

Responses of semicircular canal neurons to sinusoidal rotations. Data are for a regular (○) and an irregular (•) unit. Log gains and phases (——) predicted from torsion‐pendulum model; curves based on empirical transfer functions, (—–) and (——‐). Gains and phases are expressed relative to angular head velocities and gains are normalized at 0.25 Hz.

From Fernández and Goldberg 81


Figure 11.

Responses of an otolith neuron to linear forces. A: discharge rate vs. angle of static head tilt. Direction of gravity relative to head was changed by sequentially tilting the animal in 45° steps around either pitch, •, or roll, ○, axes. At each position a 10‐s sample of activity was taken. Positive tilt angles correspond to forward pitches and ipsilateral rolls. Solid and dashed lines are best fitting trigonometric functions for pitch and roll points, respectively. From the data, a functional polarization vector was calculated. B: response to centrifugal force trapezoids with a peak force of 1.23 g; bars, periods of force transition. Force was directed parallel, •, and antiparallel, ○, to unit's polarization vector. Note asymmetry in corresponding excitatory and inhibitory responses. C: force‐response relations, based on data in A and B. The force, xlg, is calculated from Equation 8 and the solid curve is based on Equation 7. There is good agreement between the force‐response relations for static tilts, ○, and for centrifugal force, •.

From Fernández and Goldberg 82


Figure 12.

Origin and course of efferent vestibular system in cat. A: distribution of neurons retrogradely labeled after unilateral horseradish peroxidase injection into labyrinth of a newborn animal. Efferent neurons are seen in horizontal plan view. Top of diagram, rostral direction. Each dot, •, approximately 5 labeled neurons; bar, 1 mm; SVN, LVN, DVN, MVN: superior, lateral, descending, and medial vestibular nuclei, respectively; VI, abducens nucleus. B: frontal section (see arrow in part A) from same animal. Each dot, •, one labeled neuron; Sp. Tr. V, trigeminal spinal tract; V, spinal trigeminal nucleus; VII, facial nerve; MLF, medial longitudinal fasciculus; BC, brachium conjunctivum; all other parts identified under A. C: intramedullary course of efferent pathways based on acetylcholinesterase histochemistry. RB, restiform body; CN, cochlear nuclei; all other parts identified under A and B.



Figure 13.

Afferent and efferent innervation in mammalian sensory epithelium. One efferent nerve fiber is shown making both pre‐ and postsynaptic contacts by means of vesiculated boutons, VB. BM, basement membrane; C, afferent nerve chalice; SB, synaptic bar.

From Smith and Rasmussen 311


Figure 14.

Topography and cytoarchitecture of vestibular nuclear complex in the cat as seen in transverse sections. B.c., brachium conjunctivum; C.r., restiform body; D., descending vestibular nucleus; L., lateral vestibular nucleus; M., medial vestibular nucleus; N.cu.e., external cuneate nucleus; N.i.n. VIII, interstitial nucleus of vestibular nerve; N.V, VII, VIII, IX, XII, cranial nerves; p.h., nucleus praepositus hypoglossi; S., superior vestibular nucleus; Tr.sp. V, spinal tract of trigeminal nerve; V, VI, VII, X, XII, motor cranial nerve nuclei; f, g, l, Sv, x, y, z, small cell groups.

From Brodal and Pompeiano 45, by permission of Cambridge Univ. Press


Figure 15.

Responses of several secondary, horizontal‐canal‐related neurons (denoted by different symbols) to sinusoidal rotations. Log gains and phase leads are plotted with respect to angular head velocity. Dashed lines, expected behavior of the torsion pendulum model with time constants, T1.

From Melvill‐Jones and Milsum 236


Figure 16.

A: field potentials recorded from vestibular nuclei upon electrical stimulation of ipsilateral vestibular nerve. Upward is negative. Calibrations: 1 ms and 1 mV. B: organization of commissural pathways. Inhibitory neurons are shown as filled circles. Dashed line indicates midline. V.n., vestibular nerve; Ik and It, kinetic and tonic type I neurons, respectively.

A: from Precht and Shimazu 269; B: from Precht 380


Figure 17.

Eye‐head coordination in intact and labyrinthectomized monkey. A: normal monkey. The animal fixates a new visual target by making an eye movement, E, and a slower head movement, H. During head movement the eyes move backward relative to the head so that the gaze, G, remains constant. B, C: 40 and 120 days, respectively, after labyrinthectomy.

From Dichgans et al. 66


Figure 18.

Eye movements evoked in cat by electrical stimulation of ampullary nerves. A‐C: unilateral stimulation. D‐F: bilateral stimulation. Eyes are seen from the front; arrows, direction of movement. Primary excitation of individual extraocular muscles in black; secondary excitation indicated by stippling.

From Cohen et al. 57


Figure 19.

Block diagram of vestibuloocular reflex. It is assumed that the head moves through an angle θ = sin ωt. Output of each component is shown below the corresponding arrow; gains and phase leads with respect to angular head position are in parentheses.



Figure 20.

Dynamics of various components of vestibuloocular reflex expressed as phase leads relative to angular head position (θh). Upper border of figure represents the physical stimulus (head acceleration, Θh), which leads θh by 180°. Top curve, Rv shows phase lag, α, contributed by the semicircular canals. Middle curve, EOM, includes the phase lag, γ, introduced by extraocular muscles and orbital mechanics. Bottom curve, θe/h, represents actual performance of the reflex and requires that a phase lag, β, be inserted by the central pathways.

From Skavenski and Robinson 306


Figure 21.

Rhythmic changes in intracellular potential of abducens motoneuron and motor nerve discharges during nystagmus. Responses during high‐frequency electrical stimulation to A: left vestibular nerve; B: right vestibular nerve. Top traces in A and B, records from a motoneuron, on right side; middle traces, from left abducens nerve; bottom traces, from right abducens nerve. Upward deflection indicates positivity.

From Maeda et al. 215


Figure 22.

Uncoordinated eye movements elicited in anesthetized cat by focal stimulation of corresponding part of A: left utricular macula, or B: left saccular macula. Eyes are viewed from the front. Arrows, motions of the right, Rt, and left, Lt, eyes. A.L., A.M., M.L., P.L., and P.M. refer to anterolateral, anteromedial, mediolateral, posterolateral, and posteromedial parts of utricular macula, respectively; SUP. and INF., superior and inferior parts of saccular macula, respectively.

A: adapted from Fluur and Mellström 90; B: adapted from Fluur and Mellström 91


Figure 23.

Connections between ipsilateral and contralateral ampullae and neck extensor motoneurons in the cat. A, H, P are anterior, horizontal, and posterior ampullae; VN, vestibular nuclei. Inhibitory neurons and their terminals shown in filled symbols, excitatory neurons in open symbols.

From Wilson and Maeda 357


Figure 24.

Vestibulocerebellar relations in cat. A: vestibular nerve is shown to send projections to flocculus, Flocc., to dorsal, Pfl.d., and ventral, Pfl.v., paraflocculus; to uvula, IX(Uv.), and nodulus, X(Nod.), to lingula, I; and to parvocellular region, p, of lateral cerebellar nucleus, Nl. B: secondary vestibular projection from medial, M, descending, D, superior, S, and lateral, L, vestibular nuclei, and x group to flocculus, Flocc.; Nod., nodulus; Uv., uvula; and N. fast., fastigial nucleus. C: projections from vestibulocerebellum to vestibular nuclei; f and x, small cell groups; other nuclei identified in part B.

A: from Brodal and Høivik 44; B: from Brodal 42; C: from Angaut and Brodal 17
References
 1. Abend, W. K. Functional organization of the superior vestibular nucleus of the squirrel monkey. Brain Res. 132: 65–84, 1977.
 2. Abend, W. K. Response to constant angular accelerations of neurons in the monkey superior vestibular nucleus. Exp. Brain Res. 31: 65–84, 1978.
 3. Abraham, L., P. B. Copack, and S. Oilman. Brain stem pathways for vestibular projections to cerebral cortex in the cat. Exp. Neurol. 55: 436–448, 1977.
 4. Abzug, C., M. Maeda, B. W. Peterson, and V. J. Wilson. Cervical branching of lumbar vestibulospinal axons. J. Physiol. London 243: 499–522, 1974.
 5. Adrian, E. D. Discharges from vestibular receptors in the cat. J. Physiol. London 101: 389–407, 1943.
 6. Ajala, G. F., and R. E. Poppele. Some problems in the central actions of vestibular inputs. In: Neurophysiological Basis of Normal and Abnormal Motor Activities, edited by M. D. Yahr and D. P. Purpura. New York: Raven, 1967, p. 141–154. (Symp. Parkinson's Disease, 3rd, Columbia Univ., 1966.)
 7. Akaike, T. Comparison of neuronal composition of the vestibulospinal system between cat and rabbit. Exp. Brain Res. 18: 429–432, 1973.
 8. Akaike, T., V. V. Fanardjian, M. Ito, M. Kumada, and H. Nakajima. Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. I. Classification of relay cells. Exp. Brain Res. 17: 477–496, 1973.
 9. Akaike, T., V. V. Fanardjian, M. Ito, and H. Nakajima. Cerebellar control of the vestibulospinal tract cells in rabbit. Exp. Brain Res. 18: 446–463, 1973.
 10. Akaike, T., V. V. Fanardjian, M. Ito, and T. Ohno. Electrophysiological analysis of the vestibulo‐spinal reflex pathway of rabbit. II. Synaptic actions upon spinal neurones. Exp. Brain Res. 17: 497–515, 1973.
 11. Allen, G. I., N. H. Sabah, and K. Toyama. Synaptic actions of peripheral nerve impulses upon Deiters neurones via the climbing fibre afferents. J. Physiol. London 226: 311–333, 1972.
 12. Allen, G. I., N. H. Sabah, and K. Toyama. Synaptic actions of peripheral nerve impulses upon Deiters neurones via the mossy fibre afferents. J. Physiol. London 226: 335–351, 1972.
 13. Allum, J. H. J., W. Graf, J. Dichgans, and C. L. Schmidt. Visual‐vestibular interactions in the vestibular nuclei of the goldfish. Exp. Brain Res. 26: 463–485, 1976.
 14. Anderson, J. H., J. F. Soechting, and C. A. Terzuolo. Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. I. Motor output during sinusoidal linear accelerations. Brain Res. 120: 1–15, 1977.
 15. Anderson, J. H., J. F. Soechting, and C. A. Terzuolo. Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. II. Motor output during rotations in the horizontal plane. Brain Res. 120: 17–33, 1977.
 16. Andersson, S., and B. E. Gernandt. Cortical projection of vestibular nerve in cat. Acta Oto‐Laryngol. Suppl. 116: 10–18, 1954.
 17. Angaut, P., and A. Brodal. The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch. Ital. Biol. 105: 441–479, 1967.
 18. Ashcroft, D. W., and C. S. Hallpike. Action potentials in the saccular nerve of the frog. J. Physiol. London 81: 23P–24P, 1934.
 19. Azzena, G. B. Role of the spinal cord in compensating the effects of hemilabyrinthectomy. Arch. Ital. Biol. 107: 43–53, 1969.
 20. Baarsma, E. A., and H. Collewijn. Vestibulo‐ocular and optokinetic reactions to rotation and their interaction in the rabbit. J. Physiol. London 238: 603–625, 1974.
 21. Baarsma, E. A., and H. Collewijn. Eye movements due to linear accelerations in the rabbit. J. Physiol. London 245: 227–247, 1975.
 22. Baker, R., and A. Berthoz. Organization of vestibular nystagmus in oblique oculomotor system. J. Neurophysiol. 37: 195–217, 1974.
 23. Baker, R., and S. M. Highstein. Physiological identification of interneurons and motoneurons in the abducens nucleus. Brain Res. 91: 292–298, 1975.
 24. Baker, R., and S. M. Highstein. Vestibular projection to medial rectus motoneurons in the cat. Soc. Neurosci. Abstr. 2: 393, 1976.
 25. Baker, R., N. Mano, and H. Shimazu. Postsynaptic potentials in abducens motoneurons induced by vestibular stimulation. Brain Res. 15: 577–580, 1969.
 26. Baker, R., W. Precht, and A. Berthoz. Synaptic connections to trochlear motoneurons determined by individual vestibular nerve branch stimulation in the cat. Brain Res. 64: 402–406, 1973.
 27. Baker, R., Precht, W., and R. Llinás. Cerebellar modulatory action on the vestibulo‐trochlear pathway in the cat. Exp. Brain Res. 15: 364–385, 1972.
 28. Baker, R., W. Precht, and R. Llinás. Mossy and climbing projections of extraocular muscle afferents to the cerebellum. Brain Res. 38: 440–445, 1972.
 29. Ballantyne, J., and H. Engström. Morphology of the vestibular ganglion cells. J. Laryngol. Otol. 83: 19–42, 1969.
 30. Bárány, R. Physiologie und Pathologie des (Funktions‐Prüfung) Bogengangapparates beim Menschen. Klinische Studien. Vienna: Deuticke, 1907.
 31. Bechterew, W. Ergebnisse der Durchschneidung des N. acusticus nebst Erörterung der Bedeutung der semicirculären Kanäle für das Körpergleichgewicht. Arch. Ges. Physiol. Menschen Tiere 30: 312–347, 1883.
 32. Bennett, M. V. L. Electrical transmission: a functional analysis and comparison to chemical transmission. In: Cellular Biology of Neurons, edited by E. R. Kandel. Handbook of Physiology, The Nervous System. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 11, p. 357–416.
 33. Benson, A. J. Interactions between semicircular canals and gravireceptors. In: Recent Advances in Aerospace Medicine, edited by D. E. Busby. Dordrecht, Holland: Reidel, 1970, p. 249–261. (Int. Congr. Aviat. Space Med., 18th, Amsterdam, 1969.)
 34. Benson, A. J., and M. A. Bodin. Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp. Med. 37: 144–154, 1966.
 35. Bergström, B. Morphology of the vestibular nerve. II. The number of myelinated vestibular nerve fibers in man at various ages. Acta Oto‐Laryngol. 76: 173–179, 1973.
 36. Bernstein, L. P., J. M. Goldberg, and C. Fernández. Functional organization of the medial vestibular nucleus (MVN) in the squirrel monkey. Soc. Neurosci. Abstr. 3: 1716, 1977.
 37. Blanks, R. H. I., I. S. Curthoys, and C. H. Markham. Planar relationships of the semicircular canals in man. Acta Oto‐Laryngol. 80: 185–196, 1975.
 38. Blanks, R. H. I., M. S. Estes, and C. H. Markham. Physiologic characteristics of vestibular first‐order canal neurons in the cat. II. Response to constant angular acceleration. J. Neurophysiol. 38: 1250–1268, 1975.
 39. Blanks, R. H. I., and W. Precht. Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. 25: 369–390, 1976.
 40. Blanks, R. H. I., W. Precht, and M. L. Giretti. Response characteristics and vestibular receptor convergence of frog cerebellar Purkinje cells. A natural stimulation study. Exp. Brain Res. 27: 181–201, 1977.
 41. Boisacq‐Schepens, N., and M. Hanus. Motor cortex vestibular responses in the chloralosed cat. Exp. Brain Res. 14: 539–549, 1972.
 42. Breuer, J. Über die Funktion der Bogengänge des Ohrlabyrinthes. Med. Jahrb. Wien. 4: 72–124, 1874.
 43. Breuer, J. Über die Funktion der Otolithenapparate. Pfluegers Arch. Gesamte Physiol. 48: 195–306, 1891.
 44. Brodal, A. Anatomy of the vestibular nuclei and their connections. In: Handbook of Sensory Physiology. Vestibular System. Basic Mechanisms, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 1, p. 239–352.
 45. Brodal, A., and P. Angaut. The termination of spinovestibular fibres in the cat. Brain Res. 5: 494–500, 1967.
 46. Brodal, A., and B. Høivik. Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. Ital. Biol. 102: 1–21, 1964.
 47. Brodal, A., and O. Pompeiano. The vestibular nuclei in the cat. J. Anat. 91: 438–454, 1957.
 48. Brodal, A., O. Pompeiano, and F. Walberg. The Vestibular Nuclei and their Connections. Anatomy and Functional Correlations. Springfield, IL: Thomas, 1962.
 49. Brown, A. Crum On the sense of rotation and the anatomy and physiology of the semicircular canals of the internal ear. J. Anat. Physiol. 8: 327–331, 1875.
 50. Büttner, U., and V. Henn. Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res. 103: 127–132, 1976.
 51. Camis, M. The Physiology of the Vestibular Apparatus (trans. by R. S. Creed). London: Oxford Univ. Press, 1930.
 52. Carlström, D., and H. Engstrom. The ultrastructure of statoconia. Acta Oto‐Laryngol. 45: 14–18, 1955.
 53. Carpenter, M. B., B. M. Stein, and P. Peter. Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am. J. Anat. 135: 221–249, 1972.
 54. Carpenter, R. H. S. Cerebellectomy and the transfer function of the vestibulo‐ocular reflex in the decerebrate cat. Proc. R. Soc. London Ser. B 181: 353–374, 1972.
 55. Caston, J. L'activité vestibulaire efférente chez la grenouille. Pfluegers Arch. 331: 365–370, 1972.
 56. Caston, J., and A. Gribenski. Influence of receptor‐receptor fibres on the spontaneous afferent activity from semicircular canals in the frog (Rana esculenta). Pfluegers Arch. 358: 81–88, 1975.
 57. Caston, J., and A. Gribenski. Réponses des fibres vestibulaires efférentes à une rotation dans le plan horizontal chez la grenouille (Rana esculenta L.). C. R. Soc. Biol. 169: 1062–1066, 1975.
 58. Cohen, B. Vestibulo‐ocular relations. In: The Control of Eye Movements, edited by P. Bach‐y‐Rita and C. C. Collins. New York: Academic, 1971, p. 105–148.
 59. Cohen, B., and V. Henn. The origin of quick phase of nystagmus in the horizontal plane. Bibl. Ophthalmol. 82: 36–55, 1972.
 60. Cohen, B., J.‐I. Suzuki, and M. B. Bender. Eye movements from semicircular canal nerve stimulation in the cat. Ann. Otol. Rhinol. Laryngol. 73: 153–169, 1964.
 61. Collins, W. E. Habituation of vestibular responses with and without visual stimulation. In: Handbook of Sensory Physiology. Vestibular System. Psychophysics, Applied Aspects and General Interpretations, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 369–388.
 62. Correia, M. J., and J. P. Landolt. Spontaneous and driven responses from primary neurons of the anterior semicircular canal of the pigeon. Adv. Oto Rhino Laryngol. 19: 134–148, 1973.
 63. Davis, H. A. model for transducer action in the cochlea. Cold Spring Harbor Symp. Quant. Biol. 30: 181–189, 1965.
 64. Deecke, L., D. W. F. Schwartz, and J. M. Fredrickson. Nucleus ventroposterior inferior (VPI) as the vestibular thalamic relay in the rhesus monkey. I. Field potential investigation. Exp. Brain Res. 20: 88–100, 1974.
 65. Densert, O. A fluorescence and electron microscopic study of the adrenergic innervation in the vestibular ganglion and sensory areas. Acta Oto‐Laryngol. 79: 96–107, 1975.
 66. Densert, O., and Å. Flock. An electron‐microscopic study of adrenergic innervation in the cochlea. Acta Oto‐Laryngol. 77: 185–197, 1974.
 67. DeVito, R. V., A. Brusa, and A. Arduini. Cerebellar and vestibular influences on Deitersian units. J. Neurophysiol. 19: 241–253, 1956.
 68. De Vries, H. The mechanics of the labyrinth otoliths. Acta Oto‐Laryngol. 38: 262–273, 1950.
 69. Dichgans, J., E. Bizzi, P. Morasso, and V. Tagliasco. Mechanisms underlying recovery of eye‐head coordination following bilateral labyrinthectomy in monkeys. Exp. Brain Res. 18: 548–562, 1973.
 70. Dichgans, J., C. L. Schmidt, and E. R. Wist. Frequency modulation of afferent and efferent unit activity in the vestibular nerve by oculomotor mechanisms. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 449–456.
 71. Dohlman, G. Some practical and theoretical points in labyrinthology. Proc. R. Soc. Med. 28: 1371–1380, 1935.
 72. Dohlman, G. The attachment of the cupulae, otolith and tectorial membranes to the sensory cell areas. Acta Oto‐Laryngol. 71: 89–105, 1971.
 73. Dow, R. S., and G. Moruzzi. The Physiology and Pathology of the Cerebellum. Minneapolis: Univ. of Minnesota Press, 1958.
 74. Duensing, F., and K.‐P. Schaefer. Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbes‐chleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch. Psychiatr. Nervenkr. 198: 225–252, 1958.
 75. Duensing, F., and K.‐P. Schaffer. Über die Konvergenz verschiedener labyrinthärer Afferenzen auf einzelne Neurone des Vestibulariskerngebietes. Arch. Psychiatr. Nervenkr. 199: 345–371, 1959.
 76. Dunn, R. F. Reciprocal synapses in the crista ampullaris of the bullfrog. Soc. Neurosci. Abstr. 1: 343, 1975.
 77. Eccles, J. C. An instruction‐selection theory of learning in the cerebellar cortex. Brain Res. 127: 327–352, 1977.
 78. Engström, H. On the double innervation of the sensory epithelia of the inner ear. Acta Oto‐Laryngol. 49: 109–118, 1958.
 79. Erhardt, K. J., and A. Wagner. Labyrinthine and neck reflexes recorded from single spinal motoneurons in the cat. Brain Res. 19: 87–104, 1970.
 80. Estes, M. S., R. H. I. Blanks, and C. H. Markham. Physiologic characteristics of vestibular first‐order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J. Neurophysiol. 38: 1232–1249, 1975.
 81. Evinger, L. C., A. F. Fuchs, and R. Baker. Bilateral lesions of the medial longitudinal fasciculus in monkeys: effects on the horizontal and vertical components of voluntary and vestibular induced eye movements. Exp. Brain Res. 28: 1–20, 1977.
 82. Ewald, J. R. Physiologische Untersuchungen über das Endorgan des nervus octavus. Wiesbaden: Bergmann, 1892.
 83. Ferin, M., R. H. Grigorian, and P. Strata. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp. Brain Res. 12: 1–17, 1971.
 84. Fernández, C., and J. M. Goldberg. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34: 661–675, 1971.
 85. Fernández, C., and J. M. Goldberg. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long‐duration centrifugal force. J. Neurophysiol. 39: 970–984, 1976.
 86. Fernández, C., and J. M. Goldberg. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force‐response relations. J. Neurophysiol. 39: 985–995, 1976.
 87. Fernández, C., and J. M. Goldberg. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 39: 996–1008, 1976.
 88. Fernández, C., J. M. Goldberg, and W. K. Abend. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J. Neurophysiol. 35: 978–997, 1972.
 89. Fisher, M. H. Körperstellung und Körperhaltung bei Fischen, Amphibien, Reptilien und Vögeln. In: Handbuch der normalen und pathologischen Physiologie. Berlin: Springer‐Verlag, 1930, vol. 15, pt. 1, p. 97–159.
 90. Flock, Å. Sensory transduction in hair cells. In: Handbook of Sensory Physiology. Principles of Receptor Physiology, edited by W. R. Lowenstein. New York: Springer‐Verlag, 1971, vol. 1, p. 396–441.
 91. Flock, Å., B. Flock, and E. Murray. Studies on the sensory hairs of receptor cells in the inner ear. Acta Oto‐Laryngol. 83: 85–91, 1977.
 92. Fluorens, M. J. P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris: Crevot, 1824.
 93. Fluur, E. Influences of semicircular ducts on extraocular muscles. Acta Oto‐Laryngol. Suppl. 149: 1–46, 1959.
 94. Fluur, E., and A. Mellström. Saccular stimulation and oculomotor reactions Laryngoscope 80: 1713–1721, 1970.
 95. Fluur, E., and A. Mellström. Utricular stimulation and oculomotor reactions. Laryngoscope 80: 1701–1712, 1970.
 96. Fredrickson, J. M., U. Figge, P. Scheid, and H. H. Kornhuber. Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp. Brain Res. 2: 318–327, 1966.
 97. Fredrickson, J. M., D. W. F. Schwarz, and H. H. Kornhuber. Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of the cat. Acta Oto‐Laryngol. 61: 168–188, 1965.
 98. Fuchs, A. F., and J. Kimm. Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J. Neurophysiol. 38: 1140–1161, 1975.
 99. Fuchs, A. F., and H. H. Kornhuber. Extraocular muscle afferents to the cerebellum of the cat. J. Physiol. London 200: 713–722, 1969.
 100. Fujita, Y., J. Rosenberg, and J. P. Segundo. Activity of cells in the lateral vestibular nucleus as a function of head position. J. Physiol. London 196: 1–18, 1968.
 101. Fukuda, J., S. M. Highstein, and M. Ito. Cerebellar inhibitory control of the vestibulo‐ocular reflex investigated in rabbit IIIrd nucleus. Exp. Brain Res. 14: 511–526, 1972.
 102. Furuya, N., K. Kawano, and H. Shimazu. Functional organization of vestibulofastigial projection in the horizontal semicircular canal system in the cat. Exp. Brain Res. 24: 75–87, 1975.
 103. Gacek, R. R. Efferent component of the vestibular nerve. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, p. 276–284.
 104. Gacek, R. R. Efferent vestibular pathway. In: The Vestibular System and its Diseases, edited by R. J. Wolfson. Philadelphia: Univ. of Pennsylvania Press, 1966. p. 99–116.
 105. Gacek, R. R. The course and central termination of first order neurons supplying vestibular endorgans in the cat. Acta Oto‐Laryngol. Suppl. 254: 1–66, 1969.
 106. Gacek, R. R. Anatomical demonstration of the vestibulo‐ocular projections in the cat. Acta Oto‐Laryngol. Suppl. 293: 1–63, 1971.
 107. Gacek, R. R. Localization of neurons supplying the extraocular muscles in the kitten using horseradish peroxidase. Exp. Neurol. 44: 381–403, 1974.
 108. Gacek, R. R. Morphological aspects of the efferent vestibular system. In: Handbook of Sensory Physiology. Vestibular System. Basic Mechanisms, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974. vol. 6, pt. 1, p. 213–220.
 109. Gacek, R. R., and M. Lyon. The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Oto‐Laryngol. 77: 92–101, 1974.
 110. Gacek, R. R., Y. Nomura, and K. Balogh. Acetylcholinesterase activity in the efferent fibers of the stato‐acoustic nerve. Acta Oto‐Laryngol. 59: 541–553, 1965.
 111. Gacek, R. R., and G. L. Rasmussen. Fiber analysis of statoacoustic nerve of guinea pig, cat, and monkey. Anat. Rec. 139: 455–463, 1961.
 112. Gallé, H., and A. Clemens. The sacculus of rana: an equilibrium organ. Equilibrium Res. 3: 33–47, 1973.
 113. Gardner, E. P., and A. F. Fuchs. Single‐unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J. Neurophysiol. 38: 627–649, 1975.
 114. Gauthier, G. M., and D. A. Robinson. Adaptation of the human vestibuloocular reflex to magnifying lenses. Brain Res. 92: 331–335, 1975.
 115. Ghelarducci, B., S. M. Highstein, and M. Ito. Origin of the preoculomotor projections through the brachium conjunctivum and their functional roles in the vestibulo‐ocular reflex. Dev. Neurosci. 1: 167–175, 1977.
 116. Ghelarducci, B., M. Ito, and N. Yagi. Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res. 87: 66–72, 1975.
 117. Ghelarducci, B., O. Pompeiano, and K. M. Spyer. Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus. Arch. Ital. Biol. 112: 126–141, 1974.
 118. Gillingham, K. K. The effect of cerebellectomy on vestibular nuclear adaptation. Ann. Otol. Rhinol. Laryngol. 79: 124–137, 1970.
 119. Gleisner, L., and N. G. Henriksson. Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta Oto‐Laryngol. Suppl. 192: 90–103, 1964.
 120. Goldberg, J. M., and C. Fernández. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34: 635–660, 1971.
 121. Goldberg, J. M., and C. Fernández. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variation among units in their discharge properties. J. Neurophysiol. 34: 676–684, 1971.
 122. Goldberg, J. M., and C. Fernández. Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Oto‐Laryngol. 80: 101–110, 1975.
 123. Goldberg, J. M., and C. Fernández. Vestibular mechanisms. Ann. Rev. Physiol. 37: 129–162, 1975.
 124. Goldberg, J. M., and C. Fernández. Conduction times and background discharge of vestibular afferents. Brain Res. 122: 545–550, 1977.
 125. Goldberg, J. M., and C. Fernández. Efferent vestibular system in the squirrel monkey. Soc. Neurosci. Abstr. 3: 543, 1977.
 126. Gonshor, A., and G. Melvill‐Jones. Plasticity in the adult human vestibulo‐ocular reflex arc. Proc. Can. Fed. Biol. Sci. 14: 11, 1971.
 127. Gonshor, A., and G. Melvill‐Jones. Extreme vestibulo‐ocular adaptation induced by prolonged optical reversal of vision. J. Physiol. London 256: 381–414, 1976.
 128. Gonshor, A., and G. Melvill‐Jones. Short‐term adaptive changes in the human vestibulo‐ocular reflex arc. J. Physiol. London 256: 361–379, 1976.
 129. Grant, K., J. P. Gueritaud, G. Horcholle‐Bossavit, and S. TYČ‐Dumont. Horizontal vestibular nystagmus. II. Activity patterns of medial vestibular neurones during nystagmus. Exp. Brain Res. 26: 387–405, 1976.
 130. Graybiel, A. M., and E. A. Hartwieg. Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res. 81: 543–551, 1974.
 131. Gribenski, A., and J. Caston. Etude électrophysiologique des diverses catégories de fibres et de leur importance numérique dans le nerf ampullaire d'un canal semi‐circulaire chez la grenouille (Rana esculenta). C. R. Soc. Biol. 168: 99–101, 1974.
 132. Gribenski, A., and J. Caston. Fibers projecting onto the crista ampullaris of the vertical anterior semicircular canal from other ipsilateral vestibular receptors in the frog (Rana esculenta). Pfluegers Arch. 394: 257–265, 1974.
 133. Groen, J. J., O. Lowenstein, and A. J. H. Vendrik. The mechanical analysis of the response from the end‐organs of the horizontal semicircular canal in the isolated elasmobranch labyrinth. J. Physiol. London 117: 329–346, 1952.
 134. Guedry, F. E., Jr. Orientation of the rotation axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Oto‐Laryngol. 60: 30–48, 1965.
 135. Guedry, F. E., Jr. Psychophysics of vestibular sensation. In: Handbook of Sensory Physiology. Vestibular System. Psychophysics, Applied Aspects and General Interpretations, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 3–154.
 136. Guth, P. S., C. H. Norris, and R. P. Bobbin. The pharmacology of transmission in the peripheral auditory system. Pharmacol. Rev. 28: 95–125, 1976.
 137. Halstead, W. C. The effect of cerebellar lesions upon the habituation of postrotational nystagmus. Comp. Psychol. Monogr. 12: 1–130, 1935.
 138. Hamilton, D. W. The calyceal synapse of Type I vestibular hair cells. J Ultrastruct. Res. 23: 98–114, 1968.
 139. Hardy, M. Observations on the innervation of the macula sacculi in man. Anat. Rec. 59: 403–418, 1934.
 140. Hassul, M., P. D. Daniels, and J. Kimm. Effects of bilateral flocculectomy on the vestibulo‐ocular reflex on the chinchilla. Brain Res. 118: 339–343, 1976.
 141. Hauglie‐Hanssen, E. Intrinsic neuronal organization of the vestibular nuclear complex in the cat. A Golgi study. Ergeb. Anat. Entwicklungsgesch. 40: 1–105, 1968.
 142. Henn, V., L. R. Young, and C. Finley. Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res. 71: 144–149, 1974.
 143. Highstein, S. M. The organization of the vestibulo‐oculomotor and trochlear reflex pathways in the rabbit. Exp. Brain Res. 17: 285–300, 1973.
 144. Highstein, S. M. Synaptic linkage in the vestibulo‐ocular and cerebello‐vestibular pathways to the VIth nucleus in the rabbit. Exp. Brain Res. 17: 301–314, 1973.
 145. Highstein, S. M., and R. Baker. Termination of internuclear neurons of the abducens nuclei on medial rectus motoneurons. Soc. Neurosci. Abstr. 2: 398, 1976.
 146. Highstein, S. M., B. Cohen, and K. Matsunami. Monosynaptic projections from the pontine reticular formation to the IIIrd nucleus in the cat. Brain Res. 75: 340–344, 1974.
 147. Highstein, S. M., M. Ito, and T. Tsuchiya. Synaptic linkage in the vestibulo‐ocular reflex pathway of rabbit. Exp. Brain Res. 13: 306–326, 1971.
 148. Highstein, S. M., K. Maekawa, A. Steinacker, and B. Cohen. Synaptic input from the pontine reticular nuclei to abducens motoneurons and internuclear neurons in the cat. Brain Res. 112: 162–167, 1976.
 149. Hikosaka, O., and T. Kawakami. Inhibitory reticular neurons related to the quick phase of vestibular nystagmus—their location and projection. Exp. Brain Res. 27: 377–396, 1977.
 150. Hikosaka, O., and M. Maeda. Cervical effects on abducens motoneurons and their interaction with vestibulo‐ocular reflex. Exp. Brain Res. 18: 512–530, 1973.
 151. Hikosaka, O., M. Maeda, S. Nakao, H. Shimazu, and Y. Shinoda. Presynaptic impulses in the abducens nucleus and their relation to postsynaptic potentials in motoneurons during vestibular nystagmus. Exp. Brain Res. 27: 355–376, 1977.
 152. Hillman, D. E. Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp. Brain Res. 9: 1–15, 1969.
 153. Hillman, D. E. Efferent vestibular fibers in the frog. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 445–448.
 154. Horcholle‐Bossavit, G., and S. TYČ‐Dumont. Activités unitaires des neurones vestibulaires et oculomoteurs au cours du nystagmus. Exp. Brain Res. 5: 16–31, 1968.
 155. Horcholle‐Bossavit, G., and S. TYČ‐Dumont. Phénomènes synaptiques du nystagmus. Exp. Brain Res. 8: 201–218, 1969.
 156. Howard, I. P., and W. B. Templeton. Human Spatial Orientation. New York: Wiley, 1966.
 157. Hwang, J. C., and W. F. Poon. An electrophysiological study of the sacculo‐ocular pathways in cats. Jpn. J. Physiol. 25: 241–251, 1975.
 158. Igarashi, M., and B. R. Alford. Cupula, cupular zone of otolithic membrane, and tectorial membrane in the squirrel monkey. Acta Oto‐Laryngol. 68: 420–426, 1969.
 159. Igarashi, M., H. Miyata, and B. R. Alford. Utricular ablation and dysequilibrium in squirrel monkeys. Acta Oto‐Laryngol. 74: 66–72, 1972.
 160. Ito, M. Neurophysiological aspects of the cerebellum motor control system. Int. J. Neurol. 7: 162–176, 1970.
 161. Ito, M. Learning control mechanisms by the cerebellum investigated in the flocculo‐vestibulo‐ocular system. In: The Nervous System. The Basic Neurosciences, edited by D. B. Tower and R. O. Brady. New York: Raven, 1975, vol. 1: p. 245–252.
 162. Ito, M., T. Hongo, and Y. Okada. Vestibular‐evoked post‐synaptic potentials in Deiters neurones. Exp. Brain Res. 7: 214–230, 1969.
 163. Ito, M., T. Hongo, M. Yoshida, Y. Okada, and K. Obata. Antidromic and trans‐synaptic activation of Dieters' neurones induced from the spinal cord. Jpn. J. Physiol. 14: 638–658, 1964.
 164. Ito, M., N. Kawai, M. Udo, and N. Sato. Cerebellar‐evoked disinhibition in Deiters neurones. Exp. Brain Res. 6: 247–264, 1968.
 165. Ito, M., and Y. Miyashita. The effects of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo‐ocular reflex of rabbits. Proc. Jpn. Acad. 51: 716–720, 1975.
 166. Ito, M., N. Nisimaru, and M. Yamamoto. Pathways for the vestibulo‐ocular reflex excitation arising from semicircular canals of rabbits. Exp. Brain Res. 24: 257–272, 1976.
 167. Ito, M., N. Nisimaru, and M. Yamamoto. Postsynaptic inhibition of oculomotor neurons involved in vestibulo‐ocular reflexes arising from semicircular canals of rabbits. Exp. Brain Res. 24: 273–283, 1976.
 168. Ito, M., N. Nisimaru, and M. Yamamoto. Specific patterns of neuronal connections involved in the control of the rabbit's vestibulo‐ocular reflexes by the cerebellar flocculus. J. Physiol. London 265: 833–854, 1977.
 169. Ito, M., T. Shiida, N. Yagi, and M. Yamamoto. Visual influence on rabbit vestibulo‐ocular reflex presumably effected via the cerebellar flocculus. Brain Res. 65: 170–174, 1974.
 170. Ito, M., M. Udo, N. Mano, and N. Kawai. Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Exp. Brain Res. 11: 29–47, 1970.
 171. Iurato, S., L. Luciano, E. Panese, and E. Reale. Efferent vestibular fibers in mammals: morphological and histochemical aspects. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 429–443.
 172. Johnstone, B. M., and P. M. Sellick. The peripheral auditory apparatus. Q. Rev. Biophys. 5: 1–57, 1972.
 173. Kasahara, M., and Y. Uchino. Bilateral semicircular canal inputs to neurons in cat vestibular nuclei. Exp. Brain Res. 20: 285–296, 1974.
 174. Kawai, N., M. Ito, and M. Nozue. Postsynaptic influences on the vestibular non‐Deiters nuclei from primary vestibular nerve. Exp. Brain Res. 8: 190–200, 1969.
 175. Keller, E. L. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 37: 316–332, 1974.
 176. Keller, E. L. Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 24: 459–471, 1976.
 177. Keller, E. L., and P. D. Daniels. Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exp. Neurol. 46: 187–198, 1975.
 178. Keller, E. L., and B. Y. Kamath. Characteristics of head rotation and eye movement related neurons in alert monkey vestibular nucleus. Brain Res. 100: 182–187, 1975.
 179. Kellogg, R. S. Dynamic counterrolling of the eye in normal subjects and in persons with bilateral labyrinthine defects. In: The Role of Vestibular Organs in the Exploration of Space. Washington, DC: Nat. Aeronaut, and Space Admin., 1965, SP‐77, p. 195–202.
 180. Kempinski, W. H. Cortical projection of vestibular and facial nerves in cat. J. Neurophysiol. 14: 203–210, 1951.
 181. Kimm, J., M. Hassul, and B. Cogdell. Fastigial neuronal responses to sinusoidal horizontal rotation. Exp. Neurol. 50: 579–594, 1976.
 182. King, W. M., S. G. Lisberger, and A. F. Fuchs. Responses of fibers in medial longitudinal fasciculus (MLF) of alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. J. Neurophysiol. 39: 1135–1149, 1976.
 183. Klinke, R., and N. Galley. Efferent innervation of vestibular and auditory receptors. Physiol. Rev. 54: 316–357, 1974.
 184. Klinke, R., and C. L. Schmidt. Efferente Impulse im Nervus vestibularis bei Reizung des kontralateralen Otolithenorgans. Pfluegers Arch. 304: 183–188, 1968.
 185. Klinke, R., and C. L. Schmidt. Efferent influence on the vestibular organ during active movements of the body. Pfluegers Arch. 318: 325–332, 1970.
 186. Kolmer, W. Gehörorgan. In: Handbuch der mikrosko‐pischen Anatomie des Menschen. Berlin: Springer‐Verlag, 1927, vol. III, pt. 1, p. 250–478.
 187. Krejcova, H., S. M. Highstein, and B. Cohen. Labyrinthine and extralabyrinthine effects on ocular counter‐rolling. Acta Oto‐Laryngol. 72: 165–171, 1971.
 188. Kubo, T., T. Matsunaga, and S. Matano. Effects of sinusoidal rotational stimulation on the vestibular neurons of rats. Brain Res. 88: 543–548, 1975.
 189. Ladpli, R., and A. Brodal. Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res. 8: 65–96, 1968.
 190. Landolt, J. P., E. D. L. Topliff, and J. D. Silverberg. Size distribution analysis of myelinated fibers in the vestibular nerve of the pigeon. Brain Res. 54: 31–42, 1973.
 191. Ledoux, A. Activité électrique des nerfs des canaux semicirculaires du saccule et de l'utricule chez la grenouille. Acta Oto Rhino Laryngol. Belg. 3: 335–349, 1949.
 192. Lee, F. S. The functions of the ear and the lateral line in fishes. Am. J. Physiol. 1: 128–144, 1898.
 193. Liedgren, S. R. C., A. C. Milne, A. M. Rubin, D. W. F. Schwarz, and R. D. Tomlinson. Representation of vestibular afferents in somatosensory thalamic nuclei of the squirrel monkey (Saimiri sciureus). J. Neurophysiol. 39: 601–612, 1976.
 194. Liedgren, S. R. C., and A. M. Rubin. Vestibulo‐thalamic projections studied with antidromic techniques in the cat. Acta Oto‐Laryngol. 82: 379–387, 1976.
 195. Lim, D. J. Ultrastructure of the otolithic membrane and the cupula. Adv. Oto Rhino Laryngol. 19: 35–49, 1973.
 196. Lindeman, H. H. Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb. Anat. Entwicklungsgesch. 42: 1–113, 1969.
 197. Lindsay, K. W., T. D. M. Roberts, and J. R. Rosenberg. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. J. Physiol. London 261: 583–601, 1976.
 198. Lisberger, S. G., and A. F. Fuchs. Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res. 69: 347–353, 1974.
 199. Lisberger, S. G., and A. F. Fuchs. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth‐pursuit eye movements and passive head rotation. J. Neurophysiol. 41: 733–763, 1978.
 200. Llinás, R., and W. Precht. The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 9: 16–29, 1969.
 201. Llinás, R., W. Precht, and M. Clarke. Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13: 408–431, 1971.
 202. Llinás, R., J. I. Simpson, and W. Precht. Nystagmic modulation of neuronal activity in rabbit cerebellar flocculus. Pfluegers Arch. 367: 7–13, 1976.
 203. Llinás, R., K. Walton, D. E. Hillman, and C. Sotelo. Inferior olive: its role in motor learning. Science 190: 1230–1231, 1975.
 204. Loe, P. R., D. L. Tomko, and G. Werner. The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. London 230: 29–50, 1973.
 205. Lorente de Nó, R. Études sur l'anatomie et la physiologie du labyrinthe de l'oreille et du VIIIe nerf. Deuxième partie. Trav. Lab. Rech. Biol. Univ. Madrid 24: 53–153, 1926.
 206. Lorente de Nó, R. Anatomy of the eighth nerve. The central projection of the nerve endings of the internal ear. Laryngoscope 43: 1–38, 1933.
 207. Lorente de Nó, R. Vestibulo‐ocular reflex arc. Arch. Neurol. Psychiatry 30: 245–291, 1933.
 208. Louie, A. W., and J. Kimm. The response of 8th nerve fibers to horizontal sinusoidal oscillations in the alert monkey. Exp. Brain Res. 24: 447–457, 1976.
 209. Lowenstein, O. The equilibrium function of the vertebrate labyrinth. Biol. Rev. Cambridge Philos. Soc. 11: 113–145, 1936.
 210. Lowenstein, O. Peripheral mechanisms of equilibrium. Br. Med. Bull. 12: 114–118, 1956.
 211. Lowenstein, O. The labyrinth. In: Fish Physiology. Sensory Systems and Electric Organs, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1970, vol. 5, p. 207–240.
 212. Lowenstein, O. Physiology of vestibular receptors. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 19–30.
 213. Lowenstein, O., M. P. Osborne, and J. Wersäll. Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc. R. Soc. London Ser. B 160: 1–12, 1964.
 214. Lowenstein, O., and T. D. M. Roberts. The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. London 110: 392–415, 1949.
 215. Lowenstein, O., and T. D. M. Roberts. The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. London 114: 471–489, 1951.
 216. Lowenstein, O., and A. Sand. The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. London 99: 89–101, 1940.
 217. Lowenstein, O., and A. Sand. The mechanism of the semicircular canal. A study of the responses of single‐fibre preparations to angular accelerations and to rotation of constant speed. Proc. R. Soc. London Ser. B 129: 256–275, 1940.
 218. Lowenstein, O., and R. D. Saunders. Otolith‐controlled responses from first‐order neurons of the labyrinth of the bullfrog (Rana catesbeiana) to changes in linear acceleration. Proc. R. Soc. London Ser. B 191: 475–505, 1975.
 219. Lowenstein, O., and J. Wersäll. A functional interpretation of the electron‐microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature London 184: 1807–1808, 1959.
 220. Luschei, E. S., and A. F. Fuchs. Activity of brain stem neurons during eye movements of alert monkeys. J. Neurophysiol. 35: 445–461, 1972.
 221. Macadar, O., G. E. Wolfe, D. P. O'leary, and J. P. Segundo. Response of the elasmobranch utricle to maintained spatial orientation, transitions and jitter. Exp. Brain Res. 22: 1–12, 1975.
 222. Mach, E. Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig: Engelmann, 1875.
 223. Maeda, M., H. Shimazu, and Y. Shinoda. Rhythmic activities of secondary vestibular efferent fibers recorded within the abducens nucleus during vestibular nystagmus. Brain Res. 34: 361–365, 1971.
 224. Maeda, M., H. Shimazu, and Y. Shinoda. Nature of synaptic events in cat abducens motoneurons at slow and quick phase of vestibular nystagmus. J. Neurophysiol. 35: 279–296, 1972.
 225. Maekawa, K., and J. I. Simpson. Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J. Neurophysiol. 36: 649–666, 1973.
 226. Maekawa, K., and T. Takeda. Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res. 98: 590–595, 1975.
 227. Magnin, M., and A. F. Fuchs. Discharge properties of neurons in the monkey thalamus tested with angular acceleration, eye movement and visual stimuli. Exp. Brain Res. 28: 293–299, 1977.
 228. Magnus, R. Körperstellung. Berlin: Springer‐Verlag, 1924.
 229. Magnus, R., and A. de Kleijn. Die Abhängigkeit des Tonus der Extremitätenmuskeln von der Kopfstellung. Pfluegers Arch. 145: 455–548, 1912.
 230. Magnus, R., and A. de Kleijn. Körperstellung, Gleichgewicht und Bewegung bei Säugern. In: Handbuch der normalen und pathologischen Physiologie. Berlin: Springer‐Verlag, 1930, vol. 15, pt. 1, p. 29–87.
 231. Marini, G., L. Provini, and A. Rosina. Gravity responses of Purkinje cells in the nodulus. Exp. Brain Res. 24: 311–323, 1976.
 232. Markham, C. H. Midbrain and contralateral labyrinth influences on brain stem vestibular neurons in the cat. Brain Res. 9: 312–333, 1968.
 233. Markham, C. H., and I. S. Curthoys. Labyrinthine convergence on vestibular nuclear neurons using natural and electrical stimulation. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 121–187.
 234. Markham, C. H., T. Yagi, and I. S. Curthoys. Influence of the contralateral labyrinth on resting and dynamic activity of vestibular nucleus cells. Soc. Neurosci. Abstr. 2: 1530, 1976.
 235. Mark, D. A. A theory of cerebellar cortex. J. Physiol. London 202: 437–470, 1969.
 236. Maxwell, S. S. Labyrinth and Equilibrium. Philadelphia: Lippincott, 1923.
 237. Mayne, R. A systems concept of the vestibular organs. In: Handbook of Sensory Physiology. Vestibular System. Psychophysics, Applied Aspects and General Interpretations, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 493–580.
 238. McCabe, B. F., and K. Gillingham. The mechanism of vestibular suppression. Ann. Otol. Rhinol. Laryngol. 73: 816–829, 1964.
 239. McCabe, B. F., and J. H. Ryu. Experiments on vestibular compensation. Laryngoscope 79: 1728–1736, 1969.
 240. McCabe, B. F., J. H. Ryu, and T. Sekitani. Further experiments on vestibular compensation. Laryngoscope 82: 381–396, 1972.
 241. McLaren, J. W., and D. E. Hillman. Displacement of the semicircular canal cupula during sinusoidal rotation. Soc. Neurosci. Abstr. 3: 544, 1977.
 242. McMaster, R. F., A. H. Weiss, and M. B. Carpenter. Vestibular projections to the nuclei of the extraocular muscles: degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am. J. Anat. 118: 163–194, 1966.
 243. Melvill‐Jones, G., and P. Davies. Adaptation of the cat vestibulo‐ocular reflex to 200 days of optically reversed vision. Brain Res. 103: 551–554, 1976.
 244. Melvill‐Jones, G., and J. H. Milsum. Spatial and dynamic aspects of visual fixation. IEEE Trans. Biomed. Eng. 12: 54–62, 1965.
 245. Melvill‐Jones, G., and J. H. Milsum. Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. London 209: 295–316, 1970.
 246. Melvill‐Jones, G., and J. H. Milsum. Frequency‐response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J. Physiol. London 219: 191–215, 1971.
 247. Mickle, W. A., and H. W. Ades. Rostral projection pathway of the vestibular system. Am. J. Physiol. 176: 243–246, 1954.
 248. Miles, F. A. Single unit firing patterns in the vestibular nuclei related to voluntary eye movements and passive body rotation in conscious monkeys. Brain Res. 71: 215–224, 1974.
 249. Miles, F. A., and J. H. Fuller. Adaptive plasticity in the vestibulo‐ocular responses of the rhesus monkey. Brain Res. 80: 512–516, 1974.
 250. Miles, F. A., and J. H. Fuller. Visual tracking and the primate flocculus. Science 189: 1000–1002, 1975.
 251. Miller, E. F. II. Counterrolling of the human eyes produced by head tilt with respect to gravity. Acta Oto‐Laryngol. 54: 479–501, 1962.
 252. Moffat, A. J. M., and R. R. Capranica. Auditory sensitivity of the saccule in the American toad (Bufo americanus). J. Comp. Physiol. 105: 1–8, 1976.
 253. Money, K. E., and J. W. Scott. Functions of separate sensory receptors of nonauditory labyrinth of the cat. Am. J. Physiol. 202: 1211–1220, 1962.
 254. Mugnaini, E., F. Walberg, and A. Brodal. Mode of termination of primary vestibular fibres in the lateral vestibular nucleus. An experimental electron microscopical study in the cat. Exp. Brain Res. 4: 187–211, 1967.
 255. Niven, J. I., W. C. Hixson, and M. J. Correia. Elicitation of horizontal nystagmus by periodic linear acceleration. Acta Oto‐Laryngol. 62: 429–441, 1966.
 256. Nyberg‐Hansen, R. Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J. Comp. Neurol. 122: 355–367, 1964.
 257. Nyberg‐Hansen, R., and T. A. Mascitti. Sites and mode of termination of fibers of the vestibulospinal tract in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 122: 369–387, 1964.
 258. Obata, K., M. Ito, R. Ochi, and N. Sato. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ‐aminobutyric acid on Deiters neurones. Exp. Brain Res. 4: 43–57, 1967.
 259. Ödkvist, L. M., S. R. C. Liedgren, B. Larsby, and L. Jerlvall. Vestibular and somatosensory inflow to the vestibular projection area in the post cruciate dimple region of the cat cerebral cortex. Exp. Brain Res. 22: 185–196, 1975.
 260. Ödkvist, L. M., A. M. Rubin, D. W. F. Schwarz, and J. M. Fredrickson. Vestibular and auditory cortical projections in the guinea pig (Cavia porcellus). Exp. Brain Res. 18: 279–286, 1973.
 261. Ödkvist, L. M., A. M. Rubin, D. W. F. Schwarz, and J. M. Fredrickson. Vestibular cortical projection in the rabbit. J. Comp. Neurol. 149: 117–120, 1973.
 262. Ödkvist, L. M., D. W. F. Schwarz, J. M. Fredrickson, and R. Hassler. Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (Saimari sciureus). Exp. Brain Res. 21: 97–105, 1974.
 263. O'leary, D. P., R. F. Dunn, and V. Honrubia. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white‐noise inputs. I. Correlation of response dynamics with receptor innervation. J. Neurophysiol. 39: 631–644, 1976.
 264. Orlovsky, G. N. Activity of vestibulospinal neurons during locomotion. Brain Res. 46: 85–98, 1972.
 265. Orlovsky, G. N., and G. A. Pavlova. Response of Deiters' neurons to tilt during locomotion. Brain Res. 42: 212–214, 1972.
 266. Peterson, B. W. Distribution of neural responses to tilting within vestibular nuclei of the cat. J. Neurophysiol. 33: 750–767, 1970.
 267. Peterson, B. W., and C. Abzug. Properties of projections from vestibular nuclei to medial reticular formation in the cat. J. Neurophysiol. 38: 1421–1435, 1975.
 268. Peterson, B. W., M. Filion, L. P. Felpel, and C. Abzug. Responses of medial reticular neurons to stimulation of the vestibular nerve. Exp. Brain Res. 22: 335–350, 1975.
 269. Platt, C. Central control of postural orientation in flatfish. II. Optic‐vestibular efferent modification of gravistatic input. J. Exp. Biol. 59: 523–541, 1973.
 270. Pollock, L. J., and L. Davis. The influence of cerebellum upon the reflex activities of the decerebrate animal. Brain 50: 277–312, 1927.
 271. Pompeiano, O. Vestibulospinal relations: vestibular influences on gamma motoneurons and primary afferents. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 197–232.
 272. Pompeiano, O., and A. Brodal. The origin of vestibulospinal fibres in the cat. An experimental‐anatomical study with comments on the descending medial longitudinal fasciculus. Arch. Ital. Biol. 95: 166–195, 1957.
 273. Pompeiano, O., and A. Brodal. Spino‐vestibular fibers in the cat. An experimental study. J. Comp. Neurol. 108: 353–382, 1957.
 274. Poppele, R. E. Response of gamma and alpha motor systems to phasic and tonic vestibular inputs. Brain Res. 6: 535–547, 1967.
 275. Precht, W. Cerebellar influences on eye movements. In: Basic Mechanisms of Ocular Motility and their Clinical Implications, edited by G. Lennerstrand and P. Bach‐y‐Rita. New York: Pergamon, 1975, vol. 24, p. 261–280. (Wenner‐Gren Cent. Int. Symp. Ser.)
 276. Precht, W. Vestibular system. In: International Review of Science. Neurophysiology. London: Butterworths, 1975, p. 81–149.
 277. Precht, W., and R. Baker. Synaptic organization of the vestibulo‐trochlear pathway. Exp. Brain Res. 14: 158–184, 1972.
 278. Precht, W., and R. Llinás. Functional organization of the vestibular afferents to the cerebellar cortex of the frog and cat. Exp. Brain Res. 9: 30–52, 1969.
 279. Precht, W., R. Llinás, and M. Clarke. Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13: 378–407, 1971.
 280. Precht, W., A. Richter, S. Ozawa, and H. Shimazu. Intra‐cellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord. Exp. Brain Res. 19: 377–393, 1974.
 281. Precht, W., and H. Shimazu. Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. J. Neurophysiol. 28: 1014–1028, 1965.
 282. Precht, W., H. Shimazu, and C. H. Markham. A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J. Neurophysiol. 29: 996–1010, 1966.
 283. Precht, W., J. I. Simpson, and R. Llinás. Response of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pfluegers Arch. 367: 1–6, 1976.
 284. Precht, W., R. Volkind, and R. H. I. Blanks. Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of cat. Exp. Brain Res. 27: 143–160, 1977.
 285. Precht, W., R. Volkind, M. Maeda, and M. L. Giretti. The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neuroscience 1: 301–312, 1976.
 286. Ramón Y Cajal, S. Sur un noyau spécial du nerf vestibulaire des poissons et des oiseaux. Trav. Lab. Rech. Biol. Univ. Madrid 6: 1–20, 1908.
 287. Ramón, Y Cajal, S. Histologie du système nerveux de I'homme et des vertébrés. Paris: Maloine, 1909, vol. 1.
 288. Rapoport, S., A. Susswein, Y. Uchino, and V. J. Wilson. Properties of vestibular neurones projecting to neck segments of the cat spinal cord. J. Physiol. London 268: 493–510, 1977.
 289. Roberts, T. D. M. Reflex balance. Nature London 244: 156–158, 1973.
 290. Robinson, D. A. Eye movement control in primates. Science 161: 1219–1224, 1968.
 291. Robinson, D. A. The effect of cerebellectomy on the cat's vestibulo‐ocular integrator. Brain Res. 71: 195–207, 1974.
 292. Robinson, D. A. Oculomotor control signals. In: Basic Mechanisms of Ocular Motility and their Clinical Implications, edited by G. Lennestrand and P. Bach‐y‐Rita. New York: Pergamon, 1975, vol. 24, p. 337–374. (Wenner‐Gren Cent. Int. Symp. Ser.)
 293. Robinson, D. A. Adaptive gain control of vestibuloocular reflex by the cerebellum. J. Neurophysiol. 39: 954–969, 1976.
 294. Romer, A. S. Vertebrate Paleontology. Chicago: Univ. of Chicago Press, 1945.
 295. Ron, S., and D. A. Robinson. Eye movements evoked by cerebellar stimulation in the alert monkey. J. Neurophysiol. 36: 1004–1022, 1973.
 296. Rosenbluth, J. The fine structure of acoustic ganglia in the rat. J. Cell Biol. 12: 329–359, 1962.
 297. Russell, I. J. Amphibian lateral line receptors. In: Frog Neurobiology. A Handbook, edited by R. Llinás and W. Precht. New York: Springer‐Verlag, 1976, p. 513–550.
 298. Sadjadpour, K., and A. Brodal. The vestibular nuclei in man. A morphological study in the light of experimental findings in the cat. J. Hirnforsch. 10: 299–323, 1968.
 299. Sala, O. The efferent vestibular system. Electropbysiological research. Acta Oto‐Laryngol. Suppl. 197: 1–34, 1965.
 300. Sans, A., J. Raymond, and R. Marty. Réponses thalamiques et corticales à la stimulation électrique du nerf vestibulaire chez le chat. Exp. Brain Res. 10: 265–275, 1970.
 301. Sans, A., J. Raymond, and R. Marty. Projections des crětes ampullaires et de l'utricle dans les noyaux vestibulaires primaries. Etude microphysiologique et correlations anatomofonctionelles. Brain Res. 44: 337–355, 1972.
 302. Sans, A., J. Raymond, and R. Marty. A vestibulothalamic pathway: electrophysiological demonstration in the cat by localized cooling. J. Neurosci. Res. 2: 167–174, 1976.
 303. Schaefer, K.‐P., and D. L. Meyer. Compensatory mechanisms following labyrinthine lesions in the guinea‐pig. A simple model of learning. In: Memory and Transfer of Information, edited by H. P. Zippel. New York: Plenum, 1973, p. 203–232.
 304. Schaefer, K.‐P., and D. L. Meyer. Compensation of vestibular lesions. In: Handbook of Sensory Physiology. Vestibular System. Psychophysics, Applied Aspects and General Interpretations, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 463–490.
 305. Schmidt, C. L., E. R. Wist, and J. Dichgans. Efferent frequency modulation in the vestibular nerve of goldfish correlated with saccadic eye movements. Exp. Brain Res. 15: 1–14, 1972.
 306. Schmidt, R. S. Frog labyrinthine efferent impulses. Acta Oto‐Laryngol. 56: 51–64, 1963.
 307. Schneider, L. W., and D. J. Anderson. Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res. 112: 61–76, 1976.
 308. Schor, R. H. Responses of cat vestibular neurons to sinusoidal roll tilt. Exp. Brain Res. 20: 347–362, 1974.
 309. Schwarz, D. W. F., and J. M. Fredrickson. The vestibular cortex: a bimodal primary projection field. Science 172: 280–281, 1971.
 310. Schwarz, D. W. F., and A. C. Milne. Somatosensory representation in the vestibulocerebellum. Brain Res. 102: 181–184, 1976.
 311. Schwindt, P. C., A. Richter, and W. Precht. Short latency utricular and canal input to ipsilateral abducens motoneurons. Brain Res. 60: 259–262, 1973.
 312. Sherrington, C. S. Decerebrate rigidity and reflex coordination of movements. J. Physiol. London 22: 319–332, 1898.
 313. Shimazu, H. Organization of commissural connections: physiology. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 177–190.
 314. Shimazu, H., and W. Precht. Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol. 28: 991–1013, 1965.
 315. Shimazu, H., and W. Precht. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol. 29: 467–492, 1966.
 316. Shimazu, H., and C. M. Smith. Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J. Neurophysiol. 34: 493–508, 1971.
 317. Shinoda, Y., and K. Yoshida. Dynamic characteristics of responses to horizontal head angular acceleration in vestibuloocular pathway in the cat. J. Neurophysiol. 37: 653–673, 1974.
 318. Shinoda, Y., and K. Yoshida. Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exp. Brain Res. 22: 97–111, 1975.
 319. Simpson, J. I., and K. E. Alley. Visual climbing fiber input to rabbit vestibulo‐cerebellum: a source of direction‐specific information. Brain Res. 82: 302–308, 1974.
 320. Singleton, G. T. Relationships of the cerebellar nodulus to vestibular function: a study of the effects of nodulectomy on habituation. Laryngoscope 77: 1579–1619, 1967.
 321. Skavenski, A. A., and D. A. Robinson. Role of abducens neurons in vestibuloocular reflex. J. Neurophysiol. 36: 724–738, 1973.
 322. Smiles, K. A., D. Hite, V. J. Hyams, and A. M. Junker. Effect of labyrinthectomy on the dynamic vestibulo‐ocular counterroll reflex in the rhesus monkey. Aviat. Space Environ. Med. 46: 1017–1022, 1975.
 323. Smith, C. A. Microscopic structure of the utricle. Ann. Otol. Rhinol. Laryngol. 65: 450–469, 1956.
 324. Smith, C. A. Utricle and saccule. In: Submicroscopic Structure of the Inner Ear, edited by S. Iurato London: Pergamon, 1967, p. 175–195.
 325. Smith, C. A., O. H. Lowry, and M. L. Wu. The electrolytes of the labyrinthine fluids. Laryngoscope 64: 141–153, 1954.
 326. Smith, C. A., and G. L. Rasmussen. Nerve endings in the maculae and cristae of the chinchilla vestibule, with a special reference to the efferents. In: Third Symposium on the Role of the Vestibular Organs in Space Exploration. Washington, D.C.: Nat. Aeronaut, and Space Admin., 1968, SP‐152, p. 183–201.
 327. Smith, C. A., and K. Tanaka. Some aspects of the structure of the vestibular apparatus. In: The Vestibular System, edited by R. F. Naunton. New York: Academic, 1975, p. 3–20.
 328. Snider, R. S., and A. Stowell. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J. Neurophysiol. 1: 331–357, 1944.
 329. Soechting, J. F., J. H. Anderson, and A. Berthoz. Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. III. Motor output during rotations in the vertical plane. Brain Res. 120: 35–47, 1977.
 330. Spiegel, E. A. Physiopathology of the voluntary and reflex innervation of ocular movements. Arch. Ophthalmol. 8: 738–753, 1932.
 331. Spiegel, E. A., and T. D. Demetriades. Die Zentrale Kompensation des Labyrinthverlustes. Pfluegers Arch. 210: 215–222, 1925.
 332. Spoendlin, H. Ultrastructural studies of the labyrinth in squirrel monkeys. In: The Role of the Vestibular Organs in the Exploration of Space. Washington, D.C.: Nat. Aeronaut. and Space Admin., 1965, SP‐77, p. 7–21.
 333. Spoendlin, H. Some morphofunctional and pathological aspects of the vestibular sensory epithelia. In: Second Symposium on the Role of the Vestibular Organs in Space Exploration. Washington, D.C.: Nat. Aeronaut. and Space Admin., 1966, SP‐115, p. 99–116.
 334. Spoendlin, H., and W. Lichtensteiger. The adrenergic innervation of the labyrinth. Acta Oto‐Laryngol. 61: 423–434, 1966.
 335. Sprague, J. M., and W. W. Chambers. Regulation of posture in intact and decerebrate cat. I. Cerebellum, reticular formation, vestibular nuclei. J. Neurophysiol. 16: 451–463, 1953.
 336. Steer, R. W., Jr. Progress in vestibular modeling. Part I: Response of semicircular canals to constant rotation in a linear acceleration field. In: Fourth Symposium on the Role of the Vestibular Organs in Space Exploration. Washington D.C.: Nat. Aeronaut. and Space Admin., 1970, SP‐187, p. 353–360.
 337. Stein, B. M., and M. B. Carpenter. Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am. J. Anat. 120: 281–318, 1967.
 338. Steinhausen, W. Über den Nachweis der Bewegung der Cupula in der intakten Bogengansampulle des Labyrinthes bei der natürlichen rotatorischen und calorischen Reizung. Pfluegers Arch. 228: 322–328, 1931.
 339. Steinhausen, W. Über die Beobachtung der Cupula in den Bogengansampullen des Labyrinths des lebenden Hechts. Pfluegers Arch. 232: 500–512, 1933.
 340. Sullivan, J. A., W. Johnson, and B. Smith. Normal and abnormal activity of the human otoliths. Ann. Otol. Rhinol. Laryngol. 66: 918–925, 1957.
 341. Suzuki, J.‐I., and B. Cohen. Head, eye, body and limb movements from semicircular canal nerves. Exp. Neurol. 10: 393–405, 1964.
 342. Szentágothai, J. The elementary vestibulo‐ocular reflex arc. J. Neurophysiol. 13: 395–407, 1950.
 343. Tait, J., and W. J. McNally. Some features of the action of the utricular maculae (and of the associated action of the semicircular canals) of the frog. Philos. Trans. R. Soc. London Ser. B 224: 241–286, 1934.
 344. Takemori, S., and B. Cohen. Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res. 72: 213–224, 1974.
 345. Tarlov, E. Rostral projections of the primate vestibular nuclei. An experimental study in the macaque, baboon and chimpanzee. J. Comp. Neurol. 135: 27–56, 1969.
 346. Tarlov, E. Organization of vestibulo‐oculomotor projections in the cat. Brain Res. 20: 159–179, 1970.
 347. Ten Bruggencate, G., U. Sonnhof, R. Teichmann, and E. Weller. A study of the synaptic input to Deiters' neurones evoked by stimulation of peripheral nerves and spinal cord. Brain Res. 25: 207–211, 1971.
 348. Terayama, Y., E. Shige, and T. Sakamoto. Distribution and origin of adrenergic nerve fibers in the vestibular apparatus and their arterial supply in the guinea pig. A fluorescent microscopic study. Acta Oto‐Laryngol. 76: 244–253, 1973.
 349. Trincker, D. The transformation of mechanical stimulus into nervous excitation by the labyrinthine receptors. Symp. Soc. Exp. Biol. 16: 289–316, 1962.
 350. Van Buskirk, W. C., R. G. Watts, and Y. K. Liu. The fluid mechanics of the semicircular canals. J. Fluid Mech. 78: 87–98, 1976.
 351. Van Der Hoeve, J., and A. de Kleijn. Tonische Labyrinthereflexe auf die Augen. Pfluegers Arch. 169: 241–262, 1917.
 352. Van Egmond, A. A. J., J. J. Groen, and L. B. W. Jongkees. The mechanics of the semicircular canal. J. Physiol. London 110: 1–17, 1949.
 353. Versteegh, C. Ergebnisse partieller Labyrinth exstirpation bei Kaninchen. Acta Oto‐Laryngol. 11: 393–408, 1927.
 354. Vidal, J., M. Jeannerod, W. Lifschitz, H. Levitan, J. Rosenberg, and J. P. Segundo. Static and dynamic properties of gravity‐sensitive receptors in the cat vestibular system. Kybernetik 9: 205–215, 1971.
 355. Waespe, W., and V. Henn. Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 27: 523–538, 1977.
 356. Waespe, W., and V. Henn. Vestibular nuclei activity during optokinetic after‐nystagmus (OKAN) in the alert monkey. Exp. Brain Res. 30: 323–330, 1977.
 357. Walberg, F., D. Bowsher, and A. Brodal. The termination of primary vestibular fibers in the vestibular nuclei in the cat. An experimental study with silver methods. J. Comp. Neurol. 110: 391–419, 1958.
 358. Walsh, B. T., J. B. Miller, R. R. Gacek, and N. Y. S. Kiang. Spontaneous activity in the eighth cranial nerve of the cat. Int. J. Neurosci. 3: 221–236, 1972.
 359. Walzl, E. M., and V. Mountcastle. Projection of vestibular nerve to cerebral cortex of the cat (Abstract). Am. J. Physiol. 159: 595, 1949.
 360. Warr, W. B. Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholin‐esterase histochemistry. J. Comp. Neurol. 161: 159–182, 1975.
 361. Watanuki, K., and H. F. Schuknecht. A morphological study of human vestibular sensory epithelia. Arch. Otolaryngol. 102: 583–588, 1976.
 362. Watt, D. G. D. Responses of cats to sudden falls: an otolith‐originating reflex assisting landing. J. Neurophysiol. 39: 257–265, 1976.
 363. Wepsic, J. G. Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol. 15: 299–318, 1966.
 364. Wersäll, J. Studies on the structure and innervation of the sensory epithelium of the cristae ampullaris in the guinea pig. A light and electron microscopic investigation. Acta Oto‐Laryngol. Suppl. 126: 1–85, 1956.
 365. Wersäll, J., and D. Bagger‐SJÖBäck. Morphology of the vestibular sense organ. In: Handbook of Sensory Physiology. Vestibular System. Basic Mechanisms, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 1, p. 123–170.
 366. Wersäll, J., Å. Flock, and P.‐G. Lundquist. Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symp. Quant. Biol. 30: 115–132, 1965.
 367. Wiederhold, M. L. Mechanosensory transduction in ‘sensory’ and ‘motile’ cilia. Ann. Rev. Biophys. Bioeng. 5: 39–62, 1976.
 368. Wilson, V. J. Physiological pathways through the vestibular nuclei. Int. Rev. Neurobiol. 15: 27–81, 1972.
 369. Wilson, V. J., J. A. Anderson, and D. Felix. Unit and field potential activity evoked in the pigeon vestibulocerebellum by stimulation of individual semicircular canals. Exp. Brain Res. 19: 142–157, 1974.
 370. Wilson, V. J., and L. P. Felpel. Specificity of semicircular canal input to neurons in the pigeon vestibular nuclei. J. Neurophysiol. 35: 253–264, 1972.
 371. Wilson, V. J., R. R. Gacek, M. Maeda, and Y. Uchino. Saccular and utricular input to cat neck motoneurons. J. Neurophysiol. 40: 63–73, 1977.
 372. Wilson, V. J., M. Kato, B. W. Peterson, and R. M. Wylie. A single‐unit analysis of the organization of Deiters' nucleus. J. Neurophysiol. 30: 603–619, 1967.
 373. Wilson, V. J., and M. Maeda. Connections between semicircular canals and neck motoneurons in the cat. J. Neurophysiol. 37: 346–357, 1974.
 374. Wilson, V. J., M. Maeda, and J. I. Franck. Input from neck afferents to the cat flocculus. Brain Res. 89: 133–138, 1975.
 375. Wilson, V. J., M. Maeda, J. I. Franck, and H. Shimazu. Mossy fiber neck and second‐order labyrinthine projections to cat flocculus. J. Neurophysiol. 39: 301–310, 1976.
 376. Wilson, V. J., R. M. Wylie, and L. A. Marco. Projection to the spinal cord from the medial and descending vestibular nuclei of the cat. Nature London 215: 429–430, 1967.
 377. Wilson, V. J., R. M. Wylie, and L. A. Marco. Synaptic inputs to cells in the medial vestibular nucleus. J. Neurophysiol. 31: 176–185, 1968.
 378. Wilson, V. J., and M. Yoshida. Bilateral connections between labyrinths and neck motoneurons. Brain Res. 13: 603–607, 1969.
 379. Wilson, V. J., and M. Yoshida. Monosynaptic inhibition of neck motoneurons by the medial vestibular nucleus. Exp. Brain Res. 9: 365–380, 1969.
 380. Wilson, V. J., M. Yoshida, and R. H. Schor. Supraspinal monosynaptic excitation and inhibition of thoracic back motoneurons. Exp. Brain Res. 11: 282–295, 1970.
 381. Wylie, R. M., and L. P. Felpel. The influence of the cerebellum and peripheral somatic nerves on the activity of Deiters' cells in the cat. Exp. Brain Res. 12: 528–546, 1971.
 382. Yagi, T., N. E. Simpson, and C. H. Markham. The relationship of conduction velocity to other physiological properties of the cat's horizontal canal neurons. Exp. Brain Res. 30: 587–600, 1977.
 383. Young E. D., C. Fernández, and J. M. Goldberg. Responses of squirrel monkey vestibular neurons to audio‐frequency sound and head vibration. Acta Oto‐Laryngol. 84: 352–360, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jay M. Goldberg, César Fernández. The Vestibular System. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 977-1022. First published in print 1984. doi: 10.1002/cphy.cp010321