References |
1. |
Araujo, A. and
J. W. Walker.
Kinetics of tension development in skinned cardiac myocytes measured by photorelease of Ca2+
Am. J. Physiol.
267
Heart Circ. Physiol. 36:
H1643–H1653,
1994.
|
2. |
Araujo, A. and
J. W. Walker.
Phosphate release and force generation in cardiac myocytes investigated with caged phosphate and caged Ca2+.
Biophys. J.
70:
2316–2326,
1996.
|
3. |
Baker, J. E.,
I. Brust‐Mascher,
S. Ramachandran,
L. E. LaConte, and
D. D. Thomas.
A large and distinct rotation of the myosin light chain domain occurs upon muslce contraction.
Proc. Nat. Acad. Sci. U.S.A.
95:
2720–2722,
1998.
|
4. |
Bagshaw, C. R.
Muscle Contraction,
London:
Chapman Hall,
1993.
|
5. |
Barany, M.
ATPase activity of myosin correlated with speed of muscle shortening.
J. Gen. Physiol.
50:
197–218,
1967.
|
6. |
Barsotti, R. J. and
M. A. Ferenczi.
Kinetics of ATP hydrolysis and tension production in skinned cardiac muscle of the guinea pig.
J. Biol. Chem.
263:
16750–16756,
1988.
|
7. |
Bowater, R. and
J. Sleep.
Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment 1.
Biochemistry
27:
5314–5323,
1988.
|
8. |
Brenner, B.
Effect of Ca2+ on cross‐bridge turnover kinetics in skinned single rabbit psoas fibers: Implications for regulation of muscle contraction.
Proc. Natl. Aced. Sci. U.S.A.
85:
3265–3269,
1988.
|
9. |
Burton, K.
Myosin step size: estimates from motility assays and shortening muscle.
J. Muscle Res. Cell Motil.
13:
590–607,
1992.
|
10. |
Chalovich, J. M. and
E. Eisenberg.
Inhibition of actomyosin ATPase activity by troponin‐tropomyosin without blocking the binding of myosin to actin.
J. Biol. Chem.
257:
2432–2437,
1982.
|
11. |
Cooke, R.
Actomyosin interaction in striated muscle.
Physiol. Rev.
77:
671–697,
1997.
|
12. |
Dantzig, J. A. and
Y. E. Goldman.
Suppression of muscle contraction by vanadate.
J. Gen. Physiol.
86:
305–327,
1985.
|
13. |
Dantzig, J. A.,
M. A. Hibberd,
D. R. Trentham, and
Y. E. Goldman.
Crossbridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibers.
J. Physiol. (Lond.)
432:
639–680,
1991.
|
14. |
Dantzig, J. A.,
Y. E. Goldman,
N. C. Millar,
J. Laktis, and
E. Homsher.
Reversal of the cross‐bridge force‐generating transition by photogeneration of phosphate in rabbit psoas muscle fibers.
J. Physiol. (Lond.)
451:
247–278,
1992.
|
15. |
Dantzig, J. A.,
J. W. Walker,
D. R. Trentham, and
Y. E. Goldman.
Relaxation of muscle fibers with ATP(γS) and by laser photolysis of caged ATP(γS): Evidence for Ca2+ dependent affinity of rapidly detaching zero force cross‐bridges.
Proc. Natl. Acad. Sci. U.S.A.
85:
6716–6720,
1988.
|
16. |
Dominquez, R.,
Y. Freyzon,
K. M. Trybus, and
C. Cohen.
Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre‐power stroke state.
Cell
94:
559–571,
1998.
|
17. |
Ebashi, S.
Calcium ions and muscle contraction.
Nature
240:
217–218,
1972.
|
18. |
Eisenberg, E. and
T. L. Hill.
Muscle contraction and free energy transduction in biological systems.
Science
227:
999–1006,
1985.
|
19. |
Ellis‐Davies, G. C. R. and
J. A. Kaplan.
Nitrophenyl EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and rapidly releases it upon photolysis.
Proc. Natl. Acad. Sci. U.S.A.
91:
187–191,
1994.
|
20. |
Fenn, W. O.
A quantitative comparison between the energy liberated and the work performed by the isolated sartorius of the frog.
J. Physiol. (Lond.)
58:
175–203,
1923.
|
21. |
Ferenczi, M. A.,
E. Homsher, and
D. R. Trentham.
The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit.
J. Physiol. (Lond.)
352:
575–599,
1984.
|
22. |
Ferenczi, M. A.
Phosphate burst in permeable muscle fibers of the rabbit.
Biophys. J.
50:
471–477,
1986.
|
23. |
Finer, J. T.,
R. A. Simmons, and
J. A. Spudich.
Single myosin molecule mechanics: piconewton forces and nanometre steps.
Nature
368:
113–119,
1994.
|
24. |
Fisher, A. J.,
C. A. Smith,
J. Thoden,
R. Smith,
K. Sutoh,
H. Holden, and
I. Rayment.
Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction.
Biophys. J.
68:
19s–26s,
1995.
|
25. |
Ford, L. E.,
A. F. Huxley, and
R. M. Simmons.
Tension responses to sudden length changes in stimulate from muscle fibers near slack length.
J. Physiol. (Lond.)
269:
441–515,
1977.
|
26. |
Ishijima, A.,
H. Kojima,
T. Funatsu,
K. Tokunaga,
H. Higuchi,
H. Tanaka, and
T. Yanagida.
Simultaneous observation of individaul ATPase and mechanical events by a singly myosin molecule during interation with actin.
Cell
92:
161–171,
1998.
|
27. |
Goodson, H. V. and
J. A. Spudich.
Molecular evolution of the myosin family: relationships derived from comparisons of amino acid sequences.
Proc. Natl. Acad. Sci. USA
90:
659–663,
1993.
|
28. |
Goldman, Y. E.,
M. G. Hibberd, and
D. R. Trentham.
Relaxation of rabbit psoas muscle fibers from rigor by photochemical generation of adenosine‐5'‐triphosphate.
J. Physiol.
354:
577–604,
1984.
|
29. |
Goldman, Y. E.
Kinetics of the actomyosin ATPase in muscle fibers.
Annu. Rev. Physiol.
49:
637–654,
1987.
|
30. |
Goldman, Y. E.
Wag the tail: structural dynamics of actomyosin.
Cell
93:
1–4,
1998.
|
31. |
Gordon, A. M.,
A. F. Huxley, and
F. J. Julian.
The variation in isometric tension with sarcomere length in vertebrate muscle fibers.
J. Physiol.
184:
170–192,
1966.
|
32. |
Guilford, W. H.,
D. E. Dupuis,
G. Kennedy,
J. Wu,
J. B. Patlak, and
D. M. Warshaw.
Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.
Biophys. J.
72:
1006–1021,
1997.
|
33. |
Gulick, A. M. and
I. Rayment.
Structural studies of myosin II: communication between distant protein domains.
Bioessays
19:
561–569.
|
34. |
Hibberd, M. G. and
D. R. Trentham.
Relationships between chemical and mechanical events during muscular contraction.
Annu. Rev. Biophys. Biophys. Chem.
15:
119–161,
1986.
|
35. |
Highsmith, S.
Lever arm model of force generation by actinmyosin‐ATP.
Biochemistry
38:
9791–9797,
1999.
|
36. |
Holmes, K. C.,
D. Popp,
W. Gebhard, and
W. Kabsch.
Atomic model of the actin filament.
Nature
347:
44–49,
1990.
|
37. |
Holmes, K. C.
The swinging lever‐arm hypothesis of muscle contraction.
Curr. Biol.
7:
R112–R118,
1997.
|
38. |
Homsher, E. and
N. C. Millar.
Caged compounds and striated muscle contraction.
Annu. Rev. Physiol.
52:
875–896,
1990.
|
39. |
Houdusse, A.,
V. N. Kalbokis,
D. Himmel,
A. G. Szent‐Gyorgyi, and
C. Cohen.
Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel comformation of the myosin head.
Cell
97:
459–470,
1999.
|
40. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem.
7:
255–318,
1957.
|
41. |
Huxley, A. F. and
R. Niedergerke.
Structural changes in muscle during contraction.
Nature
173:
971–973,
1954.
|
42. |
Huxley, A. F. and
R. M. Simmons.
Proposed mechanism of force generation in muscle fibers.
Nature
233:
533–538,
1971.
|
43. |
Huxley, A. F.
Reflections on Muscle.
Princeton, NJ:
Princeton University Press,
1980.
|
44. |
Huxley, H. E. and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature
173:
973–976,
1954.
|
45. |
Huxley, H. E.
The mechanism of muscular contraction.
Science
164:
1356–1366,
1969.
|
46. |
Huxley, H. E.
Structural changes in actin‐ and myosin‐containing filaments during contraction.
Cold Spring Harbor Symp. Quant. Biol.
37:
361–376,
1973.
|
47. |
Irving, M.,
V. Lombardi,
G. Piazzesi, and
M. A. Ferenczi.
Myosin head movements are synchronous with the elementary force‐generating process in muscle.
Nature
357:
156–158,
1992.
|
48. |
Irving, M.,
T. S. C. Allen,
C. Sabido‐David,
J. S. Craik,
B. Brandmeier,
J. Kendrick‐Jones,
J. E. T. Corrie,
D. R. Trentham, and
Y. E. Goldman.
Tilting of the light‐chain region of myosin during step length changes and active force generation in skeletal muscle.
Nature
375:
688–691,
1995.
|
49. |
Josephson, R. K.
Contraction dynamics and power output of skeletal muscle.
Annu. Rev. Physiol.
55:
527–54,
1993.
|
50. |
Julian, F. J. and
M. R. Sollins.
Variation of muscle stiffness with force at increasing speeds of shortening.
J. Gen. Physiol.
66:
287–302.
1975.
|
51. |
Kabsch, W.,
H. G. Mannherz,
D. Suck,
E. F. Pai, and
K. C. Holmes.
Atomic structure of the actin: DNasel complex.
Nature
347:
21–22,
1990.
|
52. |
Kawai, M.,
Y. Saeki, and
Y. Zhao.
Cross‐bridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
Circ. Res.
73:
35–50,
1993.
|
53. |
Kitamura, K.,
M. Tokunaga,
A. H. Iwane, and
T. Yanagida.
A single myosin head moves along actin filaments with regular steps of 5.3 nanometers.
Nature
397:
129–134.
|
54. |
Kress, M.,
H. E. Huxley,
A. R. Farqui, and
J. Hendrix.
Structural changes during activation of frog muscle studied by time‐resolved x‐ray diffraction.
J. Mol. Biol.
188:
325–342,
1985.
|
55. |
Kushmerick, M. J. and
R. E. Davies.
The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscle.
Proc. R. Soc. London B
174:
315–353,
1969.
|
56. |
Lankford, E. B.,
N. D. Epstein,
L. Fananpazir, and
H. L. Sweeney.
Abnormal contractile properties of muscle fibers expressing beta‐myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy.
J. Clin. Invest.
95:
1409–1414,
1995.
|
57. |
Lauzon, A. M.,
M. J. Tyska,
A. S. Rovner,
Y. Freyon,
D. M. Warshaw, and
K. M. Trybus.
A 7‐amino acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap.
J. Muscle Cell Res. Cell Motil.
19:
825–837,
1998.
|
58. |
Lehman, W.,
P. Vibert,
P. Uman, and
R. Craig.
Steric blocking by tropomyosin visualized in relaxed vertebrate muscle filaments.
J. Mol. Biol.
251:
191–196,
1995.
|
59. |
Lionne, C.,
M. Brune,
M. R. Webb,
F. Travers, and
T. Barman.
Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPase.
FEBS Lett.
364:
59–62,
1995.
|
60. |
Lowey, S.,
G. S. Waller, and
K. M. Trybus.
Skeletal muscle light chains are essential for physiological speeds of shortening.
Nature
365:
454–456,
1993.
|
61. |
Lu, Z.,
R. L. Moss, and
J. W. Walker.
Tension transients initiated by photogeneration of MgADP in skinned skeletal muscle fibers.
J. Gen. Physiol.
101:
867–888,
1993.
|
62. |
Lymn, R. W. and
E. Taylor.
Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry
10:
4617–4624,
1971.
|
63. |
Ma, Y. Z. and
E. W. Taylor.
Kinetic mechanism of myofibril ATPase.
Biophys. J.
66:
1542–1553,
1994.
|
64. |
McKillop, D. F and
M. A. Geeves.
Regulation of the actomyosin subfragment 1 interaction by troponin/tropomyosin.
Biophys. J.
65:
693–701,
1993.
|
65. |
Martin, H. and
R. J. Barsotti.
Relaxation from rigor of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP.
Biophys. J.
66:
1115–1128,
1994.
|
66. |
Martin, H. and
R. J. Barsotti.
Activation of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP.
Biophys. J.
67:
1933–1941,
1994.
|
67. |
Metzger, J. M.,
M. L. Greaser, and
R. L. Moss.
Variations in cross‐bridge attachment rate and tension with phosphorylation of myosin in skinned skeletal muscle fibers.
J. Gen. Physiol.
93:
855–883,
1989.
|
68. |
Millar, N. C. and
E. Homsher.
The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers.
J. Biol. Chem.
265:
20234–20240,
1990.
|
69. |
Milligan, R. A.
Protein‐protein interactions in the rigor actomyosin complex.
Proc. Natl. Acad. Sci. U.S.A.
93:
21–26,
1996.
|
70. |
Milligan, R. A.,
M. Wittaker, and
D. Safer.
Molecular structure of F‐actin and location of surface binding sites.
Nature
348:
217–221,
1990.
|
71. |
Molloy, J. E.,
J. E. Burns,
J. Kendrick‐Jones,
R. T. Tregear and
D. C. S. White.
Force and movement produced by a single myosin head.
Nature
378:
209–212,
1995.
|
72. |
Murphy, C. T. and
J. A. Spudich.
The sequence of the myosin 50–20K loop affects myosins affinity for actin throughout the actin‐myosin ATPase cycle and its maximum ATPAse activity.
Biochemistry
38:
3785–3792,
1999.
|
73. |
Parry, D. A. D. and
J. M. Squire.
Structural role of tropomyosin in muscle regulation: analysis of the X‐ray diffraction patterns from relaxed and contracting muscle.
J. Mol. Biol.
75:
33–55,
1973.
|
74. |
Pope, B.,
J. F. Y. Hoh, and
A. Weeds.
The ATPase activities of rat cardiac myosin isoenzymes.
FEBS Lett.
118:
205–208,
1980.
|
75. |
Rall, J. A.
Energetic aspects of skeletal muscle contraction: implications of fiber types.
Exerc. Sports Sci. Rev.
13:
33–74,
1985.
|
76. |
Rayment, I.,
W. R. Rypniewski,
K. Schmidt‐Base,
R. Smith,
D. R. Tomchick,
M. M. Benning,
D. A. Winkelman,
G. Wesenberg, and
H. M. Holden.
Three dimensional structure of myosin subfragment 1: a molecular motor.
Science
261:
35–36,
1993.
|
77. |
Rayment, I.,
H. M. Holden,
M. Wittaker,
C. B. Yohn,
M. Lorenz,
K. C. Holmes, and
R. A. Milligan.
Structure of the actinmyosin complex and its implications for muscle contraction.
Science
261:
58–65,
1993.
|
78. |
Rayment, I. and
H. Holden.
The three dimensional structure of a molecular motor.
Trends Biochem. Sci.
19:
129–134,
1994.
|
79. |
Rayment, I.,
H. M. Holden,
J. R. Sellers,
L. Fananapazir,
F. Epstein.
Structural interpretation of the mutations in the β‐cardiac myosin that have been implicated in familial hypertropic cardiomyopathy.
Proc. Natl. Acad. Sci. U.S.A.
92:
3864–3868,
1995.
|
80. |
Reedy, M.,
K. C. Holmes, and
R. T. Tragear.
Induced changes in orientation of the cross‐bridges of glycerinated insect flight muscle.
Nature
207:
1276–1280,
1965.
|
81. |
Rome, L. C.,
C. Cook,
D. A. Syme,
M. A. Connaughton,
M. Ashley‐Ross,
A. Klimov,
B. Tikunov and
Y. E. Goldman.
Trading force for speed: why superfast crossbridge kinetics leads to superlow forces.
Proc. Nat. Acad. Sci. U.S.A.
96:
5826–5831,
1999.
|
82. |
Rosenfeld, S. S. and
E. W. Taylor.
The ATPase mechanism of skeletal and smooth muscle acto‐subfragment 1.
J. Biol. Chem.
259:
11908–11918,
1984.
|
83. |
Rosenfeld, S. S. and
E. W. Taylor.
The mechanism of regulation of acto‐subfragment 1 ATPase.
J. Biol. Chem.
262:
9984–9993,
1987.
|
84. |
Ruppel, K. M.,
M. Lorenz, and
J. A. Spudich.
Myosin structure/function: a combined mutagenesis‐crystallographic approach.
Curr. Opin. in Struct. Biol.
5:
181–186,
1995.
|
85. |
Schroder, R. R.,
D. J. Manstein,
W. Jahn,
H. Holden,
I. Rayment,
K. C. Holmes, and
J. A. Spudich.
Three‐dimensional atomic model of F‐actin decorated with Dictyostelium myosin S1.
Nature
364:
171–174,
1993.
|
86. |
Siemankowski, R. F. and
H. D. White.
Kinetics of the interaction between actin, ADP and cardiac myosin S1.
J. Biol. Chem.
259:
5045–5053.
1984.
|
87. |
Siemankowski, R. F.,
M. O. Wiseman, and
H. D. White.
ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in muscle.
Proc. Natl. Acad. Sci. U.S.A.
82:
658–666,
1985.
|
88. |
Simmons, R.
Molecular motors: single‐molecule mechanics.
Curr. Biology
6:
392–394.
|
89. |
Sleep, J. A. and
R. L. Hutton.
Exchange between inorganic phosphate and adenosine 5'‐triphosphate in the medium by actomyosin subfragment 1.
Biochemistry
19:
1276–1283,
1980.
|
90. |
Solaro, R. J. and
H. M. Rarick.
Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments.
Circ. Res.
83:
471–480,
1998.
|
91. |
Spudich, J. A.
How molecular motors work.
Nature
372:
515–518,
1994.
|
92. |
Suguira,
S. N. Kobayakawa,
H. Fujita,
H. Yamashita,
S. Monomura,
S. Chaen,
M. Omata, and
H. Sugi.
Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation.
Circ. Res.
82:
1029–1034,
1998.
|
93. |
Sweeney, H. L. and
E. L. F. Holzbar.
Mutational analysis of motor proteins.
Annu. Rev. Physiol.
58:
751–792,
1996.
|
94. |
Swartz, D. R. and
R. L. Moss.
Influence of a strong binding myosin analogue on calcium sensitive mechanical properties of skinned skeletal muscle fibers.
J. Biol. Chem.
267:
20497–20506,
1992.
|
95. |
Taylor, E. W.
Mechanism of actomyosin ATPase and the problem of muscle contraction.
CRC Crit. Rev. Biochem.
6:
103–164,
1979.
|
96. |
Thirlwell, H.,
J. E. T. Corrie,
G. P. Reid,
D. R. Trentham, and
M. A. Ferenczi.
Kinetics of relaxation from rigor of permeabilized fast‐twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase.
Biophys. J.
67:
2346–2447,
1994.
|
97. |
Thomas, D. D.,
S. Ramachandran,
O. Roopnarine,
D. W. Hayden, and
E. Ostap.
The mechanism of force generation in muscle: a disorder‐to‐order transition coupled to internal structural change.
Biophys. J.
68:
135s–141s,
1995.
|
98. |
Toyoshima, Y. Y.,
S. J. Kron,
E. M. McNally,
K. R. Niebling,
C. Toyoshima, and
J. A. Spudich.
Myosin subfragment 1 is sufficient to move actin filaments in vitro.
Nature
328:
536–539,
1987.
|
99. |
Trentham, D. R.,
J. F. Eccleston and
C. R. Bagshaw.
Kinetic analysis of ATPase mechanisms.
Q. Rev. Biophys.
9:
217–281,
1976.
|
100. |
Tyska, M. J.,
D. E. Dupuis,
W. H. Guilford,
J. B. Patlak,
G. S. Waller,
K. M. Trybus,
D. M. Warshaw, and
S. Lowey.
Two heads of myosin are better than one for generating force and motion.
Proc. Nat. Acad. Sci. U.S.A.
96:
4402–4407,
1999.
|
101. |
Uyeda, T. Q. and
J. A. Spudich.
A functional recombinant myosin II lacking a regulatory light chain binding site.
Science
262:
1867–1870,
1993.
|
102. |
Uyeda, T. Q.,
K. M. Ruppel, and
J. A. Spudich.
Enzymatic activities correlate with chimeric substitutions at the actin‐binding face of myosin.
Nature
368:
567–569.
1994.
|
103. |
VanBuren, P.,
G. S. Waller,
D. E. Harris,
K. M. Trybus,
D. M. Warshaw, and
S. Lowey.
The essential light chain is required for full force production by skeletal muscle myosin.
Proc. Natl. Acad. Sci. U.S.A.
91:
12403–12407,
1994.
|
104. |
VanBuren, P.,
D. E. Harris,
N. R. Alpert and
D. M. Warshaw.
Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro.
Circ. Res.
77:
439–444,
1995.
|
105. |
Veigel, C.,
L. M. Coluccio,
J. D. Contes,
J. C. Sparrow,
R. A. Milligan, and
J. E. Molloy.
The motor protein myosin I produces its working stroke in two steps.
Nature
398:
530–533,
1999.
|
106. |
Walker, J. W.,
Z. Lu and
R. L. Moss.
Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle.
J. Biol. Chem.
267:
2459–2466,
1992.
|
107. |
Walker, J. W.,
G. Reid,
J. A. McCray, and
D. R. Trentham.
Photolabile 1‐(2‐nitrophenyl)ethyl phosphate esters of adenine nucleotide analogues. Synthesis and mechanism of photolysis.
J. Am. Chem. Soc.
110:
7170–7177,
1988.
|
108. |
Webb, M. R.,
M. G. Hibberd,
Y. E. Goldman, and
D. R. Trentham.
Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle.
J. Biol. Chem.
261:
15557–15564,
1986.
|
109. |
Wells, A. L.,
A. W. Lin,
L. Q. Chen,
D. Safer,
S. M. Cain,
T. Hasson,
B. O. Caragher,
R. A. Milligan and
H. L. Sweeney.
Myosin VI is an actin‐based motor that moves backwards.
Nature
401:
431–432,
1999.
|
110. |
White, H. D. and
E. W. Taylor.
Energetics and mechanism of actomyosin adenosine triphosphatase.
Biochemistry
15:
5818–5826,
1976.
|
111. |
Wittaker, M.,
E. M. Wilson‐Kubalik,
J. E. Smith,
L. Faust,
R. A. Milligan and
H. L. Sweeney.
A 35‐A movement of smooth muscle myosin on ADP release.
Nature
378:
748–757,
1995.
|
112. |
Woledge, R. C.,
N. A. Curtin, and
E. Homsher.
Energetic Aspects of Muscle Contraction
London:
Academic Press,
1985.
|
113. |
Yount, R. G.,
D. Lawson, and
I. Rayment.
Is myosin a “back door” enzyme?
Biophys. J.
68:
44s–47s,
1995.
|
114. |
Zhao, Y. and
M. Kawai.
Kinetic and thermodynamic studies of the crossbridge cycle in rabbit psoas muscle fibers.
Biophys. J.
67:
1655–1658,
1994.
|