Comprehensive Physiology Wiley Online Library

Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Essence of Prefrontal Function: Regulation of Behavior by Representational Knowledge
1.1 Subdivisions of Prefrontal Cortex
1.2 Global Nature of Prefrontal Syndrome in Humans
1.3 Animal Model for Prefrontal Function in Humans
1.4 Delayed‐Response Tests and Varying Interpretations of Their Functional Significance
1.5 Distractability and Perseveration: Secondary Consequences of Basic Defect in Representational Memory
1.6 Representational Memory in Wisconsin Card Sort and Other Diagnostic Tests of Prefrontal Function in Humans
1.7 Localization of Delayed‐Response Function: Principal Sulcus
1.8 Circuit Basis of Visuospatial Functions
2 Accessing and “On‐Line” Processing of Representations in Visuospatial Domain: Parietal‐Prefrontal Connections
2.1 Visuospatial Representational Memory in Humans
2.2 Spatial‐Mnemonic Nature of Delayed‐Response Deficit: Domain‐Specific Memory Loss
2.3 Topography of Representational Memory in Prefrontal Cortex
2.4 Electrophysiological Evidence of Spatial‐Mnemonic Processes in Principal Sulcus
2.5 Parietal‐Prefrontal Connectivity
2.6 Columnar and Laminar Framework for Feedforward and Feedback Mechanisms
2.7 Functional Significance of Parietal‐Prefrontal Collaboration
3 Long‐Term Memory and “Off‐Line” Processing: Prefrontal‐Limbic Connections
3.1 Role of Hippocampus in Spatial Memory
3.2 Multiple Connections Between Principal Sulcus and Hippocampal Formation
3.3 Quadripartite Neural Network: Parietal‐Temporal‐Cingulate‐Prefrontal Circuit
3.4 Limbic Contribution to Spatial Memory
4 Response Initiation and Inhibition: Projections to Striatum, Tectum, Thalamus, and Premotor Cortex
4.1 Motor‐Control Functions of Prefrontal Cortex
4.2 Cortical‐Striatal Pathway and Related Feedback Loops
4.3 Cortical‐Tectal Pathway
4.4 Thalamic‐Cortical Systems
4.5 Prefrontal‐Premotor Connections: Anterior Supplementary Motor Cortex Relays
4.6 Functional Speculations
5 Modulatory Mechanisms: Brain Stem Catecholamine Projections
5.1 Activation of Cognitive Machinery
5.2 Concentration and Synthesis of Catecholamines in Primate Cortex
5.3 Brain Stem Innervation of Prefrontal Cortex
5.4 Delayed‐Response Deficits and Recovery Produced by Catecholamine Loss and Replacement in Prefrontal Cortex
5.5 Circuit Basis for Neuromodulation in Principal Sulcus
6 Multiple Subsystems of Prefrontal Cortex: Unity or Diversity of Function
6.1 Unity or Diversity of Prefrontal Function
6.2 Frontal Eye Fields
6.3 Inferior Convexity
6.4 Orbital Prefrontal Cortices
6.5 Problem of Integration
7 Diseases Affecting Prefrontal Cortex
7.1 Schizophrenia: Loss of Corticocortical Processing and Regulation of Behavior by Representational Knowledge
7.2 Wernicke‐Korsakoff Syndrome: Loss of Thalamocortical and Brain Stem Modulatory Mechanisms
7.3 Huntington's Chorea and Parkinson's Disease: Loss of Prefrontal‐Striatal Mechanisms and Initiation or Inhibition of Motor Response
7.4 Overview of Neurobiology of Disease
8 Summary
Figure 1. Figure 1.

Lateral view of human and monkey cerebral cortex. Human prefrontal divisions based on Brodmann's (1929) cytoarchitectonic map; macaque prefrontal divisions based on Walker's (1940) cytoarchitectonic map. Stippling, area 46.

Figure 2. Figure 2.

Three components of spatial delayed‐response trial. Top, monkey sees experimenter bait one food well (cue) before both wells are covered. Middle, opaque screen is lowered for one or more seconds (delay). Bottom, screen is raised and monkey chooses one well by displacing its cover.

Figure 3. Figure 3.

Results from 3 monkeys tested on delayed eye‐movement task. Correct‐performance percentage is shown along axes drawn through central fixation point; 8 positions of target stimuli are located at constant distance (13°) from fixation point. Thick line, performance at shortest delay (usually 0.5–1.5 s); thin line, performance at 3‐s delay; dashed line, performance at 6‐s delay. A, B: monkey with sequential lesions of middle third of principal sulcus. A: monkey exhibits marked deficit in lower left visual field and milder deficit in lower right visual field at all delays. B: lower right‐field deficit is much more severe after animal was subjected to prefrontal lesion of middle principal sulcus in left hemisphere. C: monkey with unilateral lesion of entire principal sulcus showed loss in ability to remember targets in both upper and lower contralateral fields at 6‐s delay, though performance was accurate at shorter delays. D: monkey with lesion confined to posterior portion of principal sulcus and anterior bank of arcuate sulcus showed severe deficit in contralateral upper visual field at all delays. All 3 monkeys performed without difficulty in all locations within visual field as long as visual target was present at time of response.

Figure 4. Figure 4.

Neuronal activity of cell recorded near principal sulcus during multiple trials of delayed‐response eye‐movement task. Unit activity rasters are aligned to cue, delay, and response periods of task. A: when target was presented 13° right of fixation, cell was activated during delay; B: when target was presented 13° left of fixation, cell did not increase base‐line firing rate during delay. Firing rate did increase slightly after eyes moved left. FP, fixation point.

Figure 5. Figure 5.

Subarea‐to‐subarea interconnections of parietal and prefrontal cortex that may be essential for spatial memory. Medial parietal cortex (7m) is interconnected with dorsal bank and rim of caudal principal sulcus (PS); area 7a is interconnected with fundus and lower portion of each bank; area 7b is interconnected with upper portion and rim of ventral bank of PS; area 7ip in caudal bank of intraparietal sulcus (IpS) is connected with anterior bank of the arcuate sulcus (ArcS).

Figure 6. Figure 6.

Simplified circuit diagram of terminal fields of parietal associational fibers (light stipple) and callosal fibers (dark stipple) in layers I and IV of adjacent columns in principal sulcus. Callosal (dark triangles) and associational (light triangles) projection neurons send axons to contralateral prefrontal cortex and to ipsilateral parietal cortex, respectively. Callosal neurons are more concentrated in columns defined by callosal afferents, and associational neurons are more concentrated in columns receiving dense association‐fiber input. Layer III contains ∼80% of callosal and associational projection neurons; 20% are distributed in layers V and VI.

Data from Schwartz and Goldman‐Rakic 352
Figure 7. Figure 7.

Prefrontal connections with parahippocampal gyrus (areas TH and TF), entorhinal cortex (area 28), presubiculum (PSUB), and caudomedial lobule (CML) based on cases in which principal sulcus was implanted with horseradish peroxidase gel that labels both efferents and afferents to injected area. B, C: coronal sections cut through two levels (b, c in A) showing terminal fields of anterogradely transported label from injection site (stippled); reciprocal projections revealed by retrograde transport studies are not shown but arise from (roughly) same areas. CA, Ammon's horn; CC, corpus callosum; CING, cingulate gyrus; CS, collateral sulcus; DG, dentate gyrus; OTS, occipitotemporal sulcus; PS, principal sulcus; RS, retrosplenial cortex.

Adapted from Goldman‐Rakic et al. 138
Figure 8. Figure 8.

Diagram of third‐party connections of posterior parietal and caudal principal sulcus based on double‐label studies in which one anterograde tracer was injected into prefrontal cortex and another into parietal cortex of same animal. Superimposition of adjacent sections shows these areas projecting to different layers of the same column or to adjacent columns in designated target areas (see insert). Major targets of prefrontal and parietal projections are limbic areas on medial surface and opercular and superior temporal cortices on lateral surface. Stippling, intraparietal sulcus (IPS) and principal sulcus (PS).

Figure 9. Figure 9.

Major motor‐control efferent pathways. A, corticocortical pathway: principal sulcus (PS) to supplementary motor cortex (SMA); B, cortical‐striatal pathway: PS to caudate nucleus (Cd); C, cortical‐tectal pathway: PS to intermediate and deep layers of superior colliculus (SC).

Data from Goldman and Nauta 129,131, Selemon and Goldman‐Rakic 355; M. L. Jouandet and P. S. Goldman‐Rakic, unpublished observations
Figure 10. Figure 10.

Topographical relationships between ventral anterior nucleus, mediodorsal nucleus, and medial pulvinar nucleus and selected cytoarchitectonic subdivisions of prefrontal cortex. Each subdivision projects to only one cytoarchitectonic area of cortex; each cortical area receives unique multiple thalamic input.

From Goldman‐Rakic and Porrino 136
Figure 11. Figure 11.

Prefrontal interconnections with several brain stem monoaminergic cell groups thought to be involved in activational processes. BC, brachium conjunctivum; CS, central superior nucleus; DR, dorsal raphe; LC, locus coeruleus; nST, solitary tract nucleus; PS, principal sulcus; PY, pyramids.

Data from Arnsten and Goldman‐Rakic 11 and Porrino and Goldman‐Rakic 320
Figure 12. Figure 12.

Walker's cytoarchitectonic map of monkey prefrontal cortex. Lateral and ventral views show approximate locations of frontal eye fields (areas 8A, 45), inferior prefrontal convexity (area 12), and posterior orbital prefrontal cortex (areas 13, 14). AS, arcuate sulcus; CS, central sulcus; OT, optic tract; PS, principal sulcus.



Figure 1.

Lateral view of human and monkey cerebral cortex. Human prefrontal divisions based on Brodmann's (1929) cytoarchitectonic map; macaque prefrontal divisions based on Walker's (1940) cytoarchitectonic map. Stippling, area 46.



Figure 2.

Three components of spatial delayed‐response trial. Top, monkey sees experimenter bait one food well (cue) before both wells are covered. Middle, opaque screen is lowered for one or more seconds (delay). Bottom, screen is raised and monkey chooses one well by displacing its cover.



Figure 3.

Results from 3 monkeys tested on delayed eye‐movement task. Correct‐performance percentage is shown along axes drawn through central fixation point; 8 positions of target stimuli are located at constant distance (13°) from fixation point. Thick line, performance at shortest delay (usually 0.5–1.5 s); thin line, performance at 3‐s delay; dashed line, performance at 6‐s delay. A, B: monkey with sequential lesions of middle third of principal sulcus. A: monkey exhibits marked deficit in lower left visual field and milder deficit in lower right visual field at all delays. B: lower right‐field deficit is much more severe after animal was subjected to prefrontal lesion of middle principal sulcus in left hemisphere. C: monkey with unilateral lesion of entire principal sulcus showed loss in ability to remember targets in both upper and lower contralateral fields at 6‐s delay, though performance was accurate at shorter delays. D: monkey with lesion confined to posterior portion of principal sulcus and anterior bank of arcuate sulcus showed severe deficit in contralateral upper visual field at all delays. All 3 monkeys performed without difficulty in all locations within visual field as long as visual target was present at time of response.



Figure 4.

Neuronal activity of cell recorded near principal sulcus during multiple trials of delayed‐response eye‐movement task. Unit activity rasters are aligned to cue, delay, and response periods of task. A: when target was presented 13° right of fixation, cell was activated during delay; B: when target was presented 13° left of fixation, cell did not increase base‐line firing rate during delay. Firing rate did increase slightly after eyes moved left. FP, fixation point.



Figure 5.

Subarea‐to‐subarea interconnections of parietal and prefrontal cortex that may be essential for spatial memory. Medial parietal cortex (7m) is interconnected with dorsal bank and rim of caudal principal sulcus (PS); area 7a is interconnected with fundus and lower portion of each bank; area 7b is interconnected with upper portion and rim of ventral bank of PS; area 7ip in caudal bank of intraparietal sulcus (IpS) is connected with anterior bank of the arcuate sulcus (ArcS).



Figure 6.

Simplified circuit diagram of terminal fields of parietal associational fibers (light stipple) and callosal fibers (dark stipple) in layers I and IV of adjacent columns in principal sulcus. Callosal (dark triangles) and associational (light triangles) projection neurons send axons to contralateral prefrontal cortex and to ipsilateral parietal cortex, respectively. Callosal neurons are more concentrated in columns defined by callosal afferents, and associational neurons are more concentrated in columns receiving dense association‐fiber input. Layer III contains ∼80% of callosal and associational projection neurons; 20% are distributed in layers V and VI.

Data from Schwartz and Goldman‐Rakic 352


Figure 7.

Prefrontal connections with parahippocampal gyrus (areas TH and TF), entorhinal cortex (area 28), presubiculum (PSUB), and caudomedial lobule (CML) based on cases in which principal sulcus was implanted with horseradish peroxidase gel that labels both efferents and afferents to injected area. B, C: coronal sections cut through two levels (b, c in A) showing terminal fields of anterogradely transported label from injection site (stippled); reciprocal projections revealed by retrograde transport studies are not shown but arise from (roughly) same areas. CA, Ammon's horn; CC, corpus callosum; CING, cingulate gyrus; CS, collateral sulcus; DG, dentate gyrus; OTS, occipitotemporal sulcus; PS, principal sulcus; RS, retrosplenial cortex.

Adapted from Goldman‐Rakic et al. 138


Figure 8.

Diagram of third‐party connections of posterior parietal and caudal principal sulcus based on double‐label studies in which one anterograde tracer was injected into prefrontal cortex and another into parietal cortex of same animal. Superimposition of adjacent sections shows these areas projecting to different layers of the same column or to adjacent columns in designated target areas (see insert). Major targets of prefrontal and parietal projections are limbic areas on medial surface and opercular and superior temporal cortices on lateral surface. Stippling, intraparietal sulcus (IPS) and principal sulcus (PS).



Figure 9.

Major motor‐control efferent pathways. A, corticocortical pathway: principal sulcus (PS) to supplementary motor cortex (SMA); B, cortical‐striatal pathway: PS to caudate nucleus (Cd); C, cortical‐tectal pathway: PS to intermediate and deep layers of superior colliculus (SC).

Data from Goldman and Nauta 129,131, Selemon and Goldman‐Rakic 355; M. L. Jouandet and P. S. Goldman‐Rakic, unpublished observations


Figure 10.

Topographical relationships between ventral anterior nucleus, mediodorsal nucleus, and medial pulvinar nucleus and selected cytoarchitectonic subdivisions of prefrontal cortex. Each subdivision projects to only one cytoarchitectonic area of cortex; each cortical area receives unique multiple thalamic input.

From Goldman‐Rakic and Porrino 136


Figure 11.

Prefrontal interconnections with several brain stem monoaminergic cell groups thought to be involved in activational processes. BC, brachium conjunctivum; CS, central superior nucleus; DR, dorsal raphe; LC, locus coeruleus; nST, solitary tract nucleus; PS, principal sulcus; PY, pyramids.

Data from Arnsten and Goldman‐Rakic 11 and Porrino and Goldman‐Rakic 320


Figure 12.

Walker's cytoarchitectonic map of monkey prefrontal cortex. Lateral and ventral views show approximate locations of frontal eye fields (areas 8A, 45), inferior prefrontal convexity (area 12), and posterior orbital prefrontal cortex (areas 13, 14). AS, arcuate sulcus; CS, central sulcus; OT, optic tract; PS, principal sulcus.

References
 1. Adolfsson, R., C. G. Gottfries, B. E. Roos, and B. Winblad. Changes in brain catecholamines in patients with dementia of the Alzheimer type. Br. J. Psychiatry 135: 216–223, 1979.
 2. Akert, K. Comparative anatomy of frontal cortex and thalamo‐frontal connections. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964.
 3. Akert, K., O. S. Orth, H. F. Harlow, and K. A. Schlitz. Learned behavior of rhesus monkeys following neonatal bilateral prefrontal lobotomy. Science Wash. DC 132: 1944–1945, 1960.
 4. Alexander, G. E., and P. S. Goldman. Functional development of the dorsolateral prefrontal cortex: an analysis utilizing reversible cryogenic depression. Brain Res. 143: 233–250, 1978.
 5. Allman, J. M., and J. H. Kaas. Representation of the visual field on the medial wall of the occipital lobe of the owl monkey. Science Wash. DC 191: 572–576, 1976.
 6. Alzheimer, A. Beitrage zur pathologischen Anatomie der Dementia Praecox. Allg. Z. Psychiatr. Ihre Grenzgeb. 70: 810–812, 1913.
 7. Amaral, D. G., R. Insausti, and W. M. Cowan. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res. 275: 263–277, 1983.
 8. Andersen, R. A., C. Asanuma, and W. M. Cowan. Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: a study using retrogradely transported fluorescent dyes. J. Comp. Neurol. 232: 443–455, 1985.
 9. Andersen, R. A., G. K. Essick, and R. M. Siegel. The encoding of spatial location by posterior parietal neurons. Science Wash. DC 230: 456–458, 1985.
 10. Andersen, R. A., and V. B. Mountcastle. The influence of the angle of gaze upon the excitability of the light‐sensitive neurons of the posterior parietal cortex. J. Neurosci. 3: 532–548, 1983.
 11. Arnsten, A. F. T., and P. S. Goldman‐Rakic. Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res. 306: 9–18, 1984.
 12. Arnsten, A. F. T., and P. S. Goldman‐Rakic. Alpha‐adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science Wash. DC 230: 1273–1276, 1985.
 13. Asanuma, C., R. A. Andersen, and W. M. Cowan. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J. Comp. Neurol. 241: 357–381, 1985.
 14. Aston‐Jones, G., and F. E. Bloom. Norepinephrine‐containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non‐noxious environmental stimuli. J. Neurosci. 1: 887–900, 1981.
 15. Astrachan, B. M., M. Harrow, D. Adler, L. Brauer, A. Schwartz, C. Schwartz, and G. Tucker. A checklist for the diagnosis of schizophrenia. Br. J. Psychiatry 121: 529–539, 1972.
 16. Azuma, M., and H. Suzuki. Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Res. 298: 343–346, 1984.
 17. Bachevalier, J., and M. Mishkin. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20: 249–261, 1986.
 18. Bacopoulos, N. C., E. G. Spokes, E. D. Bird, and R. H. Roth. Antipsychotic drug action in schizophrenic patients: effect on cortical dopamine metabolism after long‐term treatment. Science Wash DC 205: 1405–1407, 1979.
 19. Baddeley, A. D. Working memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 302: 311–324, 1983.
 20. Bailey, P., G. von Bonin, E. W. Davis, and W. S. McCulloch. Further observations of associational pathways in the brain of Macaca mulatta. J. Neuropathol. Exp. Neurol. 3: 413–415, 1944.
 21. Baleydier, C., and F. Mauguiere. The duality of the cingulate gyrus in monkey: neuroanatomical study and functional hypothesis. Brain 103: 525–554, 1980.
 22. Baleydier, C., and F. Mauguiere. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. J. Comp. Neurol. 232: 219–228, 1985.
 23. Bannon, M. J., and R. H. Roth. Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35: 53–68, 1983.
 24. Barbas, H., and M.‐M. Mesulam. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200: 407–431, 1981.
 25. Barbas, H., and M.‐M. Mesulam. Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience 15: 619–637, 1985.
 26. Bartus, R. T., D. Fleming, and H. R. Johnson. Aging in the rhesus monkey: debilitating effects on short‐term memory. J. Gerontol. 33: 858–871, 1978.
 27. Bartus, R. T., and T. E. Levere. Frontal decortication in rhesus monkeys: a test of the interference hypothesis. Brain Res. 119: 233–248, 1977.
 28. Batuev, A. S., A. A. Orlov, and A. A. Pirogov. Short‐term spatiotemporal memory and cortical unit reactions in the monkey. Acta Physiol. Acad. Sci. Hung. 58: 207–216, 1981.
 29. Beckstead, R. M. An autoradiographic examination of the corticocortical and subcortical projections of the mediodorsalprojection (prefrontal) cortex in the rat. J. Comp. Neurol. 184: 43–62, 1979.
 30. Benevento, L. A., and J. H. Fallon. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 160: 339–362, 1975.
 31. Benevento, L. A., J. Fallon, B. J. Davis, and M. Rezak. Auditory‐visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp. Neurol. 57: 849–872, 1977.
 32. Berger, B., J. P. Tassin, G. Rancurel, and G. Blanc. Catecholaminergic innervation of the human cerebral cortex in presenile and senile dementia. Histochemical and biochemical studies. In: Enzymes and Neurotransmitters in Mental Disease, edited by E. Usdin, T. L. Sourkes, and M. B. H. Youdim. New York: Wiley, 1980, p. 317–328.
 33. Berger, B., A. M. Thierry, J. P. Tassin, and M. A. Moyne. Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study. Brain Res. 106: 133–145, 1976.
 34. Berman, K. F., R. F. Zec, and D. R. Weinberger. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Arch. Gen. Psychiatry 43: 126–135, 1986.
 35. Bianchi, L. The functions of the frontal lobes. Brain 18: 497–530, 1895.
 36. Bianchi, L. The Mechanism of the Brain and the Function of the Frontal Lobes. New York: Wood, 1922.
 37. Blum, R. A. Effects of subtotal lesions of frontal granular cortex on delayed reaction in monkeys. AMA Arch. Neurol. Psychiatry 67: 375–386, 1952.
 38. Bonin, G. von, and P. Bailey. The Neocortex of Macaca mulatta. Urbana: Univ. of Illinois Press, 1947.
 39. Bowers, M. B., Jr. Retreat From Sanity: The Structure of Emerging Psychosis. New York: Human Sciences, 1974.
 40. Brickner, R. M. The Intellectual Functions of the Frontal Lobes. New York: Macmillan, 1936.
 41. Broadbent, D. E. Perception and communication. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 302: 311–324, 1958.
 42. Broadbent, D. E. The functional approach to memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 302: 239–249, 1983.
 43. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig, Germany: Barth, 1925.
 44. Brown, R. M., A. M. Crane, and P. S. Goldman. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168: 133–150, 1979.
 45. Brown, R. M., and P. S. Goldman. Catecholamines in neocortex of rhesus monkeys: regional distribution and ontogenetic development. Brain Res. 124: 576–580, 1977.
 46. Brozoski, T., R. M. Brown, H. E. Rosvold, and P. S. Goldman. Cognitive deficit caused by depletion of dopamine in prefrontal cortex of rhesus monkey. Science Wash. DC 205: 929–931, 1979.
 47. Bruce, C. J. Face recognition by monkeys: absence of an inversion effect. Neuropsychologia 20: 515–521, 1982.
 48. Bruce, C. J., R. Desimone, and C. G. Gross. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46: 369–384, 1981.
 49. Bruce, C. J., and M. E. Goldberg. Physiology of the frontal eye fields. Trends Neurosci. 7: 436–441, 1984.
 50. Bruce, C. J., and M. E. Goldberg. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53: 603–635, 1985.
 51. Bruce, C. J., M. E. Goldberg, M. C. Bushnell, and G. B. Stanton. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54: 714–734, 1985.
 52. Bruce, C. J., and P. S. Goldman‐Rakic. Columnar organization of callosal connectivity in macaque frontal eye fields and its relation to elicited eye movements. Soc. Neurosci. Abstr. 10: 59, 1984.
 53. Buchsbaum, M. S., L. E. De Lisi, and H. H. Holcomb. Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch. Gen. Psychiatry 41: 1159–1166, 1984.
 54. Buchsbaum, M. S., D. H. Ingvar, R. Kessler, R. N. Waters, J. Cappelletti, D. P. van Kammen, A. C. King, and J. L. Johnson. Cerebral glucography with positron tomography. Arch. Gen. Psychiatry 39: 251–259, 1982.
 55. Bugbee, N. M., and P. S. Goldman‐Rakic. Functional 2‐deoxyglucose mapping in association cortex: prefrontal activation in monkeys performing a cognitive task. Soc. Neurosci. Abstr. 7: 416, 1981.
 56. Bugbee, N. M., and P. S. Goldman‐Rakic. Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J. Comp. Neurol. 220: 355–364, 1983.
 57. Bunney, B. S., and G. K. Aghajanian. The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res. 117: 423–435, 1976.
 58. Burton, H., and E. G. Jones. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168: 249–301, 1976.
 59. Burton, H., and C. J. Robinson. Organization of the SII parietal cortex. In: Cortical Sensory Organization. Multiple Somatic Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1981, vol. 1, p. 67–119.
 60. Butter, C. M., and D. R. Snyder. Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiol. Exp. Warsaw 32: 525–565, 1972.
 61. Butters, N., and L. S. Cermak. The role of cognitive factors in the memory disorders of alcoholic patients with the Korsakoff syndrome. Ann. NY Acad. Sci. 233: 61–75, 1974.
 62. Butters, N., and M. Grady. Effect of predistractor delays on the short‐term memory performance of patients with Korsakoff's and Huntington's disease. Neuropsychologia 15: 701–706, 1977.
 63. Butters, N., D. N. Pandya, D. Stein, and J. Rosen. A search for the spatial engram within the frontal lobes of monkeys. Acta Neurobiol. Exp. Warsaw 32: 305–329, 1972.
 64. Cala, L. A., B. Jones, F. L. Mastaglia, and B. Wiley. Brain atrophy and intellectual impairment in heavy drinkers—a clinical, psychometric and computerized tomography study. NZ J. Med. 8: 147–153, 1978.
 65. Carlsson, A., and B. Winblad. Influence of age and time interval between death and autopsy on dopamine and 3‐methoxytyramine levels in human basal ganglia. J. Neural Transm. 38: 271–276, 1976.
 66. Carpenter, W. T., J. S. Strauss, and J. J. Bartko. Flexible system for the diagnosis of schizophrenia: report from the WHO International Pilot Study of Schizophrenia. Science Wash. DC 182: 1275–1278, 1973.
 67. Catsman‐Berrevoets, C. E., H. G. J. M. Kuypers, and R. N. Lemon. Cells of origin of frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci. Lett. 12: 41–46, 1979.
 68. Cavada, C., and P. S. Goldman‐Rakic. Parieto‐prefrontal connections in the monkey: topographic distribution within the prefrontal cortex of sectors connected with the lateral and medial posterior parietal cortex. Soc. Neurosci. Abstr. 11: 323, 1985.
 69. Cavada, C., and P. S. Goldman‐Rakic. Subdivisions of area 7 in rhesus monkey exhibit selective patterns of connectivity with limbic visual and somatosensory cortical areas. Soc. Neurosci. Abstr. 12: 262, 1986.
 70. Chavis, D. A., and D. N. Pandya. Further observations on corticofrontal connections in the rhesus monkey. Brain Res. 117: 369–386, 1976.
 71. Chorover, S. L., and M. Cole. Delayed alternation performance in patients with cerebral lesions. Neuropsychologia 4: 1–7, 1966.
 72. Clark, W., E. LeGros, and R. H. Boggon. The thalamic connections of the parietal and frontal lobes of the brain in the monkey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 224: 313–359, 1935.
 73. Cohen, N. J. Preserved learning capacity in amnesia: evidence for multiple memory systems. In: Neuropsychology of Memory, edited by L. R. Squire and N. Butters. New York: Guilford, 1984, p. 83–108.
 74. Colby, C. L., R. Gattass, C. R. Olson, and C. G. Gross. Cortical afferents to visual area PO in the macaque. Soc. Neurosci. Abstr. 9: 152, 1983.
 75. Corkin, S. Tactually‐guided maze learning in man: effects of unilateral cortical excisions and bilateral hippocampal lesions. Neuropsychologia 3: 339–351, 1965.
 76. Correll, R. E., and W. B. Scoville. Significance of delay in the performance of monkeys with medial temporal lobe resections. Exp. Brain Res. 4: 85–96, 1967.
 77. Covey, E., R. Gattass, and C. G. Gross. A new visual area on the parieto‐occipital sulcus of the macaque. Soc. Neurosci. Abstr. 8: 681, 1982.
 78. Crosby, E. C., T. Humphrey, and E. W. Lauer. Correlative Anatomy of the Nervous System. New York: Macmillan, 1961.
 79. Crow, T. J. The biology of schizophrenia. Experientia 38: 1275–1282, 1982.
 80. Crow, T. J. The two‐syndrome concept: origins and current status. Schizophr. Bull. 11: 471–486, 1985.
 81. Dalsass, M., S. Kiser, M. Mendershausen, and D. C. German. Medial prefrontal cortical projections to the region of the dorsal periventricular catecholamine system. Neuroscience 6: 657–665, 1981.
 82. Damasio, A. R. The frontal lobes. In: Clinical Neuropsychology, edited by K. M. Heilman and E. Valenstein. New York: Oxford Univ. Press, 1979, p. 360–411.
 83. Damasio, A. R., H. Damasio, and C. Chui. Neglect following damage to frontal lobe and basal ganglia. Neuropsychologa 18: 123–132, 1980.
 84. De Long, M. R., and A. P. Georgopoulos. Motor functions of the basal ganglia. In: Handbook of Physiology. The Nervous System. Motor Control, edited by V. B. Brooks. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, vol. II, pt. 2, chapt. 21, p. 1017–1061.
 85. Deng, S.‐Y., M. A. Segraves, L. G. Ungerleider, M. Mishkin, and M. E. Goldberg. Unilateral frontal eye field lesions degrade saccadic performance in the rhesus monkey. Soc. Neurosci. Abstr. 10: 59, 1984.
 86. Denny‐Brown, D. The frontal lobes and their function. In: Modern Trends in Neurology, edited by A. Feiling. New York: Hoeber, 1951.
 87. De Renzi, E. Disorders of Space Exploration and Cognition. New York: Wiley, 1982.
 88. Desimone, R., T. D. Albright, C. G. Gross, and C. Bruce. Stimulus‐selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4: 2051–2062, 1984.
 89. Desmedt, J. E., and J. Debecker. Slow potential shifts and decision P350 interactions in tasks with random sequences of near‐threshold clicks and finger stimuli delivered at regular intervals. Electroencephalogr. Clin. Neurophysiol. 47: 671–679, 1979.
 90. De Vito, J. L., and O. A. Smith. Subcortical projections of the prefrontal lobe of the monkey. J. Comp. Neurol. 123: 413–424, 1964.
 91. Diamond, A. Development of the ability to use recall to guide action, as indicated by infants' performance on AB. Child Dev. 56: 868–883, 1985.
 92. Diamond, A., and P. S. Goldman‐Rakic. Comparison of performance on a Plagetian object permanence task in human infants and rhesus monkeys: evidence for involvement of prefrontal cortex. Soc. Neurosci. Abstr. 9: 641, 1983.
 93. Diamond, A., and P. S. Goldman‐Rakic. Comparative development in human infants and infant rhesus monkeys of cognitive functions that depend on prefrontal cortex. Soc. Neurosci. Abstr. 12: 274, 1986.
 94. DiChiara, G., M. Morelli, M. L. Porceddu, M. Mulas, and M. Del Fiacco. Effect of discrete kainic acid‐induced lesions of corpus caudatus and globus pallidus on glutamic acid decarboxylase of rat substantia nigra. Brain Res. 189: 193–208, 1980.
 95. Drewe, E. A. The effect of type and area of brain lesion on Wisconsin card sorting test performance. Cortex 10: 159–170, 1974.
 96. Dusser de Barenne, J. G., H. W. Garol, and W. S. McCulloch. Functional organization of the sensory and adjacent cortex of the monkey. J. Neurophysiol. 4: 324–330, 1941.
 97. Eslinger, P. J., and A. R. Damasio. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35: 1731–1741, 1985.
 98. Farkas, T., A. P. Wolf, J. Jaeger, J. D. Brodie, D. R. Christman, and J. S. Fowler. Regional brain glucose metabolism in chronic schizophrenia. Arch. Gen. Psychiatry 41: 292–300, 1984.
 99. Feger, J., and A. R. Crossman. Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence double‐labelling study. Neurosci. Lett. 49: 7–12, 1984.
 100. Ferrier, D. The Functions of the Brain (2nd ed.). New York: Putnam, 1886.
 101. Ferrier, I. N., G. W. Roberts, T. J. Crow, E. C. Johnstone, D. G. C. Owens, Y. C. Lee, D. O'Shaughnessy, and T. E. Adrian. Reduced cholecystokinin and somatostatin‐like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci. 33: 475–482, 1983.
 102. Fisher, J. M., J. L. Kennedy, E. D. Caine, and I. Shoulson. Dementia in Huntington's disease: a cross‐sectional analysis of intellectual decline. In: The Dementias, edited by R. Mayeux and W. G. Rosen. New York: Raven, 1983, p. 229–238.
 103. Fonnum, F., Z. Gottesfeld, and I. Grofova. Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibres. Brain Res. 143: 125–138, 1978.
 104. Foote, S. L., G. Aston‐Jones, and F. E. Bloom. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA 77: 3033–3037, 1980.
 105. Franz, S. I. On the function of the cerebrum: the frontal lobes. Arch. Psychol. 2: 1–64, 1907.
 106. Franzen, E. A., and R. E. Myers. Neural control of social behavior: prefrontal and anterior temporal cortex. Neuropsychologia 11: 141–157, 1973.
 107. Franzen, G., and D. H. Ingvar. Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J. Neurol. Neurosurg. Psychiatry 38: 1027–1032, 1975.
 108. Freedman, M., and M. Oscar‐Berman. Bilateral frontal lobe disease and selective delayed‐response deficits in humans. Behav. Neurosci. 100: 337–342, 1986.
 109. Freedman, R., D. Kirch, J. Bell, L. E. Adler, M. Pecevich, E. Pachtman, and P. Denver. Clonidine treatment of schizophrenia. Double‐blind comparison to placebo and neuroleptic drugs. Acta Psychiatr. Scand. 65: 35–45, 1982.
 110. Freeman, W., and J. W. Watts. The thalamic projection to the frontal lobe. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 200–209, 1948.
 111. Friedman, H. R., and P. S. Goldman‐Rakic. Enhancement of trisynaptic pathway in the hippocampus during performance of spatial working memory tasks: a 2‐DG behavioral study in rhesus monkeys. Soc. Neurosci. Abstr. 11: 460, 1985.
 112. Fries, W. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J. Comp. Neurol. 230: 55–76, 1984.
 113. Fritsch, G., and E. Hitzig. Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37: 300–332, 1870.
 114. Fulton, J. F. Frontal Lobotomy and Affective Behavior. New York: Norton, 1950.
 115. Fulton, J. F., and C. F. Jacobsen. The functions of the frontal lobes, a comparative study in monkeys, chimpanzees and man. Adv. Mod. Biol. Moscow 4: 113–123, 1935.
 116. Funahashi, S., C. J. Bruce, and P. S. Goldman‐Rakic. Visual properties of prefrontal neurons. Soc. Neurosci. Abstr. 11: 525, 1985.
 117. Funahashi, S., C. J. Bruce, and P. S. Goldman‐Rakic. Perimetry of spatial memory representation in primate prefrontal cortex: evidence for a mnemonic hemianopia. Soc. Neurosci. Abstr. 12: 554, 1986.
 118. Fuster, J. M. Unit activity in prefrontal cortex during delayed‐response performance: neuronal correlates of transient memory. J. Neurophysiol. 36: 61–78, 1973.
 119. Fuster, J. M. The Prefrontal Cortex. New York: Raven, 1980.
 120. Fuster, J. M. The prefrontal cortex, mediator of cross‐temporal contingencies. Hum. Neurobiol. 4: 169–179, 1985.
 121. Fuster, J. M. The prefrontal cortex and temporal integration. In: Cerebral Cortex, edited by A. Peters and E. G. Jones. New York: Plenum, 1985, vol. 4, p. 151–177.
 122. Fuster, J. M., and G. E. Alexander. Neuron activity related to short‐term memory. Science Wash. DC 173: 652–654, 1971.
 123. Fuster, J. M., R. H. Bauer, and J. P. Jervey. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp. Neurol. 77: 679–694, 1982.
 124. Fuster, J. M., R. H. Bauer, and J. P. Jervey. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330: 299–307, 1985.
 125. Gaffan, D., R. C. Saunders, E. A. Gaffan, S. Harrison, C. Shields, and M. J. Owen. Effects of fornix transection upon associative memory in monkeys: role of the hippocampus in learned action. Q. J. Exp. Psychol. B Comp. Physiol. Psychol. 36: 173–221, 1984.
 126. Gattass, R., A. P. B. Sousa, and E. Covey. Cortical visual areas of the macaque: possible substrates for pattern recognition mechanisms. In: Pattern Recognition Mechanisms, edited by C. Chagas, R. Gattass, and C. Gross. Pontif. Acad. Sci. Scr. Varia 54: 1–20, 1985.
 127. Gatter, K. C., and T. P. S. Powell. The projection of the locus coeruleus upon the neocortex in the macaque monkey. Neuroscience 2: 441–445, 1977.
 128. Gentile, A. M., and J. S. Stamm. Supplementary cues and delayed‐alternation performance of frontal monkeys. J. Comp. Physiol. Psychol. 80: 230–237, 1972.
 129. Geschwind, N. Disconnection syndromes in animals and man. Brain 88: 237–294, 1965.
 130. Ghent, L., M. Mishkin, and H. L. Teuber. Short‐term memory after frontal‐lobe injury in man. J. Comp. Physiol. Psychol. 55: 705–709, 1962.
 131. Giguere, M., and P. S. Goldman‐Rakic. Disjunctive distribution of mediodorsal thalamic efferents in the prefrontal cortex of rhesus monkeys. Soc. Neurosci. Abstr. 11: 677, 1986.
 132. Glowinski, J., J. P. Tassen, and A. M. Thierry. The mesocortical‐prefrontal dopaminergic neurons. Trends Neurosci. 7: 415–419, 1984.
 133. Goldberg, M. E., and D. L. Robinson. Visual responses of neurons in monkey inferior parietal lobule: the physiologic substrate of attention and neglect (Abstract). Neurology 27: 350, 1977.
 134. Goldman, P. S. Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp. Neurol. 32: 366–387, 1971.
 135. Goldman, P. S., and T. W. Galkin. Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res. 152: 451–485, 1978.
 136. Goldman, P. S., and W. J. H. Nauta. Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res. 116: 145–149, 1976.
 137. Goldman, P. S., and W. J. H. Nauta. Columnar distribution of cortico‐cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 122: 393–413, 1977.
 138. Goldman, P. S., and W. J. H. Nauta. An intricately patterned prefronto‐caudate projection in the rhesus monkey. J. Comp. Neurol. 171: 369–386, 1977.
 139. Goldman, P. S., and H. E. Rosvold. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp. Neurol. 27: 291–304, 1970.
 140. Goldman, P. S., H. E. Rosvold, B. Vest, and T. W. Galkin. Analysis of the delayed alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. J. Comp. Physiol. Psychol. 77: 212–220, 1971.
 141. Goldman‐Rakic, P. S. Modular organization of prefrontal cortex. Trends Neurosci. 7: 419–424, 1984.
 142. Goldman‐Rakic, P. S., and R. M. Brown. Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6: 177–187, 1981.
 143. Goldman‐Rakic, P. S., and L. J. Porrino. The primate mediodorsal (MD) nucleus and its projections to the frontal lobe. J. Comp. Neurol. 242: 535–560, 1985.
 144. Goldman‐Rakic, P. S., and M. Schwartz. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science Wash. DC 216: 755–757, 1982.
 145. Goldman‐Rakic, P. S., L. D. Selemon, and M. L. Schwartz. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743, 1984.
 146. Goldstein, K. Frontal lobotomy and impairment of abstract attitude. J. Nerv. Ment. Dis. 110: 93–111, 1949.
 147. Grant, S. J., and D. E. Redmond, Jr. Neuronal activity in the locus ceruleus in awake Macaca arctoides. Exp. Neurol. 84: 701–708, 1984.
 148. Gross, C. G., C. J. Bruce, R. Desimone, J. Fleming, and R. Gatass. Cortical visual areas of the temporal lobe. In: Cortical Sensory Organization. Multiple Visual Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1982, vol. 2, p. 187–216.
 149. Gross, C. G., and L. Weiskrantz. Some changes in behavior produced by lateral frontal lesions in the macaque. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 74–101.
 150. Grueninger, W. E., and K. H. Pribram. Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions. J. Comp. Physiol. Psychol. 68: 203–209, 1969.
 151. Guitton, D., H. A. Buchtel, and R. M. Douglas. Disturbances of voluntary saccadic eye movement mechanisms following discrete unilateral frontal lobe removals. In: Functional Basis of Ocular Motility Disorders, edited by G. Lennerstrand and E. L. Keller. Oxford, UK: Pergamon, 1982, p. 497–499.
 152. Guitton, D., H. A. Buchtel, and R. M. Douglas. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal‐directed saccades. Exp. Brain Res. 58: 455–472, 1985.
 153. Hall, R. E., R. B. Livingston, and C. M. Bloor. Orbital cortical influences on cardiovascular dynamics and myocardial structure in conscious monkeys. J. Neurosurg. 46: 638–647, 1977.
 154. Halstead, W. C. Brain and Intelligence: A Quantitative Study of the Frontal Lobes. Chicago, IL: Univ. of Chicago Press, 1947.
 155. Harlow, H. F., R. T. Davis, P. H. Settlage, and D. R. Meyer. Analysis of frontal and posterior association syndromes in brain‐damaged monkeys. J. Comp. Physiol. Psychol. 45: 419–429, 1952.
 156. Harlow, J. M. Passage of an iron rod through the head. Boston Med. Surg. J. 39: 389–393, 1848.
 157. Harting, J. K., M. F. Huerta, A. J. Frankfurter, N. L. Strominger, and G. J. Royce. Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J. Comp. Neurol. 192: 853–882, 1980.
 158. Hebb, D. O. Intelligence in man after large removals of cerebral tissue: report of four left frontal lobe cases. J. Gen. Psychol. 21: 73–87, 1939.
 159. Hedreen, J. C., and T. C. T. Yin. Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta. J. Comp. Neurol. 197: 605–621, 1981.
 160. Heilman, K. M., and E. Valenstein. Frontal lobe neglect in man. Neurology 22: 660–664, 1972.
 161. Heilman, K. M., and E. Valenstein. Mechanisms underlying hemispatial neglect. Arch. Neurol. 5: 166–170, 1979.
 162. Heilman, K. M., and R. T. Watson. The neglect syndrome— a unilateral defect of the orienting response. In: Lateralization in the Nervous System, edited by S. Harnad, R. W. Doty, L. Goldstein, and J. Jaynes. New York: Academic, 1977, p. 285–302.
 163. Held, R. Two modes of processing spatially distributed information. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1971, p. 317–324.
 164. Hitzig, E. Untersuchungen über das Gehirn. Berlin: Hirschwald, 1874.
 165. Hoff, E. C., J. E. Kell, and M. N. Carroll. Effects of cortical stimulation and lesions on cardiovascular function. Physiol. Rev. 43: 68–113, 1963.
 166. Holmes, E. J., S. Jacobson, B. M. Stein, and N. Butters. Spatial memory and long term retention following mammillary body lesions in monkeys. Soc. Neurosci. Abstr. 8: 23, 1982.
 167. Holtzman, P. S. Eye movement dysfunctions and psychosis. Int. Rev. Neurobiol. 27: 179–205, 1985.
 168. Hunt, T. Intelligence. In: Psychosurgery, edited by W. J. Freeman and J. W. Watts. Springfield, IL: Thomas, 1942, p. 153–164.
 169. Hunter, W. S. The delayed reaction in animals and children. Behav. Monogr. 2: 1–86, 1913.
 170. Hyvärinen, J. Regional distribution of functions in parietal association area 7 of the monkey. Brain Res. 206: 287–303, 1981.
 171. Ilinsky, I. A., M. L. Jouandet, and P. S. Goldman‐Rakic. Organization of the nigrothalamocortical system in the rhesus monkey. J. Comp. Neurol. 236: 315–330, 1985.
 172. Ingvar, D. H. “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol. Scand. 60: 12–25, 1979.
 173. Ingvar, D. H. Abnormal distribution of cerebral activity in chronic schizophrenia: a neurophysiological interpretation. In: Perspectives in Schizophrenia, edited by C. Baxter and T. Melnechuk. New York: Raven, 1980, p. 107–125.
 174. Ingvar, D. H. Several aspects of language and speech related to prefrontal cortical activity. Hum. Neurobiol. 2: 177–189, 1983.
 175. Isaacson, R. The Limbic System (2nd ed.). New York: Plenum, 1982.
 176. Isseroff, A., T. Galkin, H. E. Rosvold, and P. S. Goldman‐Rakic. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res. 232: 97–113, 1982.
 177. Itaya, S. K., and G. W. Van Hoesen. Retinal projections to the inferior and medial pulvinar nuclei in the Old‐World monkey. Brain Res. 269: 223–230, 1983.
 178. Jacobsen, C. F. Studies of cerebral function in primates. Comp. Psychol. Monogr. 13: 1–68, 1936.
 179. Jacobson, S., N. Butters, and N. J. Tovsky. Afferent and efferent subcortical projections of behaviorally defined sectors of prefrontal granular cortex. Brain Res. 159: 279–296, 1978.
 180. Jacobson, S., and J. Q. Trojanowski. Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res. 132: 209–233, 1977.
 181. Jansen, J. Experimental Investigations of the Associational Connections of the Cerebral Cortex, with Special Reference to the Conditions in the Frontal Lobe. Oslo: I Kommisjon Hos Jacob Dybwad, 1937, p. 1–21.
 182. Jeeves, M. A., A. D. Milner, D. I. Perrett, and P. A. J. Smith. Visual cells responsive to direction of movement and stimulus form in the anterior superior temporal sulcus of the macaque monkey. J. Physiol. Lond. 341: 80P, 1983.
 183. Jones, B., and M. Mishkin. Limbic lesions and the problem of stimulus‐reinforcement associations. Exp. Neurol. 36: 362–377, 1972.
 184. Jones, E. G., and T. P. S. Powell. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820, 1970.
 185. Jones‐Gotman, M., and B. Milner. Design fluency: the invention of nonsense drawings after focal lesions. Neuropsychologia 15: 653–674, 1977.
 186. Just, M. A., and P. A. Carpenter. Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability. Psychol. Rev. 92: 137–172, 1985.
 187. Kasden, D. L., and S. Jacobson. The thalamic afferents to the inferior parietal lobule of the rhesus monkey. J. Comp. Neurol. 177: 685–705, 1978.
 188. Kawamura, K., and J. Naito. Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neurosci. Res. 1: 89–103, 1984.
 189. Kemp, J. M., and T. P. S. Powell. The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262: 429–439, 1971.
 190. Kievit, J., and H. G. J. M. Kuypers. Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res. 85: 261–266, 1977.
 191. Kilpatrick, I. C., M. S. Starr, A. Fletcher, T. A. James, and N. K. MacLeod. Evidence for a GABAergic nigrothalamic pathway in the rat. I. Behavioural and biochemical studies. Exp. Brain Res. 40: 45–54, 1980.
 192. Kimble, D. P., M. H. Bagshaw, and K. H. Pribram. The GSR of monkeys during orienting and habituation after selective partial ablations of the cingulate and frontal cortex. Neuropsychologia 3: 121–128, 1965.
 193. Kitt, C. A., R. G. Struble, L. C. Cork, W. C. Mobley, L. C. Walker, T. H. Joh, and D. L. Price. Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience 16: 691–699, 1985.
 194. Kleist, K. Gehirnpathologie. Leipzig, Germany: Barth, 1934.
 195. Knight, R. T. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol. 59: 9–20, 1984.
 196. Knight, R. T., S. A. Hillyard, D. L. Woods, and H. J. Neville. The effects of frontal and temporal‐parietal lesions on the auditory evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 50: 112–124, 1980.
 197. Knight, R. T., S. A. Hillyard, D. L. Woods, and H. J. Neville. The effects of frontal cortex lesions on event‐related potentials during auditory selective attention. Electroencephalogr. Clin. Neurophysiol. 52: 571–582, 1981.
 198. Kojima, S. Prefrontal unit activity in the monkey: relation to visual stimuli and movements. Exp. Neurol. 69: 110–123, 1980.
 199. Kojima, S. Short‐term memory in the rhesus monkey: a behavioral analysis of delayed‐response performance. J. Exp. Anal. Behav. 33: 359–368, 1980.
 200. Kojima, S., and P. S. Goldman‐Rakic. Delay‐related activity of prefrontal cortical neurons in rhesus monkeys performing delayed response. Brain Res. 248: 43–49, 1982.
 201. Kojima, S., and P. S. Goldman‐Rakic. Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey. Brain Res. 291: 229–240, 1984.
 202. Kojima, S., M. Kojima, and P. S. Goldman‐Rakic. Operant behavioral analysis of delayed‐response performance in rhesus monkeys with prefrontal lesions. Brain Res. 248: 51–59, 1982.
 203. Kolb, B., and I. Q. Whishaw. Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. J. Nerv. Ment. Dis. 171: 435–443, 1983.
 204. Komatsu, H., and H. Suzuki. Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey. Brain Res. 327: 324–327, 1985.
 205. Konorski, J. Integrative Activity of the Brain. Chicago, IL: Univ. of Chicago Press, 1967.
 206. Krieg, W. J. S. Connections of the Frontal Cortex of the Monkey. Springfield, IL: Thomas, 1954.
 207. Kubota, K., and H. Niki. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34: 337–347, 1971.
 208. Kunzle, H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. Brain Res. 88: 195–210, 1975.
 209. Kunzle, H. An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 15: 185–234, 1978.
 210. Kunzle, H., and K. Akert. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J. Comp. Neurol. 173: 147–164, 1977.
 211. Kunzle, H., K. Akert, and R. H. Wurtz. Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study. Brain Res. 117: 487–492, 1976.
 212. Lees, A. J., and E. Smith. Cognitive deficits in the early stages of Parkinson's disease. Brain 106: 257–270, 1983.
 213. Leichnetz, G. R. An intrahemispheric columnar projection between two cortical multisensory convergence areas (inferior parietal lobule and prefrontal cortex): an anterograde study in macaque using HRP gel. Neurosci. Lett. 18: 119–124, 1980.
 214. Leichnetz, G. R., R. F. Spencer, S. G. P. Hardy, and J. Astruc. The prefrontal corticotectal projection in the monkey: an anterograde and retrograde study. Neuroscience 6: 1023–1041, 1981.
 215. Leonard, C. M. The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res. 12: 321–343, 1969.
 216. Levin, S. Frontal lobe dysfunctions in schizophrenia. I. Eye movement impairments. J. Psychiatr. Res. 18: 27–55, 1984.
 217. Levin, S. Frontal lobe dysfunctions in schizophrenia. II. Impairments of psychological and brain functions. J. Psychiatr. Res. 18: 57–72, 1984.
 218. Levin, S., P. S. Holzman, S. J. Rothenberg, and R. B. Lipton. Saccadic eye movements in psychotic patients. Psychiatr. Res. 5: 47–58, 1981.
 219. Levitt, P., P. Rakic, and P. S. Goldman‐Rakic. Regionspecific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J. Comp. Neurol. 225: 1–14, 1984.
 220. Lhermitte, F. Human autonomy and the frontal lobes. II. Patient behavior in complex and social situations. The “environmental dependency syndrome” Ann. Neurol. 19: 335–343, 1986.
 221. Lhermitte, F., B. Pillon, and M. Serdaru. Human autonomy and the frontal lobes. I. Imitation and utilization behavior: a neuropsychological study of 75 patients. Ann. Neurol. 19: 326–334, 1986.
 222. Lindvall, O., and A. Björklund. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand. Suppl. 412: 1–48, 1974.
 223. Luria, A. R. Higher Cortical Functions in Man. New York: Basic, 1966.
 224. Luria, A. R., and E. D. Homskaya. Disturbances in the regulative role of speech with frontal lobe lesions. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 353–371.
 225. Luria, A. R., B. A. Karpov, and A. L. Yarbuss. Disturbances of active visual perception with lesions of frontal lobes. Cortex 2: 202–212, 1966.
 226. Lynch, J. C., V. B. Mountcastle, W. H. Talbot, and T. C. T. Yin. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol. 40: 362–389, 1977.
 227. Lynch, M. J. G. Brain lesions in chronic alcoholism. Arch. Pathol. 69: 342–353, 1960.
 228. MacLeod, N. K., T. A. James, I. C. Kilpatrick, and M. S. Starr. Evidence for a GABAergic nigrothalamic pathway in the rat. II. Electrophysiological studies. Exp. Brain Res. 40: 55–61, 1980.
 229. Mahut, H. Spatial and object reversal learning in monkeys with partial temporal lobe ablations. Neuropsychologia 9: 404–424, 1971.
 230. Mahut, H. A selective spatial deficit in monkeys after transection of the fornix. Neuropsychologia 10: 65–74, 1972.
 231. Mahut, H., S. Zola‐Morgan, and M. Moss. Hippocampal resections impair associative learning and recognition memory in the monkey. J. Neurosci. 2: 1214–1229, 1982.
 232. Mair, R. G., C. D. Anderson, P. J. Langlais, and W. J. McEntee. Thiamine deficiency depletes cortical norepinephrine and impairs learning processes in the rat. Brain Res. 360: 273–284, 1985.
 233. Mair, R. G., P. J. Langlais, M. F. Mazurek, M. F. Beal, J. B. Martin, and W. J. McEntee. Reduced concentrations of arginine vasopressin and MHPG in lumbar CSF of patients with Korsakoff's psychosis. Life Sci. 38: 2301–2306, 1986.
 234. Mair, R. G., W. J. McEntee, and R. J. Zatorre. Brain norepinephrine and dopamine activity: correlation with specific behavioral deficits in Korsakoff's psychosis. Neurology 32: 66–67, 1982.
 235. Mair, R. G., W. J. McEntee, and R. J. Zatorre. Monoamine activity correlates with psychometric deficits in Korsakoff's disease. Behav. Brain Res. 15: 247–254, 1985.
 236. Malmo, H. P. On frontal lobe functions: psychiatric patient controls. Cortex 10: 231–237, 1974.
 237. Malmo, R. B. Interference factors in delayed response in monkeys after removal of frontal lobes. J. Neurophysiol. 5: 295–308, 1942.
 238. Markowitsch, H. J., D. Emmans, E. Irle, M. Streicher, and B. Preilowski. Cortical and subcortical afferent connections of the primate's temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J. Comp. Neurol. 242: 425–458, 1985.
 239. Matelli, M., R. Camarda, M. Glickstein, and G. Rizzolatti. Afferent and efferent projections of the inferior area 6 in the macaque monkey. Brain Res. 310: 388–392, 1984.
 240. Mauk, M. D. Analysis of the Neural Circuits Responsible for Classical Conditioning of Eyelid Responses. Palo Alto, CA: Stanford Univ. Press, 1985, PhD thesis.
 241. Maunsell, J. H. R., and D. C. Van Essen. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3: 2563–2586, 1983.
 242. Mays, L. E., and D. L. Sparks. Dissociation of visual and saccade‐related responses in superior colliculus neurons. J. Neurophysiol. 43: 207–232, 1980.
 243. McEntee, W. J., M. P. Biber, D. P. Perl, and D. F. Benson. Diencephalic amnesia: a reappraisal. J. Neurol. Neurosurg. Psychiatry 39: 436–441, 1976.
 244. McEntee, W. J., and R. G. Mair. Memory impairment in Korsakoff's psychosis: a correlation with brain noradrenergic activity. Science Wash. DC 202: 905–907, 1978.
 245. McEntee, W. J., and R. G. Mair. Memory enhancement in Korsakoff's psychosis by clonidine: further evidence for a noradrenergic deficit. Ann. Neurol. 7: 466–470, 1980.
 246. McGeer, E. G., P. L. McGeer, and J. A. Wada. Distribution of tyrosine hydroxylase in human and animal brain. J. Neurochem. 18: 1647–1658, 1971.
 247. McLardy, T. Thalamic projection to frontal cortex in man. J. Neurol. Neurosurg. Psychiatry 13: 198–202, 1950.
 248. Mednick, S. A., J. Tarnof, and F. Schulsinger. The Copenhagen high risk project: 1962–1986. Schizoph. Bull. In press.
 249. Meibach, R. C., and A. Siegel. The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res. 88: 508–512, 1975.
 250. Meibach, R. C., and A. Siegel. Efferent connections of the hippocampal formation in the rat. Brain Res. 124: 197–224, 1979.
 251. Meredith, M. A., and B. E. Stein. Interactions among converging sensory inputs in the superior colliculus. Science Wash. DC 221: 389–391, 1983.
 252. Meredith, M. A., and B. E. Stein. Descending efferents from the superior colliculus relay integrated multisensory information. Science Wash. DC 227: 657–659, 1985.
 253. Mesulam, M.‐M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10: 309–325, 1981.
 254. Mesulam, M.‐M., and E. J. Mufson. Neural inputs into the nucleus basalis of the substantia innominata (CH4) in the rhesus monkey. Brain 107: 253–274, 1984.
 255. Mesulam, M.‐M., G. W. Van Hoesen, D. N. Pandya, and N. Geschwind. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res. 136: 393–414, 1977.
 256. Mettler, F. A. Corticofugal fiber connections of the cortex of Macaca mulatta. The frontal region. J. Comp. Neurol. 61: 509–542, 1935.
 257. Mettler, F. A. Extracortical connections of the primate cerebral cortex. J. Comp. Neurol. 86: 95–117, 1947.
 258. Mettler, F. A. Selective Partial Ablation of the Frontal Cortex. New York: Hoeber, 1949.
 259. Meyer, D. H., H. F. Harlow, and P. H. Settlage. A survey of delayed response performance by normal and brain‐damaged monkeys. J. Comp. Physiol. Psychol. 44: 17–25, 1951.
 260. Mikami, A., S. Ito, and K. Kubota. Visual response properties of dorsolateral prefrontal neurons during visual fixation task. J. Neurophysiol. 47: 593–605, 1982.
 261. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9: 100–110, 1963.
 262. Milner, B. Some effects of frontal lobectomy in man. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 313–334.
 263. Milner, B. Visually‐guided maze learning in man: effects of bilateral hippocampal, bilateral frontal, and unilateral cerebral lesions. Neuropsychologia 3: 217–338, 1965.
 264. Milner, B. Some cognitive effects of frontal‐lobe lesions in man. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 211–226, 1982.
 265. Milner, B., and M. Petrides. Behavioral effects of frontallobe lesions in man. Trends Neurosci. 7: 403–406, 1984.
 266. Mishkin, M. Visual discrimination performance following partial ablation of the temporal lobe. II. Ventral surfaces vs. hippocampus. J. Comp. Physiol. Psychol. 47: 187–193, 1954.
 267. Mishkin, M. Effects of small frontal lesions on delayed alternation in monkeys. J. Neurophysiol. 20: 615–622, 1957.
 268. Mishkin, M. Perseveration of central sets after frontal lesions in monkeys. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw Hill, 1964, p. 219–241.
 269. Mishkin, M. A memory system in the monkey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 85–95, 1982.
 270. Mishkin, M., and F. J. Manning. Non‐spatial memory after selective prefrontal lesions in monkeys. Brain Res. 143: 313–323, 1978.
 271. Mishkin, M., and K. H. Pribram. Analysis of the effects of frontal lesions in monkey. I. Variations on delayed alternation. J. Comp. Physiol. Psychol. 48: 492–495, 1955.
 272. Mishkin, M., B. Vest, M. Waxler, and H. E. Rosvold. A re‐examination of the effects of frontal lesions in object alternation. Neuropsychologia 7: 357–363, 1969.
 273. Mishra, R. K., C. Demirjian, R. Katzman, and M. H. Makman. A dopamine‐sensitive adenylate cyclase in anterior limbic cortex and mesolimbic region of primate brain. Brain Res. 97: 395–399, 1975.
 274. Mohler, C. W., and R. H. Wurtz. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. J. Neurophysiol. 39: 722–744, 1976.
 275. Moniez, E. Les premiere tentatives operatoires dans le traitment de certaines psychoses. Encephale 31: 1–29, 1936.
 276. Morihisa, J. M., F. H. Duffy, and R. J. Wyatt. Brain electrical activity mapping (BEAM) in schizophrenic patients. Arch. Gen. Psychiatry 40: 719–728, 1983.
 277. Morrison, J. H., and S. L. Foote. Monoaminergic and serotonergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys. J. Comp. Neurol. 243: 117–138, 1986.
 278. Morrison, J. H., S. L. Foote, D. O'Connor, and F. E. Bloom. Laminar, tangential, and regional organization of the noradrenergic innervation of monkey cortex: dopamine β‐hydroxylase immunohistochemistry. Brain Res. Bull. 9: 309–319, 1982.
 279. Moscovitch, M. Multiple dissociations of function in amnesia. In: Human Memory and Amnesia, edited by L. S. Cermak. Hillsdale, NJ: Erlbaum, 1982, p. 337–370.
 280. Motter, B. C., M. A. Steinmetz, C. J. Duffy, and V. B. Mountcastle. Functional properties of parietal visual neurons: mechanisms of directionality along a single axis. J. Neurosci. In press.
 281. Mountcastle, V. B., J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38: 871–908, 1975.
 282. Mountcastle, V. B., B. C. Motter, M. A. Steinmetz, and C. J. Duffy. Looking and seeing: the visual functions on the parietal lobe. In: Dynamic Aspects of Neocortical Function, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan. New York: Wiley, 1984, p. 159–193.
 283. Muakkassa, K. F., and P. L. Strick. Frontal lobe inputs to primate motor cortex: evidence for four somatopically organized “premotor” areas. Brain Res. 177: 176–182, 1979.
 284. Mufson, E. J., and M.‐M. Mesulam. Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J. Comp. Neurol. 227: 109–120, 1984.
 285. Myers, R. E., C. Swett, and M. Miller. Loss of social group affinity following prefrontal lesions in free‐ranging macaques. Brain Res. 64: 257–269, 1973.
 286. Nagy, J. I., D. A. Carter, and H. C. Fibiger. Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat: the GABA connection. Brain Res. 158: 15–29, 1978.
 287. Naito, J., K. Kawamura, and S. F. Takagi. An HRP study of neural pathways to neocortical olfactory areas in monkeys. Neurosci. Res. 1: 19–33, 1984.
 288. Nauta, W. J. H. Some efferent connections of the prefrontal cortex in the monkey. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 397–409.
 289. Nauta, W. J. H. Neural associations of the frontal cortex. Acta Neurobiol. Exp. Warsaw 32: 125–140, 1972.
 290. Nemeroff, C. B., W. W. Youngblood, P. J. Manberg, A. J. Prange, Jr., and J. S. Kizer. Regional brain concentrations of neuropeptides in Huntington's chorea and schizophrenia. Science Wash. DC 221: 972–975, 1983.
 291. Niki, H. Differential activity of prefrontal units during right and left delayed response trials. Brain Res. 70: 346–349, 1974.
 292. Niki, H. Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res. 68: 185–196, 1974.
 293. Niki, H. Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. Brain Res. 68: 197–204, 1974.
 294. Norman, R. J., J. R. Villablanca, K. A. Brown, J. A. Schwafel, and J. S. Buchwald. Classical eyeblink conditioning in the bilaterally hemispherectomized cat. Exp. Neurol. 44: 363–380, 1974.
 295. Oakley, D. A., and I. S. Russell. Neocortical lesions and Pavlovian conditioning. Physiol. Behav. 8: 915–926, 1972.
 296. O'Keefe, J., and J. Nadel. The Hippocampus as a Cognitive Map. Oxford, UK: Oxford Univ. Press, 1978.
 297. Orbach, J., B. Milner, and T. Rasmussen. Learning and retention in monkeys after amygdala‐hippocampus resection. Arch. Neurol. 3: 230–251, 1960.
 298. Oscar‐Berman, M., S. M. Zola‐Morgan, R. G. E. Oberg, and R. T. Bonner. Comparative neuropsychology and Korsakoff's syndrome. III. Delayed response, delayed alternation and DRL performance. Neuropsychologia 20: 187–202, 1982.
 299. Pandya, D. N., P. Dye, and N. Butters. Efferent corticocortical projections of the prefrontal cortex in the rhesus monkey. Brain Res. 31: 35–46, 1971.
 300. Pandya, D. N., and H. G. J. M. Kuypers. Cortico‐cortical connections in the rhesus monkey. Brain Res. 13: 13–36, 1969.
 301. Pandya, D. N., and B. Seltzer. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204: 196–210, 1982.
 302. Pandya, D. N., G. W. Van Hoesen, and M.‐M. Mesulam. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42: 319–330, 1981.
 303. Pandya, D. N., and L. A. Vignolo. Intra‐ and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res. 26: 217–233, 1971.
 304. Pandya, D. N., and E. H. Yeterian. Proposed neural circuitry for spatial memory in the primate brain. Neuropsychologia 22: 109–122, 1984.
 305. Parent, A., C. Bouchard, and Y. Smith. The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res. 303: 385–390, 1984.
 306. Parkinson, J. M., and M. Mishkin. A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects. Soc. Neurosci. Abstr. 8: 23, 1982.
 307. Partlow, G. D., M. Colonier, and J. Szabo. Thalamic projections of the superior colliculus in the rhesus monkey. Light and electron microscopic study. J. Comp. Neurol. 171: 285–318, 1977.
 308. Passingham, R. E. Visual discrimination learning after selective prefrontal ablations in monkeys (Macaca mulatta). Neuropsychologia 10: 27–39, 1972.
 309. Passingham, R. Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Res. 92: 89–102, 1975.
 310. Passingham, R. E. Cortical mechanisms and cues for action. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 308: 101–111, 1985.
 311. Passingham, R. E. Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav. Neurosci. 99: 3–21, 1985.
 312. Pearson, R. C. A., M. M. Esiri, R. W. Hiorns, G. K. Wilcock, and T. P. S. Powell. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci. USA 82: 4531–4534, 1985.
 313. Penney, J. B., Jr., and A. B. Young. GABA as the pallidothalamic neurotransmitter: implications for basal ganglia function. Brain Res. 207: 195–199, 1981.
 314. Penney, J. B., Jr., and A. B. Young. Speculations on the functional anatomy of basal ganglia disorders. Annu. Rev. Neurosci. 6: 73–94, 1983.
 315. Perret, E. The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12: 323–330, 1974.
 316. Perrett, D. I., E. T. Rolls, and W. Caan. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47: 329–342, 1982.
 317. Perrett, D. I., P. A. J. Smith, D. D. Potter, A. J. Mistlin, A. S. Head, A. D. Milner, and M. A. Jeeves. Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum. Neurobiol. 3: 197–208, 1984.
 318. Perrett, D. I., P. A. J. Smith, D. D. Potter, A. J. Mistlin, A. S. Head, A. D. Milner, and M. A. Jeeves. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. Lond. B Biol. Sci. 223: 293–317, 1985.
 319. Petrides, M. Motor conditional associative‐learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5: 407–413, 1982.
 320. Petrides, M., and S. D. Iversen. Cross‐modal matching and the primate frontal cortex. Science Wash. DC 192: 1023–1024, 1976.
 321. Petrides, M., and B. Milner. Deficits on subject‐ordered tasks after frontal‐ and temporal‐lobe lesions in man. Neuropsychologia 20: 249–262, 1982.
 322. Petrides, M., and D. N. Pandya. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228: 105–116, 1984.
 323. Piaget, J. The Construction of Reality in the Child. New York: Basic, 1954.
 324. Pigarev, I. N., G. Rizzolatti, and C. Scandolara. Neurons responding to visual stimuli in the frontal lobe of macaque monkeys. Neurosci. Lett. 12: 207–212, 1979.
 325. Pishkin, V., and W. V. Williams. Cognitive rigidity in information processing of chronic undifferentiated schizophrenics. J. Clin. Psychol. 33: 625–630, 1976.
 326. Pohl, W. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Comp. Physiol. Psychol. 82: 227–239, 1973.
 327. Porrino, L. J., A. M. Crane, and P. S. Goldman‐Rakic. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J. Comp. Neurol. 198: 121–136, 1981.
 328. Porrino, L. J., and P. S. Goldman‐Rakic. Brain stem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J. Comp. Neurol. 205: 63–76, 1982.
 329. Preuss, T. M., and P. S. Goldman‐Rakic. Somatosensory representation in primate prefrontal cortex: connections of the principal sulcus with S‐I, S‐II, and adjacent areas of the frontoparietal operculum. Soc. Neurosci. Abstr. 11: 677, 1985.
 330. Preuss, T. M., and P. S. Goldman‐Rakic. The crossed cortico‐thalamic and thalamo‐cortical connections of macaque prefrontal cortex. J. Comp. Neurol. In press.
 331. Pribram, K. H. Some physical and pharmacological factors affecting delayed response performance of baboons following frontal lobotomy. J. Neurophysiol. 13: 373–382, 1950.
 332. Pribram, K. H., A. Ahumada, J. Hartog, and L. Ross. A progress report on the neurological processes disturbed by frontal lesions in primates. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 28–55.
 333. Pribram, K. H., K. Chow, and J. Semmes. Limit and organization of the cortical projection from the medial thalamic nucleus in monkey. J. Comp. Neurol. 98: 433–448, 1953.
 334. Pribram, K. H., and M. Mishkin. Analysis of the effects of frontal lesions in monkey. III. Object alternation. J. Comp. Physiol. Psychol. 49: 41–45, 1956.
 335. Pribram, K. H., M. Mishkin, H. E. Rosvold, and S. J. Kaplan. Effects on delayed‐response performance of lesions of dorso‐lateral and ventro‐medial frontal cortex of baboons. J. Comp. Physiol. Psychol. 45: 565–575, 1952.
 336. Pribram, K. H., and W. E. Tubbs. Short‐term memory, parsing, and the primate frontal cortex. Science Wash. DC 156: 1765–1767, 1967.
 337. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54: 25–40, 1978.
 338. Ribak, C. E., J. E. Vaughn, and E. Roberts. GABAergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways. Brain Res. 192: 413–420, 1980.
 339. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Bio‐Med. Electron. 10: 137–145, 1973.
 340. Robinson, D. L., M. E. Goldberg, and G. B. Stanton. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932, 1978.
 341. Robinson, D. S. Changes in monoamine oxidase and monoamines with human development and aging. Federation Proc. 34: 103–107, 1975.
 342. Robinson, D. S., T. L. Sourkes, A. Nies, L. S. Harris, S. Spector, D. L. Bartlett, and I. S. Kaye. Monoamine metabolism in human brain. Arch. Gen. Psychiatry 34: 89–92, 1977.
 343. Roland, P. E. Cortical regulation of selective attention in man. A regional cerebral blood flow study. J. Neurophysiol. 48: 1059–1078, 1982.
 344. Roland, P. E. Metabolic measurements of the working frontal cortex in man. Trends Neurosci. 7: 430–435, 1984.
 345. Roland, P. E., and L. Friberg. Localization of cortical areas activated by thinking. J. Neurophysiol. 53: 1219–1243, 1985.
 346. Roland, P. E., B. Larsen, N. A. Lassen, and E. Skinhøj. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 43: 118–136, 1980.
 347. Rolls, E. T., D. Perrett, S. J. Thorpe, A. Puerto, A. Roper‐Hall, and S. Maddison. Responses of neurons in area 7 of the parietal cortex to objects of different significance. Brain Res. 169: 194–198, 1979.
 348. Rose, J. E., and C. N. Woolsey. The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 210–232, 1948.
 349. Rosene, D. L., and G. W. Van Hoesen. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science Wash. DC 198: 315–317, 1977.
 350. Rosenkilde, K. E. Functional heterogeneity of the prefrontal cortex in the monkey: a review. Behav. Neural Biol. 25: 301–345, 1979.
 351. Rosvold, H. E., and M. Mishkin. Evaluation of the effects of prefrontal lobotomy on intelligence. Can. J. Psychol. 4: 122–126, 1950.
 352. Rosvold, H. E., M. K. Szwarcbart, A. F. Mirsky, and M. Mishkin. The effect of frontal‐lobe damage on delayed response performance in chimpanzees. J. Comp. Physiol. Psychol. 54: 368–374, 1961.
 353. Russchen, F. T., D. G. Amaral, and J. L. Price. The source and termination of afferent fibers to the mediodorsal nucleus of the thalamus in the monkey, Macaca fascicularis. J. Comp. Neurol. 242: 1–27, 1985.
 354. Rylander, G. Personality Changes After Operations on the Frontal Lobes. Copenhagen: Munksgaard, 1939.
 355. Salzinger, K. An hypothesis about schizophrenic behavior. Am. J. Psychother. 25: 601–614, 1971.
 356. Sawaguchi, T., and M. Matsumura. Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci. Res. 2: 255–273, 1985.
 357. Schell, G. R., and P. L. Strick. Origin of thalamic input to the arcuate premotor and supplementary motor areas. J. Neurosci. 4: 539–560, 1984.
 358. Schnieder, G. E. Two visual systems. Science Wash. DC 163: 895–902, 1969.
 359. Schwartz, M. L., and P. S. Goldman‐Rakic. Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates. Nature Lond. 299: 154–156, 1982.
 360. Schwartz, M. L., and P. S. Goldman‐Rakic. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J. Comp. Neurol. 226: 403–420, 1984.
 361. Schwartz, M. L., D. S. Zheng, and P. S. Goldman‐Rakic. Laminar and tangential variation in the morphology and distribution of GABA‐containing neurons in rhesus monkey prefrontal cortex. Soc. Neurosci. Abstr. 11: 503, 1985.
 362. Selemon, L. D., and P. S. Goldman‐Rakic. Common cortical and subcortical target areas of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey. Soc. Neurosci. Abstr. 11: 323, 1985.
 363. Selemon, L. D., and P. S. Goldman‐Rakic. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5: 776–794, 1985.
 364. Seltzer, B., and D. N. Pandya. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149: 1–24, 1980.
 365. Seltzer, B., and G. W. Van Hoesen. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res. 179: 157–161, 1979.
 366. Semmes, J., S. Weinstein, L. Ghent, and H. L. Teuber. Correlates of impaired orientation in personal and extrapersonal space. Brain 86: 747–772, 1963.
 367. Shakow, D. Psychological deficit in schizophrenia. Behav. Sci. 8: 275–305, 1963.
 368. Shallice, T. Specific impairments in planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 199–209, 1982.
 369. Sherrington, C. S. The Integrative Action of the Nervous System. New York: Scribner, 1906.
 370. Shipley, M. T. Presubiculum afferents to the entorhinal area and the Papez circuit. Brain Res. 67: 162–168, 1974.
 371. Shulman, S. Bilateral symmetrical degeneration of the thalamus: a clinico‐pathological study. J. Neuropathol. Exp. Neurol. 16: 446–470, 1957.
 372. Siegel, R. M., R. A. Andersen, G. K. Essick, and C. Asanuma. The functional and anatomical subdivision of the inferior parietal lobule. Soc. Neurosci. Abstr. 11: 1012, 1985.
 373. Simon, H., B. Scatton, and M. LeMoal. Dopaminergic A10 neurones are involved in cognitive functions. Nature Lond. 286: 150–151, 1980.
 374. Skinner, J. E., and C. D. Yingling. Central gating mechanisms that regulate event‐related potentials and behavior. Prog. Clin. Neurophysiol. 1: 30–69, 1977.
 375. Smith, I. M. Spatial Ability: Its Educational and Social Significance. San Diego, CA: Knapp, 1964.
 376. Schmolling, P. A systems model of schizophrenic dysfunction. Behav. Sci. 28: 253–276, 1983.
 377. Squires, L. R., and N. Butter. Neuropsychology of Memory. New York: Guilford, 1984.
 378. Squires, L. R., and N. J. Cohen. Human memory and amnesia. In: Neurobiology of Memory and Learning, edited by G. Lynch, J. L. McGaugh, and N. M. Weinberger. New York: Guilford, 1984, p. 3–77.
 379. Stamm, J. S. Electrical stimulation of frontal cortex in monkeys during learning of an alternation task. J. Neurophysiol. 24: 414–426, 1961.
 380. Stamm, J. S., and S. C. Rosen. The locus and crucial time of implication of prefrontal cortex in the delayed response task. In: Psychophysiology of the Frontal Lobes, edited by K. H. Pribram and A. R. Luria. New York: Academic, 1973, p. 139–153.
 381. Stanton, G. B., W. L. R. Cruce, M. E. Goldberg, and D. L. Robinson. Some ipsilateral projections to area PF and PG of the inferior parietal lobule in monkeys. Neurosci. Lett. 6: 243–250, 1977.
 382. Stuss, D. T., and D. F. Benson. Neuropsychological studies of the frontal lobes. Psychol. Bull. 95: 3–28, 1984.
 383. Stuss, D. T., and D. F. Benson. The Frontal Lobes. New York: Raven, 1986.
 384. Suzuki, H., and M. Azuma. Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res. 126: 497–508, 1977.
 385. Suzuki, H., and M. Azuma. Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp. Brain Res. 53: 47–58, 1983.
 386. Swanson, L. W. The hippocampus—new anatomical insights. Trends Neurosci. 2: 9–12, 1979.
 387. Swanson, L. W., and W. M. Cowan. Hippocampal‐hypothalamic connections: origin in subicular cortex, not Ammon's horn. Science Wash. DC 189: 303–304, 1975.
 388. Tanabe, T., M. Iino, Y. Ooshima, and S. F. Takagi. An olfactory area in the prefrontal lobe. Brain Res. 80: 127–130, 1974.
 389. Tanabe, T., M. Iino, Y. Ooshima, and S. F. Takagi. Neurophysiological studies on the prefrontal olfactory center in the monkey. In: Olfaction and Taste, edited by D. A. Denton and J. P. Coghlan. New York: Academic, 1975, p. 309–312.
 390. Taylor, A. E., J. A. Saint‐Cyr, and A. E. Lang. Frontal lobe dysfunction in Parkinson's disease: the cortical focus of neostriatal outflow. Brain 109: 845–883, 1986.
 391. Terrace, H. S. Animal cognition: thinking without language. Philos. Trans. R. Soc. Lond. B Biol. Sci. 308: 113–128, 1985.
 392. Teuber, H.‐L. Unity and diversity of frontal lobe functions. Acta Neurobiol. Exp. Warsaw 32: 615–656, 1972.
 393. Teuber, H.‐L., and M. Mishkin. Judgment of visual and postural vertical after brain injury. J. Psychol. 38: 161–175, 1954.
 394. Thierry, A. M., J. P. Tassen, G. Blanc, L. Stinus, B. Scalton, and J. Glowinski. Discovery of the mesocortical dopaminergic system: some pharmacological and functional characteristics. In: Advances in Biochemical Psychopharmacology, edited by E. Costa and G. L. Gessa. New York: Raven, 1977, vol. 16, p. 5–12.
 395. Thompson, R. F., D. A. McCormick, and D. G. LaVond. Localization of the essential memory‐trace system for a basic form of associative learning in the mammalian brain. In: One Hundred Years of Psychological Research in America, edited by S. H. Hulse and B. F. Green, Jr. Baltimore, MD: Johns Hopkins Univ. Press, 1985, p. 125–171.
 396. Thorpe, S. J., E. T. Rolls, and S. Maddison. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49: 93–115, 1983.
 397. Trevarthen, C. B. Two mechanisms of vision in primates. Psychol. Forsch. 31: 299–337, 1968.
 398. Trojanowski, J. Q., and S. Jacobson. Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. Brain Res. 80: 395–411, 1976.
 399. Ungerleider, L. G. The corticocortical pathways for object recognition and spatial perception. In: Pattern Recognition Mechanisms, edited by C. Chagass, R. Galtass and C. Gross. Pontif. Acad. Sci. Scr. Varia 54: 21–37, 1985.
 400. U'Prichard, D. C., W. D. Bechtel, B. M. Rouot, and S. H. Snyder. Multiple apparent alpha‐noradrenergic receptor binding sites in rat brain: effect of 6‐hydroxydopamine. Mol. Pharmacol. 16: 47–60, 1979.
 401. Van der Linden, M., X. Seron, J. Gillet, and S. Bredart. Héminégligence par lésion frontale droite. A propos de trois observations. Acta Neurol. Belg. 80: 298–310, 1980.
 402. Van Essen, D. C., and J. H. R. Maunsell. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6: 370–375, 1983.
 403. Van Hoesen, G. W. Neural systems of the non‐human primate forebrain implicated in memory. Ann. NY Acad. Sci. 444: 97–112, 1985.
 404. Van Hoesen, G. W., and D. N. Pandya. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res. 95: 1–24, 1975.
 405. Van Hoesen, G. W., D. N. Pandya, and N. Butters. Cortical afferents to the entorhinal cortex of the rhesus monkey. Science Wash. DC 175: 1471–1473, 1972.
 406. Van Hoesen, G. W., D. N. Pandya, and N. Butters. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res. 95: 25–38, 1975.
 407. Van Kammen, D. P., J. Peters, J. Rosen, R. Fields, A. Rogol, and J. Perel. Clonidine and schizophrenia: behavioral and biochemical evaluation (Abstract). Am. Coll. Neuropsychopharmacol. 141, 1985.
 408. Victor, M., R. D. Adams, and G. H. Collins. The Wernicke‐Korsakoff Syndrome. Philadelphia, PA: Davis, 1971.
 409. Vonsattel, J.‐P., R. H. Myers, T. J. Stevens, R. J. Ferrante, E. D. Bird, and E. P. Richardson, Jr. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44: 559–577, 1985.
 410. Walker, A. E. A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73: 59–86, 1940.
 411. Warrington, E. K. A disconnection analysis of amnesia. Ann. NY Acad. Sci. 444: 72–77, 1985.
 412. Warrington, E. K., and L. Weiskrantz. Amnesia: a disconnection syndrome? Neuropsychologia 20: 233–248, 1982.
 413. Watanabe, T., and H. Niki. Hippocampal unit activity and delayed response in the monkey. Brain Res. 325: 241–254, 1985.
 414. Waterhouse, B. D., H. C. Moises, and D. J. Woodward. Alpha‐receptor‐mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20: 907–920, 1981.
 415. Waterhouse, B. D., and D. J. Woodward. Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol. 67: 11–34, 1980.
 416. Waxler, M., and H. E. Rosvold. Delayed alternation in monkeys after removal of the hippocampus. Neuropsychologia 8: 137–146, 1970.
 417. Weinberger, D. R., K. F. Berman, and R. F. Zec. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Arch. Gen. Psychiatry 43: 114–125, 1986.
 418. Weinryb, I., and I. M. Michel. Amine‐responsive adenylate cyclase activity from brain: comparisons between rat and rhesus monkey and demonstration of dopamine‐stimulated adenylate cyclase in monkey neocortex. Psychopharmacol. Commun. 2: 39–48, 1976.
 419. Wexler, N. S. Perceptual‐motor, cognitive, and emotional characteristics of persons at risk for Huntington's disease. In: Huntington's Disease, edited by T. N. Chase, N. S. Wexler, and A. Barbeau. New York: Raven, 1979, p. 257–271.
 420. Wilson, F. A. W., M. W. Brown, and I. P. Riches. Sensory and motor related unit activity in the monkey hippocampal formation. Soc. Neurosci. Abstr. 12: 556, 1986.
 421. Winblad, B., R. Adolfsson, A. Carlsson, and C. B. Gottfries. Biogenic amines in brains of patients with Alzheimer's Disease. In: Alzheimer's Disease: A Report of Progress Aging, edited by S. Corkin. New York: Raven, 1982, p. 25–33.
 422. Winson, J. Brain and Psyche. New York: Doubleday, 1985.
 423. Witt, E. D., and P. S. Goldman‐Rakic. International thiamine deficiency in the rhesus monkey. II. Evidence for memory loss. Ann. Neurol. 13: 396–401, 1983.
 424. Wurtz, R. H., and M. E. Goldberg. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35: 575–586, 1972.
 425. Yarita, H., M. Iino, T. Tanabe, S. Kogure, and S. F. Takagi. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J. Neurophysiol. 43: 69–85, 1980.
 426. Yeterian, E. H., and G. W. Van Hoesen. Cortico‐striate projections in the rhesus monkey: the organization of certain cortico‐caudate connections. Brain Res. 139: 43–63, 1978.
 427. Yin, T. C. T., and V. B. Mountcastle. Visual input to the visuomotor mechanisms of the monkey's parietal lobe. Science Wash. DC 197: 1381–1383, 1977.
 428. Zatorre, R. J., and W. J. McEntee. Semantic encoding deficits in a case of traumatic amnesia. Brain Cognit. 2: 331–345, 1983.
 429. Zeki, S. M. The third visual complex of rhesus monkey prestriate cortex. J. Physiol. Lond. 277: 245–272, 1978.
 430. Zola‐Morgan, S., and L. R. Squire. Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to amnesia. Behav. Neurosci. 99: 22–34, 1985.
 431. Zola‐Morgan, S., and L. R. Squire. Memory impairment in monkeys following lesions limited to the hippocampus. Behav. Neurosci. 100: 155–160, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Patricia S. Goldman‐Rakic. Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 373-417. First published in print 1987. doi: 10.1002/cphy.cp010509