Comprehensive Physiology Wiley Online Library

Vagal Preganglionic Neurons Innervating the Heart

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Chronotropic Actions of Activating Vagal Efferent Fibers
2 B‐Fibers and C‐Fibers: Effect of Electrical Stimulation
3 The Location of the Somata of Preganglionic Vagal Neurons
4 Physiological Mapping
5 Biophysical Properties of Cardiac Vagal Motoneurons
6 Physiological Properties of Cardiac Vagal Motoneurons
7 Baroreceptor Input
8 Respiratory Influences on Cardiac Vagal Motoneuron Discharge
9 Mechanisms of Respiratory Patterning
10 Arterial Chemoreceptor Inputs
11 Pulmonary and Airway Inputs
11.1 Slowly Adapting Pulmonary Inputs
11.2 Rapidly Adapting Pulmonary Inputs
12 Pulmonary C‐Fibers
13 Upper Airway Receptors
14 Cardiac Receptors
15 CNS Organization of Reflex Control
16 CNS Pathways Impinging on the Dorsal Ventral Nucleus and the Nucleus Ambiguus
17 Reflex Interactions: CNS Organization
18 Synaptic Effects Elicited by Baroreceptor Inputs in the Nucleus Tractus Solitarii
19 Synaptic Effects of Arterial Chemoreceptor Inputs
20 Central Modifications of Reflex Function
21 The Role of the Nucleus Tractus Solitarii in Reflex Adjustments
22 Respiratory Influences of Reflex Transmission Through the Nucleus Tractus Solitarius
23 Conclusions
Figure 1. Figure 1.

Traces show the heart rate responses produced by electrical stimulation of the cervical vagus (1 msec, 10 V, 10 Hz). Responses to stimulating B + C fibers were evoked with the cathode facing the heart and no anodal block. Responses to stimulating C fibers alone were evoked with the anode facing the heart and the anodal block technique applied.

Reprinted with permission from Jones, Wang, and Jordan 111
Figure 2. Figure 2.

A: Schematic representation of the position of retrogradely labeled neurons 1, at four levels of the medulla, after the application of cholera toxin conjugated to horseradish peroxidase (CT‐HRP) into the myocardium. AP‐area postrema; DVN‐dorsal motor nucleus of the vagus nerve; LRN‐lateral reticular nucleus; NA‐nucleus ambiguus; XII‐hypoglossal motonucleus; NTS‐nucleus tractus solitarii. B,C: Light micrographs showing cardiac vagal preganglionic motoneurones (CVMs) in the ventral regions of the nucleus ambiguus retrogradely labeled after the application of CT‐HRP into the myocardium (long arrows), the positions of which are represented in A by asterisks. Often the dendrites (arrowheads) of labeled neurons in this region extended as far as the ventral surface of the medulla (C). After some of the cardiac injections, a diffuse labeling of the compact group resulted (broad arrow), similar to that observed in control injections into the thoracic cavity (B). Scale bar: 50 mm.

Published with permission from Izzo and Spyer 104
Figure 3. Figure 3.

Distribution of cell somata labeled with HRP following microiontophoretic application to the cardiac branch of the vagus nerve. All HRP‐labeled cells in one animal were collectively plotted on the nearest of the four representative sections. A, B, C, and D: sections at the level of the obex, 420 m, 780 m, and 1,080 m rostral to it, respectively.

Published with permission from Nosaka et al. 186
Figure 4. Figure 4.

Intracellular recording from CVM. A: Stimulating cervical vagus (0.1 ms, 6 V) at 1 Hz. Five superimposed sweeps. B: Three consecutive sweeps illustrating the collision of an othodromic spike, in the middle trace, with the antidromic spike. D: Lower Trace: electrocardiogram‐(ECG) triggered histogram of ongoing discharge of the CVM identified in A, B, C, D (110 sweeps, 10 ms bins). Upper trace: femoral arterial waveform averaged over the same course and triggered from ECG (100 sweeps). C: stimulation of the cardiac branches of the right vagus (0.1 mecs, 3 V). Three consecutive sweeps, collision with orthodromic spike in tower trace. Stimulus marked by (l) in A, B, C, E: Intracellular recording from a CVM showing respiratory‐related changed in membrane potential. The cell stopped firing action potentials 5 min after the cell was penetrated. In each panel traces from above; high and low gain d.c. recordings of membrane potential, phrenic nerve activity, arterial blood pressure, and tracheal pressure.

Modified and reproduced with permission from Gilbey et al. 79
Figure 5. Figure 5.

Location. The positions of forty‐six cardiac efferent neurons are shown on four standard sections of the medulla taken at obex level, and at 1 mm intervals rostrally. Inserts, 2 mm square, show details of their relation to the structure of the nucleus ambiguus. Abbreviations: TS, tractus solitarius; DNV, dorsal motor nucleus of the vagus; NA, nucleus ambiguus.

Published with permission from McAllen and Spyer 158
Figure 6. Figure 6.

A: Antidromically evoked action potential in the dorsal vagal nucleus (DMV) neuron upon vagal stimulation. B: Orthodromically evoked epsp and action potential in a DMV neuron upon perivagal stimulation. C: Orthodromic mixed epsp‐ipsp in a DMV neuron during steady current injection to hold the cell resting membrane potential at a depolarized level of −35 m V. Action potentials were often triggered after the ipsps. D: At a holding potential of −40 m V, spontaneous miniature epsps and spontaneous miniature ipsps were observed as inward (downward) and outward (upward) currents, respectively, and were not abolished by the presence of 1 mM TTX.

Reproduced with permission from Travagli and Gillis 244
Figure 7. Figure 7.

The cardiac rhythm of a c.v.m. (aortic baroreceptors denervated). Pulse‐triggered histogram of c.v.m. activity (lower trace) and pulse‐triggered average of femoral pulse wave (upper trace). 128 super‐imposed cycles, 10 msec bin width. A: both common carotid arteries open; B: contralateral carotid occluded; C, ipsilateral carotid occluded; D, bilateral carotid occlusion. Unit firing in response to 8 nA DLH.

Reproduced with permission from McAllen and Spyer 161
Figure 8. Figure 8.

A: extracellular recording from a c.v.m. (see ref. 189) B: intracellular recording from a c.v.m. (see ref. 73) Traces, from top to bottom: low gain recording of c.v.m. activity, phrenic nerve activity (p.n.a.), femoral arterial blood pressure (B.P.), and tracheal pressure (T.P.).

Reproduced with permission from Gilbey et al. 79
Figure 9. Figure 9.

Respiratory modulation of pulse‐rhythmic epsps. Recording in a cell in which ipsps had been reversed previously by C1 injection (3 nA for 5 min). Further details in text. Traces from top to bottom: high and low gain d.c. recordings of membrane potential, phrenic nerve activity, femoral arterial blood pressure, and tracheal pressure.

Reproduced with permission from Gilbey et al. 79
Figure 10. Figure 10.

Dog, anaesthetized with chloralose and paralyzed with D‐tubocurarine. Upper and lower panels show heart rate, integrated phrenic activity, intratracheal pressure, and carotid sinus blood pressure, recorded during periods of temporary cessation of artificial ventilation. The effects of chemoreceptor stimuli (intracarotid injections of CO2‐saline at markers) on heart rate are seen. When the vagi are intact (upper panel), chemoreceptor stimuli evoke bradycardia, except when delivered during period of inspiration (second of the stimuli shown) or while the lungs are expanding in response to a rise in intratracheal pressure (third stimulus). After denervation of the lungs (lower panel), the stimuli remain ineffective during periods of central inspiratory activity (second stimulus), but now evoke a large bradycardia when delivered while the lungs are expanding in response to a rise in intratracheal pressure.

Published with permission from Gandevia, McCloskey, and Potter 70
Figure 11. Figure 11.

Control of CVM activity: inspiratory and reflex inputs. Diagrammatic representation of the inputs to CVM (C) that determine their sensitivity to baroreceptor and chemoreceptor inputs. Inspiratory neurons (In) directly or via interneurons (e.g. PI, postinspiratory neurons) or inhibitory interneurons (shown in black) control of the excitability of CVM. Baroreceptor and chemoreceptor inputs are processed initially in the nucleus tractus solitarii (NTS) and send excitatory connections to CVM localized in the nucleus ambiguus, but these inputs act differentially on inspiratory neurons. Open symbols: excitatory: filled symbols: inhibitory.

Figure 12. Figure 12.

Additional evidence for HDA inhibitory actions on SLN‐evoked responses. Intracellular recording of a cell within the NTS (membrane potential, −62 mV). A: this neuron responded to stimulation of the HDA (5 pulses, 500 Hz, 0.1 mA, given at 1 Hz) with an ipsp (upper traces). The unit was baroreceptive, as shown in the lower left panel, since inflation of the ipsilateral carotid sinus (Barotest) evoked a burst of action potentials. B, SLN stimulation (1 pulse, 0.1 ms, 7 V at 1 Hz) evoked an excitatory response. C: epsp and action potentials evoked on stimulation of the SN (2 pulses, 0.1 ms, 1 kHz, 9V at 1 Hz). D: simultaneous stimulation of both nerves (Sn + SLN) evoked an enhanced response. The latency was shortened and a third spike was evoked in 80% of the stimulations. Stimulating parameters as in B and C. E: conditioning stimulus to the hypothalamus (HDA) suppressed the combined effects of SLN + SN stimulation (compare with D). Neuronal recordings in A (upper traces) B, C, D, and E are shown as 2 superimposed traces.

Reproduced with permission from Dawid‐Milner et al. 50
Figure 13. Figure 13.

Schematic diagram of the connections within the nucleus tractus solitarii (NTS) that mediate arterial chemoreceptor inputs and interaction with the arterial baroreceptors. Inputs to NTS from baroreceptors, chemoreceptors and HDA are shown. Exclusively baroreceptor‐sensitive neurons are shown as ○; chemoreceptors are ☆. Excitatory inputs are shown as ▴ and inhibitory as ⁁. Neurons receiving convergent baroreceptor and chemoreceptor inputs are shown as combined symbols: when baroreceptor influence is excitatory, when inhibitory.

Reproduced with permission from Silva‐Carvalho et al. 227


Figure 1.

Traces show the heart rate responses produced by electrical stimulation of the cervical vagus (1 msec, 10 V, 10 Hz). Responses to stimulating B + C fibers were evoked with the cathode facing the heart and no anodal block. Responses to stimulating C fibers alone were evoked with the anode facing the heart and the anodal block technique applied.

Reprinted with permission from Jones, Wang, and Jordan 111


Figure 2.

A: Schematic representation of the position of retrogradely labeled neurons 1, at four levels of the medulla, after the application of cholera toxin conjugated to horseradish peroxidase (CT‐HRP) into the myocardium. AP‐area postrema; DVN‐dorsal motor nucleus of the vagus nerve; LRN‐lateral reticular nucleus; NA‐nucleus ambiguus; XII‐hypoglossal motonucleus; NTS‐nucleus tractus solitarii. B,C: Light micrographs showing cardiac vagal preganglionic motoneurones (CVMs) in the ventral regions of the nucleus ambiguus retrogradely labeled after the application of CT‐HRP into the myocardium (long arrows), the positions of which are represented in A by asterisks. Often the dendrites (arrowheads) of labeled neurons in this region extended as far as the ventral surface of the medulla (C). After some of the cardiac injections, a diffuse labeling of the compact group resulted (broad arrow), similar to that observed in control injections into the thoracic cavity (B). Scale bar: 50 mm.

Published with permission from Izzo and Spyer 104


Figure 3.

Distribution of cell somata labeled with HRP following microiontophoretic application to the cardiac branch of the vagus nerve. All HRP‐labeled cells in one animal were collectively plotted on the nearest of the four representative sections. A, B, C, and D: sections at the level of the obex, 420 m, 780 m, and 1,080 m rostral to it, respectively.

Published with permission from Nosaka et al. 186


Figure 4.

Intracellular recording from CVM. A: Stimulating cervical vagus (0.1 ms, 6 V) at 1 Hz. Five superimposed sweeps. B: Three consecutive sweeps illustrating the collision of an othodromic spike, in the middle trace, with the antidromic spike. D: Lower Trace: electrocardiogram‐(ECG) triggered histogram of ongoing discharge of the CVM identified in A, B, C, D (110 sweeps, 10 ms bins). Upper trace: femoral arterial waveform averaged over the same course and triggered from ECG (100 sweeps). C: stimulation of the cardiac branches of the right vagus (0.1 mecs, 3 V). Three consecutive sweeps, collision with orthodromic spike in tower trace. Stimulus marked by (l) in A, B, C, E: Intracellular recording from a CVM showing respiratory‐related changed in membrane potential. The cell stopped firing action potentials 5 min after the cell was penetrated. In each panel traces from above; high and low gain d.c. recordings of membrane potential, phrenic nerve activity, arterial blood pressure, and tracheal pressure.

Modified and reproduced with permission from Gilbey et al. 79


Figure 5.

Location. The positions of forty‐six cardiac efferent neurons are shown on four standard sections of the medulla taken at obex level, and at 1 mm intervals rostrally. Inserts, 2 mm square, show details of their relation to the structure of the nucleus ambiguus. Abbreviations: TS, tractus solitarius; DNV, dorsal motor nucleus of the vagus; NA, nucleus ambiguus.

Published with permission from McAllen and Spyer 158


Figure 6.

A: Antidromically evoked action potential in the dorsal vagal nucleus (DMV) neuron upon vagal stimulation. B: Orthodromically evoked epsp and action potential in a DMV neuron upon perivagal stimulation. C: Orthodromic mixed epsp‐ipsp in a DMV neuron during steady current injection to hold the cell resting membrane potential at a depolarized level of −35 m V. Action potentials were often triggered after the ipsps. D: At a holding potential of −40 m V, spontaneous miniature epsps and spontaneous miniature ipsps were observed as inward (downward) and outward (upward) currents, respectively, and were not abolished by the presence of 1 mM TTX.

Reproduced with permission from Travagli and Gillis 244


Figure 7.

The cardiac rhythm of a c.v.m. (aortic baroreceptors denervated). Pulse‐triggered histogram of c.v.m. activity (lower trace) and pulse‐triggered average of femoral pulse wave (upper trace). 128 super‐imposed cycles, 10 msec bin width. A: both common carotid arteries open; B: contralateral carotid occluded; C, ipsilateral carotid occluded; D, bilateral carotid occlusion. Unit firing in response to 8 nA DLH.

Reproduced with permission from McAllen and Spyer 161


Figure 8.

A: extracellular recording from a c.v.m. (see ref. 189) B: intracellular recording from a c.v.m. (see ref. 73) Traces, from top to bottom: low gain recording of c.v.m. activity, phrenic nerve activity (p.n.a.), femoral arterial blood pressure (B.P.), and tracheal pressure (T.P.).

Reproduced with permission from Gilbey et al. 79


Figure 9.

Respiratory modulation of pulse‐rhythmic epsps. Recording in a cell in which ipsps had been reversed previously by C1 injection (3 nA for 5 min). Further details in text. Traces from top to bottom: high and low gain d.c. recordings of membrane potential, phrenic nerve activity, femoral arterial blood pressure, and tracheal pressure.

Reproduced with permission from Gilbey et al. 79


Figure 10.

Dog, anaesthetized with chloralose and paralyzed with D‐tubocurarine. Upper and lower panels show heart rate, integrated phrenic activity, intratracheal pressure, and carotid sinus blood pressure, recorded during periods of temporary cessation of artificial ventilation. The effects of chemoreceptor stimuli (intracarotid injections of CO2‐saline at markers) on heart rate are seen. When the vagi are intact (upper panel), chemoreceptor stimuli evoke bradycardia, except when delivered during period of inspiration (second of the stimuli shown) or while the lungs are expanding in response to a rise in intratracheal pressure (third stimulus). After denervation of the lungs (lower panel), the stimuli remain ineffective during periods of central inspiratory activity (second stimulus), but now evoke a large bradycardia when delivered while the lungs are expanding in response to a rise in intratracheal pressure.

Published with permission from Gandevia, McCloskey, and Potter 70


Figure 11.

Control of CVM activity: inspiratory and reflex inputs. Diagrammatic representation of the inputs to CVM (C) that determine their sensitivity to baroreceptor and chemoreceptor inputs. Inspiratory neurons (In) directly or via interneurons (e.g. PI, postinspiratory neurons) or inhibitory interneurons (shown in black) control of the excitability of CVM. Baroreceptor and chemoreceptor inputs are processed initially in the nucleus tractus solitarii (NTS) and send excitatory connections to CVM localized in the nucleus ambiguus, but these inputs act differentially on inspiratory neurons. Open symbols: excitatory: filled symbols: inhibitory.



Figure 12.

Additional evidence for HDA inhibitory actions on SLN‐evoked responses. Intracellular recording of a cell within the NTS (membrane potential, −62 mV). A: this neuron responded to stimulation of the HDA (5 pulses, 500 Hz, 0.1 mA, given at 1 Hz) with an ipsp (upper traces). The unit was baroreceptive, as shown in the lower left panel, since inflation of the ipsilateral carotid sinus (Barotest) evoked a burst of action potentials. B, SLN stimulation (1 pulse, 0.1 ms, 7 V at 1 Hz) evoked an excitatory response. C: epsp and action potentials evoked on stimulation of the SN (2 pulses, 0.1 ms, 1 kHz, 9V at 1 Hz). D: simultaneous stimulation of both nerves (Sn + SLN) evoked an enhanced response. The latency was shortened and a third spike was evoked in 80% of the stimulations. Stimulating parameters as in B and C. E: conditioning stimulus to the hypothalamus (HDA) suppressed the combined effects of SLN + SN stimulation (compare with D). Neuronal recordings in A (upper traces) B, C, D, and E are shown as 2 superimposed traces.

Reproduced with permission from Dawid‐Milner et al. 50


Figure 13.

Schematic diagram of the connections within the nucleus tractus solitarii (NTS) that mediate arterial chemoreceptor inputs and interaction with the arterial baroreceptors. Inputs to NTS from baroreceptors, chemoreceptors and HDA are shown. Exclusively baroreceptor‐sensitive neurons are shown as ○; chemoreceptors are ☆. Excitatory inputs are shown as ▴ and inhibitory as ⁁. Neurons receiving convergent baroreceptor and chemoreceptor inputs are shown as combined symbols: when baroreceptor influence is excitatory, when inhibitory.

Reproduced with permission from Silva‐Carvalho et al. 227
References
 1. Abrahams, V. C., S. M. Hilton and A. Zbrozyna. Active muscle vasodilatation produced by stimulation of the brainstem: its significance in the defence reaction. J. Physiol. (Lond.) 154: 491–513, 1960.
 2. Accornero, N., G. Bini, G. I. Lenzi and M. Manfredi. Selective activation of peripheral nerve fibre groups of different diameter by triangular shaped stimulus pulses. J. Physiol. (Lond.) 273: 539–560. 1977.
 3. Al‐Ali, M., A. S. Forkins, J. N. Townend and J. H. Cottoe. Respiratory sinus arrhythmia and central respiratory drive in humans. Clin. Sci. 90: 235–241, 1996.
 4. Allen, T. G. J. and G. Burnstock. M1 and M2 muscarinic receptors mediate excitation and inhibition of guinea‐pig intracardiac neurones in culture. J. Physiol. (Lond.) 422: 463–480, 1990.
 5. Angell‐James, J. E. and M. de B. Daly. The effects of artificial lung inflation on reflexly induced bradycardia associated with apnoea in the dog. J. Physiol. (Lond.) 274: 349–366, 1978.
 6. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. Lond. B 119: 191–217, 1936.
 7. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of the hart rate. II. The central mechanism of respiratory arrhythmia and the inter‐relationships between central and reflex mechanisms. Proc. R. Soc. Lond. B 119: 218–230, 1936.
 8. Applegate, C. D., B. S. Kapp, M. D. Underwood, and C. L. McNaoll. Autonomic and somomotor effects of amygdala central nucleus stimulation in awake rabbits. Physiol. Behav. 31: 353–360, 1983.
 9. Barron, W. and J. H. Coote. The contribution of articular receptors to cardiovascular reflexes elicited by passive limb movement. J. Physiol. (Lond.) 235: 423–436, 1973.
 10. Bennett, J. A., C. Kidd, A. B. Latif, and P. M. McWilliam. A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q. J. Exp. Physiol. 66: 145–154, 1981.
 11. Bieger, D., and D. A. Hopkins. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J. Comp. Neurol. 252: 546–562, 1987.
 12. Billman, G. E., R. S. Hoskins, D. C. Randall, W. C. Randall, R. L. Hamlin, and Y. C. Lin. Selective vagal postganglionic innervation of the sinoatrial and atrioventricular nodes in the non‐human primate. J. Auton. Nerve. Syst. 26: 27–36, 1989.
 13. Black, A. M. S. and R. W. Torrance. Chemoreceptor effects in the respiratory cycle. J. Physiol. (Lond.) 189: 59–61, 1967.
 14. Black, A. M. S. and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 15. Blinder, K. J., L. W. Dickerson, A. L. Gray, J. M. Lauenstein, J. T. Newgsome, M. Bingaman, P. J. Tti, R. A. Gillis, and V. J. Massari. Control of negative inotropic vagal preganglionic neurons in the dog: synaptic interactions with substance P afferent terminals in the nucleus ambiguus?. Brain Res. 810: 251–256, 1998.
 16. Blinder, K. J., P. J. Gatti, T. A. Johnson, J. M. Lauenstein, W. P. Coleman, A. L. Gray, and V. J. Massari. Untrastructural circuitry of cardiorespiratory reflexes; there is a monosynaptic path between the nucleus of the solitary tract and vagal preganglionic motoneurons controlling atrioventricular conduction in the cat. Brain Res. 785: 143–57, 1998.
 17. Brooks, P. A., P. M. Izzo, and K. M. Spyer. Brainstem GABA pathways and the regulation of baroreflex activity. In: Central Neural Mechanisms in Cardiovascular Regulation, Vol. 2, edited by G. Kunos, and J. Cirello, Boston: Birkhauser, 1992: 321–337.
 18. Brown, G. L. and J. C. Eccles. The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. (Lond.) 81: 211–240, 1934.
 19. Brown, G. L. and J. C. Eccles. Further experiments on vagal inhibition of the heart beat. J. Physiol. (Lond.) 81: 241–257, 1934.
 20. Bunzl‐Federn, E. Der centrale ursprung des nervous vagus. Psychiatr. Neurol. 5: 1–22, 1899.
 21. Calaresu, F. R. and M. K. Cottle. Origin of cardiomotor fibres in the dorsal nucleus of the vagus in the cat: a histological study. J. Physiol. (Lond.) 176: 252–260, 1965.
 22. Casadei, B., J. Mood, and A. Caiazza. Respiratory sinus arrhythmia does not reflect cardiac vagal tone during exercise. J. Physiol. (Lond.) 473: 66, 1993.
 23. Ciriello, J. and F. R. Calaresu. Medullary origin of vagal preganglionic axons to the heart of the cat. J. Auton. Nerv. Syst. 5: 9–22, 1982.
 24. Ciriello, J. and F. R. Calaresu. Distribution of vagal cardioinhibitory neurons in the medulla of the cat. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol.7): R57–R64. 1980.
 25. Coleridge, H. M. and J. C. G. Coleridge. Impulse activity in afferent vagal C‐fibres with endings in the intrapulmonary airways of dogs. Respir. Physiol. 29: 125–142. 1977.
 26. Coleridge, H. M. and J. C. G. Coleridge. Integration of ventilatory and cardiovascular control systems. In: The Lung; Scientific Foundations. 2nd Ed edited by R. G. Crystal, J. B. West, et al., Philadelphia: Raven Press, pp. 1405–1418, 1996.
 27. Coleridge, H. M., J. C. G. Coleridge, and D. Jordan. Integration of ventilatory and cardiovascular control systems. In: The Lung: Scientific Foundations, 2nd Ed., edited by R. G. Crystal, J. B. West, et al. Philadelphia: Lippincott‐Raven, 1991: 13601–13611.
 28. Coleridge, H. M., J. C. G. Coleridge, and A. M. Roberts. Rapid shallow breathing evoked by selective stimulation of airway C‐fibres in dogs. J. Physiol. (Lond.) 340: 415–433, 1983.
 29. Coleridge, J. C. G. and H. M. Coleridge. Chemoreflex regulation of the heart. In Handbook of Physiology, Section 2, The Cardiovascular system, Vol 1: The Heart, edited by R. M. Berne. Bethesda, MD: Am. Physiol. Soc. 1979: 653–676.
 30. Coleridge, J. C. and H. M. Coleridge. Afferent vagal C Fibre innervation of the lungs and airways and its functional significance. Rev. Physiol. Biochem. Pharmacol. 99: 1–110, 1984.
 31. Coote, J. H. Cardiovascular responses to exercise: central and reflex contribution. In: Cardiovascular Regulation, edited by D. Jordan, and J. Marshall. London: Portland Press, 1995: 93–111.
 32. Coote, J. H., S. M. Hilton, J. F. Perez‐Gonzalez. Inhibition of the baroreceptor reflex on stimulation in the brainstem defence centre. J. Physiol. (Lond.) 288: 549–560, 1979.
 33. Cox, G. E., D. Jordan, P. Moruzzi, J. S. Schwaber, K. M. Spyer, and S. A. Turner. Amygdaloid influences on brainstem neurones in the rabbit. J. Physiol. (Lond.) 381: 135–148., 1985.
 34. Crill, W. E., and D. J. Reis. Distribution of carotid sinus and depressor nerves in the cat brain stem. Am. J. Physiol. 214: 269–276, 1975.
 35. Czachurski, J., K. Remborsky, H. Seller, R. Nobling, and R. Tangner. Morphology of electrophysiologically identified baroreceptor afferents and second order neurons in the brainstem of the cat. Arch. Ital. Biol. 126: 129–144, 1988.
 36. Daly, M. de B. Interactions between respiration and circulation. In Handbook of Physiology, Section 3, The Respiratory System, Vol. II: Control of Breathing, part 2, edited by N. S. Cherniack, and J. G. Widdicombe. Bethesda MD: American Physiological Society, 1986: 529–594.
 37. Daly, M. de B. Some reflex cardioinhibitory responses in the cat and their modulation by central inspiratory neuronal activity. J. Physiol. (Lond.) 439: 559–577, 1991.
 38. Daly, M. de B. Peripheral arterial chemoreceptors and respiratory‐cardiovascular integration. Monogr. Physiol. Soc. (1997)
 39. Daly, M. de B. and J. L. Hazzledine. The effects of artificially induced hyperventilation on the primary cardiac reflex response to stimulation of the carotid bodies in the dog. J. Physiol. 168: 872–889, 1963.
 40. Daly, M. de B., J. L. Hazzledine, and A. Ungar. The reflex effects of alterations in lung volume on systemic vascular resistance in the dog. J. Physiol. 188: 331–351, 1967.
 41. Daly, M. de B. and E. Kirkman. Cardiovascular responses to stimulation of pulmonary C fibres in the cat: their modulation by changes in respiration. J. Physiol. (Lond.) 402: 43–63, 1988.
 42. Daly, M. de B. and E. Kirkman. Differential modulation by pulmonary stretch afferents of some reflex cardioinhibitory responses in the cat. J. Physiol. (Lond.) 417: 323–341, 1989.
 43. Daly, M. de B., E. Kirkman, and L. M. Wood. Cardiovascular responses to stimulation of cardiac receptors in the cat and their modification by changes in respiration. J. Physiol. (Lond.) 407: 349–362, 1988.
 44. Daly, M. de B., A. S. Litherland, and L. M. Wood. The modification of the respiratory, cardiac and vascular responses to stimulation of the carotid body chemoreceptors by a laryngeal input in the cat. IRCS Med. Sci. 11: 861–862, 1983.
 45. Daly, M. de B. and M. J. Scott. The effect of stimulation of the carotid body chemoreceptors on the heart rate in the dog. J. Physiol. 141: 32–33, 1958.
 46. Dampney, R. A. L. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74: 323–364, 1994.
 47. Davies, R. O. and L. Kubin. Projection of pulmonary rapidly adapting receptors to the medulla of the cat: an antidromic mapping study. J. Physiol. (Lond.) 373: 63–86, 1986.
 48. Davidson, N. S., S. Goldner, and D. I. McCloskey. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart‐rate and cardiac vagal efferent nerve activity. J. Physiol. (Lond.) 259: 523–530, 1976.
 49. Davis, A. L., D. I. McCloskey, and E. K. Potter. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J. Physiol. (Lond.) 272: 691–703, 1977.
 50. Dawid‐Milner, M. S., L. Silva‐Carvalho, G. E. Goldsmith, and K. M. Spyer. Hypothalamic modulation of laryngeal reflexes in the anaesthetized cat: role of the nucleus tractus solitarii. J. Physiol. (Lond.) 487: 739–749, 1995.
 51. Deuchars, J. and P. M. Izzo. Demonstration of a monosynaptic pathway from the nucleus tractus solitarius to regions of ventrolateral medulla with specific reference to vagal motoneurones in the nucleus ambiguus of the anaesthetized cat: a neurophysiological study. J. Physiol. (Lond.) 438: 80, 1991.
 52. Dickerson, L. W., D. J. Rodak, T. J. Fleming, P. J. Gatti, V. J. Massari, J. D. McKenzie, and R. A. Gillis. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton. Nerv. Syst. 70 (1–2); 129–41, 1998,
 53. Donders, F. C. Zur physiologie des nervus vagus. Pflugers Arch. 1: 334–361, 1868.
 54. Donoghue, S., R. B. Felder, D. Jordan, and K. M. Spyer. The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J. Physiol. (Lond.) 347: 397–410, 1984.
 55. Donoghue, S., M. Garcia, D. Jordan, and K. M. Spyer. Identification and brain‐stem projections of aortic baroreceptor afferent neurons in nodose ganglia of cats and rabbits. J. Physiol. (Lond.) 322: 337–352, 1982.
 56. Donoghue, S., M. Garcia, D. Jordan, and K. M. Spyer. The brainstem projections of pulmonary stretch afferent neurones in cats and rabbits. J. Physiol. (Lond.) 322: 353–363, 1982.
 57. Eckberg, D. L. and P. Sleight. Human Baroreflex in Health and Disease. Monogr. Physiol Soc. Lond., 1992.
 58. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. (Lond.) 222: 297–318, 1972.
 59. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. (Lond.) 222: 319–333, 1972.
 60. Eldridge, F. L., P. Gill‐Kumar, and D. E. Millhorn. Input‐output relationship of central neural circuits involved in respiration in cats. J. Physiol. (Lond.) 311: 82–95, 1981,
 61. Eldridge, F. L., D. E. Millhorn, J. P. Kiley, and T. G. Waldrop. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir. Physiol. 59: 313–337, 1985.
 62. Evans, M. H. Facilitation of reflex bradycardia by hypothalamic stimulation in the anaesthetized rabbit. J. Physiol. (Lond.) 265: 33–34, 1977.
 63. Farmer, M. R., J. C. Vaile, F. Osman, H. F. Ross J. N. Townend, and J. H. Coote. A central gamma‐aminobutyric acid mechanism in cardiac vagal control in man revealed by studies with intravenous midazolam. Clin. Sci. 95 (3); 241–8, 1998.
 64. Feigl, E., Johansson, B. & Löfving, B. Renal vasoconstriction and the ‘defence reaction’. Physiol. Scand. 62: 425–435, 1964.
 65. Felder, R. B., and S. W. Mifflin. Modulation of carotid sinus afferent input to nucleus tractus solitarius by parabrachial nucleus stimulation. Circ. Res. 63: 35–43, 1988.
 66. Felder, R. B. and S. W. Mifflin. Baroreceptor and chemoreceptor afferent processing. In The Solitary Tract Nucleus, edited by I. R. A. Barracco. London: CRC Press, 1994: 169–186.
 67. Folkow, B., B. Lisander, R. S. Tuttle, and S. C. Wang. Changes in cardiac output upon stimulation of the hypothalamic defence area and the medullary depressor area in the cat. Acta Physiol. Scand. 72: 220–233, 1968.
 68. Folkow, B., B. Öberg, and E. H. Rubinstein. A proposed differentiated neuro‐effector organisation in muscle resistance vessels. Angiologica 1: 197–208, 1964.
 69. Ford, T. W. and P. N. McWilliam. The effects of electrical stimulation of myelinated and non‐myelinated vagal fibres on heart rate in the rabbit. J. Physiol. (Lond.) 380: 341–347. 1986.
 70. Gandevia, S. C., D. I. McCloskey, and E. K. Potter. Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J. Physiol. (Lond.) 276: 369–381, 1978.
 71. Gatti, P. J., T. A. Johnson, V. J. Massari. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrioventricular conduction?. J. Auton. Nerv. Syst. 57: 123–127, 1996.
 72. Gatti, P. J., T. A. Johnson, J. McKenzie, J. M. Lauenstein, A. Gray, and V. J. Massari. Vagal control of left ventricular contracility is selectively mediated by a cranioventricular intracardiac ganglion in the cat. J Auton. Nerv. Syst. 66: 138–44; 1997.
 73. Gebber, G. L. and L. R. Klevans. Central nervous system modulation of cardiovascular reflexes. Federation Proc. 31: 1245–1252, 1972.
 74. Gebber, G. L. and D. W. Snyder. Hypothalamic control of baroreceptor reflexes. Am. J. Physiol. 218: 124–131, 1970.
 75. Geis, G. S., J. W. Kozelka, and R. D. Wurster. Organisation and reflex control of vagal cardiomotor neurons. J. Auton. Nerv. Syst. 3: 437–450, 1981.
 76. Geis, G. S. and R. D. Wurster. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res. 182: 19–30, 1980.
 77. Geis, G. S. and R. D. Wurster. Cardiac responses during stimulation of the dorsal motonucleus and nucleus ambiguus in the cat. Circ. Res. 46: 606–611, 1980.
 78. Getz, B. and T. Sirnes. The localisation within the dorsal motor vagal nucleus. J. Comp. Neurol. 90: 95–110, 1949.
 79. Gilbey, M. P., D. Jordan, D. W. Richter, and K. M. Spyer. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio‐inhibitory neurones in the cat. J. Physiol. (Lond.) 356: 65–78, 1984.
 80. Gilbey, M. P. and K. M. Spyer. Cardiorespiratory regulation. In: Neural Control of the Respiratory Muscles, edited by A. D. Miller, A. L. Bianchi, and B. P. Bishop. Boca Ratan London: CRC Press, 1996: 261–271.
 81. Hainsworth, R. Circulatory responses from lung inflation in anaesthetized dogs. Am. J. Physiol. 226: 247–255, 1974.
 82. Hainsworth, R. Reflexes from the heart. Physiol. Rev. 71: 617–658, 1991.
 83. Hartzell, H. J. C., P. F. Mery, R. Fischmeister, and G. Szabo. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP‐dependent phosphorylation. Nature 351: 573–576, 1991.
 84. Heinbecker, P. The effect of fibres of specific types in the vagus and sympathetic nerves on the sinus and atrium of the turtle and frog heart. Am. J. Physiol. 98: 220–229, 1931.
 85. Heinbecker, P. and G. J. Bishop. Studies on the extrinsic and intrinsic nerve mechanisms of the heart. Am. J. Physiol. 114: 212–223, 1935.
 86. Hering, E. Über den Einfluss der Athmung auf den Kreislauf. Sitzungsberichte der Akademie der Wissenschaften in Wein 64: Abt.2, 829–856, 1869.
 87. Hess, W. R. and M. Brugger. Das subkorticale zentrum der affektiven‐abwehrreaktion. Acta Physiol. Helv. 1: 33–52, 1943.
 88. Hilton, S. M. Inhibition of baroreceptor reflexes on hypothalamic stimulation. J. Physiol. (Lond.) 165: 56–67, 1963.
 89. Hilton, S. M. Hypothalamic control of the cardiovascular responses in fear and rage. Sci. Basis Med. XIII 217–233, 1965.
 90. Hilton, S. M. Hypothalamic regulation of the cardiovascular system. Br. Med. Bull. 22: 243–248, 1966.
 91. Hilton, S. M. and N. Joels. Facilitation of chemoreceptor reflexes during the defence reaction. J. Physiol. (Lond.) 176: 20–22, 1965.
 92. Hilton, S. M. & J. M. Marshall. The pattern of cardiovascular response to carotid chemoreceptor stimulation in the cat. J. Physiol. 326: 495–513, 1982.
 93. Hilton, S. M. and W. S. Redfern. A search for brain stem cell groups integrating the defence reaction in the rat. J. Physiol. (Lond.) 165: 160–173, 1963.
 94. Hilton, S. M. and A. W. Zbrozyna. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. (Lond.) 165: 160–173, 1963.
 95. Hocherman, S. D., R. Werman, and Y. Yarom. An analysis of the long‐lasting after‐hyperpolarization of guinea‐pig vagal motoneurones. J. Physiol. (Lond.) 456: 325–349, 1992.
 96. Humphrey, D. R. Neuronal activity in the medulla oblongata of the cat evoked by stimulation of the carotid sinus nerve. In: Baroreceptors and Hypertension, edited by P. Kezdi. Oxford: Pergamon, 1967: 131–168.
 97. Humphreys, P. W., N. Joels, and R. M. McAllen. Modulation of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. J. Physiol. (Lond.) 216: 461–482, 1971.
 98. Hunt, R. Experiments on the relation of the inhibitory to the accelerator nerves of the heart. J. Exp. Med. 2: 252–279, 1897.
 99. Irisawa, H., J. F. Brown, and W. Giles. Cardiac pacemaking in the sinoatrial node. Physiol. Rev. 73: 197–227, 1993.
 100. Iriuchijima, J. and M. Kumada. Efferent cardiac vagal discharge of the dog in response to electrical stimulation of sensory nerves. Jpn. J. Physiol. 13: 599–605, 1963.
 101. Iriuchijima, J. and M. Kumada. Activity of single vagal fibers efferent to the heart. Jpn. J. Physiol. 14: 479–487, 1964.
 102. Izzo, P. N., J. Deuchars, and K. M. Spyer. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5‐hydroxytraptamine. J. Comp. Neurol. 327: 572–583, 1993.
 103. Izzo, P. N. and J. F. X. Jones. Identification of vagal efferent fibres and their putative target neurones in cardiac ganglia of the anaesthetized rat. J. Physiol. (Lond.) 481: 14, 1994.
 104. Izzo, P. M. and K. M. Spyer. The parasympathetic innervation of the heart. In: The Autonomic Nervous System, Vol 11, edited by G. Burnstock. Harwood Academic Publishers. 1997.
 105. Izzo, P. M., R. M. Sykes, and K. M. Spyer. γ‐amino butyric acid immunoreactive structures in the nucleus tractus solitarius: a light and electron microscopic study. Brain Res. 591: 69–79, 1992.
 106. Jalife, J. and G. K. Moe. Phasic effects of vagal stimulation on pacemaker activity of the isolated sinus node of the young cat. Circ. Res. 45: 595–607, 1979.
 107. Jewett, D. L. Activity of single vagal efferent cardiac fibres in the dog. J. Physiol. (Lond.) 142: 110–126, 1962.
 108. Jewett, D. L. Activity of single efferent fibres in the cervical vagus nerve of the dog with special reference to possible cardioinhibitory fibres. J. Physiol. (Lond.) 175: 321–357, 1964.
 109. Jiang, C., T. R. Cummins, and G. G. Haddad. Membrane ionic currents and properties of freshly dissociated rat brainstem neurons. Exp. Brain Res. 100: 407–420, 1994.
 110. Jones, J. F. X. The central control of the pulmonary chemoreflex. Ph.D thesis, University of London, 1993.
 111. Jones, J. F. X., Y. Wang, and D. Jordan. Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J. Physiol (Lond.). 507: 869–880, 1998.
 112. Jones, J. F. X., Y. Wang, and D. Jordan. Activity of cardiac vagal preganglionic neurones during the pulmonary chemoreflex in the anaesthetized cat. In: Arterial Chemoreceptors: Cell to System, edited by R. O'Regan et al., New York: Plenum Press, 1994: 301–303.
 113. Jones, J. F. X., Y. Wang, and D. Jordan. Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rat and rabbits. J. Physiol. (Lond.) 489: 203–214, 1995.
 114. Jones, J. F. X., Y. Wang, and D. Jordan. Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J. Physiol. 507: 869–80, 1998.
 115. Jordan, D. Autonomic changes in affective behaviour. In Central Regulation of Autonomic Functions, edited by A. D. Loewy, and K. M. Spyer. New York: Oxford University Press, 1990: 349–367.
 116. Jordan, D., M. E. M. Khalid, N. Schneiderman, and K. M. Spyer. The location and properties of preganglionic vagal cardiomotor neurones in the rabbit. Pflugers Arch. 395: 244–250, 1982.
 117. Jordan, D., S. W. Mifflin, and K. M. Spyer. Hypothalamic inhibition of neurones in the nucleus tractus solitarius of the cat is GABA mediated. J. Physiol. (Lond.) 399: 389–404, 1988.
 118. Jordan, D. and K. M. Spyer. The distribution and excitability of myelinated aortic nerve afferent terminals. Neurosci. Lett. 8: 113–117, 1978.
 119. Jordan, D. and K. M. Spyer. Studies on the excitability of sinus nerve afferent terminals. J. Physiol. (Lond.) 297: 123–134, 1979.
 120. Jordan, D. and K. M. Spyer. Brainstem integration of cardiovascular and pulmonary afferent activity. In Prog. Brain Res. Vol. 67, Visceral Sensation, edited by F. Cervero, and J. F. B. Morrison. Amsterdam: Elsevier 1986: 295–314.
 121. Jordan, D. and K. M. Spyer. Central neural mechanisms mediating respiratory–cardiovascular interactions. In: Neurobiology of the cardiorespiratory System, edited by E. W. Taylor Manchester: Manchester University Press 1987: 322–341.
 122. Kalia, M. and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobronchial, pulmonary, cardiac and gastrointestinal branches. J. Comp. Neurol. 193: 467–508, 1980.
 123. Kasparov, S. and J. F. Paton. Changes in baroreceptor vagal reflex performance in the developing rat. Pflugers Arch. Eur. J. Physiol. 434: 438–44, 1997.
 124. Katona, P. G. and F. Jih. Respiratory sinus arrhythmia. Noninvasive measure of parasympathetic cardiac control. J. Appl. Physiol. 39: 801–805, 1975.
 125. Katona, P., D. Lipson, and P. J. Dauchot. Opposing central and peripheral effects of atropine on parasympathetic cardiovascular control. Am. J. Physiol. 232: 146–151, 1977.
 126. Katona, P., J. Poitras, U. Barnett, and B. Terry. Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am. J. Physiol. 218: 1030–1037, 1970.
 127. Kaufman, M. P., J. C. Longhurst, K. J. Rybicki, J. H. Wallach, and J. H. Mitchell. Effects of static muscular contraction on impulse activity of groups III and IV afferent in cats. J. Appl. Physiol. 55: 105–112, 1983.
 128. Kaufman, M. P. and K. J. Rybicki. Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circ. Res. 61 (Suppl): 1.60–1.65, 1987.
 129. Kidd, C. and P. N. McWilliam. The action of myelinated and non‐myelinated vagal efferent fibres on heart rate, atrioventricular conduction and atrial contraction in cat and rabbit. J. Physiol. (Lond.) 330: 77–78, 1982.
 130. Kniffki, D.‐D., S. L. Mense, and R. F. Schmidt. Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ. Res. 48: 25–31, 1987.
 131. Koepchen, H. P., P. H. Wagner, and H. D. Lux. Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptischen Herzreflexes. Pflugers Arch 273: 413–430, 1961.
 132. Koepchen, H. P., P. H. Wagner, and H. D. Lux. Über die zusammenhänge zwischen zentraler erregbarkeit reflektorischen atemrhythmus bei der nervösen steuerung der herzfrequenz. Pflugers Arch 273: 443–465, 1961.
 133. Korner, P. I. Integrative neural cardiovascular control Physiol. Rev. 51: 312–367, 1971.
 134. Kosaka, K. Über die vaguskerne des hundes. Neurol. Centralbl. 28: 406–410. 1909.
 135. Kristenson, K. and Y. Olsson. Retrograde axonal transport of protein. Brain Res. 29: 363–365, 1971.
 136. Kunze, D. L. Reflex discharge patterns of cardiac vagal efferent fibres. J. Physiol., 222: 1–15, 1972.
 137. LaVail, J. H. and M. M. LaVail. Retrograde axonal transport in the central nervous system. Science 176: 1416–1417, 1972.
 138. Levy, M. N. Parasympathetic control of the heart. In: Neural Regulation of the Heart, edited by W. C. Randal New York: Oxford University Press, 1977: 95–130.
 139. Levy, M. N. and P. Martin. Parasympathetic control of the heart. In: Nervous Control of Cardiovascular Function, edited by W. C. Randall. New York: Oxford University Press, 1984: 68–94.
 140. Levy, M. N. and H. Zieske. Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J. Appl. Physiol. 27: 465–470, 1969.
 141. Linden, R. J. The function of atrial receptors. In: Cardiogenic Reflexes, edited by R. Hainsworth, P. N. McWilliam, and D. A. S. G. Mary. Oxford: Oxford Science Publications, 1985: 18–39.
 142. Lipski, J., R. M. McAllen, and K. M. Spyer. The sinus nerve and baroreceptor input to the medulla of the cat. J. Physiol. (Lond.) 251: 61–78, 1975.
 143. Lipski, J., R. M. McAllen, and K. M. Spyer. Synaptic activation of cardiac vagal moto‐neurones. J. Physiol. (Lond.) 256: 68, 1976.
 144. Lipski, J., R. M. McAllen, and K. M. Spyer. The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J. Physiol. (Lond.) 269: 797–810, 1977.
 145. Lipski, J., R. M. McAllen, and A. Trzebski. Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Res. 107: 132–135, 1976.
 146. Loewy, A. C. Central autonomic pathways. In Central Regulation of Autonomic Functions, edited by A. D. Loewy, and K. M. Spyer. New York: Oxford University Press, 1990: 88–103.
 147. Loewy, A. C. and K. M. Spyer. Vagal preganglionic neurons. In Central Regulation of Autonomic Functions, edited by A. D. Loewy, and K. M. Spyer. New York: Oxford University Press, 1990: 68–87.
 148. Lopes, O. U. and J. F. Palmer. Proposed respiratory ‘gating’ mechanism for cardiac slowing. Nature 264: 454–456, 1976.
 149. Lopes, O. U. and J. F. Palmer. Mechanism of hypothalamic control of cardiac component of sinus nerve reflex. Q. J. Exp. Physiol. 63: 231–254, 1978.
 150. Maqbool, A., T. F. C. Batten, and P. N. McWillian. Ultrastructural relationships between GABAergic terminals and cardiac vagal preganglionic motoneurones and vagal afferents in the cat: a combined HRP tracing and immunogold labelling study. Eur. J. Neurosci. 3: 501–513, 1991.
 151. Marshall, J. M. Contribution to overall cardiovascular control made by the chemoreceptor‐induced alerting defence response. In Neurobiology of the Cardiorespiratory System, edited by E. W. Taylor, Manchester: Manchester University Press, 1987: 221–249.
 152. Marshall, J. M. Peripheral chemoreceptors and cardiovascular regulation. Physiol. Rev. 74: 543–594, 1994.
 153. Marshall, J. M. and J. D. Metcalfe. Analysis of the cardiovascular changes induced in the rat by graded levels of systemic hypoxia. J. Physiol (Lond.). 407: 385–403, 1988.
 154. Marshall, J. M. and R. J. Timms. Experiments on the role of the subthalamus in the generation of the cardiovascular changes during locomotion in the cat. J. Physiol. (Lond.) 301: 92–93, 1980.
 155. Massari, V. J., T. A. Johnson, R. A. Gillis, and P. J. Gatti. What are the roles of substance P and neurokinin‐1 receptors in the control of negative chronotropic or negative dromotropic vagal mononeurones? A physiological and ultrastructural analysis. Brain Res. 715: 197–207, 1996.
 156. Massari, V. J., L. W. Dickerson, A. L. Gray, J. M. Lauenstein, K. J. Blinder, J. T. Newsome, D. J. Rodak, T. J. Fleming, P. J. Gatti, and R. A. Gillis. Neural control of left ventricular contractility in the dog heart; synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals. Brain Res. 802: 205–20, 1998.
 157. Masssari, V. J., T. A. Johnson, and P. J. Gatti. Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res. 679: 227–240, 1995.
 158. Massari, V. J., T. A. Johnson, I. J. Llewellyn‐Smith, and P. J. Gatti. Cardiotopic organisation of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrio‐ventricular conduction. Brain Res. 679: 227–240 1995.
 159. McAllen, R. M. The inhibition of the baroreceptor input to the medulla by stimulation of the hypothalamic defence area. J. Physiol. (Lond.) 257: 45–46, 1976.
 160. McAllen, R. M. and K. M. Spyer. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J. Physiol. (Lond.) 258: 187–204, 1976.
 161. McAllen, R. M. and K. M. Spyer. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J. Physiol. (Lond.) 282: 353–364, 1978.
 162. McAllen, R. M. and K. M. Spyer. The baroreceptor input to cardiac vagal motoneurons. J. Physiol. (Lond.) 282: 365–374, 1978.
 163. McWilliam, P. N. and D. C. Woolley. The effect of supranodose vagotomy on the hexamethonium resistant bradycardia in the anaesthetized rabbit. J. Auton. Nerve. Syst. 29: 227–230, 1990.
 164. McWilliam, P. N., T. Yang, and L. X. Chen. Changes in the baroreceptor reflex at the start of muscle contraction in the decerebrate cat. J. Physiol. (Lond.) 436: 549–558, 1991.
 165. Mendelowitz, D. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am. J. Physiol., 271: 40: H2609–H2614. (Heart Circ. Physiol.40)
 166. Middleton, S., H. H. Middleton, and H. Grundfest. Spike potentials and cardiac effects of mammalian vagus nerve. Am. J. Physiol. 162: 553–559, 1950.
 167. Mifflin, S. W. Arterial chemoreceptor input to nucleus tractus solitarius. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): R368–R375, 1992.
 168. Mifflin, S. W. Inhibition of chemoreceptor inputs to nucleus of tractus solitarius neurons during baroreceptor stimulation. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): R14–R20, 1993.
 169. Mifflin, S. W. Laryngeal afferent inputs to the nucleus of the solitary tract. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): R269–R276, 1993.
 170. Mifflin, S. W., K. M. Spyer, and D. J. Withington‐Wray. Baroreceptor input to the nucleus tractus solitarius in the cat: postsynaptic actions and the influence of respiration. J. Physiol. (Lond.) 399: 349–367, 1988.
 171. Mifflin, S. W., K. M. Spyer, and D. J. Withington‐Wray. Baroreceptor inputs to the nucleus tractus solitarius in the cat: modulation by the hypothalamus. J. Physiol. (Lond.) 399: 369–387, 1988.
 172. Mihalevich, M., R. A. Neff, and D. Mendelowitz. Voltagegated currents in identified parasympathetic cardiac neurons in the nucleus ambiguus. Brain Res. 739: 258–262.
 173. Miller, R. Identification of vagal efferent neurones: a horseradish peroxidase study. J. Physiol. (Lond.) 256: 69–70, 1976.
 174. Mitchell, G. A. G. and R. Warwick. The dorsal vagal nucleus. Acta Anat. 25: 371–395, 1955.
 175. Mitchell, J. H. Cardiovascular control during exercise: central and reflex neural mechanisms. Am. J. Cardiol. 55: 34D–41D, 1985.
 176. Mitchell, J. H., M. P. Kaufman, and G. A. Iwamoto. The exercise pressor reflex: cardiovascular effects, afferent mechanisms and central pathways. Annu. Rev. Physiol. 45: 229–242, 1983.
 177. Miura, M. and J. Okada. Cardiac and non‐cardiac preganglionic neurones of the thoracic vagus nerve: an HRP study in the cat. Jpn. J. Physiol. 31: 53–66, 1988.
 178. Miura, M. and D. J. Reis. Electrophysiological evidence that the carotid sinus nerve fibers terminate in the bulbar reticular formation. Brain Res. 9: 394–397, 1968.
 179. Miura, M. & D. J. Reis. Termination and secondary projections of the carotid sinus nerve in the cat brainstem. Am. J. Physiol. 217: 142–153, 1969.
 180. Miura, M. and D. J. Reis. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors. J. Physiol. (Lond.) 225: 525–548, 1972.
 181. Mohlant, M. Le nerv vagus: Les connxiouns anatomiques et la valeur functioneue en noyar en vagus. Nevraxe 11: 131, 1910.
 182. Morest, D. K. Experimental study of the projections of the tractus solitarius and the area postrema in the cat. J. Comp. Neurol. 130: 277–300, 1967.
 183. Neff, R. A., J. Humphrey, M. Mihalevich, and D. Mendelowitz. Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons. Circ. Res. 83: 1241–1247, 1998.
 184. Nitzan, R., I. Segev, and Y. Yarom. Voltage behaviour along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig. J. Neurophysiol. 63: 333–346, 1990.
 185. Nosaka, S., Yamamoto, T. and Yasunaga, K. Localisation of vagal cardioinhibitory preganglionic neurones within the rat brain stem. J. Comp. Neurol. 186: 79–92, 1979.
 186. Nosaka, S., K. Yasunaga, and M. Kawano. Vagus cardioinhibitory fibers in rats. Pflugers Arch. 379: 281–285, 1979.
 187. Nosaka, S., K. Yasunaga, and S. Tamai. Vagal cardiac preganglionic neurons: distribution, cell types and reflex discharges. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): R92–R98, 1982.
 188. Paintal, A. S. Impulses in vagal afferent fibres from specific pulmonary deflation receptors. The response of these receptors to phenyl diguanide, potato starch, 5‐hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q. J. Exp. Physiol. 40: 89–111, 1955.
 189. Paintal, A. S. Block of conduction in mammalian myelinated nerve fibres by low temperatures. J. Physiol. (Lond.) 180: 1–19, 1965.
 190. Paintal, A. S. Mechanism of stimulation of type J‐pulmonary receptors. J. Physiol. (Lond.) 203: 511–532, 1969.
 191. Paintal, A. S. The mechanism of excitation of type J receptors and the J reflex. In: Breathing: Bering‐Breuer Centenary Symposium, edited by R. Porter, London: Churchill, 1970: 59–71.
 192. Pascoe, J., D. J. Bradley, and K. M. Spyer. Interactive responses to stimulation of the amygdaloid central nucleus and baroreceptor afferents in the rabbit. J. Auton. Nerv. Syst. 26: 157–167, 1989.
 193. Paton, J. F. R. Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C‐fiber stimulation in the mouse. J. Neurophysiol. 79: 2365–2373, 1998.
 194. Paton, J. F. R., L. Silva‐Carvalho, G. E. Goldsmith, and K. M. Spyer. Inhibition of barosensitive neurones evoked by lobule IXb of the posterior cerebellar cortex in the decerebrate rabbit. J. Physiol. (Lond.) 427: 124–129, 1990.
 195. Paton, J. F. R. and K. M. Spyer. Brainstem regions mediating the cardiovascular responses elicited from the posterior cerebellar cortex in the rabbit. J. Physiol. (Lond.) 427: 533–552, 1990.
 196. Plecha, D. M., W. C. Randall, G. S. Geis, and R. D. Wurster. Localization of vagal preganglionic somata controlling the sinoatrial and atrioventricular nodes. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): R703–R708, 1988.
 197. Potter, E. K. Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J. Physiol. (Lond.) 316: 177–190, 1981.
 198. Randall, W. C. and J. L. Ardell. Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H61–H68, 1985.
 199. Randall, W. C., J. L. Ardell, D. Calderwood, M. Milosavljevic, and S. C. Goyal. Parasympathetic ganglia innervating the canine atrioventricular nodal region. J. Auton. Nerv. Syst. 16: 311–323, 1986.
 200. Randall, W. C., J. L. Ardell, R. D. Wurster, and M. Milosavljevic. Vagal postganglionic innervation of the canine sinoatrial node. J. Auton. Nerv. Syst. 20: 13–23, 1987.
 201. Randall, W. C. and R. D. Wurster. Peripheral innervation of the heart. In: Vagal Control of the Heart: Experimental Basis and Clinical Implications, edited by M. N. Levy, and P. J. Schwartz. Armonk, NY: Futura 1994: 21–32.
 202. Remmers, J. E., D. W. Richter, D. Ballantyne, C. R. Bainton, and J. P. Klein. Reflex prolongation of stage I of expiration. Pflugers Arch. 407: 190–198, 1986.
 203. Richter, D. Generation and maintenance of the respiratory rhythm. J. Exp. Biol. 100: 93–107, 1982.
 204. Richter, D. W. and D. Ballantyne. A three phase theory about the basic respiratory pattern generation. In: Central Neuron Environment, edited by M. E. Schläfke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983: 164–174.
 205. Richter, D. W. and K. M. Spyer. Cardiorespiratory control. In Central Regulation of Autonomic Functions, edited by A. D. Loewy, and K. M. Spyer. New York: Oxford University Press, 1990: 189–207.
 206. Rose, W. C. and J. S. Schwaber. Analysis of heart rate‐based control of arterial blood pressure. Am. J. Physiol. 271 (Heart Circ. Physiol. 40): H812–22, 1996.
 207. Rudomin, P. Pharmacological evidence for the existence of interneurones mediating primary afferent depolarisation in the solitary tract nucleus of the cat. Brain Res. 2: 181–183, 1966.
 208. Rudomin, P. Primary afferent depolarisation produced by vagal visceral afferents. Experientia 23: 117–119, 1967.
 209. Rudomin, P. Presynaptic inhibition induced by vagal afferent volleys. J. Neurophysiol. 30: 964–981, 1967.
 210. Rudomin, P. Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus. Exp. Brain Res. 6: 156–170, 1986.
 211. Sah, P. Role of calcium influx and buffering in the kinetics of a Ca2+‐activated K+ current in rat vagal motoneurons. J. Neurophysiol. 68: 2237–2247, 1992.
 212. Sah, P. Kinetic properties of a slow apamin‐insensitive Ca2+‐activated K+ current in guinea pig vagal neurons. J. Neurophysiol. 69: 361–366, 1993.
 213. Sah, P. and E. M. McLachlan. Ca2+‐activated K+ currents underlying the after hyperpolarization in guinea pig vagal neurons: a role for Ca2+‐activated CA2+ release. Neuron 7: 257–264, 1991.
 214. Sah, P. and E. M. McLachlan. A slow voltage‐activated potassium current in rat vagal neurons. Proc. R. Soc. Lond. 249 (1324): 71–76, 1992.
 215. Sah, P. and E. M. McLachlan. Potassium currents contributing to action potential repolarization and the after hyperpolarization in rat vagal motoneurons. J. Neurophysiol. 68: 1834–1841, 1992.
 216. Sah, P. and E. M. McLachlan. Differences in electrophysiological properties between neurones of the dorsal motor nucleus of the vagus in rat and guinea pig. J. Auton. Nerv. Syst. 42: 89–98, 1993.
 217. Sakmann, B. Acetylcholine activation of single muscarinic potassium channels in isolated pacemaker cells of the mammalian heart. Nature 303: 250–253, 1983.
 218. Sampaio, K. N., H. Mauad, T. W. Ford, and K. M. Spyer. Chronotropic and dromotropic effects of L‐glutamate (L‐Glu) injected into the rat nucleus ambiguus (NA). Auton. Neurosci. 82: 62, 2000.
 219. Saul, J. P. and R. J. Cohen. Respiratory sinus arrhythmia. In: Vagal Control of the Heart: Experimental Basis and Clinical Implications, edited by M. N. Levy, and P. J. Schwartz. Armonk, NY: Futura 1994: 511–536.
 220. Schwartz, P. J. and D. Cerati. Cardiac vagal efferent nerve activity. In: Vagal Control of the Heart: Experimental Basis and Clinical Implications, edited by M. N. Levy, and P. J. Schwartz. Armonk, NY: Futura 1994: 77–87.
 221. Schweitzer, A. Rhythmical fluctuations of the arterial blood pressure. J. Physiol. (Lond.) 104: 25–26, 1945.
 222. Seabrook, G. R., L. A. Fieber, & D. J. Adams. Neurotransmission in neonatal rat cardiac ganglia in situ. Am. J. PhysioL. 259 (Heart Circ. Physiol. 28): H997–H1005, 1990.
 223. Seagard, J. L., F. A. Hopp, H. A. Drummond, D. M. Van‐Wynsberghe. Selective contributions of two types of carotid sinus baroreceptors to the control of blood pressure. Circ. Res. 72: 1011–1022, 1993.
 224. Seller, H. and M. Illert. The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pflugers Archiv. 306: 1–19, 1969.
 225. Selyanko, A. A. and V. I. Skok. Acetylcholine receptors in rat cardiac neurones. J. Autonom. Nerv. Syst. 40: 33–48. 1992.
 226. Silva‐Carvalho, L., M. S. Dawid‐Milner, G. E. Goldsmith, and K. M. Spyer. Hypothalamic‐evoked effects in cat nucleus tractus solitarius facilitating chemoreceptor reflexes. Exp. Physiol. 78: 425–428, 1993.
 227. Silva‐Carvalho, L., M. S. Dawid‐Milner, G. E. Goldsmith, and K. M. Spyer. Hypothalamic modulation of the arterial chemoreceptor reflex in the anaesthetized cat: role of the nucleus tractus solitarii. J. Physiol. (Lond.) 487: 751–760, 1995.
 228. Silva‐Carvalho, L., M. S. Dawid‐Milner, and K. M. Spyer. The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J. Physiol. (Lond.) 487: 727–737, 1995.
 229. Silva‐Carvalho, L., J. F. R. Paton, I. Rocha, G. E. Goldsmith, and K. M. Spyer. Convergence properties of solitary tract neurons responsive to cardiac receptor stimulation in the anesthetized cat. J. Neurophysiol. 79: 2374–2382, 1998.
 230. Spyer, K. M. Neural organization and control of the baroreceptor reflex. Rev. Physiol., Biochem. and Pharmacol. 88: 23–124, 1981.
 231. Spyer, K. M. Central control of the cardiovascular system. In Recent Advances in Physiology, edited by P. F. Porter. Edinburgh; Churchill Livingstone 1984: 163–200.
 232. Spyer, K. M. The central nervous organization of reflex circulatory control. In Central Regulation of Autonomic Functions, edited by A. D. Loewy, and K. M. Spyer. New York: Oxford University Press, 1990: 168–188.
 233. Spyer, K. M. Central nervous mechanisms contributing to cardiovascular control J. Physiol. (Lond.) 474: 1–19, 1994.
 234. Spyer, K. M., P. A. Brooks, and P. N. Izzo. Vagal preganglionic neurones supplying the heart, Chap. 4. In: Vagal Control of the Heart, edited by M. N. Levy, and P. J. Schwartz, Armonk, NY: Futura. 1994: 45–63.
 235. Spyer, K. M., P. N. Izzo, R. J. Liu, J. F. R. Paton, L. F. Silva‐Carvalho, and D. W. Richter. The central nervous organization of the carotid body chemoreceptor reflex. In Chemoreceptors and Chemoreceptor Reflexes, edited by H. Acker, A. Trzebski, and R. O'Regan. New York: Plenum 1990. 317–321.
 236. Spyer, K. M. and D. Jordan. Electrophysiology of the nucleus ambiguus. In: Cardiogenic Reflexes, edited by R. Hainsworth, P. N. McWilliam, and D. A. S. G. Mary, 1987. 237–249.
 237. Spyer, K. M. and J. H. Wolstencroft. Problems of the afferent input to the paramedial reticular nucleus, and the central connections of the sinus nerve. Brain Res. 26: 411–414, 1971.
 238. Standish, A., L. W. Enquist, and J. S. Schwaber. Innervation of the heart and its central medullary origin defined by viral tracing. Science 263: 232–234, 1994.
 239. Stuesse, S. L. Origins of cardiac vagal preganglionic fibres: a retrograde transport study. Brain Res. 236: 15–25, 1982.
 240. Szentagothai, J. The general visceral efferent column of the brain stem. Acta Morphol. Acad. Sci. Hung. 2: 313–328, 1952.
 241. Taylor, E. W., D. Jordan, and J. H. Coote. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol. Rev. 79: 855–916, 1999.
 242. Thames, M. D., H. A. Kontosm and R. R. Lower. Sinus arrhythmia in dogs after cardiac transplantation. Am. J. Cardiol. 24: 54–58, 1969.
 243. Trapp, S., K. Ballanyi, and D. W. Richter. Spontaneous activation of KATP current in rat dorsal vagal neurones. NeuroReport : 1285–1288, 1994.
 244. Traube, L. Über periodische Thätigkeits‐Äusserungen des vasomotorischen und Hemmungs‐Hervencentrums. Zentralbl. Med Wissen., Berlin 56: 881–885, 1865.
 245. Travagli, R. A. and R. A. Gillis. Hyperpolarization activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus (DMV) neurones in vitro. J. Neurophysiol. 71: 1308–1317, 1994.
 246. Travagli, R. A., R. A. Gillis, C. D. Rossiter, and S. Vincini Fida. Glutamate and GABA‐mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23): G531–G536, 1991.
 247. Ulman, L. G., E. K. Potter, D. I. McCloskey, and M. J. Morris. Post‐exercise depression of baroreflex slowing of the heart in humans. Clin. Physiol. 17: 299–309, 1997.
 248. Van Gehuchten, A. Les Centres Nerveus Cerebo‐spinaux. A. Louvain: Uystpruyst‐Dieudonne, 1908.
 249. Waldrop, T. G., R. M. Bauer, and G. A. Iwamoto. Microinjection of GABA antagonists into the posterior hypothalamus, locomotor activity and a cardiorespiratory activation. Brain Res. 444: 84–94, 1988.
 250. Widdicombe, J. G. Nervous receptors in the respiratory tract and lungs. In: Regulation of Breathing, Part I Lung Biology in Health and Disease, Vol 17, edited by T. F. Hornbein. New York: Marcel Dekker, 1981: 429–472.
 251. Widdicombe, J. G. Pulmonary and respiratory tract receptors. J. Exp. Biol. 100: 41–57, 1982.
 252. Widdicombe, J. G. Reflexes from the upper respiratory tract. In Handbook of Physiology, section 3, The Respiratory System, Vol.II: Control of Breathing, part 1, edited by N. S. Cherniack, and J. G. Widdicombe. Bethesda, MD: American Physiological Society, 1986: 363–429.
 253. Willis, A., M. Mihalevich, R. A. Neff, and D. Mendelowitz. Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS. Am. J. Physiol, 271 (Renal Fluid Electrolyte Physiol. 34): R1614–R1619. 1996.
 254. Woolley, D. C., P. M. McWillian, T. W. Ford, and R. W. Clarke. The effect of selective electrical stimulation of non‐myelinated vagal fibres on heart rate in the rabbit. J. Auton. Nerv. Syst. 21: 215–221, 1987.
 255. Xi‐Moy, S. X., W. C. Randall, and R. D. Wurster. Nicotinic and muscarinic synaptic transmission in canine intracardiac ganglion cells innervating the sinoatrial node. J. Auton. Nerv. Syst. 42: 201–214, 1993.
 256. Yarom, J., M. Sugimore, and R. Llinas. Ionic currents and firing patterns of mammalian vagal motoneurons in vitro. Neuroscience 16: 719–737, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

K. Michael Spyer. Vagal Preganglionic Neurons Innervating the Heart. Compr Physiol 2011, Supplement 6: Handbook of Physiology, The Cardiovascular System, The Heart: 213-239. First published in print 2002. doi: 10.1002/cphy.cp020105