References |
1. |
Afzal, N. and
N. S. Dhalla.
Differential changes in left and right ventricular SR calcium transport in congestive heart failure.
Am. J. Physiol.
262
(Heart Circ. Physiol. 31):
H868–H874,
1992.
|
2. |
Allen, D. G. and
J. R. Blinks.
Calcium transients in aequorininjected frog cardiac muscle.
Nature
273:
509–513,
1978.
|
3. |
Allen, G. and
N. M. Green.
A 31‐residue tryptic peptide from the active site of the [Ca2+]‐transporting adenosine triphosphatase of rabbit sarcoplasmic reticulum.
FEBS Lett.
63:
188–192,
1976.
|
4. |
Andersen, J. P. and
P. L. Jorgensen.
Conformational states of sarcoplasmic reticulum Ca2+‐ATPase as studied by proteolytic cleavage.
J. Membr. Biol.
88:
187–98,
1985.
|
5. |
Andersen, J. P.,
B. Vilsen,
E. Leberer, and
D. H. MacLennan.
Functional consequences of mutations in the beta‐strand sector of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
264:
21018–21023,
1989.
|
6. |
Andersen, J. P.,
B. Vilsen, and
D. H. MacLennan.
Functional consequences of alterations to Gly310, Gly770, and Gly801 located in the transmembrane domain of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
267:
2767–2774,
1992.
|
7. |
Arai, M.,
N. R. Alpert,
D. H. MacLennan,
P. Barton, and
M. Periasamy.
Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium.
Circ. Res.
72:
463–469,
1993.
|
8. |
Arai, M.,
N. R. Alpert, and
M. Periasamy.
Cloning and characterization of the gene encoding rabbit cardiac calsequestrin.
Gene
109:
275–279,
1991.
|
9. |
Arai, M.,
K. Otsu,
D. H. MacLennan,
N. R. Alpert, and
M. Periasamy.
Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins.
Circ. Res.
69:
266–276,
1991.
|
10. |
Arai, M.,
K. Otsu,
D. H. MacLennan, and
M. Periasamy.
Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development.
Am. J. Physiol.
262
(Cell Physiol. 31):
C614–C620,
1992.
|
11. |
Arkin, I. T.,
P. D. Adams,
K. R. MacKenzie,
M. A. Lemmon,
A. T. Brunger, and
D. M. Engelman.
Structural organization of the pentameric transmembrane alpha‐helices of phospholamban, a cardiac ion channel.
Embo J.
13:
4757–4764,
1994.
|
12. |
Arrondo, J. L.,
H. H. Mantsch,
N. Mullner,
S. Pikula, and
A. Martonosi.
Infrared spectroscopic characterization of the structural changes connected with the E1–E2 transition in the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
262:
9037–9043,
1987.
|
13. |
Asahi, M.,
Y. Kimura,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca2+‐ATPase forms a functional interaction site with phospholamban.
J. Biol. Chem.
274:
32855–32862,
1999.
|
14. |
Asahi, M. E. McKenna,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Physical interactions between phospholamban and sarco(endo)plasmic reticulum Ca2+‐ATPases are dissociated by elevated Ca2+, but not by phospholamban phosphorylation, vanadate, or thapsigargin, and are enhanced by ATP.
J. Biol. Chem.
275:
15034–15038,
2000.
|
15. |
Asturias, F. J. and
J. K. Blasie.
Location of high‐affinity metal binding sites in the profile structure of the Ca2+‐ATPase in the sarcoplasmic reticulum by resonance x‐ray diffraction.
Biophys. J.
59:
488–502,
1991.
|
16. |
Autry, J. M. and
L. R. Jones.
Functional co‐expression of the canine cardiac Ca2+ pump and phospholamban in. Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation.
J. Biol. Chem.
272:
15872–15880,
1997.
|
17. |
Baba, A.,
T. Nakamura, and
M. Kawakita.
Chemical modification and fluorescence labeling study of Ca2+, Mg2+‐adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N‐substituted derivatives.
J. Biochem. Tokyo
100:
1137–1147,
1986.
|
18. |
Bajusz, E.,
J. R. Baker,
C. W. Nixon, and
F. Homburger.
Spontaneous, herditary myocardial degeneration and congestive heart failure in a strain of Syrian hamsters.
Ann. N.Y. Acad. Sci.
156:
105–129,
1969.
|
19. |
Bastide, F.,
G. Meissner,
S. Fleischer, and
R. L. Post.
Similarity of the active site of phosphorylation of the adenosine triphosphatase from transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle.
J. Biol. Chem.
248:
8385–8391,
1973.
|
20. |
Besch, H. R., Jr. and
A. Schwartz.
Initial calcium binding rates of canine cardiac relaxing system (sarcoplasmic reticulum fragments) determined by stopped‐flow spectrophotometry.
Biochem. Biophys. Res. Commun.
45:
286–292,
1971.
|
21. |
Bidlack, J. M. and
A. E. Shamoo.
Adenosine 3′,5′‐monophosphate‐dependent phosphorylation of a 6000 and a 22,000 dalton protein from cardiac sarcoplasmic reticulum.
Biochim. Biophys. Acta
632:
310–325,
1980.
|
22. |
Bigelow, D. J. and
G. Inesi.
Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum.
Biochim. Biophys. Acta
1113:
323–338,
1992.
|
23. |
Bigelow, D. J. and
D. D. Thomas.
Rotational dynamics of lipid and the Ca2+‐ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether.
J. Biol. Chem.
262:
13449–13456,
1987.
|
24. |
Birmachu, W. and
D. D. Thomas.
Rotational dynamics of the Ca2+‐ATPase in sarcoplasmic reticulum studied by time‐resolved phosphorescence anisotropy.
Biochemistry
29:
3904–3914,
1990.
|
25. |
Birmachu, W.,
J. C. Voss,
C. F. Louis, and
D. D. Thomas.
Protein and lipid rotational dynamics in cardiac and skeletal sarcoplasmic reticulum detected by EPR and phosphorescence anisotropy.
Biochemistry
32:
9445–9453,
1993.
|
26. |
Blanchard, E. M.,
L. A. Mulieri, and
N. R. Alpert.
The effects of acute and chronic inotropic interventions on tension independent heat of rabbit papillary muscle.
Basic. Res. Cardiol.
82
(Suppl 2):
127–135,
1987.
|
27. |
Blasie, J. K.,
L. G. Herbette,
D. Pascolini,
V. Skita,
D. H. Pierce, and
A. Scarpa.
Time‐resolved x‐ray diffraction studies of the sarcoplasmic reticulum membrane during active transport.
Biophys J.
48:
9–18,
1985.
|
28. |
Blasie, J. K.,
D. Pascolini,
F. Asturias,
L. G. Herbette,
D. Pierce, and
A. Scarpa.
Large‐scale structural changes in the sarcoplasmic reticulum ATPase appear essential for calcium transport.
Biophys. J.
58:
687–693,
1990.
|
29. |
Brandl, C. J.,
S. de Leon,
D. R. Martin, and
D. H. MacLennan.
Adult forms of the Ca2+‐ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle.
J. Biol. Chem.
262:
3768–3774,
1987.
|
30. |
Brandl, C. J.,
N. M. Green,
B. Korczak, and
D. H. MacLennan.
Two Ca2+‐ATPase genes: homologies and mechanistic implications of deduced amino acid sequences.
Cell
44:
597–607,
1986.
|
31. |
Briggs, F. N.,
R. M. Wise, and
J. A. Hearn.
The effect of lithium and potassium on the transient state kinetics of the (Ca2+ + Mg2+)‐ATPase of cardiac sarcoplasmic reticulum.
J. Biol. Chem.
253:
5884–5885,
1978.
|
32. |
Brostrom, M. A.,
E. M. Reimann,
D. A. Walsh, and
E. G. Krebs.
A cyclic 3′,5′‐AMP‐stimulated protein kinase from cardiac muscle.
Adv. Enzyme Regul.
8:
191–203,
1970.
|
33. |
Burk, S. E.,
J. Lytton,
D. H. MacLennan, and
G. E. Shull.
cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump.
J. Biol. Chem.
264:
18561–18568,
1989.
|
34. |
Buskin, J. N. and
S. D. Hauschka.
Identification of a myocyte nuclear factor that binds to the muscle‐specific enhancer of the mouse muscle creatine kinase gene.
Mol. Cell. Biol.
9:
2627–2640,
1989.
|
35. |
Callen, D. F.,
E. Baker,
S. Lane,
J. Nancarrow,
A. Thompson,
S. A. Whitmore,
D. H. MacLennan,
R. Berger,
D. Cherif,
I. Jarvela, et al.
Regional mapping of the Batten disease locus (CLN3) to human chromosome 16p12.
Am. J. Hum. Genet.
49:
1372–1377,
1991.
|
36. |
Campbell, A. M.,
P. D. Kessler, and
D. M. Fambrough.
The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca2+‐ATPases are on opposite sides of the membrane.
J. Biol. Chem.
267:
9321–9325,
1992.
|
37. |
Campbell, K. P.,
C. M. Knudson,
T. Imagawa,
A. T. Leung,
J. L. Sutko,
S. D. Kahl,
C. R. Raab, and
L. Madson.
Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel.
J. Biol. Chem.
262:
6460–6463,
1987.
|
38. |
Cantilina, T.,
Y. Sagara,
G. Inesi, and
L. R. Jones.
Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+.
J. Biol. Chem.
268:
17018–17025,
1993.
|
39. |
Carr, F. E. and
N. C. Wong.
Characteristics of a negative thyroid hormone response element.
J. Biol. Chem.
269:
4175–4179,
1994.
|
40. |
Chadwick, C. C. and
E. W. Thomas.
Inactivation of sarcoplasmic reticulum (Ca2+ + Mg2+)‐ATPase by N‐cyclohexyl‐N'‐(4‐dimethylamino‐alpha‐naphthyl) carbodiimide.
Biochim. Biophys. Acta
730:
201–206,
1983.
|
41. |
Chadwick, C. C. and
E. W. Thomas.
Ligand binding properties of the sarcoplasmic reticulum (Ca2+ + Mg2+)‐ATPase labelled with N‐cyclohexyl‐N'‐(4‐dimethylamino‐alpha‐naphthyl)‐carbodiimide.
Biochim. Biophys. Acta
769:
291–296,
1984.
|
42. |
Chamberlain, B. K. and
S. Fleischer.
Isolation of canine cardiac sarcoplasmic reticulum.
Methods Enzymol.
157:
91–99,
1988.
|
43. |
Chamberlain, B. K.,
D. O. Levitsky, and
S. Fleischer.
Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties.
J. Biol. Chem.
258:
6602–6609,
1983.
|
44. |
Champeil, P.,
M. P. Gingold,
F. Guillain, and
G. Inesi.
Effect of magnesium on the calcium‐dependent transient kinetics of sarcoplasmic reticulum ATPase, studied by stopped flow fluorescence and phosphorylation.
J. Biol. Chem.
258:
4453–4458,
1583.
|
45. |
Chevallier, J. and
R. A. Butow.
Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle.
Biochemistry
10:
2733–2737,
1971.
|
46. |
Chiesi, M. and
R. Schwaller.
Involvement of electrostatic phenomena in phospholamban‐induced stimulation of Ca2+ uptake into cardiac sarcoplasmic reticulum.
FEBS Lett.
244:
241–244,
1989.
|
47. |
Chothia, C. and
J. Janin.
Principles of protein‐protein recognition.
Nature
256:
705–708,
1975.
|
48. |
Clarke, D. M.,
T. W. Loo,
G. Inesi, and
D. H. MacLennan.
Location of high affinity Ca2+‐binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+‐ATPase.
Nature
339:
476–478,
1989.
|
49. |
Clarke, D. M.,
T. W. Loo, and
D. H. MacLennan.
The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
265:
17405–17408,
1990.
|
50. |
Clarke, D. M.,
T. W. Loo, and
D. H. MacLennan.
Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
265:
22223–22227,
1990.
|
51. |
Clarke, D. M.,
T. W. Loo, and
D. H. MacLennan.
Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
265:
6262–6267,
1990.
|
52. |
Clarke, D. M.,
T. W. Loo,
W. J. Rice,
J. P. Andersen,
B. Vilsen, and
D. H. MacLennan.
Functional consequences of alterations to hydrophobic amino acids located in the M4 transmembrane sector of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
268:
18359–18364,
1993.
|
53. |
Colyer, J. and
J. H. Wang.
Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban.
J. Biol. Chem.
266:
17486–17493,
1991.
|
54. |
Curtis, B. M. and
W. A. Catterall.
Phosphorylation of the calcium antagonist receptor of the voltage‐sensitive calcium channel by cAMP‐dependent protein kinase.
Proc. Natl. Acad. Sci. U.S.A.
82:
2528–2532,
1985.
|
55. |
de la Bastie, D.,
D. Levitsky,
L. Rappaport,
J. J. Mercadier,
F. Marotte,
C. Wisnewsky,
V. Brovkovich,
K. Schwartz, and
A. M. Lompre.
Function of the sarcoplasmic reticulum and expression of its Ca2+‐ATPase gene in pressure overload‐induced cardiac hypertrophy in the rat.
Circ. Res.
66:
554–564,
1990.
|
56. |
de Meis, L. and
A. L. Vianna.
Energy interconversion by the Ca2+‐dependent ATPase of the sarcoplasmic reticulum.
Annu. Rev. Biochem.
48:
275–292,
1979.
|
57. |
De Foor, P. H.,
D. Levitsky,
T. Biryukova, and
S. Fleischer.
Immunological dissimilarity of the calcium pump protein of skeletal and cardiac muscle sarcoplasmic reticulum.
Arch. Biochem. Biophys.
200:
196–205,
1980.
|
58. |
Degani, C. and
P. D. Boyer.
A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase.
J. Biol. Chem.
248:
8222–8226,
1973.
|
59. |
De Long, L. J. and
J. K. Blasie.
Effect of Ca2+ binding on the profile structure of the sarcoplasmic reticulum membrane using time‐resolved x‐ray diffraction.
Biophys. J.
64:
1750–1759,
1993.
|
60. |
Dolber, P. C. and
J. R. Sommer.
Corbular sarcoplasmic reticulum of rabbit cardiac muscle.
J. Ultrastruct. Res.
87:
190–196,
1984.
|
61. |
Dupont, Y.,
Y. Chapron, and
R. Pougeois.
Titration of the nucleotide binding sites of sarcoplasmic reticulum Ca2+‐ATPase with 2′,3′‐O‐(2,4,6‐trinitrophenyl) adenosine 5′‐triphosphate and 5′‐diphosphate.
Biochem. Biophys. Res. Commun.
106:
1272–1279,
1982.
|
62. |
Dupont, Y. and
J. B. Leigh.
Transient kinetics of sarcoplasmic reticulum Ca2+ + Mg2+ ATPase studied by fluorescence.
Nature
273:
396–398,
1978.
|
63. |
Dynan, W. S. and
R. Tjian.
Control of eukaryotic messenger RNA synthesis by sequence‐specific DNA‐binding proteins.
Nature
316:
774–778,
1985.
|
64. |
Edmondson, D. G. and
E. N. Olson.
Helix‐loop‐helix proteins as regulators of muscle‐specific transcription.
J. Biol. Chem.
268:
755–758,
1993.
|
65. |
Eklund, H.,
J. P. Samma,
L. Wallen,
C. I. Branden,
A. Akeson, and
T. A. Jones.
Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 Å resolution.
J. Mol. Biol.
146:
561–587,
1981.
|
66. |
Fanburg, B. and
J. Gergely.
Studies on adenosine triphosphate‐supported calcium accumulation by cardiac subcellular particles.
J. Biol. Chem.
240:
2721–2728,
1965.
|
67. |
Feher, J. J. and
F. N. Briggs.
The effect of calcium load on the calcium permeability of sarcoplasmic reticulum.
J. Biol. Chem.
257:
10191–10191,
1982.
|
68. |
Feldman, A. M.,
P. E. Ray,
C. M. Silan,
J. A. Mercer,
W. Minobe, and
M. R. Bristow.
Selective gene expression in failing human heart. Quantification of steady‐state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction.
Circulation
83:
1866–1872,
1991.
|
69. |
Ferguson, D. G.,
H. W. Schwartz, and
C. Franzini Armstrong.
Subunit structure of junctional feet in triads of skeletal muscle: a freeze‐drying, rotary‐shadowing study.
J. Cell Biol.
99:
1735–1742,
1984.
|
70. |
Fernandez Belda, F.,
M. Kurzmack, and
G. Inesi.
A comparative study of calcium transients by isotopic tracer, metallochromic indicator, and intrinsic fluorescence in sarcoplasmic reticulum ATPase.
J. Biol. Chem.
259:
9687–9698,
1984.
|
71. |
Fisher, S. A.,
P. M. Buttrick,
D. Sukovich, and
M. Periasamy.
Characterization of promoter elements of the rabbit cardiac sarcoplasmic reticulum Ca2+‐ATPase gene required for expression in cardiac muscle cells.
Circ. Res.
73:
622–628,
1993.
|
72. |
Fleischer, S. and
M. Inui.
Biochemistry and biophysics of excitation‐contraction coupling.
Annu. Rev. Biophys. Biophys. Chem.
18:
333–364,
1989.
|
73. |
Fliegel, L.,
K. Burns,
M. Opas, and
M. Michalak.
The high‐affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin.
Biochim. Biophys. Acta.
982:
1–8,
1989.
|
74. |
Franzini‐Armstrong, C.
Studies of the triad. I. Structure of the junction in frog twitch fibers.
J. Cell. Biol.
47:
488–499,
1970.
|
75. |
Froehlich, J. P. and
E. W. Taylor.
Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase.
J. Biol. Chem.
250:
2013–2021,
1975.
|
76. |
Fujii, J.,
J. Lytton,
M. Tada, and
D. H. MacLennan.
Rabbit cardiac and slow‐twitch muscle express the same phospholamban gene.
FEBS Lett.
227:
51–55,
1988.
|
77. |
Fujii, J.,
K. Maruyama,
M. Tada, and
D. H. MacLennan.
Co‐expression of slow‐twitch/cardiac muscle Ca2+‐ATPase (SERCA2) and phospholamban.
FEBS Lett.
273:
232–234,
1990.
|
78. |
Fujii, J.,
K. Maruyama,
M. Tada, and
D. H. MacLennan.
Expression and site‐specific mutagenesis of phospholamban. Studies of residues involved in phosphorylation and pentamer formation.
J. Biol. Chem.
264:
12950–12955,
1989.
|
79. |
Fujii, J.,
A. Ueno,
K. Kitano,
S. Tanaka,
M. Kadoma, and
M. Tada.
Complete complementary DNA‐derived amino acid sequence of canine cardiac phospholamban.
J. Clin. Invest.
79:
301–304,
1987.
|
80. |
Fujii, J.,
A. Zarain Herzberg,
H. F. Willard,
M. Tada, and
D. H. MacLennan.
Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6.
J. Biol. Chem.
266:
11669–11675,
1991.
|
81. |
Geisow, M. J.,
U. Fritsche,
J. M. Hexham,
B. Dash, and
T. Johnson.
A consensus amino‐acid sequence repeat in Torpedo and mammalian Ca2+‐dependent membrane‐binding proteins.
Nature
320:
636–638,
1986.
|
82. |
Girardet, J. L. and
Y. Dupont.
Ellipticity changes of the sarcoplasmic reticulum Ca2+‐ATPase induced by cation binding and phosphorylation.
FEBS Lett.
296:
103–106,
1992.
|
83. |
Glass, C. K.,
R. Franco,
C. Weinberger,
V. R. Albert,
R. M. Evans, and
M. G. Rosenfeld.
A c‐erb‐A binding site in rat growth hormone gene mediates trans‐activation by thyroid hormone.
Nature
329:
738–41,
1987.
|
84. |
Goldshleger, R.,
Y. Shahak, and
S. J. Karlish.
Electrogenic and electroneutral transport modes of renal Na+/K+ ATPase reconstituted into proteoliposomes.
J. Membr. Biol.
113:
139–154,
1990.
|
85. |
Gottesman, M. M. and
I. Pastan.
The multidrug transporter, a double‐edged sword.
J. Biol. Chem.
263:
12163–12166,
1988.
|
86. |
Green, N. M. and
D. H. MacLennan.
ATP driven ion pumps: an evolutionary mosaic.
Biochem. Soc. Trans.
17:
819–822,
1989.
|
87. |
Guillain, F.,
P. Champeil,
J. J. Lacapere, and
M. P. Gingold.
Stopped flow and rapid quenching measurement of the transient steps induced by calcium binding to sarcoplasmic reticulum adenosine triphosphatase. Competition with Ca2+‐independent phosphorylation.
J. Biol. Chem.
256:
6140–6147,
1981.
|
88. |
Gunteski Hamblin, A. M.,
J. Greeb, and
G. E. Shull.
A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow‐twitch muscle sarcoplasmic reticulum Ca2+‐ATPase gene. Identification of cDNAs encoding Ca2+ and other cation‐transporting ATPases using an oligonucleotide probe derived from the ATP‐binding site.
J. Biol. Chem.
263:
15032–15040,
1988.
|
89. |
Gutierrez Merino, C.,
F. Munkonge,
A. M. Mata,
J. M. East,
B. L. Levinson,
R. M. Napier, and
A. G. Lee.
The position of the ATP binding site on the (Ca2+ + Mg2+)‐ATPase.
Biochim. Biophys. Acta.
897:
207–216,
1987.
|
90. |
Gwathmey, J. K.,
S. E. Warren,
G. M. Briggs,
L. Copelas,
M. D. Feldman,
P. J. Phillips,
M. Callahan, Jr.,
F. J. Schoen,
W. Grossman, and
J. P. Morgan.
Diastolic dysfunction in hypertrophic cardiomyopathy. Effect on active force generation during systole.
J. Clin. Invest.
87:
1023–1031,
1991.
|
91. |
Haghighi, K.,
V. J. Kadambi,
K. L. Koss,
W. Luo,
J. M. Harrer,
S. Ponniah,
Z. Zhou, and
E. G. Kranias.
In vitro and in vivo promoter analyses of the mouse phospholamban gene.
Gene
203:
199–207,
1997.
|
92. |
Harigaya, S. and
A. Schwartz.
Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria.
Circ. Res.
25:
781–794,
1969.
|
93. |
Hasselbach, W.
Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.
J. Gen. Physiol.
57:
50–70,
1971.
|
94. |
Hasselbach, W.
The reversibility of the sarcoplasmic calcium pump.
Biochim. Biophys. Acta
515:
23–53,
1978.
|
95. |
Hawkins, C.,
A. Xu, and
N. Narayanan.
Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin‐dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation.
J. Biol. Chem.
269:
31198–31206,
1994.
|
96. |
Henao, F.,
S. Orlowski,
Z. Merah, and
P. Champeil.
The metal sites on sarcoplasmic reticulum membranes that bind lanthanide ions with the highest affinity are not the ATPase Ca2+ transport sites.
J. Biol. Chem.
267:
10302–10312,
1992.
|
97. |
Herbette, L.,
P. De Foor,
S. Fleischer,
D. Pascolini,
A. Scarpa, and
J. K. Blasie.
The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X‐ray and neutron diffraction.
Biochim. Biophys. Acta
817:
103–122,
1985.
|
98. |
Hicks, M. J.,
M. Shigekawa, and
A. M. Katz.
Mechanism by which cyclic adenosine 3′:5′‐monophosphate‐dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum.
Circ. Res.
44:
384–391,
1979.
|
99. |
Hill, T. L.
Free Energy Transduction in Biology.
New York:
Academic Press,
1977.
|
100. |
Hoffmann, W.,
M. G. Sarzala, and
D. Chapman.
Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+‐activated ATPase.
Proc. Natl. Acad. Sci. U.S.A.
76:
3860–3864,
1979.
|
101. |
Hofmann, S. L.,
M. S. Brown,
E. Lee,
R. K. Pathak,
R. G. Anderson, and
J. L. Goldstein.
Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins.
J. Biol. Chem.
264:
8260–8270,
1989.
|
102. |
Hoit, B. D.,
S. F. Khoury,
E. G. Kranias,
N. Ball, and
R. A. Walsh.
In vivo echocardiographic detection of enhanced left ventricular function in gene‐targeted mice with phospholamban deficiency.
Circ. Res.
77:
632–637,
1995.
|
103. |
Horrocks, W. D., Jr. and
D. R. Sudnick.
Time‐resolved europium(III) excitation spectroscopy: a luminescence probe of metal ion binding sites.
Science
206:
1194–1196,
1979.
|
104. |
Huang, S. and
T. C. Squier.
Enhanced rotational dynamics of the phosphorylation domain of the Ca2+‐ATPase upon calcium activation.
Biochemistry
37:
18064–18073,
1998.
|
105. |
Huggins, J. P. and
P.J. England.
Evidence for a phosphorylation‐induced conformational change in phospholamban from the effects of three proteases.
FEBS Lett.
217:
32–36,
1987.
|
106. |
Hymel, L., and
S. Fleischer.
Reconstitution of skeletal muscle sarcoplasmic reticulum membranes: strategies for varying the lipid/protein ratio.
Methods Enzymol.
157:
302–314,
1988.
|
107. |
Ikemoto, N.,
J. F. Morgan, and
S. Yamada.
Ca2+‐controlled conformational states of the Ca2+ transport enzyme of sarcoplasmic reticulum.
J. Biol. Chem.
253:
8027–8033,
1978.
|
108. |
Imagawa, T.,
T. Watanabe, and
T. Nakamura.
Subunit structure and multiple phosphorylation sites of phospholamban.
J. Biochem. Tokyo
99:
41–53,
1986.
|
109. |
Inesi, G.
Mechanism of calcium transport.
Annu. Rev. Physiol.
47:
573–601,
1985.
|
110. |
Inesi, G.
Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase.
J. Biol. Chem.
262:
16338–16342,
1987.
|
111. |
Inesi, G.
Mechanism of calcium transport.
Annu. Rev. Physiol.
47:
573–601,
1985.
|
112. |
Inesi, G.,
M. Kurzmack,
C. Coan, and
D. E. Lewis.
Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles.
J. Biol. Chem.
255:
3025–3031,
1980.
|
113. |
Inesi, G. and
A. Scarpa.
Fast kinetics of adenosine triphosphate dependent Ca2+ uptake by fragmented sarcoplasmic reticulum.
Biochemistry
11:
356–359,
1972.
|
114. |
Inui, M.,
B. K. Chamberlain,
A. Saito, and
S. Fleischer.
The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum.
J. Biol. Chem.
261:
1794–1800,
1986.
|
115. |
Inui, M.,
M. Kadoma, and
M. Tada.
Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum.
J. Biol. Chem.
260:
3708–3715,
1985.
|
116. |
Inui, M.,
A. Saito, and
S. Fleischer.
Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures.
J. Biol. Chem.
262:
15637–15642,
1987.
|
117. |
Inui, M.,
A. Saito, and
S. Fleischer.
Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle.
J. Biol. Chem.
262:
1740–1747,
1987.
|
118. |
Ishii, T.,
M. V. Lemas, and
K. Takeyasu.
Na(+)‐, ouabain‐, Ca2+‐, and thapsigargin‐sensitive ATPase activity expressed in chimeras between the calcium and the sodium pump alpha subunits.
Proc. Natl. Acad. Sci. U.S.A.
91:
6103–6107,
1994.
|
119. |
Izumo, S. and
V. Mahdavi.
Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription [published erratum appears in. Nature 1988 Oct 20;335(6192):744].
Nature
334:
539–542,
1988.
|
120. |
James, P.,
M. Inui,
M. Tada,
M. Chiesi and
E. Carafoli.
Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum.
Nature
342:
90–92,
1989.
|
121. |
Jencks, W. P.
How does a calcium pump pump calcium?.
J. Biol. Chem.
264:
18855–18858,
1989.
|
122. |
Jencks, W. P.
Utilization of binding energy and coupling rules for active transport and other coupled vectorial processes.
Methods Enzymol.
171:
145–164,
1989.
|
123. |
Jencks, W. P.,
T. Yang,
D. Peisach, and
J. Myung.
Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium.
Biochemistry
32:
7030–7034,
1993.
|
124. |
Jones, L. R.,
H. R. Besch, Jr.,
J. W. Fleming,
M. M. McConnaughey, and
A. M. Watanabe.
Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities.
J. Biol. Chem.
254:
530–539,
1979.
|
125. |
Jones, L. R. and
S. E. Cala.
Biochemical evidence for functional heterogeneity of cardiac sarcoplasmic reticulum vesicles.
J. Biol. Chem.
256:
11809–11818,
1981.
|
126. |
Jones, L. R.,
H. K. Simmerman,
W. W. Wilson,
F. R. Gurd, and
A. D. Wegener.
Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum.
J. Biol. Chem.
260:
7721–7730,
1985.
|
127. |
Jorgensen, A. O. and
K. P. Campbell.
Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum.
J. Cell. Biol.
98:
1597–1602,
1984.
|
128. |
Kadambi, V. J.,
S. Ponniah,
J. M. Harrer,
B. D. Hoit,
G. W. Dorn, 2nd,
R. A. Walsh, and
E. G. Kranias.
Cardiac‐specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.
J. Clin. Invest.
97:
533–639,
1996.
|
129. |
Karim, C. B.,
J. D. Stamm,
J. Karim,
L. R. Jones, and
D. D. Thomas.
Cysteine reactivity and oligomeric structures of phospholamban and its mutants.
Biochemistry
37:
12074–12081,
1998.
|
130. |
Katz, A. M.
Physiology of the Heart,
Volume 2.
New York:
Raven Press, Ltd.,
1992.
|
131. |
Kijima, Y.,
E. Ogunbunmi, and
S. Fleischer.
Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum.
J. Biol. Chem.
266:
22912–22918,
1991.
|
132. |
Kim, H. W.,
N. A. Steenaart,
D. G. Ferguson, and
E. G. Kranias.
Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2+‐ATPase with phospholamban in phospholipid vesicles.
J. Biol. Chem.
265:
1702–1709,
1990.
|
133. |
Kimura, Y.,
M. Inui,
M. Kadoma,
Y. Kijima,
T. Sasaki, and
M. Tada.
Effects of monoclonal antibody against phospholamban on calcium pump ATPase of cardiac sarcoplasmic reticulum.
J. Mol. Cell. Cardiol.
23:
1223–1230,
1991.
|
134. |
Kimura, Y.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Phospholamban inhibitory function is activated by depolymerization.
J. Biol. Chem.
272:
15061–15064,
1997.
|
135. |
Kimura, Y.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Phospholamban regulates the Ca2+‐ATPase through intramembrane interactions.
J. Biol. Chem.
271:
21726–21731,
1996.
|
136. |
Kimura, Y.,
K. Otsu,
K. Nishida,
T. Kuzuya, and
M. Tada.
Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+‐ATPase and decreasing phospholamban expression.
J. Mol. Cell. Cardiol.
26:
1145–1154,
1994.
|
137. |
Kirchberger, M. A. and
A. Raffo.
Decrease in calcium transport associated with phosphoprotein phosphatase‐catalyzed dephosphorylation of cardiac sarcoplasmic reticulum.
J. Cyclic Nucleotide Res.
3:
45–53,
1977.
|
138. |
Kirchberger, M. A. and
M. Tada.
Effects of adenosine 3′:5′‐monophosphate‐dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles.
J. Biol. Chem.
251:
725–729,
1976.
|
139. |
Kirchberger, M. A.,
M. Tada, and
A. M. Katz.
Adenosine 3′:5′‐monophosphate‐dependent protein kinase‐catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum.
J. Biol. Chem.
249:
6166–6173,
1974.
|
140. |
Kitazawa, T.
Physiological significance of Ca2+ uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum.
J. Biochem. Tokyo
80:
1129–1147,
1976.
|
141. |
Knighton, D. R.,
J. H. Zheng,
L. F. Ten Eyck,
N. H. Xuong,
S. S. Taylor, and
J. M. Sowadski.
Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate‐dependent protein kinase.
Science
253:
414–420,
1991.
|
142. |
Koch, W. J.,
H. A. Rockman,
P. Samama,
R. A. Hamilton,
R. A. Bond,
C. A. Milano, and
R. J. Lefkowitz.
Cardiac function in mice overexpressing the beta‐adrenergic receptor kinase or a beta ARK inhibitor.
Science
268:
1350–1353,
1995.
|
143. |
Koenig, R. J.,
G. A. Brent,
R. L. Warne,
P. R. Larsen, and
D. D. Moore.
Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone.
Proc. Natl. Acad. Sci. U.S.A.
84:
5670–5674,
1987.
|
144. |
Komuro, I.,
M. Kurabayashi,
Y. Shibazaki,
F. Takaku, and
Y. Yazaki.
Molecular cloning and characterization of a Ca2+ + Mg2+‐dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage.
J. Clin. Invest.
83:
1102–1108,
1989.
|
145. |
Korczak, B.,
A. Zarain Herzberg,
C. J. Brandl,
C. J. Ingles,
N. M. Green, and
D. H. MacLennan.
Structure of the rabbit fast‐twitch skeletal muscle Ca2+‐ATPase gene.
J. Biol. Chem.
263:
4813–4819,
1988.
|
146. |
Kranias, E. G.,
F. Mandel,
T. Wang, and
A. Schwartz.
Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′,5′‐monophosphate dependent protein kinase.
Biochemistry
19:
5434–5439,
1980.
|
147. |
Kretsinger, R. H.
Calcium‐binding proteins.
Annu. Rev. Biochem.
45:
239–266,
1976.
|
148. |
Kunkel, T. A.
Rapid and efficient site‐specific mutagenesis without phenotypic selection.
Proc. Natl. Acad. Sci. U.S.A.
82:
488–92,
1985.
|
149. |
Kurzmack, M.,
S. Verjovski Almeida, and
G. Inesi.
Detection of an initial burst of Ca2+ translocation in sarcoplasmic reticulum.
Biochem. Biophys. Res. Commun.
78:
772–776,
1977.
|
150. |
Lai, F. A.,
H. P. Erickson,
E. Rousseau,
Q. Y. Liu, and
G. Meissner.
Purification and reconstitution of the calcium release channel from skeletal muscle.
Nature
331:
315–319,
1988.
|
151. |
Lamers, J. M. and
J. T. Stinis.
Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart.
Life. Sci.
24:
2313–2319,
1979.
|
152. |
Langer, G. A.
Calcium and the Heart.
New York:
Raven Press,
1990.
|
153. |
Le Peuch, C. J.,
J. C. Guilleux, and
J. G. Demaille.
Phospholamban phosphorylation in the perfused rat heart is not solely dependent on beta‐adrenergic stimulation.
FEBS Lett.
114:
165–168,
1980.
|
154. |
Le Peuch, C. J.,
J. Haiech, and
J. G. Demaille.
Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate‐dependent and calcium‐calmodulin‐dependent phosphorylations.
Biochemistry
18:
5150–5157,
1979.
|
155. |
Le Peuch, C. J.,
D. A. Le Peuch, and
J. G. Demaille.
Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification.
Biochemistry
19:
3368–3373,
1980.
|
156. |
Levitsky, D.,
D. de la Bastie,
K. Schwartz, and
A. M. Lompre.
Ca2+‐ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy.
Am. J. Physiol.
261:
23–26,
1991.
|
157. |
Levitsky, D. O.,
M. K. Aliev,
A. V. Kuzmin,
T. S. Levchenko,
V. N. Smirnov, and
E. I. Chazov.
Isolation of calcium pump system and purification of calcium ion‐dependent ATPase from heart muscle.
Biochim. Biophys. Acta.
443:
468–484,
1976.
|
158. |
Li, M.,
R. L. Cornea,
J. M. Autry,
L. R. Jones, and
D. D. Thomas.
Phosphorylation‐induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence.
Biochemistry
37:
7869–7877,
1998.
|
159. |
Li, M.,
L. G. Reddy,
R. Bennett,
N. D. Silva, Jr.,
L. R. Jones, and
D. D. Thomas
(1999).
A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban.
Biophys. J.
76:
2587–2599.
|
160. |
Limas, C. J.,
M. T. Olivari,
I. F. Goldenberg,
T. B. Levine,
D. G. Benditt, and
A. Simon.
Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy.
Cardiovasc. Res.
21:
601–605.
|
161. |
Lin, S. H. and
G. Guidotti.
Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto‐ATPase. The primary structure of the ecto‐ATPase is similar to that of the human biliary glycoprotein I.
J. Biol. Chem.
264:
14408–14414.
|
162. |
Lippert, J. L.,
R. M. Lindsay, and
R. Schultz.
Laser Raman characterization of conformational changes in sarcoplasmic reticulum induced by temperature, Ca2+, and Mg2+.
J. Biol. Chem.
256:
12411–12416.
|
163. |
Lompre, A. M.,
F. Lambert,
E. G. Lakatta, and
K. Schwartz.
Expression of sarcoplasmic reticulum Ca2+‐ATPase and calsequestrin genes in rat heart during ontogenic development and aging.
Circ. Res.
69:
1380–1388,
1991.
|
164. |
Lu, Y. Z.,
Z. C. Xu, and
M. A. Kirchberger.
Evidence for an effect of phospholamban on the regulatory role of ATP in calcium uptake by the calcium pump of the cardiac sarcoplasmic reticulum.
Biochemistry
32:
3105–3111,
1993.
|
165. |
Ludlam, C. F.,
I. T. Arkin,
X. M. Liu,
M. S. Rothman,
P. Rath,
S. Aimoto,
S. O. Smith,
D. M. Engelman, and
K. J. Rothschild.
Fourier transform infrared spectroscopy and site‐directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban.
Biophys. J.
70:
1728–1736,
1996.
|
166. |
Luo, W.,
I. L. Grupp,
J. Harrer,
S. Ponniah,
G. Grupp,
J. J. Duffy,
T. Doetschman, and
E. G. Kranias.
Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta‐agonist stimulation.
Circ. Res.
75:
401–409,
1994.
|
167. |
Lytton, J. and
D. H. MacLennan.
Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+‐ATPase gene.
J. Biol. Chem.
263:
15024–15031,
1988.
|
168. |
Lytton, J.,
M. Westlin,
S. E. Burk,
G. E. Shull, and
D. H. MacLennan.
Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps.
J. Biol. Chem.
267:
14483–14489,
1992.
|
169. |
Lytton, J.,
A. Zarain Herzberg,
M. Periasamy, and
D. H. MacLennan.
Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+‐ATPase.
J. Biol. Chem.
264:
7059–7065,
1989.
|
170. |
MacDougall, L. K.,
L. R. Jones, and
P. Cohen.
Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban.
Eur. J. Biochem.
196:
725–734,
1991.
|
171. |
MacKenzie, A. E.,
R. G. Korneluk,
F. Zorzato,
J. Fujii,
M. Phillips,
D. Iles,
B. Wieringa,
S. Leblond,
J. Bailly,
H. F. Willard, et al.
The human ryanodine receptor gene: its mapping to 19q13.1, placement in a chromosome 19 linkage group, and exclusion as the gene causing myotonic dystrophy.
Am. J. Hum. Genet.
46:
1082–1089,
1990.
|
172. |
MacLennan, D. H.
Molecular tools to elucidate problems in excitation–contraction coupling.
Biophys. J.
58:
1355–1365,
1990.
|
173. |
MacLennan, D. H.,
C. J. Brandl,
B. Korczak, and
N. M. Green.
Amino‐acid sequence of a Ca2+ + Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.
Nature
316:
696–700,
1985.
|
174. |
MacLennan, D. H.,
D. M. Clarke,
T. W. Loo, and
I. S. Skerjanc.
Site‐directed mutagenesis of the Ca2+‐ATPase of sarcoplasmic reticulum.
Acta. Physiol. Scand. Suppl.
607:
141–150,
1992.
|
175. |
MacLennan, D. H.,
W. J. Rice, and
N. M. Green.
The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+‐ATPases.
J. Biol. Chem.
272:
28815–28818,
1997.
|
176. |
MacLennan, D. H. and
P. T. Wong.
Isolation of a calcium‐sequestering protein from sarcoplasmic reticulum.
Proc. Natl. Acad. Sci. U.S.A.
68:
1231–1235,
1971.
|
177. |
Mahaney, J. E. and
D. D. Thomas.
Effects of melittin on molecular dynamics and Ca2+‐ATPase activity in sarcoplasmic reticulum membranes: electron paramagnetic resonance.
Biochemistry
30:
7171–7180,
1991.
|
178. |
Mahdavi, V.,
A. P. Chambers, and
B. Nadal Ginard.
Cardiac alpha‐ and beta‐myosin heavy chain genes are organized in tandem.
Proc. Natl. Acad. Sci. U.S.A.
81:
2626–2630,
1984.
|
179. |
Manning, W. J.,
J. Y. Wei,
S. E. Katz,
S. E. Litwin, and
P. S. Douglas.
In vivo assessment of LV mass in mice using high‐frequency cardiac ultrasound: necropsy validation.
Am. J. Physiol.
266
(Heart Circ. Physiol.):
H1672–H1675,
1994.
|
180. |
Martonosi, A.
Biochemical and clinical aspects of sarcoplasmic reticulum function.
Curr. Top. Membr. Transp.
3:
83–197,
1972.
|
181. |
Maruyama, K.,
D. M. Clarke,
J. Fujii,
G. Inesi,
T. W. Loo, and
D. H. MacLennan.
Functional consequences of alterations to amino acids located in the catalytic center (isoleucine 348 to threonine 357) and nucleotide‐binding domain of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
264:
13038–13042,
1989.
|
182. |
Maruyama, K. and
D. H. MacLennan.
Mutation of aspartic acid‐351, lysine‐352, and lysine‐515 alters the Ca2+ transport activity of the Ca2+‐ATPase expressed in COS‐1 cells.
Proc. Natl. Acad. Sci. U.S.A.
85:
3314–3318,
1988.
|
183. |
McIntosh, D. B.,
D. G. Woolley, and
M. C. Berman.
2′,3′‐O‐(2,4,6‐trinitrophenyl)‐8‐azido‐AMP and‐ATP photolabel Lys‐492 at the active site of sarcoplasmic reticulum Ca2+‐ATPase.
J. Biol. Chem.
267:
5301–5309,
1992.
|
184. |
McIntosh, D. B.,
D. G. Woolley,
B. Vilsen, and
J. P. Andersen.
Mutagenesis of segment 487Phe‐Ser‐Arg‐Asp‐Arg‐Lys492 of sarcoplasmic reticulum Ca2+‐ATPase produces pumps defective in ATP binding.
J. Biol. Chem.
271:
25778–89,
1996.
|
185. |
Meissner, G.
ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum.
Biochim. Biophys. Acta.
298:
906–26,
1973.
|
186. |
Meissner, G.
Isolation and characterization of two types of sarcoplasmic reticulum vesicles.
Biochim. Biophys. Acta.
389:
51–68,
1975.
|
187. |
Mercadier, J. J.,
A. M. Lompre,
P. Duc,
K. R. Boheler,
J. B. Fraysse,
C. Wisnewsky,
P. D. Allen,
M. Komajda, and
K. Schwartz.
Altered sarcoplasmic reticulum Ca2+‐ATPase gene expression in the human ventricle during end‐stage heart failure.
J. Clin. Invest.
85:
305–309,
1990.
|
188. |
Minamisawa, S.,
M. Hoshijima,
G. Chu,
C. A. Ward,
K. Frank,
Y. Gu,
M. E. Martone,
Y. Wang,
J. Ross, Jr.,
E. G. Kranias,
W. R. Giles, and
K. R. Chien.
Chronic phospholambansarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy.
Cell
99:
313–322,
1999.
|
189. |
Minty, A. and
L. Kedes.
Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif.
Mol. Cell. Biol.
6:
2125–2136,
1986.
|
190. |
Mitchinson, C.,
A. F. Wilderspin,
B. J. Trinnaman, and
N. M. Green.
Identification of a labelled peptide after stoichiometric reaction of fluorescein isothiocyanate with the Ca2+‐dependent adenosine triphosphatase of sarcoplasmic reticulum.
FEBS Lett.
146:
87–92,
1982.
|
191. |
Mohraz, M.,
E. Arystarkhova, and
K. J. Sweadner.
Immunoelectron microscopy of epitopes on Na+,K+‐ATPase catalytic subunit. Implications for the transmembrane organization of the C‐terminal domain.
J. Biol. Chem.
269:
2929–2936,
1994.
|
192. |
Moorman, A. F.,
J. L. Vermeulen,
M. U. Koban,
K. Schwartz,
W. H. Lamers, and
K. R. Boheler.
Patterns of expression of sarcoplasmic reticulum Ca2+‐ATPase and phospholamban mRNAs during rat heart development.
Circ. Res.
76:
616–625
1995.
|
193. |
Morris, G. L.,
H. C. Cheng,
J. Colyer, and
J. H. Wang.
Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca2+‐Mg2+‐ATPase. Mechanism of regulation and site of monoclonal antibody interaction.
J. Biol. Chem.
266:
11270–11275,
1991.
|
194. |
Movsesian, M. A.,
M. R. Bristow, and
J. Krall.
Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy.
Circ. Res.
65:
1141–1144,
1989.
|
195. |
Murphy, A. J.
Sarcoplasmic reticulum adenosine triphosphatase: labeling of an essential lysyl residue with pyridoxal‐5′‐phosphate.
Arch. Biochem. Biophys.
180:
114–120,
1977.
|
196. |
Nagai, R.,
A. Zarain Herzberg,
C. J. Brandl,
J. Fujii,
M. Tada,
D. H. MacLennan,
N. R. Alpert, and
M. Periasamy.
Regulation of myocardial Ca2+‐ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone.
Proc. Natl. Acad. Sci. U.S.A.
86:
2966–2970,
1989.
|
197. |
Nakamoto, R. K. and
G. Inesi.
Retention of ellipticity between enzymatic states of the Ca2+‐ATPase of sarcoplasmic reticulum.
FEBS Lett.
194:
258–262,
1986.
|
198. |
Negash, S.,
L. T. Chen,
D. J. Bigelow, and
T. C. Squier.
Phosphorylation of phospholamban by cAMP‐dependent protein kinase enhances interactions between Ca2+‐ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes.
Biochemistry
35:
11247–11259,
1996.
|
199. |
Norregaard, A.,
B. Vilsen, and
J. P. Andersen.
Chimeric Ca+‐ATPase/Na+,K+‐ATPase molecules. Their phosphoenzyme intermediates and sensitivity to Ca2+ and thapsigargin.
FEBS Lett.
336:
248–254,
1993.
|
200. |
O.Brien, P. J.,
C. D. Ianuzzo,
G. W. Moe,
T. P. Stopps, and
P. W. Armstrong.
Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies.
Can. J. Physiol. Pharmacol.
68:
34–39,
1990.
|
201. |
Odermatt, A.,
K. Kurzydlowski, and
D. H. MacLennan.
The vmax of the Ca2+‐ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin‐dependent phosphorylation or by interaction with phospholamban.
J. Biol. Chem.
271:
14206–14213,
1996.
|
202. |
Ogawa, H.,
D. L. Stokes,
H. Sasabe, and
C. Toyoshima.
Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9‐A resolution.
Biophys. J.
75:
41–52,
1998.
|
203. |
Ogurusu, T.,
S. Wakabayashi, and
M. Shigekawa.
Activation of sarcoplasmic reticulum Ca2+‐ATPase by Mn2+: a Mn2+ binding study.
J. Biochem. Tokyo
109:
472–476,
1991.
|
204. |
Otsu, K.,
J. Fujii,
M. Periasamy,
M. Difilippantonio,
M. Uppender,
D. C. Ward, and
D. H. MacLennan.
Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes.
Genomics
17:
507–509,
1993.
|
205. |
Pedersen, P. L. and
E. Carafoli.
Ion motive ATPases. I. Ubiquity, properties, and significance to cell function.
Trends. Biochem. Sci.
12:
146–150,
1987.
|
206. |
Petithory, J. R. and
W. P. Jencks.
Binding of Ca2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum.
Biochemistry
27:
8626–8635,
1988.
|
207. |
Petithory, J. R. and
W. P. Jencks.
Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: ratelimiting conformational change followed by rapid phosphoryl transfer.
Biochemistry
25:
4493–4497,
1986.
|
208. |
Pick, U.
The interaction of vanadate ions with the Ca2+‐ATPase from sarcoplasmic reticulum.
J. Biol. Chem.
257:
6111–9,
1982.
|
209. |
Pick, U. and
S. Bassilian.
Modification of the ATP binding site of the Ca2+‐ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate.
FEBS Lett.
123:
127–130,
1981.
|
210. |
Pick, U. and
S. J. Karlish.
Regulation of the conformation transition in the Ca2+‐ATPase from sarcoplasmic reticulum by pH, temperature, and calcium ions.
J. Biol. Chem.
257:
6120–6126,
1982.
|
211. |
Pick, U. and
M. Weiss.
Spectral and catalytical properties of the sarcoplasmic reticulum Ca2+‐ATPase labeled with N‐cyclohexyl‐N+‐(4‐dimethylamino‐1‐naphthyl)‐carbodiimide.
Eur. J. Biochem.
152:
83–89,
1985.
|
212. |
Pickart, C. M. and
W. P. Jencks.
Energetics of the calciumtransporting ATPase.
J. Biol. Chem.
259:
1629–1643,
1984.
|
213. |
Pretorius, P.,
J. W. G. Pohl,
C. S. Smithen, and
G. Inesi.
Structural and functional characterization of dog heart microsomes.
Circ. Res.
25:
487–499,
1969.
|
214. |
Racker, E.
Reconstitution of a calcium pump with phospholipids and a purified Ca2+‐adenosine triphosphatase from sacroplasmic reticulum.
J. Biol. Chem.
247:
8198–8200,
1972.
|
215. |
Reddy, L. G.,
L. R. Jones,
S. E. Cala,
O. B. Jj,
S. A. Tatulian and
D. L. Stokes.
Functional reconstitution of recombinant phospholamban with rabbit skeletal Ca2+‐ATPase.
J. Biol. Chem.
270:
9390–9397,
1995.
|
216. |
Repke, D. I. and
A. M. Katz.
Calcium‐binding and calcium‐uptake by cardiac microsomes: a kinetic analysis.
J. Mol. Cell. Cardiol.
4:
401–416,
1972.
|
217. |
Rice, W. J. and
D. H. MacLennan.
Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+‐ATPase of sarcoplasmic reticulum (SERCAla).
J. Biol. Chem.
271:
31412–31419,
1996.
|
218. |
Rice, W. J.,
N. M. Green, and
D. H. MacLennan.
Site‐directed disulfide mapping of helices M4 and M6 in the Ca2+ binding domain of SERCAla, the Ca2+ ATPase of fast twitch skeletal muscle sarcoplasmic reticulum.
J. Biol. Chem.
272:
31412–31419,
1997.
|
219. |
Richardson, J. S.
The anatomy and taxonomy of protein structure.
Adv. Protein Chem.
34:
167–339,
1981.
|
220. |
Rockman, H. A.,
K. R. Chien,
D. J. Choi,
G. Iaccarino,
J. J. Hunter,
J. Ross, Jr.,
R. J. Lefkowitz, and
W. J. Koch.
Expression of a beta‐adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene‐targeted mice.
Proc. Natl. Acad. Sci. U.S.A.
95:
7000–70005,
1998.
|
221. |
Rohrer, D. and
W. H. Dillmann.
Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+‐ATPase in the rat heart.
J. Biol. Chem.
263:
6941–6944,
1988.
|
222. |
Ross, D. C. and
D. B. McIntosh.
Intramolecular cross‐linking at the active site of the Ca2+‐ATPase of sarcoplasmic reticulum. High and low affinity nucleotide binding and evidence of active site closure in E2‐P.
J. Biol. Chem.
262:
12977–12983,
1987.
|
223. |
Sagara, Y.,
F. Fernandez
Belda, L. de Meis, and
G. Inesi.
Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin.
J. Biol. Chem.
267:
12606–12613,
1992.
|
224. |
Saito, A.,
M. Inui,
M. Radermacher,
J. Frank, and
S. Fleischer.
Ultrastructure of the calcium release channel of sarcoplasmic reticulum.
J. Cell. Biol.
107:
211–219,
1988.
|
225. |
Saito, A.,
S. Seiler, and
S. Fleischer.
Alterations in the morphology of rabbit skeletal muscle plasma membrane during membrane isolation.
J. Ultrastruct. Res.
86:
277–293,
1984.
|
226. |
Sasaki, T.,
M. Inui,
Y. Kimura,
T. Kuzuya, and
M. Tada.
Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.
J. Biol. Chem.
267:
1674–1679,
1992.
|
227. |
Seed, B.
Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo.
Nucleic Acids Res.
11:
2427–2445,
1983.
|
228. |
Seiler, S.,
A. D. Wegener,
D. D. Whang,
D. R. Hathaway, and
L. R. Jones.
High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+‐activated protease.
J. Biol. Chem.
259:
8550–8557,
1984.
|
229. |
Serrano, R.
Structure and function of proton translocating ATPase in plasma membranes of plants and fungi.
Biochim. Biophys. Acta
947:
1–28,
1988.
|
230. |
Shigekawa, M. and
J. P. Dougherty.
Reaction mechanism of Ca2+‐dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP‐sensitive and ADP‐insensitive phosphoenzymes.
J. Biol. Chem.
253:
1458–1464,
1978.
|
231. |
Shigekawa, M.,
J. A. Finegan, and
A. M. Katz.
Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
J. Biol. Chem.
251:
6894–6900,
1976.
|
232. |
Shigekawa, M.,
S. Wakabayashi, and
H. Nakamura.
Effect of divalent cation bound to the ATPase of sarcoplasmic reticulum. Activation of phosphoenzyme hydrolysis by Mg2+.
J. Biol. Chem.
258:
14157–14161,
1983.
|
233. |
Simmerman, H. K.,
J. H. Collins,
J. L. Theibert,
A. D. Wegener, and
L. R. Jones.
Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains.
J. Biol. Chem.
261:
13333–13341,
1986.
|
234. |
Simmerman, H. K.,
Y. M. Kobayashi,
J. M. Autry, and
L. R. Jones.
A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled‐coil pore structure.
J. Biol. Chem.
271:
5941–5946,
1996.
|
235. |
Simmerman, H. K.,
D. E. Lovelace, and
L. R. Jones.
Secondary structure of detergent‐solubilized phospholamban, a phosphorylatable, oligomeric protein of cardiac sarcoplasmic reticulum.
Biochim. Biophys. Acta
997:
322–329,
1989.
|
236. |
Snyder, A. P.,
D. R. Sudnick,
V. K. Arkle, and
W. D. Horrocks, Jr.
Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium‐binding proteins. 2. Thermolysin.
Biochemistry
20:
3334–3339,
1981.
|
237. |
Solaro, R. J. and
F. N. Briggs.
Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding.
Circ. Res.
34:
531–540,
1974.
|
238. |
Sommer, J. R. and
R. B. Jennings.
Ultrastructure of cardiac muscle. In
H. Fozzard,
R. Jenny,
B. Hader,
A. Katz and
H. Morgan, eds.
The Heart and Cardiovascular System.
New York:
Raven,
1986:
61–100.
|
239. |
Soulié, S.,
J.‐M. Neuman,
C. Berthomieu,
J. Møller,
M. le Maire, and
V. Forge.
NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+‐ATPase.
Biochemistry
38:
5813–5821,
1999.
|
240. |
Squier, T. C.,
D. J. Bigelow,
F. J. Fernandez Belda,
L. de Meis, and
G. Inesi.
Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase.
J. Biol. Chem.
265:
13713–13720,
1990.
|
241. |
Squier, T. C.,
D. J. Bigelow,
J. Garcia de Ancos, and
G. Inesi.
Localization of site‐specific probes on the Ca2+‐ATPase of sarcoplasmic reticulum using fluorescence energy transfer.
J. Biol. Chem.
262:
4748–4754,
1987.
|
242. |
Squier, T. C. and
D. D. Thomas.
Relationship between protein rotational dynamics and phosphoenzyme decomposition in the sarcoplasmic reticulum Ca2+‐ATPase.
J. Biol. Chem.
263:
9171–9177,
1988.
|
243. |
Stryer, L.
Fluorescence energy transfer as a spectroscopic ruler.
Annu. Rev. Biochem.
47:
819–846,
1978.
|
244. |
Suko, J.
The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits.
J. Physiol. Lond.
228:
563–582,
1973.
|
245. |
Suko, J. and
W. Hasselbach.
Characterization of cardiac sarcoplasmic reticulum ATP‐ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
Eur. J. Biochem.
64:
123–130,
1976.
|
246. |
Sumbilla, C.,
T. Cantilina,
J. H. Collins,
H. Malak,
J. R. Lakowicz, and
G. Inesi.
Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase.
J. Biol. Chem.
266:
12682–12689,
1991.
|
247. |
Sumbilla, C.,
L. Lu,
D. E. Lewis,
G. Inesi,
T. Ishii,
K. Takeyasu,
Y. Feng, and
D. M. Fambrough.
Ca2+‐dependent and thapsigargin‐inhibited phosphorylation of Na+,K(+)‐ATPase catalytic domain following chimeric recombination with Ca2+‐ATPase.
J. Biol. Chem.
268:
21185–21192,
1993.
|
248. |
Sumida, M.,
T. Wang,
F. Mandel,
J. P. Froehlich, and
A. Schwartz.
Transient kinetics of Ca2+ transport of sarcoplasmic reticulum. A comparison of cardiac and skeletal muscle.
J. Biol. Chem.
253:
8772–8777,
1978.
|
249. |
Sutherland, E. W. and
T. W. Rall.
The relation of adenosine‐3′,5′‐phosphate and phosphorylase to the actions of catecholamines and other hormones.
Pharmacol. Rev.
12:
265–299,
1960.
|
250. |
Suzuki, T. and
J. H. Wang.
Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody.
J. Biol. Chem.
261:
7018–7023,
1986.
|
251. |
Tada, M.,
M. Inui,
M. Yamada,
M. Kadoma,
T. Kuzuya,
H. Abe, and
S. Kakiuchi.
Effects of phospholamban phosphorylation catalyzed by adenosine 3′:5′‐monophosphate‐ and calmodulin‐dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum.
J. Mol. Cell. Cardiol.
15:
335–46,
1983.
|
252. |
Tada, M.,
M. Kadoma,
M. Inui, and
J. Fujii.
Regulation of Ca2+‐pump from cardiac sarcoplasmic reticulum.
Methods Enzymol.
157:
107–154,
1988.
|
253. |
Tada, M. and
A. M. Katz.
Phosphorylation of the sarcoplasmic reticulum and sarcolemma.
Annu. Rev. Physiol.
44:
401–423,
1982.
|
254. |
Tada, M.,
M. A. Kirchberger, and
A. M. Katz.
Phosphorylation of a 22,000‐dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′‐monophosphate‐dependent protein kinase.
J. Biol. Chem.
250:
2640–2647,
1975.
|
255. |
Tada, M.,
M. A. Kirchberger, and
H. C. Li.
Phosphoprotein phosphatase‐catalyzed dephosphorylation of the 22,000 dalton phosphoprotein of cardiac sarcoplasmic reticulum.
J. Cyclic Nucleotide Res.
1:
329–338,
1975.
|
256. |
Tada, M.,
M. A. Kirchberger,
D. I. Repke, and
A. M. Katz.
The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′‐monophosphate‐dependent protein kinase.
J. Biol. Chem.
249:
6174–6180,
1974.
|
257. |
Tada, M.,
F. Ohmori,
M. Yamada, and
H. Abe.
Mechanism of the stimulation of Ca2+‐dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3′:5′‐monophosphate‐dependent protein kinase. Role of the 22,000‐dalton protein.
J. Biol. Chem.
254:
319–326,
1979.
|
258. |
Tada, M.,
M. Yamada,
M. Kadoma,
M. Inui, and
F. Ohmori.
Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban.
Mol. Cell. Biochem.
46:
73–95,
1982.
|
259. |
Tada, M.,
M. Yamada,
F. Ohmori,
T. Kuzuya,
M. Inui, and
H. Abe.
Transient state kinetic studies of Ca2+‐dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP‐dependent protein kinase‐catalyzed phosphorylation of phospholamban.
J. Biol. Chem.
255:
1985–1992,
1980.
|
260. |
Tada, M.,
T. Yamamoto, and
Y. Tonomura.
Molecular mechanism of active calcium transport by sarcoplasmic reticulum.
Physiol. Rev.
58:
1–79,
1978.
|
261. |
Tanabe, T.,
K. G. Beam,
B. A. Adams,
T. Niidome, and
S. Numa.
Regions of the skeletal muscle dihydropyridine receptor critical for excitation‐contraction coupling.
Nature
346:
567–569,
1990.
|
262. |
Taylor, K. A.,
L. Dux, and
A. Martonosi.
Three‐dimensional reconstruction of negatively stained crystals of the Ca2+‐ATPase from muscle sarcoplasmic reticulum.
J. Mol. Biol.
187:
417–427,
1986.
|
263. |
Taylor, K. A.,
L. Dux,
S. Varga,
H. P. Ting Beall, and
A. Martonosi.
Analysis of two‐dimensional crystals of Ca2+‐ATPase in sarcoplasmic reticulum.
Methods Enzymol.
157:
271–289,
1988.
|
264. |
Taylor, K. A.,
N. Mullner,
S. Pikula,
L. Dux,
C. Peracchia,
S. Varga, and
A. Martonosi.
Electron microscope observations on Ca2+‐ATPase microcrystals in detergent‐solubilized sarcoplasmic reticulum.
J. Biol. Chem.
263:
5287–5294,
1988.
|
265. |
Taylor, S. S.,
D. R. Knighton,
J. Zheng,
L. F. Ten Eyck, and
J. M. Sowadski.
Structural framework for the protein kinase family.
Annu. Rev. Cell. Biol.
8:
429–462,
1992.
|
266. |
Taylor, W. R. and
N. M. Green.
The predicted secondary structures of the nucleotide‐binding sites of six cation‐transporting ATPases lead to a probable tertiary fold.
Eur. J. Biochem.
179:
241–248,
1989.
|
267. |
Teruel, J. A. and
J. C. Gomez Fernandez.
Distances between the functional sites of sarcoplasmic reticulum (Ca2+ + Mg2+)‐ATPase and the lipid/water interface.
Biochim. Biophys. Acta
863:
178–84,
1986.
|
268. |
Thastrup, O.,
P. J. Cullen,
B. K. Drobak,
M. R. Hanley, and
A. P. Dawson.
Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+‐ATPase.
Proc. Natl. Acad. Sci. U.S.A.
87:
2466–2470,
1990.
|
269. |
Thomas, D. D.
Rotational diffusion of membrane proteins. In:
R. Cherry and
I. Ragan, eds.
Techniques for Analysis of Membrane Proteins.
London:
Chapman and Hall.
1986:
377–431.
|
270. |
Thomas, D. D. and
C. Hidalgo.
Rotational motion of the sarcoplasmic reticulum Ca2+‐ATPase.
Proc. Natl. Acad. Sci. U.S.A.
75:
5488–5492,
1978.
|
271. |
Tomlinson, C. W.,
D. V. Godin, and
S. W. Rabkin.
Adriamycin cardiomyopathy: implications of cellular changes in a canine model with mild impairment of left ventricular function.
Biochem. Pharmacol.
34:
4033–4041,
1985.
|
272. |
Toyofuku, T.,
K. Curotto Kurzydlowski,
N. Narayanan, and
D. H. MacLennan.
Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca2+‐ATPase that is phosphorylated by Ca2+/calmodulin‐dependent protein kinase.
J. Biol. Chem.
269:
26492–26496,
1994.
|
273. |
Toyofuku, T.,
D. D. Doyle,
R. Zak, and
L. Kordylewski.
Expression of phospholamban mRNA during early avian muscle morphogenesis is distinct from that of alpha‐actin.
Dev. Dyn.
196:
103–113,
1993.
|
274. |
Toyofuku, T.,
K. Kurzydlowski,
J. Lytton, and
D. H. MacLennan.
The nucleotide binding/hinge domain plays a crucial role in determining isoform‐specific Ca2+ dependence of organellar Ca2+‐ATPases.
J. Biol. Chem.
267:
14490–14496,
1992.
|
275. |
Toyofuku, T.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
269:
3088–3094,
1994.
|
276. |
Toyofuku, T.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Amino acids Lys‐Asp‐Asp‐Lys‐Pro‐Val402 in the Ca2+‐ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban.
J. Biol. Chem.
269:
22929–22932,
1994.
|
277. |
Toyofuku, T.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Identification of regions in the Ca2+‐ATPase of sarcoplasmic reticulum that affect functional association with phospholamban.
J. Biol. Chem.
268:
2809–2815,
1993.
|
278. |
Toyofuku, T., and
R. Zak.
Characterization of cDNA and genomic sequences encoding a chicken phospholamban.
J. Biol. Chem.
266:
5375–5383,
1991.
|
279. |
Toyoshima, C.,
H. Sasabe, and
D. L. Stokes.
Three‐dimensional cryo‐electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane [published erratum appears in Nature 1993 May 20;363(6426):286].
Nature
362:
467–471,
1993.
|
280. |
Toyoshima, C.,
M. Nakasato,
H. Nomura, and
H. Ogawa.
Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution.
Nature
405:
647–655,
2000.
|
281. |
Tsien, R. W.
Cyclic AMP and contractile activity in heart.
Adv. Cyclic Nucleotide Res.
8:
363–420,
1977.
|
282. |
Van Winkle, W. B.,
C. A. Tate,
R. J. Bick, and
M. L. Entman.
Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Evidence for a hydrolysis cycle not coupled to intermediate acyl phosphate formation and calcium translocation.
J. Biol. Chem.
256:
2268–2274,
1981.
|
283. |
Verboomen, H.,
F. Wuytack,
H. De Smedt,
B. Himpens, and
R. Casteels.
Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban.
Biochem. J.
286:
591–559
1992.
|
284. |
Verboomen, H.,
F. Wuytack,
J. A. Eggermont,
S. De Jaegere,
L. Missiaen,
L. Raeymaekers, and
R. Casteels.
cDNA cloning and sequencing of phospholamban from pig stomach smooth muscle.
Biochem. J.
262:
353–356,
1989.
|
285. |
Verjovski Almeida, S.,
M. Kurzmack, and
G. Inesi.
Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase.
Biochemistry
17:
5006–5013,
1978.
|
286. |
Vilsen, B.,
J. P. Andersen,
D. M. Clarke, and
D. H. MacLennan.
Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
264:
21024–21030,
1989.
|
287. |
Vilsen, B.,
J. P. Andersen, and
D. H. MacLennan.
Functional consequences of alterations to amino acids located in the hinge domain of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
266:
16157–16164,
1991.
|
288. |
Vorherr, T.,
M. Chiesi,
R. Schwaller, and
E. Carafoli.
Regulation of the calcium ion pump of sarcoplasmic reticulum: reversible inhibition by phospholamban and by the calmodulin binding domain of the plasma membrane calcium ion pump.
Biochemistry
31:
371–376,
1992.
|
289. |
Voss, J.,
W. Birmachu,
D. M. Hussey, and
D. D. Thomas.
Effects of melittin on molecular dynamics and Ca2+‐ATPase activity in sarcoplasmic reticulum membranes: time‐resolved optical anisotropy.
Biochemistry
30:
7498–7506,
1991.
|
290. |
Voss, J.,
L. R. Jones, and
D. D. Thomas.
The physical mechanism of calcium pump regulation in the heart [see comments].
Biophys. J.
67:
190–196,
1994.
|
291. |
Wakabayashi, S.,
T. Ogurusu, and
M. Shigekawa.
Factors influencing calcium release from the ADP‐sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase.
J. Biol. Chem.
261:
9762–9769,
1986.
|
292. |
Watanabe, T. and
G. Inesi.
The use of 2′,3′‐O‐(2,4,6‐trinitrophenyl) adenosine 5′‐triphosphate for studies of nucleotide interaction with sarcoplasmic reticulum vesicles.
J. Biol. Chem.
257:
11510–11516,
1982.
|
293. |
Watanabe, T.,
D. Lewis,
R. Nakamoto,
M. Kurzmack,
C. Fronticelli, and
G. Inesi.
Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase.
Biochemistry
20:
6617–6625,
1981.
|
294. |
Watanabe, Y.,
Y. Kijima,
M. Kadoma,
M. Tada, and
T. Takagi.
Molecular weight determination of phospholamban oligomer in the presence of sodium dodecyl sulfate: application of lowangle laser light scattering photometry.
J. Biochem. Tokyo
110:
40–45,
1991.
|
295. |
Weaver, A. J.,
M. D. Kemple, and
F. G. Prendergast.
Fluorescence and 13C NMR determination of side‐chain and backbone dynamics of synthetic melittin and melittin analogues in isotropic solvents.
Biochemistry
28:
8624–8639,
1989.
|
296. |
Weber, A.
Energized calcium transport and relaxaing factors.
Curr. Top. Bioenerg.
1:
203–254,
1966.
|
297. |
Weber, A.
Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic rticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.
J. Gen. Physiol.
57:
50–63,
1971.
|
298. |
Weber, G.
Energetics of ligand binding to proteins.
Adv. Protein Chem.
29:
1–83,
1975.
|
299. |
Wegener, A. D.,
H. K. Simmerman,
J. Liepnieks, and
L. R. Jones.
Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure.
J. Biol. Chem.
261:
5154–5159,
1986.
|
300. |
Wegener, A. D.,
H. K. Simmerman,
J. P. Lindemann, and
L. R. Jones.
Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta‐adrenergic stimulation [published erratum appears in. J. Biol. Chem. 1989 Sep 15;264:15738].
J. Biol. Chem.
264:
11468–11474,
1989.
|
301. |
Weintraub, H.,
R. Davis,
S. Tapscott,
M. Thayer,
M. Krause,
R. Benezra,
T. K. Blackwell,
D. Turner,
R. Rupp,
S. Hollenberg, et al.
The myoD gene family: nodal point during specification of the muscle cell lineage.
Science
251:
761–766,
1991.
|
302. |
Whitmer, J. T.,
P. Kumar, and
R. J. Solaro.
Calcium transport properties of cardiac sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58 and 14.6): evidence for a quantitative defect in dilated myopathic hearts not evident in hypertrophic hearts.
Circ. Res.
62:
81–85,
1988.
|
303. |
Will, H.,
J. Blanck,
G. Smettan, and
A. Wollenberger.
A quench‐flow kinetic investigation of calcium ion accumulation by isolated cardiac sarcoplasmic reticulum. Dependence of initial velocity on free calcium ion concentration and influence of preincubation with a protein kinase, Mg2+ATP, and cyclic AMP.
Biochim. Biophys. Acta
449:
295–303,
1976.
|
304. |
Williams, R. W.,
J. O. McIntyre,
B. P. Gaber, and
S. Fleischer.
The secondary structure of calcium pump protein in light sarcoplasmic reticulum and reconstituted in a single lipid component as determined by Raman spectroscopy.
J. Biol. Chem.
261:
14520–14524,
1986.
|
305. |
Witcher, D. R.,
R. J. Kovacs,
H. Schulman,
D. C. Cefali, and
L. R. Jones.
Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity.
J. Biol. Chem.
266:
11144–11152,
1991.
|
306. |
Xu, A.,
C. Hawkins, and
N. Narayanan.
Phosphorylation and activation of the Ca2+‐pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin‐dependent protein kinase.
J. Biol. Chem.
268:
8394–8397,
1993.
|
307. |
Xu, Z. C. and
M. A. Kirchberger.
Modulation by polyelectrolytes of canine cardiac microsomal calcium uptake and the possible relationship to phospholamban.
J. Biol. Chem.
264:
16644–16651,
1989.
|
308. |
Yamamoto, H.,
M. Tagaya,
T. Fukui, and
M. Kawakita.
Affinity labeling of the ATP‐binding site of Ca2+‐transporting ATPase of sarcoplasmic reticulum by adenosine triphosphopyridoxal: identification of the reactive lysyl residue.
J. Biochem. Tokyo
103:
452–457,
1988.
|
309. |
Yamamoto, T. and
Y. Tonomura.
Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.
J. Biochem. Tokyo
62:
558–575,
1967.
|
310. |
Young, H. S.,
L. G. Reddy,
L. R. Jones, and
D. L. Stokes.
Coreconstitution and co‐crystallization of phospholamban and Ca2+‐ATPase. In:
R. G. Johnson, and
E. G. Kranias, eds.
Cardiac Sarcoplasmic Reticulum Function and Regulation of Contractility.
Ann. N.Y. Acad. Sci.
vol. 853:
103–115,
1998.
|
311. |
Young, R. C.,
R. F. Ozols, and
C. E. Myers.
The anthracycline antineoplastic drugs.
N. Engl. J. Med.
305:
139–153,
1981.
|
312. |
Yu, X.,
S. Carroll,
J. L. Rigaud, and
G. Inesi.
H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes.
Biophys. J.
64:
1232–1242,
1993.
|
313. |
Zak, R.
Factors controlling cardiac growth. In:
R. Zak, ed.
Growth of the Heart in Health and Disease.
New York:
Raven Press.
1984:
165–185.
|
314. |
Zarain Herzberg, A.,
D. H. MacLennan, and
M. Periasamy.
Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2+‐ATPase gene.
J. Biol. Chem.
265:
4670–4677,
1990.
|
315. |
Zhang, P.,
C. Toyoshima,
K. Yonekura,
N. M. Green, and
D. L. Stokes.
Structure of the calcium pump from sarcoplasmic reticulum at 8–'A resolution.
Nature
392:
835–839,
1998.
|
316. |
Zimniak, P. and
E. Racker.
Electrogenicity of Ca2+ transport catalyzed by the Ca2+‐ATPase from sarcoplasmic reticulum.
J. Biol. Chem.
253:
4631–4637,
1978.
|