Comprehensive Physiology Wiley Online Library

Central Neural Mechanisms of Taste

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Behavioral and Physiological Responses to Gustatory Stimuli
2 Anatomy and Physiology of Central Gustatory System
2.1 Central Terminations of Peripheral Gustatory Neurons in Medulla
2.2 Coding Gustatory Sensation in Brain
2.3 Thalamic Gustatory Area
2.4 Gustatory Neocortex
2.5 Dorsal Pontine Gustatory Area
3 Conclusion
Figure 1. Figure 1.

Coronal sections through rostral medulla of rat depicting relationship of rostral end of nucleus of solitary tract (NST) to other anatomical landmarks. A: normal brain, cresyl Lecht violet stain. The NST boundaries are difficult to distinguish, particularly against subjacent reticular formation (RF). Cells of rostral NST are smaller than in descending vestibular (DVN) and spinal trigeminal (SV) nuclei. DCN, dorsal cochlear nucleus; MVN, medial vestibular nucleus; M VII, facial motor nucleus; RB, restiform body; T V, spinal trigeminal tract. Scale, 1.00 mm. B: autoradiograph in dark‐field illumination at similar level of medulla after injection of tritiated amino acid into root of facial nerve including geniculate ganglion. Largest white area, dense silver grains reduced by tritiated amino acid in synaptic terminals and preterminal ramifications of intermediate nerve within rostral NST. Two smaller white areas result from labeled intermediate nerve axons in solitary tract dorsal to NST and in spinal trigeminal tract lateral to it. Photomicrograph has been purposely overexposed so that some of the anatomical landmarks are visible. Abbreviations as in A. Scale in A represents 0.5 mm in B.

Figure 2. Figure 2.

Semidiagrammatic drawing of horizontal section through nucleus of solitary tract (NST) shows terminal distribution of intermediate facial (seventh), trigeminal (fifth), and vagoglossopharyngeal (ninth and tenth) nerves determined by techniques of Nauta and of Glees for differential staining of degenerating axons. Terminations illustrated by filled triangles, dots, and open circles. CN, cuneate nucleus; G VII, genu of facial root; M V, motor trigeminal nucleus; l., lateral division of NST; m., medial division of NST; P V, principal sensory trigeminal nucleus; S V‐, spinal trigeminal nucleus (c, pars caudalis; ip, pars interpolaris; o, pars oralis); T V, spinal trigeminal tract.

Adapted from Torvik 312
Figure 3. Figure 3.

Distribution of responses within nucleus of solitary tract (STn) of rats elicited by electrical stimulation of nerves innervating the tongue: chorda tympani branch of facial nerve; lingual‐tonsillar branch of glossopharyngeal (ninth) nerve; and lingual branch of trigeminal nerve. Com n, commissural nucleus of Cajal; SVn, spinal trigeminal nucleus; XII n, hypoglossal nucleus.

From Blomquist and Antem 39
Figure 4. Figure 4.

Relative magnitude of summated neural responses to 0.01 M quinine hydrochloride (QHCl) recorded in 29 rats in tongue areas of nucleus of solitary tract. Magnitudes of summated neural responses in arbitrary units, adjusted to 100 U for response to 0.1 M NaCl on same region of tongue.

From Halpern and Nelson 145
Figure 5. Figure 5.

Response profiles of 14 single neurons isolated in nucleus of solitary tract of rats. Response elicited by chemical stimuli flowing over anterior tongue. Unless otherwise noted, stimuli and their concentrations are listed above unit 8. Data represent number of impulses during 1st s of stimulus flow. Arrowhead, resting rate of unit after water rinse.

From Pfaffmann et al. 253, reprinted from Sensory Communication, edited by W. A. Rosenblith, by permission of The MIT Press, Cambridge, Massachusetts. Copyright © 1961 by the Massachusetts Institute of Technology
Figure 6. Figure 6.

Average concentration response functions for gustatory neurons to variety of chemical stimuli flowed on anterior tongue. A: chorda tympani (CT). B: nucleus of solitary tract (NTS). Number of neurons used in each determination ranged from 19 to 40. Data derived from number of impulses during first 3 s of stimulus flow. Spontaneous rate equals average impulse rate during the second prior to stimulus onset. Arrow in B indicates average rate of firing with distilled water flowing on tongue. Ordinate response scale for NTS is 4 × scale for CT to facilitate comparison of data from 2 levels. NaSac, sodium saccharin; QHCl, quinine hydrochloride; Suc, sucrose.

From Ganchrow and Erickson 123
Figure 7. Figure 7.

Coronal section through thalamus of rat demonstrates relationship of lingual‐gustatory area nucleus ventralis posteromedialis parvicellularis (VPMpc) to other anatomical landmarks (cresyl violet stain). Dorsal and ventral boundaries of VPMpc are clearly delineated by cell‐poor zones. In rats, lateral and medial limits are often indistinct. Dorsolateral border appears only as transition from darker to lighter gray extending laterally from base of parafascicular nucleus (PFN). Medial edge occurs at border of two small, darkly staining clumps of cells. Cytoarchitectural distinct area includes neurons that respond to all lingual modalities; touch, temperature, and taste. In monkeys a pure gustatory zone is more often designated VPMpc (cf. Fig. 8). Hb, habenula; HIT, habenula‐interpeduncular tract; IC, internal capsule; ML, medial lemniscus; VPM, nucleus ventralis posteromedialis. Scale, 1.0 mm.

Figure 8. Figure 8.

Comparison of distribution of thalamic multiunit responses generated by electrical stimulation of chorda tympani (CT), glossopharyngeal (IX), and lingual nerves in rat and squirrel monkey. Vertical lines, electrode tracks; thickened lines, responsive areas. Data represent results of several preparations for each nerve replotted onto standard coronal sections through appropriate levels of thalamus. Although fewer ipsilateral penetrations occur in the rat, areas responding to CT and IXth nerve stimulation appear to be roughly equivalent; lingual area is exclusively contralateral. In the monkey CT and IX representations are largely ipsilateral; lingual is bilateral. CM, centre medianum.

Adapted from Blomquist and Emmers and Benjamin 41,103
Figure 9. Figure 9.

Diagrammatic comparison of thalamic areas responsive to tongue‐nerve stimulation in rat and squirrel monkey represented on a horizontal plane. Stippled areas, chorda tympani responses; hatched areas, glossopharyngeal; dashed lines, lingual; solid lines, lingual subnucleus (VPMpc) for rat, and nucleus ventralis posteromedialis (VPM) and VPMpc for squirrel monkey.

From Blomquist and Emmers and Benjamin 41,103
Figure 10. Figure 10.

Response profiles to sapid stimuli for 27 neurons isolated in nucleus ventralis posteromedialis parvicellularis of squirrel monkey. Each profile indicates presence or absence of response to a particular chemical at a given concentration, but not magnitude of response. Threshold for response is indicated on logarithmic concentration scale, with highest concentration 100 of each chemical listed in upper right. The higher the bar, the weaker the concentration of that chemical required to alter activity of unit. Numbers within some profiles indicate that more than one unit exhibited this pattern of sensitivity. Open bars, unit did not respond to stimulus (HCl in all cases), but was activated by subsequent water rinse. Letter F over bar also indicates a response to water rinse. Symbol for plus, unit was a positive potential. Note that more than one‐half of units (16/27) responded to only 1 or 2 chemicals. Most common sensitivity was to sucrose or NaCl.

From Benjamin 25, reproduced with permission from Pergamon Press, Ltd
Figure 11. Figure 11.

Comparison of distribution on exposed cortex of evoked potentials elicited by electrical stimulation of chorda tympani, glossopharyngeal (IXth), or lingual nerves in squirrel monkey. Only cortex rostral to Sylvian fissure is included in diagrams.

From Benjamin et al. 28
Figure 12. Figure 12.

Relative location of tongue‐nerve projection zones of squirrel monkey. Stippled area, lateral convexity, includes both ipsi‐ and contralateral evoked potentials resulting from stimulation of chorda tympani (CT), glossopharyngeal (ninth), and lingual nerves. Solid area, buried opercular cortex, includes only ipsilateral potentials from CT and ninth nerve.

From Benjamin and Burton 27
Figure 13. Figure 13.

Loci of cortical units responding to sapid stimuli (solid stars) or mechanical stimulation of oral cavity (open stars) in awake, behaving squirrel monkeys. Taste units are concentrated in opercular evoked potential zone. Two other points are worth noting: First, although potentials evoked by lingual nerve are not recorded from opercular cortex, oral mechanosensory neurons occur in operculum intermixed with taste units. Second, both gustatory and oral mechanosensory responses occur caudal to buried gustatory nerve zones mapped by Benjamin and Burton 27.

From Sudakov et al. 306
Figure 14. Figure 14.

Diagrammatic representation of gustatory cortex (G) in relation to the first (SI) and second (SII) somatosensory areas in rat. Visual (V) and auditory (A) cortex are also outlined. Gustatory area is based on degeneration arising from a lesion confined to caudal end of nucleus ventralis posteromedialis parvicellularis in thalamus.

From Donaldson et al. 91
Figure 15. Figure 15.

Distribution of degenerating axons charted onto tracings of projected coronal sections through rostral medulla and caudal pons. Large aligned dots, degenerating fascicles of fibers. Smaller dots, single fibers or preterminal arborization. Top panel, lesion (L) was placed in electrophysiologically identified gustatory area in rostral nucleus of solitary tract. Degenerating fibers do not appear in either medial lemniscus or thalamus but rather ascend a short distance in ipsilateral reticular formation and terminate in caudal parabrachial nuclei. BC, brachium conjunctivum; CST, cerebello‐spinal tract; Mes V, mesencephalic trigeminal tract and nucleus; VII, facial motor nucleus.

From Norgren and Leonard 232
Figure 16. Figure 16.

Pontine gustatory area in caudal parabrachial nuclei of rat. A: low‐power photomicrograph of coronal section through pons illustrates relationship of parabrachial nuclei to other anatomical landmarks (cresyl Lecht violet stain). Scale, 1.0 mm. BC, brachium conjunctivum; DTN, dorsal tegmental nucleus; lc, locus ceruleus; MCP, middle cerebellar peduncle; Mes V, mesencephalic trigeminal tract and nucleus; MV or MoV, trigeminal motor nucleus; PBN, parabrachial nuclei; PV, principal sensory trigeminal nucleus; STA, supratrigeminal area; TrV, trigeminal sensory tract. B: location of single units responding to gustatory and other intra‐ and perioral stimuli plotted on tracings of projected sections through dorsal pons. Sections separated by 200 μm. Filled circles, neurons that respond best to sapid stimuli applied on anterior tongue (fungiform papilla innervated by chorda typmani nerve). Open circles, units that respond best to sapid stimuli applied in posterior oral cavity and that presumably activate receptors in circumvallate and foliate papillae (innervated by glossopharyngeal nerve), and on palate (innervated by greater superficial petrosal nerve). Open squares, response to tongue thermal or tactile stimuli. Filled squares, response to jaw stretch or tooth top. Cross, units that did not respond to any stimulus tested. Sapid stimuli consisted of 0.25 M NaCl, 0.5 M sucrose, 0.003 M quinine HCl, and 0.003 N HCl in distilled water at room temperature. LC, locus ceruleus. Other abbreviations as for Part A.

B: from Norgren and Pfaffman 233
Figure 17. Figure 17.

Filmed oscilloscope traces of activity of single unit isolated in parabrachial nuclei. Dots above traces indicate spikes counted as data. NaCl (0.25 M) applied to anterior tongue (Na, A) elicited some background activity, but inhibited counted unit. When applied to posterior oral cavity (Na, P), same stimulus elicited a sustained response. Remaining gustatory stimuli produced less distinct inhibition when applied to anterior tongue, and less activation when applied to posterior oral cavity. Response to 0.003 M quinine HCl (Q, A and Q, P) is illustrated. Lines beneath traces indicate onset and duration of water rinse (unlabeled) and sapid stimuli. Calibrations, 2.0 s and 100 μV; negative, toward top.

From Norgren and Pfaffmann 233
Figure 18. Figure 18.

Charts of rostral distribution of [3H]proline on tracings of projected sections of rat brain processed for autoradiographic demonstration of axonal ramifications. Labeled proline was iontopho‐retically applied to electrophysiologically identified gustatory zone in dorsal pons. (a, b): Hatched area, densest label at injection site. Large dots within hatched area, zona in which somata concentrated the labeled proline. BC, brachium conjunctivum; LC, locus ceruleus; Mes V, mesencephalic trigeminal nucleus; MLF, medial longitudinal fasciculus; MRV, motor root of trigeminal nerve; M V, trigeminal motor nucleus; P V, principal trigeminal sensory nucleus; ST V, spinal trigeminal tract. (c‐i): Short lines, orientation of labeled fascicles of fibers. Dots, relative density of label distributions not obviously oriented along axons. Number beside each section, distance in millimeters rostral to injection site. AC, anterior commissure; AHA, anterior hypothalamic area; Amyg, amygdala; BLA, basolateral complex of amygdala; CG, central gray; C‐P, caudate putamen; F, fornix; Fb, fimbria; Hb, habenula; HIT, habenulo‐interpeduncular tract; HPC, hippocampus; IC, internal capsule; IP, inter‐peduncular nucleus; ITR, inferior thalamic radiations; LOT, lateral olfactory tract; MFB, medial forebrain bundle; MG, medial geniculate; ML, medial lemniscus; MIT, mammillothalamic tract; OT, optic tract; PLAC, posterior limb of the anterior commissure; RN, red nucleus; S, septum; SC, superior colliculus; SM, stria medullaris; SN, substantia nigra; SOC, supraoptic commissure; ST, stria terminalis, STN, subthalamic nucleus; V, ventricle; Vb, ventrobasal complex; VMH, ventromedial nucleus of the hypothalamus; ZI, zona incerta.

From Norgren 224


Figure 1.

Coronal sections through rostral medulla of rat depicting relationship of rostral end of nucleus of solitary tract (NST) to other anatomical landmarks. A: normal brain, cresyl Lecht violet stain. The NST boundaries are difficult to distinguish, particularly against subjacent reticular formation (RF). Cells of rostral NST are smaller than in descending vestibular (DVN) and spinal trigeminal (SV) nuclei. DCN, dorsal cochlear nucleus; MVN, medial vestibular nucleus; M VII, facial motor nucleus; RB, restiform body; T V, spinal trigeminal tract. Scale, 1.00 mm. B: autoradiograph in dark‐field illumination at similar level of medulla after injection of tritiated amino acid into root of facial nerve including geniculate ganglion. Largest white area, dense silver grains reduced by tritiated amino acid in synaptic terminals and preterminal ramifications of intermediate nerve within rostral NST. Two smaller white areas result from labeled intermediate nerve axons in solitary tract dorsal to NST and in spinal trigeminal tract lateral to it. Photomicrograph has been purposely overexposed so that some of the anatomical landmarks are visible. Abbreviations as in A. Scale in A represents 0.5 mm in B.



Figure 2.

Semidiagrammatic drawing of horizontal section through nucleus of solitary tract (NST) shows terminal distribution of intermediate facial (seventh), trigeminal (fifth), and vagoglossopharyngeal (ninth and tenth) nerves determined by techniques of Nauta and of Glees for differential staining of degenerating axons. Terminations illustrated by filled triangles, dots, and open circles. CN, cuneate nucleus; G VII, genu of facial root; M V, motor trigeminal nucleus; l., lateral division of NST; m., medial division of NST; P V, principal sensory trigeminal nucleus; S V‐, spinal trigeminal nucleus (c, pars caudalis; ip, pars interpolaris; o, pars oralis); T V, spinal trigeminal tract.

Adapted from Torvik 312


Figure 3.

Distribution of responses within nucleus of solitary tract (STn) of rats elicited by electrical stimulation of nerves innervating the tongue: chorda tympani branch of facial nerve; lingual‐tonsillar branch of glossopharyngeal (ninth) nerve; and lingual branch of trigeminal nerve. Com n, commissural nucleus of Cajal; SVn, spinal trigeminal nucleus; XII n, hypoglossal nucleus.

From Blomquist and Antem 39


Figure 4.

Relative magnitude of summated neural responses to 0.01 M quinine hydrochloride (QHCl) recorded in 29 rats in tongue areas of nucleus of solitary tract. Magnitudes of summated neural responses in arbitrary units, adjusted to 100 U for response to 0.1 M NaCl on same region of tongue.

From Halpern and Nelson 145


Figure 5.

Response profiles of 14 single neurons isolated in nucleus of solitary tract of rats. Response elicited by chemical stimuli flowing over anterior tongue. Unless otherwise noted, stimuli and their concentrations are listed above unit 8. Data represent number of impulses during 1st s of stimulus flow. Arrowhead, resting rate of unit after water rinse.

From Pfaffmann et al. 253, reprinted from Sensory Communication, edited by W. A. Rosenblith, by permission of The MIT Press, Cambridge, Massachusetts. Copyright © 1961 by the Massachusetts Institute of Technology


Figure 6.

Average concentration response functions for gustatory neurons to variety of chemical stimuli flowed on anterior tongue. A: chorda tympani (CT). B: nucleus of solitary tract (NTS). Number of neurons used in each determination ranged from 19 to 40. Data derived from number of impulses during first 3 s of stimulus flow. Spontaneous rate equals average impulse rate during the second prior to stimulus onset. Arrow in B indicates average rate of firing with distilled water flowing on tongue. Ordinate response scale for NTS is 4 × scale for CT to facilitate comparison of data from 2 levels. NaSac, sodium saccharin; QHCl, quinine hydrochloride; Suc, sucrose.

From Ganchrow and Erickson 123


Figure 7.

Coronal section through thalamus of rat demonstrates relationship of lingual‐gustatory area nucleus ventralis posteromedialis parvicellularis (VPMpc) to other anatomical landmarks (cresyl violet stain). Dorsal and ventral boundaries of VPMpc are clearly delineated by cell‐poor zones. In rats, lateral and medial limits are often indistinct. Dorsolateral border appears only as transition from darker to lighter gray extending laterally from base of parafascicular nucleus (PFN). Medial edge occurs at border of two small, darkly staining clumps of cells. Cytoarchitectural distinct area includes neurons that respond to all lingual modalities; touch, temperature, and taste. In monkeys a pure gustatory zone is more often designated VPMpc (cf. Fig. 8). Hb, habenula; HIT, habenula‐interpeduncular tract; IC, internal capsule; ML, medial lemniscus; VPM, nucleus ventralis posteromedialis. Scale, 1.0 mm.



Figure 8.

Comparison of distribution of thalamic multiunit responses generated by electrical stimulation of chorda tympani (CT), glossopharyngeal (IX), and lingual nerves in rat and squirrel monkey. Vertical lines, electrode tracks; thickened lines, responsive areas. Data represent results of several preparations for each nerve replotted onto standard coronal sections through appropriate levels of thalamus. Although fewer ipsilateral penetrations occur in the rat, areas responding to CT and IXth nerve stimulation appear to be roughly equivalent; lingual area is exclusively contralateral. In the monkey CT and IX representations are largely ipsilateral; lingual is bilateral. CM, centre medianum.

Adapted from Blomquist and Emmers and Benjamin 41,103


Figure 9.

Diagrammatic comparison of thalamic areas responsive to tongue‐nerve stimulation in rat and squirrel monkey represented on a horizontal plane. Stippled areas, chorda tympani responses; hatched areas, glossopharyngeal; dashed lines, lingual; solid lines, lingual subnucleus (VPMpc) for rat, and nucleus ventralis posteromedialis (VPM) and VPMpc for squirrel monkey.

From Blomquist and Emmers and Benjamin 41,103


Figure 10.

Response profiles to sapid stimuli for 27 neurons isolated in nucleus ventralis posteromedialis parvicellularis of squirrel monkey. Each profile indicates presence or absence of response to a particular chemical at a given concentration, but not magnitude of response. Threshold for response is indicated on logarithmic concentration scale, with highest concentration 100 of each chemical listed in upper right. The higher the bar, the weaker the concentration of that chemical required to alter activity of unit. Numbers within some profiles indicate that more than one unit exhibited this pattern of sensitivity. Open bars, unit did not respond to stimulus (HCl in all cases), but was activated by subsequent water rinse. Letter F over bar also indicates a response to water rinse. Symbol for plus, unit was a positive potential. Note that more than one‐half of units (16/27) responded to only 1 or 2 chemicals. Most common sensitivity was to sucrose or NaCl.

From Benjamin 25, reproduced with permission from Pergamon Press, Ltd


Figure 11.

Comparison of distribution on exposed cortex of evoked potentials elicited by electrical stimulation of chorda tympani, glossopharyngeal (IXth), or lingual nerves in squirrel monkey. Only cortex rostral to Sylvian fissure is included in diagrams.

From Benjamin et al. 28


Figure 12.

Relative location of tongue‐nerve projection zones of squirrel monkey. Stippled area, lateral convexity, includes both ipsi‐ and contralateral evoked potentials resulting from stimulation of chorda tympani (CT), glossopharyngeal (ninth), and lingual nerves. Solid area, buried opercular cortex, includes only ipsilateral potentials from CT and ninth nerve.

From Benjamin and Burton 27


Figure 13.

Loci of cortical units responding to sapid stimuli (solid stars) or mechanical stimulation of oral cavity (open stars) in awake, behaving squirrel monkeys. Taste units are concentrated in opercular evoked potential zone. Two other points are worth noting: First, although potentials evoked by lingual nerve are not recorded from opercular cortex, oral mechanosensory neurons occur in operculum intermixed with taste units. Second, both gustatory and oral mechanosensory responses occur caudal to buried gustatory nerve zones mapped by Benjamin and Burton 27.

From Sudakov et al. 306


Figure 14.

Diagrammatic representation of gustatory cortex (G) in relation to the first (SI) and second (SII) somatosensory areas in rat. Visual (V) and auditory (A) cortex are also outlined. Gustatory area is based on degeneration arising from a lesion confined to caudal end of nucleus ventralis posteromedialis parvicellularis in thalamus.

From Donaldson et al. 91


Figure 15.

Distribution of degenerating axons charted onto tracings of projected coronal sections through rostral medulla and caudal pons. Large aligned dots, degenerating fascicles of fibers. Smaller dots, single fibers or preterminal arborization. Top panel, lesion (L) was placed in electrophysiologically identified gustatory area in rostral nucleus of solitary tract. Degenerating fibers do not appear in either medial lemniscus or thalamus but rather ascend a short distance in ipsilateral reticular formation and terminate in caudal parabrachial nuclei. BC, brachium conjunctivum; CST, cerebello‐spinal tract; Mes V, mesencephalic trigeminal tract and nucleus; VII, facial motor nucleus.

From Norgren and Leonard 232


Figure 16.

Pontine gustatory area in caudal parabrachial nuclei of rat. A: low‐power photomicrograph of coronal section through pons illustrates relationship of parabrachial nuclei to other anatomical landmarks (cresyl Lecht violet stain). Scale, 1.0 mm. BC, brachium conjunctivum; DTN, dorsal tegmental nucleus; lc, locus ceruleus; MCP, middle cerebellar peduncle; Mes V, mesencephalic trigeminal tract and nucleus; MV or MoV, trigeminal motor nucleus; PBN, parabrachial nuclei; PV, principal sensory trigeminal nucleus; STA, supratrigeminal area; TrV, trigeminal sensory tract. B: location of single units responding to gustatory and other intra‐ and perioral stimuli plotted on tracings of projected sections through dorsal pons. Sections separated by 200 μm. Filled circles, neurons that respond best to sapid stimuli applied on anterior tongue (fungiform papilla innervated by chorda typmani nerve). Open circles, units that respond best to sapid stimuli applied in posterior oral cavity and that presumably activate receptors in circumvallate and foliate papillae (innervated by glossopharyngeal nerve), and on palate (innervated by greater superficial petrosal nerve). Open squares, response to tongue thermal or tactile stimuli. Filled squares, response to jaw stretch or tooth top. Cross, units that did not respond to any stimulus tested. Sapid stimuli consisted of 0.25 M NaCl, 0.5 M sucrose, 0.003 M quinine HCl, and 0.003 N HCl in distilled water at room temperature. LC, locus ceruleus. Other abbreviations as for Part A.

B: from Norgren and Pfaffman 233


Figure 17.

Filmed oscilloscope traces of activity of single unit isolated in parabrachial nuclei. Dots above traces indicate spikes counted as data. NaCl (0.25 M) applied to anterior tongue (Na, A) elicited some background activity, but inhibited counted unit. When applied to posterior oral cavity (Na, P), same stimulus elicited a sustained response. Remaining gustatory stimuli produced less distinct inhibition when applied to anterior tongue, and less activation when applied to posterior oral cavity. Response to 0.003 M quinine HCl (Q, A and Q, P) is illustrated. Lines beneath traces indicate onset and duration of water rinse (unlabeled) and sapid stimuli. Calibrations, 2.0 s and 100 μV; negative, toward top.

From Norgren and Pfaffmann 233


Figure 18.

Charts of rostral distribution of [3H]proline on tracings of projected sections of rat brain processed for autoradiographic demonstration of axonal ramifications. Labeled proline was iontopho‐retically applied to electrophysiologically identified gustatory zone in dorsal pons. (a, b): Hatched area, densest label at injection site. Large dots within hatched area, zona in which somata concentrated the labeled proline. BC, brachium conjunctivum; LC, locus ceruleus; Mes V, mesencephalic trigeminal nucleus; MLF, medial longitudinal fasciculus; MRV, motor root of trigeminal nerve; M V, trigeminal motor nucleus; P V, principal trigeminal sensory nucleus; ST V, spinal trigeminal tract. (c‐i): Short lines, orientation of labeled fascicles of fibers. Dots, relative density of label distributions not obviously oriented along axons. Number beside each section, distance in millimeters rostral to injection site. AC, anterior commissure; AHA, anterior hypothalamic area; Amyg, amygdala; BLA, basolateral complex of amygdala; CG, central gray; C‐P, caudate putamen; F, fornix; Fb, fimbria; Hb, habenula; HIT, habenulo‐interpeduncular tract; HPC, hippocampus; IC, internal capsule; IP, inter‐peduncular nucleus; ITR, inferior thalamic radiations; LOT, lateral olfactory tract; MFB, medial forebrain bundle; MG, medial geniculate; ML, medial lemniscus; MIT, mammillothalamic tract; OT, optic tract; PLAC, posterior limb of the anterior commissure; RN, red nucleus; S, septum; SC, superior colliculus; SM, stria medullaris; SN, substantia nigra; SOC, supraoptic commissure; ST, stria terminalis, STN, subthalamic nucleus; V, ventricle; Vb, ventrobasal complex; VMH, ventromedial nucleus of the hypothalamus; ZI, zona incerta.

From Norgren 224
References
 1. Ables, M. F., and R. M. Benjamin. Thalamic relay nucleus for taste in albino rat. J. Neurophysiol. 23: 376–382, 1960.
 2. Adler, A. Zur Topik des Verlaufes der Geschmackssinnsfasern und anderer afferenter Bahnen im Thalamus. Z. Gesamte Neurol. Psychiatr. 149: 208–220, 1933.
 3. Adler, A. Zur Topik der corticalen Ceschmackssphare. Z. Gesamte Neurol. Psychiatr. 152: 25–33, 1935.
 4. Ahern, G., M. L. Landin, and G. Wolf. Escape from deficits in sodium intake as a function of pre‐operative experience. J. Comp. Physiol. Psychol. 92: 544–554, 1978.
 5. Allen, W. F. Origin and destination of the secondary visceral fibers in the guinea pig. J. Comp. Neurol. 35: 275–310, 1923.
 6. Allen, W. F. Origin and distribution of the tractus solitarius in the guinea pig. J. Comp. Neurol. 35: 171–204, 1923.
 7. Andersson, B., and P. A. Jewell. Studies on the thalamic relay for taste in the goat. J. Physiol. London 139: 191–197, 1957.
 8. Andrew, B. L. A functional analysis of the myelinated fibres of the superior laryngeal nerve of the rat. J. Physiol. London 133: 420–432, 1956.
 9. Andrew, B. L., and J. Oliver. The epiglottal taste buds of the rat. J. Physiol. London 114: 48–49, 1951.
 10. Antin, J., J. Gibbs, and G. Smith. Intestinal satiety requires pregastric food stimulation. Physiol. Behav. 18: 421–425, 1977.
 11. Appelberg, B., and S. Landgren. The localization of the thalamic relay in the specific sensory path from the tongue of the cat. Act Physiol. Scand. 42: 342–347, 1958.
 12. Ariens‐Kappers, C. U., G. Huber, and E. Crosby. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Hafner, 1936.
 13. Assal, P. L., R. Levrat, and W. Stauffacher. Blood sugar and serum IRI after oral and intravenous administration of glucose in male Wistar rats with portal anastomosis. Diabetologia 6: 35, 1970.
 14. Astrom, K. E. On the central course of afferent fibers in the trigeminal, facial, glossopharyngeal, and vagal nerves and their nuclei in the mouse. Acta Physiol. Scand. Suppl. 106: 209–320, 1953.
 15. Atema, J. Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav. Evol. 4: 273–294, 1971.
 16. Bagshaw, M. H., and K. H. Pribram. Cortical organization in gustation (Macaca mulatta). J. Neurophysiol. 16: 499–508, 1953.
 17. Bard, P., and M. B. Macht. The behavior of chronically decerebrate cats. In: CIBA Foundation Symposium on the Neurological Bases of Behavior, edited by G. E. W. Wolstenholm and C. M. O'Connor. London: Churchill, 1958, p. 55–71.
 18. Barnard, J. W. A phylogenetic study of the visceral afferent areas associated with the facial, glossopharyngeal, and vagus nerves, and their fiber connections. The efferent facial nucleus. J. Comp. Neurol. 65: 503–602, 1936.
 19. Bartoshuk, L. M. Water taste in mammals. In: Drinking Behavior: Oral Stimulation, Reinforcement, and Preference, edited by J. A. W. M. Weijnen and J. Mendelson. New York: Plenum, 1977, p. 317–340.
 20. Bava, A., G. Innocenti, and R. Raffaele. Effects exerted by stimulation of glossopharyngeal taste buds on the nucleus intercalatus and adjoining medullary structures. Arch. Fisiol. 69: 131–159, 1972.
 21. Becker, E. E., and H. R. Kissileff. Inhibitory controls of feeding by the ventromedial hypothalamus. Am. J. Physiol. 226: 383–396, 1974.
 22. Beckstead, R. M., J. R. Morse, and R. Norgren. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190: 259–282, 1980.
 23. Beckstead, R., and R. Norgren. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J. Comp. Neurol. 184: 455–472, 1979.
 24. Benjamin, R. M. Absence of deficits in taste discrimination following cortical lesions as a function of the amount of pre‐operative practice. J. Comp. Physiol. Psychol. 52: 255–258, 1959.
 25. Benjamin, R. M. Some thalamic and cortical mechanisms of taste. In: Olfaction and Taste, edited by Y. Zotterman. New York: Pergamon, 1963, p. 309–329.
 26. Benjamin, R. M., and K. Akert. Cortical and thalamic areas involved in taste discrimination in the albino rat. J. Comp. Neurol. 111: 231–260, 1959.
 27. Benjamin, R. M., and H. Burton. Projection of taste nerve afferents to anterior opercular‐insular cortex in squirrel monkey (Saimiri sciureus). Brain Res. 7: 221–231, 1968.
 28. Benjamin, R. M., R. Emmers, and A. J. Blomquist. Projection of tongue nerve afferents to somatic sensory area I in squirrel monkey (Saimiri sciureus). Brain Res. 7: 208–220, 1968.
 29. Benjamin, R. M., B. P. Halpern, D. G. Moulton, and M. M. Mozell. The chemical senses. Annu. Rev. Psychol. 16: 381–416, 1965.
 30. Benjamin, R. M., and C. Pfaffmann. Cortical localization of taste in albino rat. J. Neurophysiol. 18: 56–64, 1955.
 31. Bereiter, D. A., H. R. Berthoud, and B. Jeanrenaud. Chorda tympani and vagus nerve convergence onto caudal brain stem neurons in the rat. Brain Res. 7: 261–266, 1981.
 32. Berkelbach Van Der Sprenkel, H. Stria terminalis and amygdala in the brain of the opossum (Didelphis virginiana). J. Comp. Neurol. 42: 211–254, 1927.
 33. Bernard, R. A., and S. G. Nord. A first‐order synaptic relay for taste fibers in the pontine brain stem of the cat. Brain Res. 30: 349–356, 1971.
 34. Berridge, K., H. J. Grill, and R. Norgren. Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. J. Comp. Physiol. Psychol. 95: 363–382, 1981.
 35. Biscoe, T. J., and S. R. Sampson. Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 341–358, 1970.
 36. Biscoe, T. J., and S. R. Sampson. Responses of cells in the brain stem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 359–373, 1970.
 37. Blass, E., and W. Hall. Drinking termination: interactions among hydrational, orogastric, and behavior controls in rats. Psychol. Rev. 83: 356–374, 1976.
 38. Blass, E., and F. Kraly. Medial forebrain bundle lesions: Specific loss of feeding to decreased glucose utilization in rats. J. Comp. Physiol. Psychol. 86: 679–692, 1974.
 39. Blomquist, A. J., and A. Antem. Localization of the terminals of the tongue afferents in the nucleus of the solitary tract. J. Comp. Neurol. 124: 127–130, 1965.
 40. Blomquist, A. J., and A. Antem. Gustatory deficits produced by medullary lesions in the white rat. J. Comp. Physiol. Psychol. 63: 439–443, 1967.
 41. Blomquist, A. J., R. M. Benjamin, and R. Emmers. Distribution of thalamic units responsive to thermal, mechanical and gustatory stimulation of the tongue of the albino rat. Federation Proc. 21: 343, 1962.
 42. Blomquist, A. J., R. M. Benjamin, and R. Emmers. Thalamic localization afferents from the tongue in squirrel monkey (Saimiri sciureus). J. Comp. Neurol. 118: 77–87, 1962.
 43. Blum, A., A. E. Walker, and T. Ruch. Localization of taste in the thalamus of Macaca mulatta. Yale J. Biol. Med. 16: 175–192, 1943.
 44. Bombardieri, R., J. Johnson, and G. Campas. Species differences in mechanosensory projections from the mouth to the ventrobasal thalamus. J. Comp. Neurol. 163: 41–64, 1975.
 45. Bornstein, W. S. Cortical representation of taste in man and monkey. I. Functional and anatomical relations of taste, olfaction, and somatic sensibility. Yale J. Biol. Med. 12: 719–736, 1940.
 46. Bornstein, W. S. Cortical representation of taste in man and monkey. II. The localization of the cortical taste area in man, a method of measuring impairment of taste in man. Yale J. Biol. Med. 13: 133–156, 1940.
 47. Bouskey, H., P. Richardson, J. Widdicombe, and J. Wise. The response of laryngeal afferent fibers to mechanical and chemical stimuli. J. Physiol. London 240: 153–175, 1974.
 48. Box, B., and G. Mogenson. Alterations in ingestive behaviors after bilateral lesions of the amygdala in the rat. Physiol. Behav. 15: 679–688, 1975.
 49. Bradley, R. M. Tongue topography. In: Handbook of Sensory Physiology: Chemical Senses, Taste, edited by L. M. Beidler. New York: Springer‐Verlag, 1971, vol. 4, pt. 2, p. 1–30.
 50. Bradley, R. M., and C. M. Mistretta. Developmental changes in neurophysiological taste responses from the medulla in sheep. Brain Res. 191: 21–34, 1980.
 51. Braun, J. J. Neocortex and feeding behavior in the rat. J. Comp. Physiol. Psychol. 89: 507–522, 1975.
 52. Braun, J. J., and S. W. Kiefer. Preference‐aversion functions for basic taste stimuli in rats lacking gustatory neocortex. Bull. Psychon. Soc. 6: 438–439, 1975.
 53. Braun, J. J., S. W. Kiefer, and J. V. Ouellet. Psychic ageusia in rats lacking gustatory neocortex. Exp. Neurol. 72: 711–716, 1981.
 54. Braun, J., T. Slick, and J. Lorden. Gustatory neocortex: involvement in learning taste aversions. Physiol. Behav. 9: 637–641, 1972.
 55. Braveman, N. S. Relative salience of gustatory and visual cues in the formation of poison‐based food aversions by guinea pigs (Cavia procellus). Behav. Biol. 14: 189–199, 1975.
 56. Breese, G., R. Smith, B. Carrett, and L. Grant. Alterations in consummatory behavior following intracisternal injection of 6‐hydroxydopamine. Pharmacol. Biochem. Behav. 1: 319–328, 1973.
 57. Bremer, F. Physiologie nerveuse de la mastication chez le chat et le lapin. Arch. Int. Physiol. 21: 308–352, 1923.
 58. Brodal, A. Central course of afferent fibers for pain in facial glossopharyngeal and vagus nerves: clinical observations. Arch. Neurol. Psychiatry 57: 292–306, 1947.
 59. Brodal, A. Experimental demonstration of cerebellar connexions from the peri‐hypoglossal nuclei (nucleus intercalatus, nucleus praepositus hypoglassi and nucleus of Roller) in the cat. J. Anat. 86: 110–129, 1952.
 60. Brodal, A. Neurological Anatomy (2nd ed.). New York: Oxford Univ. Press, 1969.
 61. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth, 1909.
 62. Bruce, A. On the dorsal or so‐called sensory nucleus of the glossopharyngeal nerve, and the nuclei of origin of the trigeminal nerve. Brain 21: 383–387, 1898.
 63. Burton, H., and R. M. Benjamin. Central projections of the gustatory system. In: Handbook of Sensory Physiology. Chemical Senses. Taste, edited by L. M. Beidler. Berlin: Springer‐Verlag, 1971, vol. 4, pt. 2, p. 148–164.
 64. Burton, H., and F. Earls. Cortical representation of the ipsilateral chorda tympani nerve in the cat. Brain Res. 16: 520–523, 1969.
 65. Burton, M., E. Rolls, and F. Mora. Effects of hunger on the response of neurons in the lateral hypothalamus in the sight and taste of food. Exp. Neurol. 51: 668–677, 1976.
 66. Cabanac, M. Physiological role of pleasure. Science 176: 1103–1107, 1971.
 67. Cajal, S. R. Histologie du Systeme Nerveux. Madrid: Conselo Superior de Investigaciones Cientificas, 1972.
 68. Campbell, A. W. Histological Studies on the Localization of Cerebral Function. Cambridge: Cambridge Univ. Press, 1905.
 69. Car, A., A. Jean, and C. Roman. A pontine primary relay for ascending projections of the superior laryngeal nerve. Exp. Brain Res. 22: 197–210, 1975.
 70. Carter, D. A., and Fibiger, H. C. The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and HRP histochemistry. J. Comp. Neurol. 177: 113–121, 1978.
 71. Caviness, V. Architectonic map of neocortex of the normal mouse. J. Comp. Neurol. 164: 247–263, 1975.
 72. Cohen, M. J., S. Landren, L. Strom, and Y. Zotterman. Cortical reception of touch and taste in the cat. A study of single cortical cells. Acta Physiol. Scand. Suppl. 133: 1–50, 1957.
 73. Cole, S. O. Changes in the feeding behavior of rats after amygdala lesions. Behav. Biol. 12: 265–270, 1974.
 74. Contreras, R. J. Changes in gustatory nerve discharges with sodium deficiency: a single unit analysis. Brain Res. 121: 373–378, 1977.
 75. Contreras, R. J., R. M. Beckstead, and R. Norgren. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves. An autoradiographic study in the rat. J. Auton. Nerv. Syst. 6: 303–322, 1982.
 76. Contreras, R. J., and M. Frank. Sodium deprivation alters neural responses to gustatory stimuli. J. Gen. Physiol. 73: 569–594, 1979.
 77. Contreras, R. J., M. M. Gomez, and R. Norgren. Central origins of cranial nerve parasympathetic neurons in the rat. J. Comp. Neurol. 190: 373–394, 1980.
 78. Contreras, R. J., P. McCabe, and R. Norgren. Central origin of efferents in gustatory nerves. Anat. Rec. 187: 556, 1977.
 79. Corbett, D., R. Skelton, and R. Wise. Dorsal noradrenergic bundle lesions fail to disrupt self‐stimulation from the region of locus coeruleus. Brain Res. 133: 37–44, 1977.
 80. Corbit, J. D., and E. Stellar. Palatability, food intake, and obesity in normal and hyperphagic rats. J. Comp. Physiol. Psychol. 58: 63–67, 1964.
 81. Coscina, D., C. Rosenblum‐Blunick, D. Godse, and H. Stancer. Consummatory behavior of hypothalamic hyperphagic rats after central injection of 6‐hydroxydopamine. Pharmacol. Biochem. Behav. 1: 629–642, 1973.
 82. Coscina, D., and H. Stancer. Selective blockade of hypothalamic hyperphagia and obesity in rats by serotonin‐depleting midbrain lesions. Science 195: 416–419, 1977.
 83. Cottle, M. K. Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J. Comp. Neurol. 122: 329–345, 1964.
 84. Dacey, D. M., and S. P. Grossman. Aphagia, adipsia, and sensory‐motor deficits produced by amygdala lesions: a function of extra‐amygdaloid damage. Physiol. Behav. 19: 389–395, 1977.
 85. Daniel, R. M., and J. R. Henderson. The effect of vagal stimulation on plasma insulin and glucose levels in the baboon. J. Physiol. London 192: 317–327, 1967.
 86. Dart, R. A. The misuse of the term “visceral.” J. Anat. 56: 177–188, 1922.
 87. Davis, J. D., and M. W. Levine. A model for the control of ingestion. Psychol. Rev. 84: 379–412, 1977.
 88. Dawes, C., and G. N. Jenkins. The effects of different stimuli on the composition of saliva in man. J. Physiol. London 170: 36–100, 1964.
 89. Di Lorenzo, R., and J. S. Schwartzbaum. Coding of taste information in the pontine taste area of the rabbit. Olfaction and Taste VII, edited by H. vander Starre. London: IRL Press, 1980, p. 251–254.
 90. Doetsch, G. S., and R. P. Erickson. Synaptic processing of taste‐quality information in the nucleus tractus solitarius of the rat. J. Neurophysiol. 33: 490–507, 1970.
 91. Donaldson, L., P. J. Hand, and A. R. Morrison. Corticalthalamic relationships in the rat. Exp. Neurol. 47: 448–458, 1975.
 92. Doty, R. W. Neurol organization of deglutition. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 92, p. 1861–1902.
 93. Downing, S., and J. Lee. Laryngeal chemosensitivity: A possible mechanism for sudden infant death. Pediatrics 55: 640–649, 1975.
 94. Dubbeldam, J. L., E. R. Brus, S. B. J. Menken, and S. Zeilstra. The central projections of the glossopharyngeal and vagus ganglia in the mallard, Anas platyrhynchos L. J. Comp. Neurol. 180: 149–168, 1979.
 95. Dubbledam, J., H. Karten, and S. Menken. Central projections of the chorda tympani nerve in the mallard, Anas platyrhynchos L. J. Comp. Neurol. 170: 415–420, 1976.
 96. Dubois, F. The tractus solitarius and attendant nuclei in the Virginian opossum (Didelphis virginiana). J. Comp. Neurol. 47: 189–224, 1928–29.
 97. Elde, R., T. Hokfelt, O. Johansson, and L. Terenius. Immunohistochemical studies using antibodies to leucine‐enkephalin: initial observations on the nervous system of the rat. Neuroscience 1: 349–351, 1976.
 98. Eleftheriou, B. E. Advances in Behavioral Biology: The Neurobiology of the Amygdala. New York: Plenum, vol. 2, 1972. (Proc. Symp. Neurobiol. Amygdala, Bar Harbor, ME, 1971.)
 99. Emmers, R. Localization of thalamic projection of afferents from the tongue in the cats. Anat. Rec. 148: 67–74, 1964.
 100. Emmers, R. Modulation of the thalamic relay of taste by stimulation of the tongue with ice water. Exp. Neurol. 16: 50–56, 1966.
 101. Emmers, R. Separate cortical receiving areas for gustatory and tongue tactile afferents in the rat. Anat. Rec. 154: 460, 1966.
 102. Emmers, R. Separate relays of tactile, pressure, thermal, and gustatory modalities in the cat thalamus. Proc. Soc. Exp. Biol. Med. 121: 527–531, 1966.
 103. Emmers, R., R. M. Benjamin, and A. J. Blomquist. Thalamic localization from the tongue in albino rats. J. Comp. Neurol. 118: 43–48, 1962.
 104. Epstein, A. The lateral hypothalamic syndrome: its implication for the physiological psychology of hunger and thirst. In: Progress in Physiological Psychology, edited by E. Stellar and J. Sprague. New York: Academic, 1971, vol. 4, p. 263–317.
 105. Epstein, A. J., and P. Teitelbaum. Severe and persistent deficits in thirst produced by lateral hypothalamic damage. In: Thirst, edited by M. J. Wayner. New York: Pergamon, 1963. p. 395–410. (Proc. Int. Symp. Thirst Regul. Body Water.)
 106. Epstein, A. J., and P. Teitelbaum. Specific loss of the hypoglycemic control of feeding in recovered lateral rats. Am. J. Physiol. 213: 1159–1167, 1967.
 107. Erickson, R. Stimulus coding in topographic and nontopographic afferent modalities: On the significance of the activity of individual sensory neurons. Psychol. Rev. 76: 447–465, 1968.
 108. Erickson, R. The role of “primaries” in taste research. In: Olfaction and Taste VI, edited by J. Le Magnen and P. MacLeod. London: Information Retrieval, Ltd., 1977, p. 369–376.
 109. Erickson, R. P., E. Covey, and G. S. Doetsch. Neuron and stimulus typologies in the rat gustatory system. Brain Res. 196: 513–519, 1980.
 110. Faull, R., and W. Mehler. Subdivision of the ventral tier nuclei in the rat thalamus based on their afferent fiber connections. Anat. Rec. 184: 400, 1976.
 111. Finger, T. E. Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J. Comp. Neurol. 180: 691–706, 1978.
 112. Fischer, U., H. Hommel, M. Ziegler, and R. Michael. The mechanism of insulin secretion after oral glucose administration. Diabetologia 8: 104–110, 1972.
 113. Fishman, I. Y. Single fiber gustatory impulses in rat and hamster. J. Cell. Comp. Physiol. 49: 319–334, 1957.
 114. Fonberg, E. Effects of small dorsomedial amygdala lesions on food intake and acquisition of instrumental alimentary reactions in dogs. Physiol. Behav. 4: 739–743, 1969.
 115. Fonberg, E. The amygdala and ingestive behavior. In: Neurol Mechanisms of Physiological Regulations and Behavior, edited by G. R. Mogenson and F. R. Calaresu. Toronto: Univ. Toronto Press, 1975, p. 169–185.
 116. Forster, H., M. Haslbeck, and H. Mehnert. Metabolic studies following the oral ingestion of different doses of glucose. Diabetes 21: 1102–1108, 1972.
 117. Frank, M. An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61: 588–618, 1973.
 118. Frank, M. The classification of mammalian afferent taste nerve fibers. Chem. Senses Flavor 1: 53–60, 1974.
 119. Frank, M., and C. Pfaffmann. Taste nerve fibers: a random distribution of sensitivities to four tastes. Science 164: 1183, 1968.
 120. Frommer, G. P. Gustatory afferent responses in the thalamus. In: The Physiological and Behavioral Aspects of Taste, edited by M. R. Kare and B. Halpern. Chicago: Univ. of Chicago Press, 1961, p. 50–65.
 121. Funakoshi, M., Y. Kasahara, T. Yamamoto, and Y. Kawamura. Taste coding and central perception. In: Olfaction and Taste IV, edited by D. Schneider. Stuttgart: Wissenschaftliche, 1972, p. 336–342.
 122. Funakoshi, M., and Y. Ninomiya. Neurol code for taste quality in the thalamus of the dog. In: Food Intake and Chemical Senses, edited by Y. Katsuki, M. Sato, S. F. Takagi, and Y. Oomura. Tokyo: Univ. of Tokyo Press, 1977, p. 223–232.
 123. Ganchrow, D., and R. P. Erickson. Thalamocortical relations in gustation. Brain Res. 36: 289–305, 1972.
 124. Ganchrow, J. R., and R. P. Erickson. Neurol correlates of gustatory intensity and quality. J. Neurophysiol. 33: 768–783, 1970.
 125. Garcia, J., and F. R. Ervin. Gustatory‐visceral and telereceptor‐cutaneous conditioning‐adaptation in internal and external milieus. Commun. Behav. Biol. Pt. A 1: 369–415, 1968.
 126. Garcia, J., W. Hankins, and K. Rusiniak. Behavioral regulation of the milieu interne in man and rat. Science 185: 824–831, 1974.
 127. Gehuchten, A. van. Recherches sur la terminaison centrale des nerfs sensibles périphériques. Névraxe 1: 5–14, 1900.
 128. Gerebtzoff, M. A. Recherches oscillographiques et anatomophysiologiques sur les centres cortical et thalamique du gout. Arch. Int. Physiol. 51: 199–210, 1941.
 129. Gerebtzoff, M. A. Les voies centrales de la sensibilite et du gout et leurs terminaisons thalamiques. Cellule 48: 91–146, 1939.
 130. Glenn, J., and R. Erickson. Gastric modulation of gustatory afferent activity. Physiol. Behav. 16: 561–568, 1976.
 131. Gold, R. M. Aphagia and adipsia following unilateral and bilaterally asymmetrical lesions in rats. Physiol. Behav. 2: 211–220, 1967.
 132. Graff, H., and E. Stellar. Hyperphagia, obesity and finickiness. J. Comp. Physiol. Psychol. 55: 418–424, 1962.
 133. Green, K., and J. Garcia. Recuperation from illness: flavor enhancement for rats. Science 173: 749–751, 1971.
 134. Grill, H. J. Sucrose as an aversive stimulus. Soc. Neurosci. Abstr. 1: 525, 1975.
 135. Grill, H. J., and R. Norgren. Chronic decerebrate rats demonstrated satiation, but not baitshyness. Science 201: 267–269, 1978.
 136. Grill, H. J., and R. Norgren. Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Res. 143: 299–312, 1978.
 137. Grill, H. J., and R. Norgren. The taste reactivity test. I. Mimetric responses to gustatory stimuli in neurologically normal rats. Brain Res. 143: 263–279, 1978.
 138. Grill, H. J., and R. Norgren. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res. 143: 281–297, 1978.
 139. Grinker, J., J. Hirsch, and B. Levin. The affective responses of obese patients to weight reduction: a differentiation based on age at onset of obesity. Psychosom. Med. 35: 57–63, 1973.
 140. Grossman, S. The VMH: a center for affective reactions, satiety, or both? Physiol. Behav. 1: 1–10, 1966.
 141. Grossman, S. P., and L. Grossman. Food and water intake following lesions or electrical stimulation of the amygdala. Am. J. Physiol. 205: 761–765, 1963.
 142. Hall, R., F. Bloom, and J. Olds. Neuronal and neurochemical substrates of reinforcement. Neurosci. Res. Program Bull. 15: 133–279, 1977.
 143. Halpern, B. P. Chemotopic organization in the bulbar gustatory relay of the rat. Nature London 208: 393–395, 1965.
 144. Halpern, B. P. Chemotopic coding for sucrose and quinine hydrochloride in the nucleus of the fasciculus solitarius. In: Olfaction and Taste II, edited by T. H. Hayashi. New York: Pergamon, 1967, p. 549–562.
 145. Halpern, B. P., and L. M. Nelson. Bulbar gustatory responses to anterior and to posterior tongue stimulation in the rat. Am. J. Physiol. 209: 105–110, 1965.
 146. Hamilton, R. B., H. Ellenberger, D. Liskowsky, and N. Schneiderman. Parabrachial area as mediator of bradycardia in rabbits. J. Auton. Nerv. Syst. 4: 261–281, 1981.
 147. Hamilton, R. B., and R. Norgren. The distribution of gustatory nerves within the nucleus of the solitary tract in rat. Soc. Neurosci. Abstr. 7: 730, 1981.
 148. Harding, R., P. Johnson, and M. E. McClelland. Liquid‐sensitive laryngeal receptors in the developing sheep, cat and monkey. J. Physiol. London 277: 409–422, 1977.
 149. Harris, R., M. Jacquin, and H. P. Zeigler. Trigeminal deafferentation in the rat: association of effects upon self‐stimulation and stimulus bound feeding. Presented at Meeting of Eastern Psychological Association, Washington, DC, March 29, 1978.
 150. Herrick, C. J. The central gustatory paths in the brains of bony fishes. J. Comp. Neurol. Psychol. 15: 375–456, 1905.
 151. Herrick, C. J. What are viscera? J. Anat. 56: 167–176, 1922.
 152. Herrick, C. J. The cranial nerves. A review of fifty years. J. Lab. Sci. 38: 41–51, 1944.
 153. Herrick, C. J. The fasciculus solitarius and its connections in amphibians and fishes. J. Comp. Neurol. 81: 307–331, 1944.
 154. Heimer, L. The olfactory cortex and the ventral forebrain. In: The Continuing Evolution of the Limbic System Concept, edited by K. Livingston. New York: Plenum, 1977, p. 95–187.
 155. Hess, W. R. The Functional Organization of the Diencephalon (edited by J. R. Hughes; transl. by P. V. Deporte). New York: Grune, 1958.
 156. Hopkins, D. A. Amygdalotegmental projections in the rat, cat and rhesus monkey. Neurosci. Lett. 1: 263–270, 1975.
 157. Hopkins, D. A., and G. Holstege. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32: 529–547, 1978.
 158. Hsiao, S., and P. Tuntland. Short‐term satiety signals generated by saccharin and glucose solutions. Physiol. Behav. 7: 287–289, 1971.
 159. Ingram, W., and E. Dawkins. The intramedullary course of afferent fibers of the vagus nerve in the cat. J. Comp. Neurol. 82: 157–168, 1945.
 160. Ishiko, N., and I. Akagi. Topographical organization of the gustatory nervous system. In: Olfaction and Taste IV, edited by D. Schneider. Stuttgart: Wissenschaftliche, 1972, p. 343–349.
 161. Jacquin, M., and H. P. Zeigler. Peripheral trigeminal mechanisms and drinking in the rat. Paper presented at Meeting of Eastern Psychological Association, Washington, DC, March 30, 1978.
 162. Jacquin, M., and H. P. Zeigler. Trigeminal orosensory deafferentation in the rat: effects upon a food‐reinforced operant response. Presented at Meeting of Eastern Psychological Association, Washington, DC, March 29, 1978.
 163. Johnson, C., R. Beaton, and K. Hall. Poison‐based avoidance learning in non‐human primates: use of visual cues. Physiol. Behav. 14: 403–407, 1975.
 164. Johnson, F. H. The secondary visceral‐gustatory tract in the cat. Anat. Rec. 148: 295, 1964.
 165. Johnston, J. B. Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol. 35: 337–481, 1923.
 166. Jones, E. G., and T. P. S. Powell. The cortical projection of the ventroposterior nucleus of the thalamus in the cat. Brain Res. 12: 127–151, 1969.
 167. Jurgens, U. Projections from the cortical larynx area in the squirrel monkey. Exp. Brain Res. 25: 401–411, 1976.
 168. Jurgens, U., and D. Ploog. Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res. 10: 532–554, 1970.
 169. Kalia, M., and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat: the cervical vagus and nodose ganglion. J. Comp. Neurol. 193: 435–465, 1980.
 170. Kalia, M., and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193: 467–508, 1980.
 171. Kare, M., and M. Ficken. Comparative studies on the sense of taste. In: Olfaction and Taste, edited by Y. Zotterman. New York: Pergamon, 1963, p. 285–298.
 172. Kareto, A., K. Kosaka, and K. Nakao. Effects of stimulation of the vagus nerve on insulin secretion. Endocrinology 80: 530–536, 1967.
 173. Keesey, R., and P. Boyle. Effects of quinine adulteration upon body weight of LH‐lesioned and intact male rats. J. Comp. Physiol. Psychol. 84: 38–46, 1973.
 174. Kemble, E., and J. Nagel. Failure to form a learned taste aversion in rats with amygdaloid lesions. Bull. Psychon. Soc. 2: 155–156, 1973.
 175. Kemble, E., and J. Schwartzbaum. Reactivity to taste properties of solutions following amygdaloid lesions. Physiol. Behav. 4: 981–985, 1969.
 176. Kerr, F. W. L. Structural relation of the trigeminal spinal tract to upper cervical roots and the solitary nucleus in the cat. Exp. Neurol. 4: 134–148, 1961.
 177. Kerr, F. W. L. Facial, vagal and glossopharyngeal nerves in the cat: afferent connections. Arch. Neurol. Chicago 6: 264–281, 1962.
 178. Kiefer, S., and J. Braun. Absence of differential associative responses to novel and familiar taste stimuli in rats lacking gustatory neocortex. J. Comp. Physiol. Psychol. 91: 498–507, 1977.
 179. Kimmel, D. Development of the afferent components of the facial, glossopharyngeal and vagus nerves in the rabbit embryo. J. Comp. Neurol. 74: 447–469, 1941.
 180. Krettek, J. E., and J. L. Price. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol. 171: 157–192, 1977.
 181. Krettek, J. E., and J. L. Price. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol. 172: 687–722, 1977.
 182. Krettek, J. E., and J. L. Price. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 178: 225–254, 1978.
 183. Krieg, W. J. S. Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J. Comp. Neurol. 84: 221–275, 1946.
 184. Krieg, W. J. S. Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J. Comp. Neurol. 84: 277–324, 1946.
 185. Kunc, Z. Treatment of essential neuralgia of the 9th nerve by selective tractotomy. J. Neurosurg. 23: 494–500, 1965.
 186. Kuypers, H. Some projections from the pericentral cortex to the pons and lower brain stem in monkey and chimpanzee. J. Comp. Neurol. 110: 221–255, 1958.
 187. Leach, L., and J. Braun. Dissociation of gustatory and weight regulatory responses to quinine following lateral hypothalamic lesions. J. Comp. Physiol. Psychol. 90: 978–985, 1976.
 188. Le Magnen, J. Regulation of food intake: physiologic‐biochemical aspects (peripheral regulatory factors). Adv. Psychosom. Med. 7: 73–90, 1972.
 189. Levison, M. J., G. P. Frommer, and W. B. Vance. Palatability and caloric density as determinants of food intake on hyperphagic and normal rats. Physiol. Behav. 10: 455–462, 1973.
 190. Loewy, A. D., and H. Burton. Nuclei of the solitary tract: efferent projections to lower brain stem and spinal cord of the cat. J. Comp. Neurol. 181: 421–450, 1978.
 191. Lorden, J. Effects of lesions of the gustatory neocortex on taste aversion learning in the rat. J. Comp. Physiol. Psychol. 90: 665–679, 1976.
 192. Louis‐Sylvestre, J. Preabsorptive insulin release and hypoglycemia in rats. Am. J. Physiol. 230: 56–60, 1976.
 193. Macht, M. B. Subcortical localization of certain “taste” responses in the cat. Federation Proc. 10: 88, 1951.
 194. Makous, W., S. Nord, B. Oakley, and C. Pfaffmann. The gustatory relay in the medulla. In: Olfaction and Taste, edited by Y. Zotterman. New York: Pergamon, 1963, p. 381–393.
 195. Marshall, J. F. Increased orientation to sensory stimulation following medial hypothalamic damage in rats. Brain Res. 86: 373–387, 1975.
 196. Marshall, J. F., D. Levitan, and E. Stricker. Activation‐induced restoration of sensorimotor functions in rats with dopamine‐depleting brain lesions. J. Comp. Physiol. Psychol. 90: 536–546, 1976.
 197. Marshall, J. F., J. Richardson, and P. Teitelbaum. Nigrostriatal bundle damage and lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87: 808–830, 1974.
 198. Marshall, J. F., and P. Teitelbaum. Further analysis of sensory inattention following lateral hypothalamic damage in rats. J. Comp. Physiol. Psychol. 86: 375–395, 1974.
 199. Marshall, J. F., B. H. Turner, and P. Teitelbaum. Sensory neglect produced by lateral hypothalamic damage. Science 174: 523–525, 1971.
 200. McBride, R., and J. Sutin. Amygdaloid and pontine projections in the ventromedial nucleus of the hypothalamus. J. Comp. Neurol. 174: 377–396, 1977.
 201. Mehler, W. R. Subcortical afferent connections of the amygdala in the monkey. J. Comp. Neurol. 190: 733–762, 1980.
 202. Mergner, T., O. Pompeiano, and N. Corvaja. Vestibular projections to the nucleus intercalatus of Staderini mapped by retrograde transport of HRP. Neurosci. Lett. 5: 309–313, 1977.
 203. Miller, I. J., Jr. Gustatory receptors of the palate. In: Food Intake and Chemical Senses, edited by Y. Katsuki, M. Sato, S. Takagi, and Y. Oomura. Tokyo: Univ. Tokyo Press, 1977, p. 173–185.
 204. Mistretta, C. M., and R. M. Bradley. Taste responses in sheep medulla: changes during development. Science 202: 535–537, 1978.
 205. Miller, M. Trigeminal orosensory control of feeding behavior. Presented at Meeting of Eastern Psychological Association, Washington, DC, March 1978.
 206. Morgane, P. J. Alterations in feeding and drinking behavior of rats with lesions in globi pallidi. Am. J. Physiol. 201: 420–428, 1961.
 207. Morrison, A. R., and R. Tarnecki. Chemical stimulation of the cat's tongue will affect cortical neuronal activity. In: Olfaction and Taste V, edited by D. A. Denton and J. P. Coghlan. New York: Academic, 1975, p. 247–249.
 208. Morse, J. Unit Responses of the Amygdala to Gustatory Stimulation. Rochester, NY: Univ. of Rochester, 1978. Ph.D. thesis.
 209. Morse, J., R. Beckstead, T. Pritchard, and R. Norgren. Ascending gustatory and visceral afferent pathways in the monkey. Soc. Neurosci. Abstr. 6: 307, 1980.
 210. Motta, G. I centri corticali del gusto. Boll. Sci. Med. 131: 480–493, 1959.
 211. Mufson, E., and R. Wampler. Weight regulation and palatable food and liquids in rats with lateral hypothalamic lesions. J. Comp. Physiol. Psychol. 80: 382–392, 1972.
 212. Nachman, M., and J. Ashe. Effects of basolateral amygdala lesions on neophobia, learned taste aversions, and sodium appetite in rats. J. Comp. Physiol. Psychol. 87: 622–643, 1974.
 213. Nachman, M., and L. P. Cole. Role of taste in specific hungers. In: Handbook of Sensory Physiology. Chemical Senses. Taste, edited by L. M. Beidler. Berlin: Springer‐Verlag, 1971, vol. 4, pt. 2, p. 338–362.
 214. Nageotte, J. The pars intermedia or nervus intermedius of Wrisberg, and the bulbo‐pontine gustatory nucleus in man. Rev. Neurol. Psychiatr. 4: 472–488, 1906.
 215. Nicolaidis, S. Early systemic responses to orogastric stimulation in the regulation of food and water balance: functional and electrophysiological data. Ann. NY Acad. Sci. 157: 1176–1203, 1969.
 216. Nicolaidis, S. Sensory‐neuroendocrine reflexes and their anticipatory and optimizing role on metabolism. In: Chemical Senses and Nutrition, edited by M. R. Kare and O. Maller. New York: Academic, 1977, p. 124–144. (Nutr. Found. Ser.)
 217. Nomura, S., K. Itoh, and N. Mizuno. Topographical arrangement of thalamic neurons projecting to the orbital gyrus in the cat. Exp. Neurol. 67: 601–610, 1980.
 218. Nomura, S., and N. Mizuno. Central distribution of afferent and efferent components of the chorda tympani in the cat as revealed by the horseradish peroxidase method. Brain Res. 214: 229–237, 1981.
 219. Nomura, S., N. Mizuno, K. Itoh, K. Matsuda, T. Sugimoto, and Y. Nakamura. Localization of parabrachial nucleus neurons projecting to the thalamus or the amygdala in the cat using horseradish peroxidase. Exp. Neurol. 64: 375–385, 1979.
 220. Nord, S. Somatotopic organization in the spinal trigeminal nucleus, the dorsal column nuclei and related structures in the rat. J. Comp. Neurol. 130: 343–356, 1967.
 221. Norgren, R. Behavioral correlates of the thalamic taste area. Brain Res. 22: 221–230, 1970.
 222. Norgren, R. Gustatory responses in the hypothalamus. Brain Res. 21: 63–77, 1970.
 223. Norgren, R. Gustatory afferents to ventral forebrain. Brain Res. 81: 285–295, 1974.
 224. Norgren, R. Taste pathways to hypothalamus and amygdala. J. Comp. Neurol. 166: 17–30, 1976.
 225. Norgren, R. On the anatomical substrate for flavor. In: Chemical Signals in Vertebrates, edited by D. Muller‐Schwarze and M. Mozell. New York: Plenum, 1977, p. 515–528.
 226. Norgren, R. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218, 1978.
 227. Norgren, R. The central organization of the gustatory and visceral afferent systems in the nucleus of the solitary tract. In: Brain Mechanisms of Sensation, edited by Y. Katsuki, R. Norgren, and M. Sato. New York: Wiley, 1981, p. 143–160.
 228. Norgren, R., and H. J. Grill. Efferent distribution from the cortical gustatory area in rats. Soc. Neurosci. Abstr. 2: 124, 1976.
 229. Norgren, R., and H. J. Grill. Brain stem control of ingestive behavior. In: Physiological Mechanisms of Motivation, edited by D. Pfaff. New York: Springer‐Verlag, 1982, p. 99–131.
 230. Norgren, R., H. J. Grill, and C. Pfaffmann. CNS projections of taste to the dorsal pons and limbic system with correlated studies of behavior. In: Food Intake and Chemical Senses, edited by Y. Comura and Y. Katsuki. Baltimore: University Park, 1977, p. 233–243.
 231. Norgren, R., and C. M. Leonard. Taste pathways in rat brainstem. Science 173: 1136–1139, 1971.
 232. Norgren, R., and C. M. Leonard. Ascending central gustatory pathways. J. Comp. Neurol. 150: 217–238, 1973.
 233. Norgren, R., and C. Pfaffmann. The pontine taste area in the rat. Brain Res. 91: 99–117, 1975.
 234. Norgren, R., and G. Wolf. Projections of thalamic gustatory and lingual areas in the rat. Brain Res. 92: 123–129, 1975.
 235. Nowlis, G. From reflex to representation: taste‐elicited tongue movements in the human newborn. In: Taste and Development: The Genesis of Sweet Preference, edited by J. M. Weiffenbach. Bethesda, MD: U.S. Dept. of Health, Education, and Welfare, 1977, p. 190–204.
 236. Nowlis, G., and M. Frank. Qualities in hamster taste: behavioral and neural evidence. In: Olfaction and Taste VI, edited by J. Le Magnen and P. MacLeod. London: Information Retrieval, Ltd., 1977, p. 241–248. (Proc. Int. Symp. Olfaction and Taste)
 237. Oakley, B. Microelectrode Analysis of Second Order Gustatory Neurons in the Albino Rat. Providence, RI: Brown University, 1962, Ph.D. thesis.
 238. Oakley, B. Impaired operant behavior following lesions of the thalamic taste nucleus. J. Comp. Physiol. Psychol. 59: 202–210, 1965.
 239. Oakley, B., and C. Pfaffmann. Electrophysiologically monitored lesions in the gustatory thalamic relay of the albino rats. J. Comp. Physiol. Psychol. 55: 155–160, 1962.
 240. Ogawa, H., and T. Akagi. Location of pontine relay neurons projecting to VPMm in the rat by means of horseradish peroxidase. In: Olfaction and Taste VI, edited by J. Le Magnen and P. MacLeod. London: Information Retrieval, Ltd., 1977, p. 289.
 241. Ogawa, H., T. Imoto, T. Hayama, and J. Kaisaku. Afferent connections to the pontine taste area: physiologic and anatomic studies. In: Brain Mechanisms of Sensation, edited by Y. Katsuki, R. Norgren, and M. Sato. New York: Wiley, 1981, p. 161–175.
 242. Ogawa, H., S. Yamashita, A. Noma, and M. Sato. Taste responses in the macaque monkey chorda tympani. Physiol. Behav. 9: 325–331, 1972.
 243. Olds, J., and P. M. Milner. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47: 419–427, 1954.
 244. Olszewski, J. The Thalamus of the Macaca mulatta. New York: Karger, 1952.
 245. Patton, H. D. Physiology of smell and taste. Annu. Rev. Physiol. 12: 469–484, 1950.
 246. Patton, H. D., and V. E. Amassian. Cortical projection zone of chorda tympani nerve in cat. J. Neurol. Psychiatry 15: 245–250, 1952.
 247. Patton, H. D., and T. C. Ruch. The relation of the foot of the pre‐ and postcentral gyrus to taste in the monkey and chimpanzee. Federation Proc. 5: 79, 1946.
 248. Patton, H. D., T. C. Ruch, and A. E. Walker. Experimental hypogeusia from Horsley‐Clarke lesions of the thalamus in Macaca mulatta. J. Neurophysiol. 7: 171–184, 1944.
 249. Perrotto, R., and T. Scott. Gustatory neural coding in the pons. Brain Res. 110: 283–300, 1976.
 250. Pfaffmann, C. Gustatory afferent impulses. J. Cell. Comp. Physiol. 17: 243–258, 1941.
 251. Pfaffmann, C. The pleasures of sensation. Psychol. Rev. 67: 253–268, 1960.
 252. Pfaffmann, C. DeGustibus. Am. Psychol. 20: 21–33, 1966.
 253. Pfaffmann, C., R. Erickson, G. Frommer, and B. Halpern. Gustatory discharges in the rat medalla and thalamus. In: Sensory Communication, edited by W. A. Rosenblith. Cambridge, MA: MIT Press, 1961, p. 455–473.
 254. Pfaffmann, C., M. Frank, and R. Norgren. Neurol mechanisms and behavioral aspects of taste. Annu. Rev. Psychol. 30: 283–325, 1979.
 255. Pfaffmann, C., R. Norgren, and H. J. Grill. Sensory affect and motivation. Ann. NY Acad. Sci. 290: 18–34, 1977.
 256. Porter, R. Synaptic potentials in hypoglossal motoneurons. J. Physiol. London 180: 209–224, 1965.
 257. Powley, T. L. The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol. Rev. 84: 89–126, 1977.
 258. Price, J. L., and D. G. Amaral. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1: 1242–1252, 1981.
 259. Pritchard, T., R. Hamilton, J. Morse, and R. Norgren. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. Proc. Congr. Int. Union Physiol. Sci. 1983.
 260. Rehovsky, D., and R. Wampler. Failure to obtain sex differences in the development of obesity following ventromedial hypothalamic lesions in the rat. J. Comp. Physiol. Psychol. 78: 102–112, 1972.
 261. Rhoton, A. L. Afferent connections of the facial nerve. J. Comp. Neurol. 133: 89–100, 1968.
 262. Rhoton, A. L., Jr., J. L. O'Leary, and J. P. Ferguson. The trigeminal, facial, vagal, and glossopharyngeal nerves in the monkey. Arch. Neurol. Chicago 14: 530–540, 1966.
 263. Ricardo, J., and E. T. Koh. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153: 1–26, 1978.
 264. Richardson, J. S. The amygdala: historical and functional analysis. Acta Neurobiol. Exp. 33: 623–648, 1973.
 265. Roberts, T. S., and K. Akert. Insular and opercular cortex and its thalamic projection in Macaca mulatta. Schweiz. Arch. Neurol. Neurochir. Psychiatr. 92: 1–43, 1963.
 266. Robinson, C. J., and H. Burton. Somatotopographic organization in the second somatosensory area of M. fascicularis. J. Comp. Neurol. 192: 43–67, 1980.
 267. Rogers, W., and P. Rozin. Novel food preferences in thiamine‐deficient rats. J. Comp. Physiol. Psychol. 61: 1–4, 1966.
 268. Rolls, B. J., and E. T. Rolls. Effects of lesions in the basolateral amygdala on fluid intake in the rat. J. Comp. Physiol. Psychol. 83: 240–247, 1973.
 269. Roth, S., M. Schwartz, and P. Teitelbaum. Failure of recovered lateral hypothalamic rats to learn specific food aversions. J. Comp. Physiol. Psychol. 83: 184–197, 1973.
 270. Rozin, P. Specific aversions as a component of specific hungers. J. Comp. Physiol. Psychol. 64: 237–242, 1967.
 271. Rubinson, K., and B. Friedman. Vagal afferent projections in Rana pipiens, Rana catesbeiana, and Xenopus mulleri. Brain Behav. Evol. 14: 368–380, 1977.
 272. Ruch, T. C., and H. D. Patton. The relation of the deep opercular cortex to taste. Federation Proc. 5: 89–90, 1946.
 273. Ruderman, M. I., A. I. Morrison, and P. J. Hand. A solution to the problem of cerebral cortical localization of taste in the cat. Exp. Neurol. 37: 522–537, 1972.
 274. Ruger, J., and J. Schulkin. Preoperative sodium appetite experience and hypothalamic lesions in rats. J. Comp. Physiol. Psychol. 94: 914–920, 1980.
 275. Rupe, B. D., and J. Mayer. Endogenous glucose release by oral sucrose administration in rats. Experientia 23: 1009–1010, 1967.
 276. Sanides, F. The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions. Brain Res. 8: 97–124, 1968.
 277. Sanides, F. Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Advances in Primatology. The Primate Brain, edited by C. Noback and W. Montagna. New York: Appleton, 1970, vol. 1, p. 137–208.
 278. Safer, C. B., and A. D. Loewy. Efferent connections of the parabrachial nucleus in the rat. Brain Res., 197: 291–317, 1980.
 279. Sato, M. The effect of temperature change on the response of taste receptors. In: Olfaction and Taste, edited by Y. Zotterman. New York: Pergamon, 1963, p. 151–164.
 280. Sato, M. Response characteristics of taste nerve fibers in macaque monkeys: comparison with those in rats and hamsters. In: Olfaction and Taste V, edited by D. A. Denton and J. P. Coghlan. New York: Academic, 1975, p. 23–26.
 281. Schwaber, J. S., B. S. Kapp, and G. Higgins. The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci. Lett. 20: 15–20, 1980.
 282. Schwartz, H., G. Roulhac, R. Lam, and J. O'Leary. Organization of the fasciculus solitarius in man. J. Comp. Neurol. 94: 221–239, 1951.
 283. Schwartz, M., and P. Teitelbaum. Dissociation between learning and remembering in rats with lesions in the lateral hypothalamus. J. Comp. Physiol. Psychol. 87: 384–398, 1974.
 284. Schwartzbaum, J. S., and C. H. Block. Interrelations between parabrachial pons and ventral forebrain of rabbits in taste‐mediated functions. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier/North‐Holland, 1981, p. 367–382. (Inst. Natl. Santé Rech. Méd. Symp. No. 20.)
 285. Schwartzbaum, J. S., and J. R. Morse. Taste responsivity of amygdaloid units in behaving rabbit: a methodological report. Brain Res. Bull. 3: 131–141, 1978.
 286. Sclafani, A., and D. Springer. Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol. Behav. 17: 461–471, 1976.
 287. Scott, T. R. Informatin processing in the taste system. In: Olfaction and Taste VI, edited by J. Le Magnen and P. MacLeod. London: Information Retrieval, Ltd., 1977, p. 249–255.
 288. Scott, T. R. Brain stem and forebrain involvement in the gustatory neural code. In: Brain Mechanisms of Sensation, edited by Y. Katsuki, R. Norgren, and M. Sato. New York: Wiley, 1981, p. 177–196.
 289. Scott, T. R., Jr., and R. P. Erickson. Synaptic processing of taste‐quality information in thalamus of the rat. J. Neurophysiol. 34: 868–884, 1971.
 290. Scott, T. R., and R. Perrotto. Gustatory information is processed similarly throughout rat brain stem. J. Neurophysiol. 44: 739–750, 1980.
 291. Scott, T. R., and M. Yalowitz. Thalamic taste responses to changing stimulus concentration. Chem. Senses Flavor 3: 167–175, 1978.
 292. Sessle, B. J. Excitatory and inhibitory inputs to single neurones in the solitary tract nucleus and adjacent reticular formation. Brain Res. 53: 319–331, 1973.
 293. Sherrington, C. The Integrative Action of the Nervous System. New Haven, CT: Yale Univ. Press, 1906. (Paperback ed., 1961, p. 317.)
 294. Shimazu, T., and A. Amakawa. Regulation of glycogen metabolism in liver by the autonomic nervous system. II. Neurol control of glycogenolytic enzymes. Biochim. Biophys. Acta 165: 335–347, 1968.
 295. Simanton, R., M. Kuhar, G. Pasternak, and S. Snyder. The regional distribution of morphine‐like factor enkephalin in monkey brain. Brain Res. 106: 189–197, 1976.
 296. Smith, D. V., and J. B. Travers. A metric for the breadth of tuning of gustatory neurons. Chem. Senses, 4: 215–229, 1979.
 297. Smith, D. V., J. B. Travers, and R. L. Van Buskirk. Brainstem correlates of gustatory similarity in the hamster. Brain Res. Bull. 4: 359–372, 1979.
 298. Smith, D. V., R. L. Van Buskirk, J. B. Travers, and S. L. Bieber. Gustatory neuron types in hamster brainstem. J. Neurophysiol. 50: 522–540, 1983.
 299. Smith, D. V., R. L. Van Buskirk, J. B. Travers, and S. L. Bieber. Coding of taste stimuli by hamster brain stem neurons. J. Neurophysiol. 50: 541–548, 1983.
 300. Sorenson, C. A., and G. D. Ellison. Striatal organization of feeding behavior in the decorticate rat. Exp. Neurol. 29: 162–174, 1970.
 301. Stedman, H. M., R. M. Bradley, C. M. Mistretta, and B. E. Bradley. Chemosensitive responses from the cat epiglottis. Chem. Senses 5: 223–245, 1980.
 302. Steiner, J. E. The human gustofacial response. In: Fourth Symposium on Oral Sensation and Perception, edited by J. F. Bosma. Bethesda: U.S. Dept. of Health, Education, and Welfare, 1973, p. 254–278.
 303. Storey, A. T. A functional analysis of sensory units innervating epiglottis and larynx. Exp. Neurol. 20: 366–383, 1968.
 304. Storey, A. T. Laryngeal initiation of swallowing. Exp. Neurol. 20: 359–365, 1968.
 305. Stricker, E., and M. Zigmond. Effects on homeostasis of intraventricular injections of 6‐hydroxydopamine in rats. J. Comp. Physiol. Psychol. 86: 973–994, 1974.
 306. Sudakov, K., P. D. MacLean, A. Reeves, and R. Marino. Unit study of exteroceptive inputs to claustrocortex in awake, sitting, squirrel monkey. Brain Res. 28: 19–34, 1971.
 307. Taber, E. The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J. Comp. Neurol. 116: 27–70, 1961.
 308. Teitelbaum, P. Disturbances in feeding and drinking behavior after hypothalamic lesions. In: Nebraska Symposium on Motivation, edited by M. R. Jones. Lincoln: Univ. Nebraska Press, 1961, vol. 9, p. 36–69. (Nebr. Symp. Motivation Ser.)
 309. Teitelbaum, P., and A. N. Epstein. The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev. 69: 74–90, 1962.
 310. Thompson, D., and R. Campbell. Hunger in humans induced by 2‐deoxy‐D‐glucose: glucoprivic control of taste preference and food intake. Science 198: 1065–1068, 1977.
 311. Thompson, D. A., H. R. Moskowitz, and R. G. Campbell. Effects of body weight and food intake on pleasantness ratings for a sweet stimulus. J. Appl. Physiol. 41: 77–83, 1976.
 312. Torvik, A. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures: an experimental study in the rat. J. Comp. Neurol. 106: 51–141, 1956.
 313. Torvik, A., and A. Brodal. The cerebellar projection of the perihypoglossal nuclei (nucleus intercalatus, nucleus praepositus hypoglossi and nucleus of roller) in the cat. J. Neuropathol. Exp. Neurol. 13: 515–527, 1954.
 314. Towbin, E. J. Gustatory response to water in thirst regulation. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, D. C.: Am. Physiol. Soc., 1967, sect. 6, vol. I, chapt. 14, p. 191–195.
 315. Travers, J. Projections From the Anterior Nucleus Tractus Solitarius of the Hamster Demonstrated With Anterograde and Retrograde Tracing Techniques. Laramie: Univ. of Wyoming, 1979. Dissertation.
 316. Travers, J. B., and D. V. Smith. Gustatory sensitivities in neurons of the hamster nucleus tractus solitarius. Sensory Processes 3: 1–26, 1979.
 317. Tucker, D. Olfactory, vomeronasal, and trigeminal receptor responses to odorants. In: Olfaction and Taste: a Symposium, edited by Y. Zotterman. New York: Pergamon, 1963, p. 45–69.
 318. Tucker, D. Nonolfactory responses from the nasal cavity: Jacobson's organ and the trigeminal system. In: Handbook of Sensory Physiology. Chemical Senses. Olfaction, edited by L. M. Beidler. New York: Springer‐Verlag, 1971, vol. 4, pt 1, p. 151–181.
 319. Turner, B. Sensorimotor syndrome produced by lesions of the amygdala and lateral hypothalamus. J. Comp. Physiol. Psychol. 82: 37–47, 1973.
 320. Ungerstedt, U. Adipsia and aphagia after 6‐hydroxydopamine induced degeneration of the nigro‐striatal dopamine system. Acta Physiol. Scand. Suppl. 367: 95–122, 1971.
 321. Valverde, F. The pryamidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord (Golgi and electron microscopic observations). Z. Zellforsch. Mikrosk. Anat. 71: 297–363, 1966.
 322. Van Buskirk, R., and R. Erickson. Odorant responses in taste neurons of rat NTS. Brain Res. 135: 287–303, 1977.
 323. Van Buskirk, R., and R. Erickson. Responses of the rostral medulla to electrical stimulation of an intranasal trigeminal nerve: convergence of oral and nasal inputs. Neurosci. Lett. 5: 321–326, 1977.
 324. Van Buskirk, R. L., and D. V. Smith. Gustatory responsive neurons in the hamster parabrachial pons. Soc. Neurosci. Abstr. 3: 85, 1977.
 325. Van Buskirk, R. L., and D. V. Smith. Taste sensitivity of hamster parabrachial pontine neurons. J. Neurophysiol. 45: 144–171, 1981.
 326. Voshart, K., and D. Van Der Kooy. The organization of the efferent projections of the parabrachial nucleus to the forebrain in the rat: a retrograde fluorescent double labeling study. Brain Res. 212: 271–286, 1981.
 327. Von Economo, C. Über dissoziierte Empfindungslahmung bei Ponstumoren und über die zentralen Bahnen des sensiblen Trigeminus. J. Psychiat. Neurol. 32: 107–138, 1911.
 328. Walberg, F. Fastigiofugal fibers to the perihypoglossal nuclei in the cat. Exp. Neurol. 3: 525–541, 1961.
 329. Walker, A. E. The Primate Thalamus. Chicago: Univ. Chicago Press, 1938.
 330. Wall, P. D., and A. Taub. Four aspects of the trigeminal nucleus and a paradox. J. Neurophysiol. 25: 110–126, 1962.
 331. Wallenberg, A. Die sekundäre Bahn des sensiblen Trigeminus. Anat. Anz. 12: 95–110, 1896.
 332. Wallenberg, A. Sekundäre sensible Bahnen in Gehirnstamme des Kaninchens, ihre gegenseitige Lage und ihre Bedeutung fur den Aufbau des Thalamus. Anat. Anz. 18: 81–105, 1900.
 333. Wallenberg, A. Sekundäre Bahnen aus dem frontalen sensiblen Trigeminuskerne des Kaninchens. Anat. Anz. 26: 145–155, 1905.
 334. Watson, S. J., H. Akil, S. Sullivan, and J. Barchas. Immunocytochemical localization of methionine enkephalin: preliminary observations. Life Sci. 21: 733–738, 1977.
 335. Wilcoxon, H. C., W. B. Dragoin, and P. Kral. Illness‐induced aversions in rat and quail: relative salience of visual and gustatory cues. Science 171: 826–828, 1971.
 336. Williams, D. R., and P. Teitelbaum. Some observations on the starvation resulting from lateral hypothalamic lesions. J. Comp. Physiol. Psychol. 52: 458–464, 1959.
 337. Wilson, J. H. The structure and function of the taste‐buds of the larynx. Brain 28: 339–351, 1905.
 338. Wirsig, C. R., and H. J. Grill. Contribution of the rat's neocortex to ingestive control: I. Latent learning for the taste of sodium chloride. J. Comp. Physiol. Psychol. 96: 614–627, 1982.
 339. Wirth, F. P. Insular‐diencephalic connections in the macaque. J. Comp. Neurol. 150: 361–392, 1973.
 340. Wolf, G. Effect of dorsolateral hypothalamic lesions on sodium appetite elicited by desoxycorticosterone and by acute hyponatremia. J. Comp. Physiol. Psychol. 58: 396–402, 1964.
 341. Wolf, G. Projections of thalamic and cortical gustatory areas in the rat. J. Comp. Neurol. 132: 519–530, 1968.
 342. Wolf, G. Thalamic and tegmental mechanisms for sodium intake: anatomical and functional relations to lateral hypothalamus. Physiol. Behav. 3: 997–1002, 1968.
 343. Wolf, G., L. V. Dicara, and J. Braun. Sodium appetite in rats after neocortical ablation. Physiol. Behav. 5: 1265–1269, 1970.
 344. Wolf, G., and D. Quartermain. Sodium chloride intake of adrenalectomized rats with lateral hypothalamic lesions. Am. J. Physiol. 212: 113–118, 1967.
 345. Woolston, D. C., and R. P. Erickson. Concept of neuron types in gustation in the rat. J. Neurophysiol. 42: 1390–1409, 1979.
 346. Yamamoto, T., and Y. Kawamura. Summated cerebral responses to taste stimuli in rat. Physiol. Behav. 9: 789–793, 1972.
 347. Yamamoto, T., and Y. Kawamura. Cortical responses to electrical and gustatory stimuli in the rabbit. Brain Res. 94: 447–463, 1975.
 348. Yamamoto, T., and Y. Kawamura. Physiological characteristics of cortical taste area. In: Olfaction and Taste VI, edited by J. La Magnen and P. MacLeod. London: Information Retrieval, Ltd., 1977, p. 257–264.
 349. Yamamoto, T., and Y. Kawamura. Response characteristics of cortical taste cells and chorda tympani fibers in the rabbit. Brain Res. 152: 586–590, 1978.
 350. Yamamoto, T., R. Matsuo, and Y. Kawamura. Localization of cortical gustatory area in rats and its role in taste discrimination. J. Neurophysiol. 44: 440–455, 1980.
 351. Yamamoto, T., N. Yuyama, and Y. Kawamura. Responses of cortical taste cells and chorda tympani fibers to anodal d.c. stimulation of the tongue in rats. Exp. Brain Res. 40: 63–70, 1980.
 352. Yamamoto, T., N. Yuyama, and Y. Kawamura. Central processing of taste perception. In: Brain Mechanisms of Sensation, edited by Y. Katsuki, R. Norgren, and M. Sato. New York: Wiley, 1981, p. 197–207.
 353. Yamamoto, T., N. Yuyama, and Y. Kawamura. Cortical neurons responding to tactile, thermal and taste stimulations of the rat's tongue. Brain Res. 221: 202–206, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ralph Norgren. Central Neural Mechanisms of Taste. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 1087-1128. First published in print 1984. doi: 10.1002/cphy.cp010324