References |
1. |
Adachi‐Akahane, S.,
L. Cleemann, and
M. Morad.
Cross‐signaling between L‐type Ca2+ channels and ryanodine receptors in rat ventricular myocytes.
J. Gen. Physiol.
108:
435–454,
1996.
|
2. |
Allen, D. G.,
P. G. Morris,
C. H. Orchard and
J. S. Pirolo.
A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis.
J. Physiol.
361:
185–204,
1985.
|
3. |
Almers, W. and
E. W. McCleskey.
Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a singlefile pore.
J. Physiol. Lond.
353:
585–608,
1984.
|
4. |
Antoniu, B.,
D. H. Kim,
M. Morii, and
N. Ikemoto.
Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. I. Ca2+ channel blockers.
Biochim. Biophys. Acta
816:
9–17,
1985.
|
5. |
Arreola, J.,
R. T. Driksen,
R‐C. Shieh,
D. J. Willford, and
S‐S. Sheu.
Ca2+ current and Ca2+ transients under action potential clamp in guinea pig ventricular myocytes.
Am. J. Physiol.
261
(Cell Physiol. 30):
C393–C397,
1991.
|
6. |
Artman, M.
Sarcolemmal Na+‐Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts.
Am. J. Physiol.
263
(Heart Circ. Physiol. 32):
H1506–H1513,
1992.
|
7. |
Artman, M.
Developmental Changes in Myocardial Inotropic Responsiveness.
Austin,
Texas‐R. G. Landes Company,
1994.
|
8. |
Backx, P. H.,
W‐D. Gao,
M. D. Azan‐Backx, and
E. Marban.
The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae.
J. Gen. Physiol.
105:
1–19,
1995.
|
9. |
Baker, P. F.,
M. P. Blaustein,
A. L. Hodgkin, and
R. A. Steinhardt.
The influence of calcium on sodium efflux in squid axons.
J. Physiol. (Lond).
200:
431–458,
1969.
|
10. |
Balaguru, D.,
P. S. Haddock,
J. L. Puglisi,
D. M. Bers,
W. A. Coetzee, and
M. Artman.
Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes.
J. Mol. Cell. Cardiol.
29:
2747–2757,
1997.
|
11. |
Balke C. W.,
T. M. Egan, and
W. G. Wier.
Processes that remove calcium from the cytoplasm during excitation‐contraction coupling in intact rat heart cells.
J. Physiol. (Lond).
474:
447–462,
1994.
|
12. |
Banijamali, H. S.,
W. D. Gao, and
H. E. D. J. Ter Keurs.
Induction of calcium leak from the sarcoplasmic reticulum of rat cardiac trebeculae by ryanodine.
Circulation
82:
Supl III abstract‐215,
1990.
|
13. |
Barcenas‐Ruiz L.,
D. J. Beuckelmann, and
W. G. Wier.
Sodium‐calcium exchange in heart: membrane currents and changes in [Ca2+],.
Science
238:
1720–1722,
1987.
|
14. |
Barth, E.,
G. Stammler,
B. Speiser, and
J. Schaper.
Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man.
J. Mol. Cell. Cardiol.
24:
669–681,
1992.
|
15. |
Bassani, J. W. M.,
R. A. Bassani, and
D. M. Bers.
Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes.
J. Physiol. Lond.
460:
603–621,
1993.
|
16. |
Bassani, J. W. M.,
R. A. Bassani and
D. M. Bers.
Twitch‐dependent SR Ca accumulation and release in rabbit ventricular myocytes.
Am. J. Physiol.
265
(Cell Physiol. 34):
C533–C540,
1993.
|
17. |
Bassani, J. W. M.,
R. A. Bassani, and
D. M. Bers.
Relaxation in rabbit and rat cardiac cells: species‐dependent differences in cellular mechanisms.
J. Physiol. (Lond).
476:
279–293,
1994.
|
18. |
Bassani, J. W. M.,
M. Qi,
A. M. Samarel, and
D. M. Bers.
Contractile arrest increases SR Ca uptake and SERCa2 gene expression in cultured neonatal rat heart cells.
Circ. Res.
74:
991–997,
1994.
|
19. |
Bassani, J. W. M.,
W. Yuan, and
D. M. Bers.
Fractional SR Ca release is altered by trigger Ca and SR Ca content in cardiac myocytes.
Am. J. Physiol.
268:
C1313–C1319,
1995.
|
20. |
Bassani, R. A.,
J. W. M. Bassani, and
D. M. Bers.
Mitochondrial and sarcolemmal Ca transport can reduce [Ca]i during caffeine contractures in rabbit cardiac myocytes.
J. Physiol. (Lond).
453:
591–608,
1992
|
21. |
Bassani, R. A.,
J. W. M. Bassani, and
D. M. Bers.
Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
J. Physiol.
476:
295–308,
1994.
|
22. |
Bassani, R. A.,
J. W. M. Bassani, and
D. M. Bers.
Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase.
Pflugers Arch.
430:
573–579,
1995.
|
23. |
Bassani, R. A. and
D. M. Bers.
Na‐Ca exchange is required for rest‐decay but not for rest‐potentiation of twitches in rabbit and rat ventricular myocytes.
J. Mol. Cell. Cardiol.
26:
1335–1347,
1994.
|
24. |
Bassani, R. A. and
D. M. Bers.
Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes.
Biophys. J.
68:
2015–2022,
1995.
|
25. |
Bassani, R. A.,
A. Mattiazzi, and
D. M. Bers.
CaMK‐II is responsible for activity‐dependent acceleration of relaxation in rat ventricular myocytes.
Am. J. Physiol.
268
(Heart Circ. Physiol. 77):
H703–H712,
1995.
|
26. |
Baudet, S.,
R. Shaoulian, and
D. M. Bers.
Effects of thapsigargin and cyclopiazonic acid on twitch force and SR Ca content of rabbit ventricular muscle.
Circ. Res.
73:
813–819,
1993.
|
27. |
Bean, B. P.
Two kinds of calcium channels in canine atrial cells. differences in kinetics, selectivity, and pharmacology.
J. Gen Physiol.
86:
1–30,
1985.
|
28. |
Bean, B. P.
Classes of calcium channels in vertebrate cells.
Annu. Rev. Physiol.
51:
367–384,
1989.
|
29. |
Berlin, J. R.,
J. W. M. Bassani, and
D. M. Bers.
Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
Biophys. J.
67:
1775–1787,
1994.
|
30. |
Bers, D. M.
Early transient depletion of extracellular [Ca] during individual cardiac muscle contractions.
Am. J. Physiol.
244
(Heart Circ. Physiol. 13):
H462–H468,
1983.
|
31. |
Bers, D. M.
Ca influx and SR Ca release in cardiac muscle activation during postrest recovery.
Am. J. Physiol.
248
(Heart Circ. Physiol. 17):
H366–H381,
1985.
|
32. |
Bers, D. M.
Mechanisms contributing to the cardiac inotropic effect of Na‐pump inhibition and reduction of extracellular Na.
J. Gen. Physiol.
90:
479–504,
1987.
|
33. |
Bers, D. M.
SR Ca loading in cardiac muscle preparations based on rapid cooling contractures.
Am. J. Physiol.
256
(Cell Physiol. 25):
C109–C120,
1989.
|
34. |
Bers, D. M.
Excitation‐contraction coupling and cardiac contractile force.
Dordrecht: Netherlands:
Kluwer Academic Press,
1991.
|
35. |
Bers D. M.
Excitation‐Contraction Coupling and Cardiac Contractile Force,
2nd edition.
Dordrecht: Netherlands,
Kluwer Academic Press,
(in press),
2001.
|
36. |
Bers, D. M.,
L. A. Allen, and
Y. Kim.
Calcium binding to cardiac sarcolemma isolated from rabbit ventricular muscle: it's possible role in modifying contractile force.
Am. J. Physiol.
251:
C861–C871,
1986.
|
37. |
Bers, D. M.,
R. A. Bassani
J. W. M. Bassani,
S. Baudet, and
L. V. Hryshko.
Paradoxical twitch potentiation after rest in cardiac muscle: increased fractional release of SR calcium.
J. Mol. Cell. Cardiol.
25:
1047–1057,
1993.
|
38. |
Bers, D. M. and
J. H. B. Bridge.
The effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricular muscle.
J. Physiol. (Lond).
404:
53–69,
1988.
|
39. |
Bers, D. M. and
J. H. B. Bridge.
Relaxation of rabbit ventricular muscle by Na‐Ca exchange and sarcoplasmic reticulum Ca‐pump: ryanodine and voltage sensitivity.
Circ. Res.
65:
334–342,
1989.
|
40. |
Bers, D. M.,
J. H. B. Bridge, and
K. T. MacLeod.
The mechanism of ryanodine action in cardiac muscle assessed with Ca selective microelectrodes and rapid cooling contractures.
Can. J. Physiol. Pharmacol.
65:
610–618,
1987.
|
41. |
Bers, D. M.,
J. H. B. Bridge, and
K. W. Sptizer.
Intracellular Ca transients during rapid cooling contractures in guinea‐pig ventricular myocytes.
J. Physiol. (Lond).
417:
537–553,
1989.
|
42. |
Bers, D. M.,
D. M. Christensen, and
T. X. Nguyen.
Can Ca entry via Na‐Ca exchange directly activate cardiac muscle contraction?.
J. Mol. Cell Cardiol.
20:
405–414,
1988.
|
43. |
Bers, D. M.,
W. J. Lederer and
J. R. Berlin.
Intracellular Ca transients in rat cardiac myocytes: role of Na/Ca exchange in excitation‐contraction coupling.
Am. J. Physiol.
258
(Cell Physiol. 27):
C944–C954,
1990.
|
44. |
Bers, D. M.,
K. D. Philipson, and
A. Y. Nishimoto.
Sodium‐calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles.
Biochim. Biophys. Acta.
601:
358–371,
1980.
|
45. |
Bers, D. M. and
V. M. Stiffel.
The ratio of ryanodine:dihydropyridine receptors in cardiac and skeletal muscle and implications for E‐C coupling.
Am. J. Physiol.
264
(Cell Physiol. 33):
C1587–C1593,
1993.
|
46. |
Bers, D. M.,
L. Li,
H. Satoh, and
E. McCall.
Factors which control SR Ca release in intact ventricular myocytes.
Ann. N. Y. Acad. Sci.
853:
157–177,
1998.
|
47. |
Beuckelmann, D. J.
Contributions of Ca2+ influx via L‐type Ca2+ current and Ca2+ release from the sarcoplasmic reticulum to [Ca]i transients in human myocytes.
Basic Res. Cardiol.
92
(Suppl 1):
105–110,
1997.
|
48. |
Beuckelmann, D. J. and
W. G. Wier.
Mechanism of release of calcium from sarcoplasmic reticulum of guinea pig cardiac cells.
J. Physiol.
405:
233–255,
1988.
|
49. |
Beuckelmann, D. J., and
W. G. Wier.
Sodium‐calcium exchange in guinea‐pig cardiac cells: exchange current and changes in intracellular Ca2+.
J. Physiol. (Lond).
414:
499–520,
1989.
|
50. |
Blater, L. A., and
J. A. S. McGuigan.
Free intracellular magnesium concentration in ferret ventricular muscle measured with ion selective micro‐electrodes.
Q. J. Exp. Physiol.
71:
467–473,
1986.
|
51. |
Blater L. A.,
J. Hüser,
E. Ríos.
Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle.
Proc Natl Acad Sci U S A.
94:
4176–4181,
1997.
|
52. |
Blaustein, M. P. and
W. J. Lederer.
Sodium/calcium exchange: its physiological implications.
Physiol. Rev.
79:
763–854,
1999.
|
53. |
Blinks, J. R.,
C. B. Olson,
B. R. Jewell, and
P. Braveny.
Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle: evidence for a dual mechanism of action.
Circ. Res.
30:
367–392,
1972.
|
54. |
Block, B. A.,
T. Imagawa,
K. P. Campbell, and
C. Franzini‐Armstrong.
Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.
J. Cell Biol.
107:
2587–2600,
1988.
|
55. |
Boerth, S. R.,
D. B. Zimmer, and
M. Artman.
Steady‐state mRNA levels of the sarcolemmal Na+‐Ca2+ exchanger peak near birth in developing rabit and rat hearts.
Circ. Res.
74:
354–359,
1994.
|
56. |
Bouchard, R. A. and
D. Bose.
Analysis of the interval‐force relationship in rat and canine ventricular myocardium.
Am. J. Physiol.
257
(Heart Circ. Physiol. 26):
H2036–H2047,
1989.
|
57. |
Brandes, R. and
D. M. Bers.
Intracellular Ca2+ increases NADH production and redox potential during elevated work in intact cardiac muscle.
Circ. Res.
80:
82–87,
1997.
|
58. |
Bridge, J. H. B.
Relationships between the sarcoplasmic reticulum and transarcolemmal Ca transport revealed by rapidly cooling rabbit ventricular muscle.
J. Gen. Physiol.
88:
437–473,
1986.
|
59. |
Bridge J. H.,
P. R. Ershler,
M. B. Cannell.
Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes.
J. Physiol. (Lond).
518:
469–478,
1999.
|
60. |
Briggs, F. N.,
K. F. Lee,
A. W. Wechsler, and
L. R. Jones.
Phospholamban expressed in slow‐twitch and chronically stimulated fast‐twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca2+‐ATPase.
J. Biol. Chem.
267:
26056–26061,
1992.
|
61. |
Brillantes, A. B.,
S. Bezprozvannaya, and
A. R. Marks.
Developmental and tissue‐specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation‐contraction coupling.
Circ. Res.
75:
503–510,
1994.
|
62. |
Brillantes A. B.,
K. Ondrias,
A. Scott,
E. Kobrinsky,
E. Ondriasova,
M. C. Moschella,
T. Jayaraman,
M. Landers,
B. E. Ehrlich, and
A. R. Marks.
Stabilization of calcium release channel (ryanodine receptor) function by FK‐506 binding protein.
Cell
77:
513–523,
1994.
|
63. |
Butcher, R. W. and
E. W. Sutherland.
Adenosine 3′, 5′‐phosphate in biological materials. I. Purification and properties of cyclic 3′, 5′‐nucleotide phosphodiesterase and the use of this enzyme to characterize adenosine 3′, 5′‐phosphate in human urine.
J. Biol. Chem.
237:
1244–1250,
1962.
|
64. |
Callewaert, G.,
L. Cleemann, and
M. Morad.
Caffeine‐induced Ca2+ release activates Ca2+ extrusion via Na+‐Ca2+ exchanger in cardiac myocytes.
Am. J. Physiol.
257
(Cell Physiol. 26):
C147–C152,
1989.
|
65. |
Campbell, K. P.,
T. Imagawa,
J. S. Smith, and
R. Coronado.
Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+‐permeable pore of the calcium release channel.
J. Biol. Chem.
262:
16636–16643,
1987.
|
66. |
Cannell, M. B.,
J. R. Berlin, and
W. J. Lederer.
Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells.
Science
238:
1419–1423,
1987.
|
67. |
Cannell M. B.,
H. Cheng, and
W. J. Lederer.
Spatial nonuniformities in [Ca2+]i during excitation‐contraction coupling in cardiac myocytes.
Biophys. J.
67:
1942–1956,
1994.
|
68. |
Cannell, M. B.,
H. Cheng, and
W. J. Lederer.
The control of calcium release in heart muscle.
Science
268:
1045–1049,
1995.
|
69. |
Capogrossi, M. C.,
A. A. Kort,
H. A. Spurgeon, and
E. G. Lakatta.
Single adult rabbit and rat cardiac myocytes retain the Ca2+ and species‐dependent systolic and diastolic contractile properties of intact muscle.
J. Gen. Physiol.
88:
589–613,
1986.
|
70. |
Carafoli, E.
Mitochondria, Ca2+ transport and the regulation of heart contraction and metabolism.
J. Mol. Cell. Cardiol.
7:
83–89,
1975.
|
71. |
Carafoli, E.
Intracellular calcium homeostasis.
Annu. Rev. Biochem.
56:
395–433,
1987.
|
72. |
Carafoli, E.
Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme.
FASEB J.
8:
993–1002,
1994.
|
73. |
Carafoli, E. and
A. L. Lehninger.
A survey of the interaction of calcium ions with mitochondria from different tissues and species.
Biochem. J.
122:
618–690,
1971.
|
74. |
Carafoli, E. and
T. Stauffer.
The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression.
J. Neurobiol.
25:
312–324,
1994.
|
75. |
Caroni, P. and
E. Carafoli.
An ATP‐dependent Ca2+‐pumping system in dog heart sarcolemma.
Nature
283:
765–767,
1980.
|
76. |
Caroni, P.,
L. Reinlib, and
E. Carafoli.
Charge movements during the Na+‐Ca2+ exchange in heart sarcolemmal vesicles.
Proc. Natl. Acad. Sci. U.S.A.
77:
6354–6358,
1980.
|
77. |
Caroni, P., and
E. Carafoli.
The Ca2+‐pumping ATPase of heart sarcolemma.
J. Biol. Chem.
256:
3263–3270,
1981.
|
78. |
Caroni, P. and
E. Carafoli.
Regulation of Ca2+‐pumping ATPase of heart sarcolemma by a phosphorylation‐dephosphorylation process.
J. Biol. Chem.
256:
9371–9373,
1981.
|
79. |
Chacon, E.,
H. Ohata,
I. S. Harper,
D. R. Trollinger,
B. Herman, and
J. J. Lemasters.
Mitochondrial free calcium transients during excitation‐contraction coupling in rabbit cardiac myocytes.
FEBS Lett.,
382:
32–36,
1996.
|
80. |
Chen, W.,
C. Steenbergen,
L. A. Levy,
J. Vance,
R. E. London, and
E. Murphy.
Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2‐bis(2‐amino‐5,6‐difluorophenoxy) ethane‐N,N,N'N'‐tetraacetic acid by 19F NMR.
J. Biol. Chem.
271:
7398–7403,
1996.
|
81. |
Cheng H.,
W. J. Lederer,
M. B. Cannell.
Calcium sparks: elementary events underlying excitation‐contraction coupling in heart muscle.
Science
262:
740–744,
1993.
|
82. |
Clarke, D. M.,
T. W. Loo,
G. Inesi, and
D. H. MacLennan.
Location of high affinity Ca2+‐binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+‐ATPase.
Nature
339:
476–478,
1989.
|
83. |
Cohen, C. J.,
H. A. Fozzard, and
S.‐S. Sheu.
Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle.
Circ. Res.
50:
651–662,
1982.
|
84. |
Collins, A.,
A. V. Somlyo, and
D. W. Hilgemann.
The giant cardiac membrane patch method: stimulation of outward Na+‐Ca2+ exchange current by MgATP.
J. Physiol.
454:
27–57,
1992.
|
85. |
Coronado, R.,
J. Morisette,
M. Sukhareva, and
M. Vaughan.
Structure and function of the ryanodine receptors.
Am. J. Physiol.
266
(Cell Physiol. 35):
C1485–C1504,
1994.
|
86. |
Crespo, L. M.,
C. J. Grantham, and
M. B. Cannell.
Kinetics, stoichiometry and role of the Na‐Ca exchange mechanism in isolated cardiac myocytes.
Nature
345:
618–621,
1990.
|
87. |
Crompton, M.,
M. Capana and
E. Carafoli.
The sodium‐induced efflux of calcium from heart mitochondria: a possible mechanism for the regulation of mitochondrial calcium.
Eur. J. Biochem.
69:
453–462,
1976.
|
88. |
Crompton, M.
The regulation of mitochondrial calcium transport in heart.
Curr. Top. Memb. Transp.
25:
231–276,
1985.
|
89. |
Crompton, M.
The role of Ca2+ in the function and dysfunction of heart mitochondria. In:
Calcium and the Heart,
edited by G. A. Langer.
New York:
Raven Press,
1990:
167–198.
|
90. |
Dani, A. M.,
A. Cittadini, and
G. Inesi.
Calcium transport and contractile activity in dissociated mammalian heart cells.
Am. J. Physiol.
237
(Cell Physiol. 6):
C147–C155,
1979.
|
91. |
Danko, S.,
D. H. Kim,
F. A. Sreter and
N. Ikemoto.
Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. II. The effects of dantrolene on Ca2+ release induced by caffeine, Ca2+ and depolarization.
Biochim. Biophys. Acta
816:
18–24,
1985.
|
92. |
Delbridge, L. M.,
J. W. M. Bassani, and
D. M. Bers.
Steady‐state twitch Ca fluxes and cytosolic Ca buffering in rabbit ventricular myocytes.
Am. J. Physiol.
270
(Cell Physiol. 39):
C192–C199,
1996.
|
93. |
Delbridge, L. M. D.,
H. Satoh,
W. Yuan,
J. W. M. Bassani,
M. Qi,
K. S. Ginsburg,
A. M. Samarel, and
D. M. Bers.
Cardiac myocyte volume, Ca2+ fluxes and sarcoplasmic reticulum loading in pressure overload hypertrophy.
Am. J. Physiol.
272
(Heart Circ. Physiol. 41):
H2425–H2435,
1997.
|
94. |
Deleon, M.,
Y. Wang,
L. Jones,
E. Perez‐Reyes,
X. Wei,
T. W. Soong,
T. P. Snutch, and
D. T. Yue.
Essential Ca2+‐binding motif for Ca2+‐sensitive inactivation of L‐type Ca2+ channels.
Science.
270:
1502–1506,
1995.
|
95. |
Denton, R. M. and
J. G. McCormack.
On the role of the calcium transport cycle in heart and other mammalian mitochondria.
FEBS Lett.
119:
1–8,
1980.
|
96. |
Denton, R. M. and
J. G. McCormack.
Ca2+ transport by mammalian mitochondria and its role in hormone action.
Am. J. Physiol.
249
(Endocrinol. Metab. 12):
E543–E554.
1985.
|
97. |
Denton, R. M. and
J. G. McCormack.
Ca2+ as a second messenger within mitochondria of the heart and other tissues.
Annu. Rev. Physiol.
52:
451–466,
1990.
|
98. |
Díaz, M. E.,
A. W. Trafford,
S. C. O'Neill, and
D. A. Eisner.
Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release.
J. Physiol.
501:
3–16,
1997.
|
99. |
Difrancesco, D., and
D. Noble.
A model of cardiac electrical activity incorporating ionic pumps and concentration changes.
Phil. Trans. R. Soc. Lond. B
307:
353–309,
1985.
|
100. |
Dixon, D. A. and
D. H. Haynes.
Kinetic characterization of the Ca2+‐pumping ATPase of cardiac sarcolemma in four states of activation.
J. Biol. Chem.
264:
13612–13622,
1989.
|
101. |
Durkin, J. T.,
D. C. Ahrens,
Y.‐C. E. Pan, and
J. P. Reeves.
Purification and amino‐terminal sequence of the bovine cardiac sodium‐calcium exchanger: evidence for the presence of a signal sequence.
Arch. Biochem. Biophys.
290:
369–375,
1991.
|
102. |
Edman, K. A. P. and
M. Jóhannsson.
The contractile state of rabbit papillary muscle in relation to stimulation frequency.
J. Physiol.
254:
565–581,
1976.
|
103. |
Egan, T. M.,
D. Noble,
S. J. Noble,
T. Powell,
A. J. Spindler, and
V. W. Twist.
Sodium‐calcium exchange during the action potential in guinea‐pig ventricular cells.
J. Physiol.
411:
639–661,
1989.
|
104. |
Egger, M. and
E. Niggli.
Paradoxical block of the Na+‐Ca2+ exchanger by extracellular protons in guinea‐pig ventricular rmyocytes.
J. Physiol.
523:
353–366,
2000
|
105. |
El‐Sayed, M. F. and
H. Gesser.
Sarcoplasmic reticulum, potassium, and cardiac force in rainbow trout and plaice.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
R599–R604,
1989.
|
106. |
Fabiato, A.
Calcium release in skinned cardiac cells: variations with species, tissues, and development.
Federation Proc.
41:
2238–2244,
1982.
|
107. |
Fabiato, A.
Calcium‐induced release of calcium from the cardiac sarcoplasmic reticulum.
Am. J. Physiol.
245
(Cell Physiol. 14):
C1–C14,
1983.
|
108. |
Fabiato, A.
Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell.
J. Gen. Physiol.
85:
291–320,
1985.
|
109. |
Feher, J. J.
Unidirectional calcium and nucleotide fluxes in sarcoplasmic reticulum.
Biophys. J.
45:
1125–1133,
1984.
|
110. |
Fleischer, S. and
M. Inui.
Biochemistry and biophysics of excitation‐contraction coupling.
Annu. Rev. Biophys. Chem.
18:
333–364,
1989.
|
111. |
Frampton, J. E.,
S. M. Harrison,
M. R. Boyett, and
C. H. Orchard.
Ca2+ and Na+ in rat ventricular myocytes showing different force frequency relationships.
Am. J. Physiol.
261
(Cell Physiol. 30):
C739–C750,
1991.
|
112. |
Frank, J. S. and
G. A. Langer.
The myocardial interstitium: its structure and its role in ionic exchange.
J. Cell Biol.
60:
586–601,
1974.
|
113. |
Frankis, M. B. and
G. E. Lindenmayer.
Sodium‐sensitive calcium binding to sarcolemma‐enriched preparations from canine ventricles.
Circ. Res.
55:
676–688,
1984.
|
114. |
Friel, D. D. and
B. P. Bean.
Two ATP‐activated conductances in bullfrog atrial cells.
J. Gen. Physiol.
91:
1–27,
1988.
|
115. |
Fry, C. H.,
T. Powell,
V. W. Twist, and
J. P. T. Ward.
Net calcium exchange in adult rat ventricular myocytes: an assessment of mitochondrial calcium accumulating capacity.
Proc. R. Soc. Lond.
223:
223–238,
1984.
|
116. |
Fry, C. H.,
T. Powell,
V. W. Twist, and
J. P. T. Ward.
The effects of sodium, hydrogen and magnesium ions on mitochondrial calcium sequestration in adult rat ventricular myocytes.
Proc. R. Soc. Lond.
223:
239–254,
1984.
|
117. |
Fujioka Y.,
M. Komeda, and
S. Matsuoka.
Stoichiometry of Na+‐Ca2+ exchange in inside‐out patches excised from guinea‐pig ventricular myocytes.
J. Physiol.
523:
339–351,
2000.
|
118. |
Gatto, C. and
M. A. Milanick.
Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues.
Am. J. Physiol.
264
(Cell Physiol. 33):
C1577–C1586,
1993.
|
119. |
Gao, W.,
P. H. Backx,
M. Azan‐Backx, and
E. Marban.
Myofilament Ca2+ sensitivity in intact versus skinned rat ventricular muscle.
Circ. Res.
74:
408–415,
1994.
|
120. |
Ginsburg, K. S.,
C. R. Weber, and
D. M. Bers.
Control of maximum sarcoplasmic reticulum Ca load in intact ferret ventricular myocytes: effects of thapsigargin and isoproterenol.
J. Gen. Physiol.
111:
491–504,
1998.
|
121. |
Goldstein, M. A. and
L. Traeger.
Ultrastructural changes in postnatal development of the cardiac myocytes. In:
The Developing Heart,
edited by M. J. Legato.
Boston:
Martinus Nijhoff Publishing,
1985:
1–20.
|
122. |
Grantham, C. J. and
M. B. Cannell.
Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes.
Circ. Res.
79:
194–200,
1996.
|
123. |
Griffiths, E. J.,
M. D. Stern, and
H. S. Silverman.
Measurement of mitochondrial calcium in single living cardiac myocytes by selective removal of cytosolic indo‐1.
Am. J. Physiol.
273
(Cell Physiol. 42):
C37–C44,
1997.
|
124. |
Györke, S. and
M. Fill.
Ryanodine receptor adaptation:control mechanism of Ca2+‐induced Ca2+ release in heart.
Science
260:
807–809,
1993.
|
125. |
Györke S.,
V. Lukyanenko, and
I. Györke.
Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes.
J. Physiol. (Lond.)
500:
297–309,
1997.
|
126. |
Hadley, R. W. and
J. R. Hume.
An intrinsic potential‐dependent inactivation mechanism associated with calcium channels in guinea‐pig myocytes.
J. Physiol.
389:
205–222,
1987.
|
127. |
Haddock, P. S.,
W. A. Coetzee, and
M. Artman.
Na+/Ca2+ exchange current and contractions measured under Cl–free conditions in developing rabbit hearts.
Am. J. Physiol.
273
(Heart Circ. Physiol. 42):
H837–H846,
1997.
|
128. |
Hagiwara, N.,
H. Irisawa, and
M. Kameyama.
Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino‐atrial node cells.
J. Physiol., (Lond.)
359:
233–253,
1988.
|
129. |
Haiech, J.,
B. Klee, and
J. G. Demaille.
Effects of cations on affinity of calmodulin for calcium:ordered binding of calcium ions allows the specific activation of calmodulin‐stimulated enzymes.
Biochemistry
20:
3890–3897,
1981.
|
130. |
Hansford, R. G.
Relation between mitochondrial calcium transport and control of energy metabolism.
Rev. Physiol. Biochem. Pharmacol.
102:
1–72,
1985.
|
131. |
Hansford, R. G.
Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes.
Biochem. J.
241:
145–151,
1987.
|
132. |
Harrison, S. M., and
D. M. Bers.
The influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit.
J. Gen. Physiol.
93:
411–427,
1989.
|
133. |
Hess, P.,
J. B. Lansman and
R. W. Tsien.
Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists.
Nature
311:
538–544,
1984.
|
134. |
Hess, P.,
J. B. Lansman, and
R. W. Tsien.
Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
J. Gen. Physiol.
88:
293–319,
1986.
|
135. |
Hilgemann, D. W.
Numerical probes of sodium‐calcium exchange. In:
Sodium‐Calcium Exchange,
edited by T. J. A. Allen,
D. Noble, and
H. Reuter.
Oxford:
Oxford University Press,
1989:
126–152.
|
136. |
Hilgemann, D. W.
Regulation and deregulation of cardiac Na+‐Ca2+ exchange in giant excised sarcolemmal membrane patches.
Nature
344:
242–245,
1990.
|
137. |
Hilgemann, D. W. and
R. Ball.
Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2.
Science
273:
956–959,
1996.
|
138. |
Hilgemann, D. W. and
A. Collins.
Mechanism of cardiac Na+‐Ca2+ exchange current stimulation by MgATP:possible involvement of aminophospholipid translocase.
J. Physiol. (Lond.)
454:
59–82,
1992.
|
139. |
Hilgemann, D. W.,
A. Collins, and
S. Matsuoka.
Steady‐state and dynamic properties of cardiac sodium‐calcium exchange. Secondary modulation by cytoplasmic calcium and ATP.
J. Gen. Physiol.
100:
933–961,
1992.
|
140. |
Hilgemann, D. W.,
S. Matsuoka,
G. A. Nagel, and
A. Collins.
Steady‐state and dynamic properties of cardiac sodium‐calcium exchange. Sodium‐dependent inactivation.
J. Gen. Physiol.
100:
905–932,
1992.
|
141. |
Hilgemann, D. W.,
K. D. Philipson, and
G. Vassort.
Sodium‐Calcium Exchange:Proceedings of the Third International Conference.
Ann. N.Y. Acad. Sci.
1996,
vol. 779.
|
142. |
Hirano, Y.,
H. A. Fozzard, and
C. T. January.
Characteristics of L‐ and T‐type Ca2+ currents in canine cardiac Purkinje cells.
Am. J. Physiol.
256
(Heart Circ. Physiol. 25):
H1478–H1492,
1989.
|
143. |
Hoerter, J.,
F. Mazet, and
G. Vassort.
Perinatal growth of the rabbit cardiac cell:possible implications for the mechanism of relaxation.
J. Mol. Cell. Cardiol.
13:
725–740,
1981.
|
144. |
Holroyde, M. J.,
E. Howe, and
R. J. Solaro.
Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation.
Biochim. Biophys. Acta
586:
63–69,
1979.
|
145. |
Holroyde, M. J.,
S. P. Robertson,
J. D. Johnson,
R. J. Solaro, and
J. D. Potter.
The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase.
J. Biol. Chem.
255:
11688–11693,
1980.
|
146. |
Horackova, M. and
G. Vassort.
Sodium‐calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage‐dependent mechanism.
J. Gen. Physiol.
73:
403–424,
1979.
|
147. |
Hove‐Madsen, L. and
D. M. Bers.
Indo‐1 binding in permeabilized myocytes alters its spectral and Ca binding properties.
Biophys. J.
63:
89–97,
1992.
|
148. |
Hove‐Madsen, L. and
D. M. Bers.
Passive Ca buffering and SR Ca uptake in permeabilized rabbit ventricular myocytes.
Am. J. Physiol.
264
(Cell Physiol. 33):
C677–C686,
1993.
|
149. |
Hove‐Madsen, L. and
D. M. Bers.
SR Ca uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes.
Circ. Res.
73:
820–828,
1993.
|
150. |
Hryshko, L. V.,
V. M. Stiffel, and
D. M. Bers.
Rapid cooling contractures as an index of SR Ca content in rabbit ventricular myocyte.
Am. J. Physiol.
257
(Heart Circ. Physiol. 26):
H1369–1377,
1989.
|
151. |
Deleted
|
152. |
Hunter, D. R.,
R. A. Haworth, and
H. A. Berkoff.
Measurement of rapidly exchangeable cellular calcium in the perfused beating rat heart.
Proc. Natl. Acad. Sci. U.S.A.
78:
5665–5668,
1981.
|
153. |
Huynh, T. V.,
F. H. Chen,
G. T. Wetzel,
W. F. Friedman, and
T. S. Klitzner.
Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes.
Circ. Res.
70:
508–515,
1992.
|
154. |
Hymel, L.,
M. Inui,
S. Fleischer, and
H. Schindler.
Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+‐activated oligomeric Ca2+ channels in planar bilayers.
Proc. Natl. Acad. Sci. U.S.A.
85:
441–445,
1988.
|
155. |
Imagawa, T.,
J. S. Smith,
R. Coronado, and
K. P. Campbell.
Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+‐permeable pore of the calcium release channel.
J. Biol. Chem.
262:
16636–16643,
1987.
|
156. |
Inesi G. and
L. De Meis.
Regulation of steady state filling in sarcoplasmic reticulum.
J. Biol. Chem.
264:
5929–5936,
1988.
|
157. |
Inui, M.,
A. Saito, and
S. Fleischer.
Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle.
J. Biol. Chem.
262:
1740–1747,
1987.
|
158. |
Inui, M.,
A. Saito, and
S. Fleischer.
Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures.
J. Biol. Chem.
262:
15637–15642,
1987.
|
159. |
Isenberg, G. and
M. F. Wendt‐Gallitelli.
Cellular mechanisms of excitation contraction coupling. In:
Isolated Adult Cardiomyocytes,
Volume II,
edited by H. M. Piper and
G. Isenberg.
Boca Raton, Florida:
CRC Press,
1989:
213–248.
|
160. |
Iwamoto, T.,
T. Y. Nakamura,
Y. Pan,
A. Uehara,
I. Imagawa, and
M. Shigekawa.
Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger.
FEBS Lett.
446:
264–268,
1999.
|
161. |
James, P.,
M. Maeda,
R. Fischer,
A. K. Verma,
J. Krebs,
J. T. Penniston, and
E. Carafoli.
Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes.
J. Biol. Chem.
263:
2905–2910,
1988.
|
162. |
Janczewski, A. M. and
E. G. Lakatta.
Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea‐pig ventricular myocytes.
J. Physiol.
471:
343–363,
1993.
|
163. |
Janczewski, A. M. and
E. G. Lakatta.
Thapsigargin inhibits Ca2+ uptake, and Ca2+ depletes sarcoplasmic reticulum in intact cardiac myocytes.
Am. J. Physiol.
265
(Heart Circ. Physiol. 34):
H517–H522,
1993.
|
164. |
Jones, L. R.,
H. R. Besch,
J. L. Sutko and
J. T. Willerson.
Ryanodine‐induced stimulation of net Ca + + uptake by cardiac sarcoplasmic reticulum vesicles.
J. Pharmacol. Exp. Ther.
209:
48–55,
1979.
|
165. |
Jung, D. W.,
K. Baysal, and
G. P. Brierley.
The sodium‐calcium antiport of heart mitochondria is not electroneutral.
J. Biol. Chem.
270:
672–678,
1995.
|
166. |
Kadambi, V. J.,
S. Ponniah,
J. M. Harrer,
B. D. Hoit,
G. W. Dorn II,
R. A. Walsh, and
E. G. Kranias.
Cardiac‐specific over‐expression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.
J. Clin. Invest.
97:
533–539,
1996.
|
167. |
Kaftan E.,
A. R. Marks, and
B. E. Ehrlich.
Effects of rapamycin on ryanodine receptor/calcium release.
Circ. Res.
78:
990–997,
1996.
|
168. |
Kass, R. S. and
M. C. Sanguinetti.
Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage‐ and calcium‐mediated mechanisms.
J. Gen. Physiol.
84:
705–726,
1984.
|
169. |
Deleted
|
170. |
Kawai, M. and
M. Konishi.
Measurement of sarcoplasmic reticulum calcium content in skinned mammalian cardiac muscle.
Cell Calcium
16:
123–136,
1994.
|
171. |
Kijima, Y.,
E. Ogunbunmi, and
S. Fleischer.
Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum.
J. Biol. Chem.
266:
22912–22918,
1991.
|
172. |
Kimura, J.,
A. Noma, and
H. Irisawa.
Na‐Ca exchange current in mammalian heart cells.
Nature
319:
596–597,
1986.
|
173. |
Kimura, J.,
S. Miyamae, and
A. Noma.
Identification of sodium‐calcium exchange current in single ventricular cells in guinea pig.
J. Physiol.
384:
199–222,
1987.
|
174. |
Kirby, M. S.,
Y. Sagara,
S. Gaa,
G. Inesi,
W. J. Lederer, and
T. B. Rogers.
Thapsigargin inhibits contraction and Ca transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca pump.
J. Biol. Chem.
267:
12545–12551,
1992.
|
175. |
Kirino, Y. and
H. Shimizu.
Ca2+‐induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies.
J. Biochem.
92:
1287–1296,
1982.
|
176. |
Kiss, E.,
G. Jakab,
E. G. Kranias, and
I. Edes.
Thyroid hormone‐induced alterations in phospholamban protein expression.
Circ. Res.
75:
245–251,
1994.
|
177. |
Koss, K. L. and
E. G. Kranias.
Phospholamban: a prominent regulator of myocardial contractility.
Circ. Res.
79:
1059–1063,
1996.
|
178. |
Kranias, E. G.
Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum.
J. Biol. Chem.
260:
11006–11010,
1985.
|
179. |
Kurihara, S. and
T. Sakai.
Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea pig.
J. Physiol.
361:
361–378,
1985.
|
180. |
Kuyayama, H.
The membrane potential modulates the ATP‐dependent Ca2+ pump of cardiac sarcolemma.
Biochim. Biophys. Acta
940:
295–299,
1988.
|
181. |
Lai, F. A.,
H. Erickson,
B. A. Block, and
G. Meissner.
Evidence for a junctional feet‐ryanodine receptor complex from sarcoplasmic reticulum.
Biochem. Biophys. Res. Commun.
143:
704–709,
1987.
|
182. |
Lai, F. A.,
H. F. Erickson,
E. Rousseau,
Q.‐Y. Liu, and
G. Meissner.
Purification and reconstitution of the calcium release channel from skeletal muscle.
Nature
331:
315–319,
1988.
|
183. |
Lai, F. A.,
K. Anderson,
E. Rousseau,
Q.‐Y. Liu, and
G. Meissner.
Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum.
Biochem. Biophys. Res. Commun.
151:
441–449,
1988.
|
184. |
Lai, F. A.,
M. Misra,
L. Xu,
H. A. Smith, and
G. Meissner.
The ryanodine receptor‐Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum.
J. Biol. Chem.
264:
16776–16785,
1989.
|
185. |
Langer, G. A. and
A. Peskoff.
Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell.
Biophys. J.
70:
1169–1182,
1996.
|
186. |
Langer, G. A.,
T. L. Rich, and
F. B. Orner.
Ca exchange under non‐perfusion‐limited conditions in rat ventricular cells:identification of subcellular compartments.
Am. J. Physiol.
259
(Heart Circ. Physiol. 28):
H592–H602,
1990.
|
187. |
Langer, G. A. and
T. L. Rich.
Further characterization of the Na‐Ca exchange‐dependent Ca compartment in rat ventricular cells.
Am. J. Physiol.
265
(Cell Physiol. 34):
C556–C561,
1993.
|
188. |
Deleted
|
189. |
Lee, C. O. and
H. A. Fozzard.
Activities of potassium and sodium ions in rabbit heart muscle.
J. Gen. Physiol.
65:
695–708,
1975.
|
190. |
Lee, K. S.,
E. Marban, and
R. W. Tsien.
Inactivation of calcium channels in mammalian heart cells:joint dependence on membrane potential and intracellular calcium.
J. Physiol. (Lond.)
364:
395–411,
1985.
|
191. |
Legato, M.
Cellular mechanisms of normal growth in the mammalian heart. II. A quantitative and qualitative comparison between the right and left ventricular myocytes in the dog from birth to five months of age.
Circ. Res.
44:
263–279,
1979.
|
192. |
Lehninger, A. L.,
E. Carafoli, and
C. S. Rossi.
Energy linked ion movements in mitochondrial systems.
Adv. Enzymol.
29:
259–320,
1967.
|
193. |
Lehninger, A. L.
Ca2+ transport by mitochondria and its possible role in the cardiac excitation‐contraction‐relaxation cycle.
Circ. Res.
34/35
(Suppl. III):
83–89,
1974.
|
194. |
Levitsky, D. O.,
D. S. Benevolensky,
T. S. Levchenko,
V.N. Smirnov, and
E. I. Chazov.
Calcium‐binding rate and capacity of cardiac sarcoplasmic reticulum.
J. Mol. Cell Cardiol.
13:
785–796,
1981.
|
195. |
Lew, W. Y. W.,
L. V. Hryshko, and
D. M. Bers.
Dihydropyridine receptors are primarily functional L‐type Ca channels in rabbit ventricular myocytes.
Circ. Res.
69:
1139–1145,
1991.
|
196. |
Lewartowski, B. and
K. Zdanowski.
Net Ca2+ influx and sarcoplasmic reticulum Ca2+ uptake in resting single myocytes of the rat heart:comparison with guinea‐pig.
J. Mol. Cell Cardiol.
22:
1221–1229,
1990.
|
197. |
Li, L.,
G. Chu,
E. G. Kranias, and
D. M. Bers.
Cardiac myocyte calcium transport in phospholamban knockout mouse: Relaxation and endogenous CaMKII effects.
Am. J. Physiol.
274
(Heart Circ. Physiol. 43):
H1335–H1347,
1998.
|
198. |
Li, L.,
H. Satoh,
K. S. Ginsburg, and
D. M. Bers.
The effects of CaMKII on cardiac excitation‐contraction coupling in ferret ventricular myocytes.
J. Physiol.
501:
17–32,
1997.
|
199. |
Li, Z.,
D. A. Nicoll,
A. Collins,
D. W. Hilgemann,
A. G. Filoteo,
J. T. Penniston,
J. N. Weiss
J. M. Tomich, and
K. D. Philipson.
Identification of a peptide inhibitor of the cardiac sarcolemmal Na+‐Ca2+ exchanger.
J. Biol. Chem.
266:
1014–1020,
1991.
|
200. |
London, B. and
J. W. Krueger.
Contraction in voltage‐clamped, internally perfused single heart cells.
J. Gen. Physiol.
88:
475–505,
1986.
|
201. |
López‐López, J. R.,
P. S. Shacklock,
C. W. Balke, and
W. G. Wier.
Local, stochastic release of Ca2+ in voltage‐clamped rat heart cells: visualization with confocal microscopy.
J. Physiol. (Lond.).
480:
21–29,
1994.
|
202. |
López‐López JR.,
P. S. Shacklock,
C. W. Balke, and
W. G. Wier.
Local calcium transients triggered by single L‐type calcium channel currents in cardiac cells.
Science.
268:
1042–1045,
1995.
|
203. |
Lu, Y.‐Z. and
M. A. Kirchberger.
Effects of a nonionic detergent on calcium uptake by cardiac microsomes.
Biochemistry
33:
5056–5062,
1994.
|
204. |
Lukyanenko, I. Györke, and
S. Györke.
Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes.
Pflugers Arch.
432:
1047–1054,
1996.
|
205. |
Lukyanenko V.,
I. Györke,
S. Subramanian,
A. Smirnov,
T. F. Wiesner,
S. Györke.
Inhibition of Ca2+ sparks by ruthenium red in permeabilized rat ventricular myocytes.
Biophys J.
79:
1273–1284,
2000.
|
206. |
Luo, C.‐H. and
Y. Rudy.
A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes.
Circ. Res.
74:
1071–1096,
1994.
|
207. |
Luo, W.,
B. W. Wolska,
I. L. Grupp,
J. M. Harrer,
K. Haghighi,
D. G. Ferguson,
J. P. Slack,
G. Grupp,
T. Doetschman,
R. J. Solaro,
E. G. Kranias.
Phospholamban gene dosage effects in the mammalian heart.
Circ. Res.
78:
839–847,
1996.
|
208. |
Lytton, J.,
M. Westlin, and
R. Hanley.
Thapsigargin inhibits the sarcoplasmic and endoplasmic reticulum Ca‐ATPase family of calcium pumps.
J. Biol. Chem.
266:
17067–17071,
1991.
|
209. |
McCormack, J. G.,
H. M. Browne, and
N. J. Dawes.
Studies on mitochondrial Ca2+‐transport and matrix Ca2+ using fura‐2‐loaded rat heart mitochondria.
Biochim. Biophys. Acta
973:
420–427,
1989.
|
210. |
Mahony, L. and
L. R. Jones.
Developmental changes in cardiac sarcoplasmic reticulum in sheep.
J. Biol. Chem.
261:
15257–15265,
1986.
|
211. |
Malécot, C. O.,
D. M. Bers, and
B. G. Katzung.
Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane Ca influx.
Circ. Res.
59:
151–162,
1986.
|
212. |
Marks, A. P.,
P. Tempst,
K. S. Hwang,
M. B. Taubman,
M. Inui,
C. Chadwick,
S. Fleischer and
B. Nadal‐Ginard.
Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum.
Proc. Natl. Acad. Sci. U.S.A.
86:
8683–8687,
1989.
|
213. |
Matsuda, H.
Sodium conductance in calcium channels of guinea pig ventricular cells induced by removal of external calcium ions.
Pflugers Arch.
407:
465–475,
1986.
|
214. |
Matsuoka, S. and
D. W. Hilgemann.
Steady‐state and dynamic properties of cardiac sdium‐calcium exchange. Ion and voltage dependencies of the transport cycle.
J. Gen. Physiol.
100:
963–1001,
1992.
|
215. |
Matsuoka, S.,
D. A. Nicoll,
L. V. Hryshko,
D. O. Levitsky,
J. N. Weiss, and
K. D. Philipson.
Regulation of the cardiac Na+‐Ca2+ exchanger by Ca2+,.
J. Gen. Physiol.
105:
403–420,
1995.
|
216. |
Mattiazzi, A.,
L. Hove‐Madsen, and
D. M. Bers.
Protein kinase inhibitors reduce SR Ca transport in permeabilized cardiac myocytes.
Am. J. Physiol.
267
(Heart Circ. Physiol. 36):
H812–H820,
1994.
|
217. |
Mela, L.
Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anaesthetic drugs.
Biochemistry
8:
2481–2486,
1969.
|
218. |
Meissner, G.
Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum.
J. Biol. Chem.
261:
6300–6306,
1986.
|
219. |
Meissner, G. and
J. S. Henderson.
Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin.
J. Biol. Chem.
262:
3065–3073,
1987.
|
220. |
Mejia‐Alvarez, R.,
C. Kettlun,
E. Rros,
M. Stern,
M. Fill.
Unitary Ca2+ current through cardiac ryanodine receptors in physiological ionic conditions.
J. Gen. Physiol.
113:
177–186,
1999.
|
221. |
Mitchell, P. and
J. Moyle.
Respiration‐driven proton translocation in rat liver mitochondria.
Biochem. J.
105:
1147–1162,
1967.
|
222. |
Mitra, R. and
M. Morad.
Two types of calcium channels in guinea pig ventricular myocytes.
Proc. Natl. Acad. Sci. U.S.A.
83:
5340–5344,
1986.
|
223. |
Miura, Y. and
J. Kimuara.
Sodium‐calcium exchange current.
J. Gen. Physiol.
93:
1129–1145,
1989.
|
224. |
Miyata, H.,
H. S. Silerman,
S. J. Sollott,
E. G. Lakatta,
M. D. Stern, and
R. G. Hansford.
Measurement of mitochondrial free Ca concentration in living single rat cardiac myocytes.
Am. J. Physiol.
261
(Heart Circ. Physiol. 30):
H1123–H1134,
1991.
|
225. |
Moore, C. L.
Specific inhibition of mitochondrial Ca2+ transport by ruthenium red.
Biochem. Biophys. Res. Commun.
42:
298–305,
1971.
|
226. |
Morad, M. and
Y. Goldman.
Excitation‐contraction coupling in heart muscle: membrane control of development of tension.
Prog. Biophys. Mol. Biol.
27:
257–313,
1973.
|
227. |
Moreno‐Sanchez, R. and
R. G. Hansford.
Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration.
Biochem. J.
256:
403–412,
1988.
|
228. |
Deleted
|
229. |
Mullins, L. J.
The generation of electric currents in cardiac fibers by Na/Ca exchange.
Am. J. Physiol.
236
(Cell. Physiol. 5):
C103–C110,
1979.
|
230. |
Murphy, E.,
C. C. Freudenrich,
L. A. Levy,
R. E. London, and
M. Lieberman.
Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator furaptra.
Proc. Natl. Acad. Sci. U.S.A.
86:
2981–2984,
1989.
|
231. |
Murphy, E.,
C. Steenbergen,
L. A. Levy,
B. Raju, and
R. E. London.
Cytosolic free magnesium levels in ischemic rat heart.
J. Biol. Chem.
264:
5622–5627,
1989.
|
232. |
Nagasaki, K. and
S. Fleischer.
Modulation of the calcium release channel of sarcoplasmic reticulum by Adriamycin and other drugs.
Cell Calcium
10:
63–70,
1989.
|
233. |
Nakai, J.,
T. Imagawa,
Y. Hakamata,
M. Shigekawa,
H. Takeshima and
S. Numa.
Primary structure and functional expression from cDNA of cardiac muscle ryanodine receptor/calcium release channel.
FEBS Lett.
271:
169–177,
1990.
|
234. |
Nakamura, Y.,
J. Kobayashi,
J. Gilmore,
M. Mascal,
K. L. Rinehart, Jr.,
H. Nakamura, and
Y. Ohizumi.
Bromoeudistomin D, a novel inducer of calcium release from fragmented sarcoplasmic reticulum that causes contractions of skinned muscle fibers.
J. Biol. Chem.
261:
4139–4142,
1986.
|
235. |
Nakanishi, T. and
J. M. Jarmakani.
Developmental changes in myocardial mechanical function and subcellular organelles.
Am. J. Physiol.
246
(Heart Circ. Physiol. 15):
H615–H625,
1984.
|
236. |
Nayler, W. G. and
E. Fassold.
Calcium accumulation and ATPase activity of cardiac sarcoplasmic reticulum before and after birth.
Cardiovasc. Res.
11:
231–237,
1977.
|
237. |
Negretti N.,
S. C. O'Neill, and
D. A. Eisner.
The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes.
Cardiovasc. Res.
1993:
27:
1826–1830.
|
238. |
Nicoll, D. A.,
S. Longoni, and
K. D. Philipson.
Molecular cloning and functional expression of the cardiac sarcolemmal Na+‐Ca2+ exchanger.
Science
250:
562–565,
1990.
|
239. |
Nicoll, D. A.,
L. V. Hryshko,
S. Matsuoka,
J. S. Frank, and
K. D. Philipson.
Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+‐Ca2+ exchanger.
J. Biol. Chem.
271:
13385–13391,
1996.
|
240. |
Nicoll, D. A.,
M. Ottolia,
L. Lu,
Y. Lu, and
K. D. Philipson.
A new topological model of the cardiac sarcolemmal Na+‐Ca2+ exchanger.
J. Biol. Chem.
274:
910–917,
1999.
|
241. |
Nicholls, D. G. and
K. E. O. Akerman.
Mitochondrial calcium transport.
Biochim. Biophys. Acta
683:
57–88,
1982.
|
242. |
Niggli, V.,
E. S. Adunyah,
J. T. Penniston and
E. Carafoli.
Purified (Ca2+‐Mg2+)‐ATPase of the erythrocyte membrane.
J. Biol. Chem.
256:
395–401,
1981.
|
243. |
Nilius, B.,
P. Hess,
J. B. Lansman, and
R. W. Tsien.
A novel type of cardiac calcium channel in ventricular cells.
Nature
316:
443–446,
1985.
|
244. |
Nowycky, M. C.,
A. P. Fox, and
R. W. Tsien.
Three types of neuronal calcium channel with different calcium agonist sensitivity.
Nature
316:
440–443,
1985.
|
245. |
Nuss, H. B., and
S. R. Houser.
T‐type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes.
Circ. Res.
73:
777–782,
1993.
|
246. |
Odermatt A.,
K. Kurzydlowski, and
D. H. MacLennan.
The Vmax of the Ca2+‐ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin‐dependent phosphorylation or by interaction with phospholamban.
J. Biol. Chem.
271:
14206–14213,
1996.
|
247. |
O'Neill, S. C.,
J. G. Mill, and
D. A. Eisner.
Local activation of contraction in isolated rat ventricular myocytes.
Am. J. Physiol.
258
(Cell Physiol. 27):
C1165–C1168,
1990.
|
248. |
Ohnishi, S. T.
A method for studying the depolarization‐induced calcium release from fragmented sarcoplasmic reticulum.
J. Biochem.
86:
1147–1150,
1979.
|
249. |
Olivetti, G.,
P. Anversa, and
A. Loud.
Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations.
Circ. Res.
46:
503–512,
1980.
|
250. |
Osaka, T. and
R. W. Joyner.
Developmental changes in calcium currents of rabbit ventricular cells.
Circ. Res.
68:
788–796,
1991.
|
251. |
Otsu, K.,
H. F. Willard,
V. J. Khana,
F. Zorzato,
N. M. Green and
D. H. MacLennan.
Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum.
J. Biol. Chem.
265:
13713–13720,
1990.
|
252. |
Overend, C. L.,
C. S. O'Niell and
D. A. Eisner.
The effect of tetracaine on stimulated contractions, sarcoplasmic reticulum Ca2+ content and membrane current in isolated rat ventricular myocytes.
J. Physiol.
507:
759–769,
1998.
|
253. |
Page, E.
Quantitative ultrastructural analysis in cardiac membrane physiology.
Am. J. Physiol.
235
(Cell Physiol. 4):
C147–C158,
1978.
|
254. |
Page, E. and
J. L. Buecker.
Development of dyadic junctional complexes between sarcoplasmic reticulum and plasmalemma in rabbit left ventricular myocardial cells.
Circ. Res.
48:
519–522,
1981.
|
255. |
Page, E.,
L. P. McCallister and
B. Power.
Stereological measurements of cardiac ultrastructures implicated in excitation‐contraction coupling.
Proc. Natl. Acad. Sci. U.S.A.
68:
1465–1466,
1971.
|
256. |
Palade, P.
Drug‐induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine‐induced Ca2+ release.
J. Biol. Chem.
262:
6135–6141,
1987.
|
257. |
Palade, P.
Drug‐induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+‐induced Ca2+ release channel.
J. Biol. Chem.
262:
6142–6148,
1987.
|
258. |
Palade, P.
Drug‐induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+‐induced Ca2+ release by inorganic polyamines.
J. Biol. Chem.
262:
6149–6154,
1987.
|
259. |
Palade, P.,
C. Dettbarn,
D. Brunder,
P. Stein, and
G. Hals.
Pharmacology of calcium release from sarcoplasmic reticulum.
J. Bioenerg. Biomemb.
21:
295–320,
1989.
|
260. |
Pan, B. S. and
R. J. Solaro.
Calcium‐binding properties of troponin C in detergent‐skinned heart muscle fibers.
J. Biol. Chem.
262:
7839–7849,
1987.
|
261. |
Pegg, W. and
M. Michalak.
Differentiation of sarcoplasmic reticulum during cardiac myogenesis.
Am. J. Physiol.
252
(Heart Circ. Physiol. 21):
H22–H31,
1987.
|
262. |
Pelzer, D.,
S. Pelzer and
T. F. McDonald.
Properties and regulation of Ca channels in muscle cells.
Rev. Physiol. Biochem. Pharmacol.
114:
107–207,
1990.
|
263. |
Penefsky, Z. J.
Studies on the mechanism of inhibition of cardiac muscle contractile tension by ryanodine.
Pflugers Arch.
347:
173–184,
1974.
|
264. |
Penefsky, Z. J.
Perinatal development of cardiac mechanisms. In:
Perinatal Cardiovascular Function,
edited by N. Gootman and P. M. Gootman,
NY, NY,
1983:
109–200.
|
265. |
Peterson, B. Z.,
C. D. Demaria, and
D. T. Yue.
Calmodulin is the Ca2+ sensor for Ca2+‐dependent inactivation of 1‐type calcium channels.
Neuron
22:
549–558,
1999.
|
266. |
Philipson, K. D.
Interaction of charged amphiphiles with Na+‐Ca2+ exchange in cardiac sarcolemmal vesicles.
J. Biol. Chem.
259:
13999–14002,
1984.
|
267. |
Philipson, K. D. and
D. A. Nicoll.
Sodium‐calcium exchange. A molecular perspective.
Annu. Rev. Physiol.
62:
111–133,
2000.
|
268. |
Philipson, K. D., and
D. A. Nicoll.
Molecular and kinetic aspects of sodium‐calcium exchange.
Int. Rev. Cytol.
137C:
199–227,
1993.
|
269. |
Philipson, K. D.
Myocardial ion transporters. In:
The Myocardium,
2nd Ed.,
edited by G. A. Langer.
San Diego:
Academic Press,
1997:
143–179.
|
270. |
Pierce, G. N.,
K. D. Philipson, and
G. A. Langer.
Passive calcium‐buffering capacity of a rabbit ventricular homogenate preparation.
Am. J. Physiol.
249
(Cell Physiol. 18):
C248–C255,
1985.
|
271. |
Pitts, B. J. R.
Stoichiometry of sodium‐calcium exchange in cardiac sarcolemmal vesicles.
J. Biol. Chem.
254:
6232–6235,
1979.
|
272. |
Post, J. A.,
G. A. Langer,
J. A. F. Op Den Kamp, and
A. J. Verkleij.
Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and “gas‐dissected” membranes.
Biochim. Biophys. Acta
943:
256–266,
1988.
|
273. |
Post, J. A. and
G. A. Langer.
Sarcolemmal calcium binding sites in heart: I. Molecular origin in “gas‐dissected” sarcolemma.
J. Membr. Biol.
129:
49–57,
1992.
|
274. |
Prabhu, S. D. and
G. Salama.
The heavy metal ions Ag+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum.
Arch. Biochem. Biophys.
277:
47–55,
1990.
|
275. |
Puglisi, J. L.,
R. A. Bassani,
J. W. M. Bassani,
J. N. Amin and
D. M. Bers.
Temperature and the relative contributions of Ca transport systems in cardiac myocyte relaxation.
Am. J. Physiol.
270
(Heart Circ. Physiol. 39):
H1772–H1778,
1996.
|
276. |
Puglisi, J. L.,
W. Yuan,
J. W. M. Bassani, and
D. M. Bers.
Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature.
Circ. Res.
85:
e7–e16,
1999.
|
277. |
Pytkowski, B.
Rest‐ and stimulation‐dependent changes in exchangeable calcium content in rabbit ventricular myocardium.
Basic Res. Cardiol.
84:
22–29,
1989.
|
278. |
Qin N.,
R. Olcese,
M. Bransby,
T. Lin, and
L. Birnbaumer:
Ca2+‐induced inhibition of the cardiac Ca2+ channel depends on calmodulin.
Proc. Natl. Acad. Sci. U.S.A.
96:
2435–2438,
1999.
|
279. |
Reed, K. C. and
F. L. Bygrave.
A kinetic study of mitochondrial calcium transport.
Eur. J. Biochem.
55:
497–503,
1975.
|
280. |
Reddy, L. G.,
L. R. Jones
R. C. Pace, and
D. L. Stokes.
Purified, reconstituted cardiac Ca2+‐ATPase is regulated by phospholamban, but not by direct phosphorylation with by Ca2+/calmodulin‐dependent protein kinase.
J. Biol. Chem.
271:
14964–14970,
1996.
|
281. |
Reeves, J. P., and
J. L. Sutko.
Sodium‐calcium exchange in cardiac membrane vesicles.
Proc. Natl. Acad. Sci. U.S.A.
76:
590–594,
1979.
|
282. |
Reeves, J. P., and
J. L. Sutko.
Sodium‐calcium exchange activity generates a current in cardiac membrane vesicles.
Science
208:
1461–1464,
1980.
|
283. |
Reeves, J. P., and
C. C. Hale.
The stoichiometry of the cardiac sodium‐calcium exchange system.
J. Biol. Chem.
259:
7733–7739,
1984.
|
284. |
Reeves, J. P., and
P. Poronnik.
Modulation of Na+‐Ca2+ exchange in sarcolemmal vesicles by intravesicular Ca2+.
Am. J. Physiol.
252
(Cell Physiol. 21):
C17–C23,
1987.
|
285. |
Reeves, J. P.
Na+/Ca2+ exchange and cellular Ca2+ homeostasis.
J. Bioeng. Biomembr.
30:
151–160,
1998.
|
286. |
Rega, A. F. and
P. J. Garrahan.
The Ca2+‐pump of plasma membranes.
Boca Raton, FL:
CRC Press,
1986:
173.
|
287. |
Reimer, K. A. and
R. B. Jennings.
Myocardial ischemia, hypoxia, and infarction. In:
The Heart and Cardiovascular System,
edited by H. A. Fozzard et al.
New York:
Raven Press,
1986:
1133–1201.
|
288. |
Reuter, H. and
N. Seitz.
The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.
J. Physiol. Lond.)
195:
45–70,
1968.
|
289. |
Robertson, S. P.,
J. D. Johnson, and
J. D. Potter.
The time‐course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+.
Biophys. J.
34:
559–569,
1981.
|
290. |
Rousseau, E.,
J. S. Smith,
J. S. Henderson, and
G. Meissner.
Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel.
Biophys. J.
50:
1009–1014,
1986.
|
291. |
Rousseau, E.,
J. S. Smith, and
G. Meissner.
Ryanodine modifies conductance and gating behavior of single Ca2+ release channel.
Am. J. Physiol.
253
(Heart Circ. Physiol. 22):
C364–C368,
1987.
|
292. |
Rousseau, E. and
G. Meissner.
Single cardiac sarcoplasmic reticulum Ca2+‐release channel: activation by caffeine.
Am. J. Physiol.
256
(Heart Circ. Physiol. 25):
H328–H333,
1989.
|
293. |
Saito, A.,
M. Inui,
M. Radermacher,
J. Frank, and
S. Fleischer.
Ultrastructure of the calcium release channel of sarcoplasmic reticulum.
J. Cell Biol.
107:
211–219,
1988.
|
294. |
Sagara, Y. and
G. Inesi.
Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations.
J. Biol. Chem.
266:
13503–13506,
1991.
|
295. |
Salama, G. and
J. Abramson.
Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum.
J. Biol. Chem.
259:
13363–13360,
1984.
|
296. |
Sasaki, T.,
M. Inui,
Y. Kimura,
T. Kuzuya, and
M. Tada.
Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum.
J. Biol. Chem.
267:
1674–1679,
1992.
|
297. |
Satoh H.,
L. A. Blatter, and
D. M. Bers.
Effects of [Ca]i, Ca2+ load and rest on Ca2+ spark frequency in ventricular myocytes.
Am. J. Physiol.
272
(Heart Circ. Physiol. 41):
H657–668,
1997.
|
298. |
Satoh, H.,
L. M. Delbridge,
L. A. Blatter, and
D. M. Bers.
Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species‐dependence and developmental effects.
Biophys. J.
70:
1494–1504,
1996.
|
299. |
Schatzmann, H. J.
ATP dependent Ca2+ extrusion from human red cells.
Experientia
22:
364–368,
1966.
|
300. |
Schatzmann, H. J.
The plasma membrane calcium pump of erythrocytes and other animal cells. In:
Membrane Transport of Calcium,
edited by E. Carafoli.
London:
Academic Press,
1982:
41–108.
|
301. |
Schatzmann, H. J.
The calcium pump of the surface membrane and of the sarcoplasmic reticulum.
Annu. Rev. Physiol.
51:
473–485,
1989.
|
302. |
Schiebler, T. and
H. H. Wolff.
Electronenmikroskopische Untersuchungen am Herzmuskel der Ratte wahrend der Entwicklung.
Z. Zellforsch. Mikrosk. Anat.
69:
22–40,
1962.
|
303. |
Schiefer A.,
G. Meissner, and
Isenberg.
Ca2+ activation and Ca2+ inactivation of cardiac sarcoplasmic reticulum Ca2+‐release channels.
J. Physiol.
489:
337–348,
1995.
|
304. |
Schouten, V. J. A. and
H. E. D. J. ter Keurs.
The force‐frequency relationship in rat myocardium.
Pflugers Arch.
407:
14–17,
1986.
|
305. |
Seguchi, M.,
J. A. Harding, and
J. M. Jarmakani.
Developmental change in the function of sarcoplasmic reticulum.
J. Mol. Cell. Cardiol.
18:
189–195,
1986.
|
306. |
Seidler, N. W.,
I. Jona,
M. Vegh, and
A. Martonosi.
Cyclopiazonic acid is a specific inhibitor of the Ca2+‐ATPase of sarcoplasmic reticulum.
J. Biol. Chem.
264:
17816–17823,
1989.
|
307. |
Sham, J. S. K.,
L. R. Jones, and
M. Morad.
Phospholamban mediates the ã‐adrenergic‐enhanced Ca uptake in mammalian ventricular myocytes.
Am. J. Physiol.
261
(Heart Circ, Physiol. 30):
H1344–H1349,
1991.
|
308. |
Shanne, F. A. X.,
A. B. Kane,
E. E. Young, and
J. L. Farber.
Calcium dependence of toxic cell death: a final common pathway.
Science
206:
700–702,
1979.
|
309. |
Shannon, T. R. and
D. M. Bers.
Assessment of intra‐SR free [Ca] and buffering in rat heart.
Biophys. J.
73:
1524–1531,
1997.
|
310. |
Shannon, T. R.,
K. S. Ginsburg, and
D. M. Bers.
Reverse mode of the SR Ca‐pump and load‐dependent Ca decline in voltage clamped cardiac ventricular myocytes.
Biophys. J.
78:
322–333,
2000.
|
311. |
Shannon, T. R.,
K. S. Ginsburg, and
D. M. Bers.
Potentiation of fractional SR Ca release by total and free intra‐SR Ca concentration.
Biophys. J.
78:
334–343,
2000.
|
312. |
Shattock, M. J. and
D. M. Bers.
The inotropic response to hypothermia and the temperature‐dependence of ryanodine action in isolated rabbit and rat ventricular muscle: implications for E‐C coupling.
Circ. Res.
61:
761–771,
1987.
|
313. |
Shattock, M. J. and
D. M. Bers.
Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion‐selective microelectrodes.
Am. J. Physiol.
256
(Cell Physiol. 25):
C813–C822,
1989.
|
314. |
Simmerman, H. K. B.,
J. H. Collins,
J. L. Theiber,
A. D. Wegener, and
L. R. Jones.
Sequence analysis of phospholamban.
J. Biol. Chem.
261:
13333–13341,
1986.
|
315. |
Sipido, K. R.,
G. Callewaert, and
E. Carmeliet.
Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes.
Circ. Res.
76:
102–109,
1995.
|
316. |
Sipido K. R. and
W. G. Weir.
Flux of Ca2+ across the sarcoplasmic reticulum of guinea pig cardiac cells during excitation‐contraction coupling.
J. Physiol. (Lond.)
435:
605–630,
1991.
|
317. |
Sitsapesan, R.,
R. A. P. Montgomery,
K. T. MacLeod, and
A. J. Williams.
Sheep cardiac sarcoplasmic reticulum calcium‐release channels: modification of conductance and gating by temperature.
J. Physiol. (Lond.)
434:
469–488,
1991.
|
318. |
Sitsapesan R. and
A. J. Williams.
Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+‐release channel by luminal Ca2+.
J. Membr. Biol.
137:
215–226,
1994.
|
319. |
Smith, J. S.,
T. Imagawa,
J. Ma,
M. Foll,
K. P. Campbell, and
R. Coronado.
Purified ryanodine receptor from rabbit skeletal muscle is the calcium‐release channel of sarcoplasmic reticulum.
J. Gen. Physiol.
92:
1–26,
1988.
|
320. |
Smith, J. S.,
E. Rousseau, and
G. Meissner.
Calmodulin modulation of single sarcoplasmic reticulum Ca release channels from cardiac and skeletal muscle.
Circ. Res.
64:
352–359,
1989.
|
321. |
Deleted.
|
322. |
Solaro, R. J. and
F. N. Briggs.
Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle.
Circ. Res.
34:
531–540,
1974.
|
323. |
Sordahl, L. A.
Effects of magnesium, ruthenium red and the antibiotic ionophore A‐23187 on initial rates of calcium uptake and release by heart mitochondria.
Arch. Biochem. Biophys.
167:
104–115,
1975.
|
324. |
Spurgeon, H. A.,
M. D. Stern,
G. Baartz,
S. Raffaeli,
R. G. Hansford,
A Talo,
E. G. Lakatta, and
M. C. Capogrossi.
Simultaneous measurement of Ca2+, contraction and potential in cardiac myocytes.
Am. J. Physiol.
258
(Heart Circ. Physiol. 27):
H574–H586,
1990.
|
325. |
Su, J. H. and
W. G. L. Kerrick.
Effects of halothane on caffeine‐induced tension transients in functionally skinned myocardial fibers.
Pflugers Arch.
380:
29–34,
1979.
|
326. |
Sutko, J. L.,
D. M. Bers, and
J. P. Reeves.
Postrest inotropy in rabbit ventricle: Na+‐Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content.
Am. J. Physiol.
250
(Heart Circ. Physiol. 19):
H654–H661,
1986.
|
327. |
Sutko, J. L. and
J. T. Willerson.
Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat and rabbit ventricular tissues.
Circ. Res.
46:
332–343,
1980.
|
328. |
Sutko, J. L. and
J. L. Kenyon.
Ryanodine modification of cardiac muscle responses to potassium free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release.
J. Gen. Physiol.
82:
385–404,
1983.
|
329. |
Sutko, J. L.,
K. Ito, and
J. L. Kenyon.
Ryanodine: a modifier of sarcoplasmic reticulum calcium release. Biochemical and functional consequences of its actions on striated muscle.
Federation Proc.
44:
2984–2988,
1985.
|
330. |
Suzuki, T. and
J. H. Wang.
Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody.
J. Biol. Chem.
261:
7018–7023,
1986.
|
331. |
Deleted.
|
332. |
Tada, M.,
M. A. Kirchberger,
D. I. Repke, and
A. M. Katz.
The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′‐monophosphate‐dependent protein kinase.
J. Biol. Chem.
249:
6174–6180,
1974.
|
333. |
Takenaka, H.,
P. N. Adler, and
A. M. Katz.
Calcium fluxes across the membrane of sarcoplasmic reticulum vesicles.
J. Biol. Chem.
257:
12649–12656,
1982.
|
334. |
Takeshima, H.,
S. Hishimura,
T. Matsumoto,
H. Ishida,
K. Kangawa,
N. Minamino,
H. Matsuo,
M. Ueda,
M. Hanaoka,
T. Hirose, and
S. Numa.
Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.
Nature
339:
439–445,
1989.
|
335. |
Terracciano, C. M. N. and
K. T. MacLeod.
Effects of acidosis on Na+/Ca2+ exchange and consequences for relaxation in guinea pig cardiac myocytes.
Am. J. Physiol.
267
(Heart Circ. Physiol. 36):
H477–H487,
1994.
|
336. |
Terracciano, C. M. N. and
K. T. MacLeod.
Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+ content during the cardiac cycle in guinea pig and rat ventricular myocytes.
Biophys. J.
72:
1319–1326,
1997.
|
337. |
Terracciano, C. M. N. and
K. T. MacLeod.
Reloading of Ca2+‐depleted sarcoplasmic reticulum during rest in guinea pig ventricular myocytes.
Am. J. Physiol.
271
(Heart Circ. Physiol. 40):
H1814–H1822,
1996.
|
338. |
Terracciano, C. M. N.,
R. U. Naqvi, and
K. T. MacLeod.
Effects of rest interval on the release of calcium from the sarcoplasmic reticulum in isolated guinea pig ventricular myocytes.
Circ. Res.
77:
354–360,
1995.
|
339. |
Thastrup, O.,
P. J. Cullen,
B. K. Drobak,
M. R. Hanley,
A. P. Dawson.
Thapsigargin, a tumor promoter, discharges intracellular Ca stores by specific inhibition of the endoplasmic reticulum Ca‐ATPase.
Proc. Natl. Acad. Sci. U.S.A.,
87:
2466–2470,
1990.
|
340. |
Tinker A.,
A. R. G. Lindsay, and
A. J. Williams.
Cation conductance in the calcium release channel of the cardiac sarcoplasmic reticulum under physiological and pathophysiological conditions.
Cardiovasc. Res.
27:
1820–1825,
1993.
|
341. |
Toyofuku, T.,
K. Kurzydlowski,
M. Tada, and
D. H. MacLennan.
Identification of regions in the Ca2+‐ATPase of sarcoplasmic reticulum that affect functional association with phospholamban.
J. Biol. Chem.
268:
2809–2815,
1993.
|
342. |
Toyofuku T.,
K. Kurzydlowski,
N. Narayanan, and
D. H. MacLennan.
Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca2+‐ATPase that is phosphorylated by Ca2+/calmodulin dependent protein kinase.
J. Biol. Chem.
269:
26492–26496,
1994.
|
343. |
Trafford, A. W.,
M. E. Díaz,
N. Negretti, and
D. A. Eisner.
Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion.
Circ. Res.
81:
477–484,
1997.
|
344. |
Trimm, J. L.,
G. Salama, and
J. Abramson.
Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles.
J. Biol. Chem.
261:
16092–16098,
1986.
|
345. |
Tripathy A. and
G. Meissner.
Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
Biophys. J.
70:
2600–2615,
1996.
|
346. |
Tseng, G.
Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium.
Circ. Res.
63:
468–482,
1988.
|
347. |
Tsien, R. W.,
P. Hess,
E. W. McCleskey, and
R. L. Rosenberg.
Calcium channels:mechanisms of selectivity, permeation and block.
Annu. Rev. Biophys. Chem.
16:
265–290,
1987.
|
348. |
Valdivia, H. H.,
J. H. Kaplan,
G. C. R. Ellis‐Davies, and
W. J. Lederer.
Rapid adaptation of cardiac ryanodine receptors:modulation by Mg2+ and phosphorylation.
Science
267:
1997–1999,
1995.
|
349. |
Varro, A.,
N. Negretti,
S. B. Hester, and
D. A. Eisner.
An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes.
Pflugers. Arch.
423:
158–160,
1993.
|
350. |
Verma, A. K.,
A. Filoteo,
D. R. Stanford,
E. D. Wieben,
J. T. Penniston,
E. E. Strehler,
R. Fischer,
R. Heim,
G. Vogel,
S. Mathews,
M.‐A. Strehler‐Page,
P. James,
T. Vorherr,
J. Krebbs, and
E. Carafoli.
Complete primary structure of a human plasma membrane Ca2+ pump.
J. Biol. Chem.
263:
14152–14159,
1988.
|
351. |
Vercesi, A.,
B. Reynafarje, and
A. L. Lehninger.
Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transfer in rat heart mitochondria.
J. Biol. Chem.
253:
6379–6385,
1978.
|
352. |
Wagenknecht, T.,
R. Grassucci,
J. Frank,
A. Saito,
M. Inui, and
S. Fleischer.
Three‐dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum.
Nature
338:
167–170,
1989.
|
353. |
Weber, A. and
R. Herz.
The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum.
J. Gen. Physiol.
52:
750–759,
1968.
|
354. |
Weber, C.,
R. K. S. Ginsburg,
K. D. Philipson,
T. R. Shannon and
D. M. Bers.
Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes.
J. Gen. Physiol.
117:
119–131,
2001.
|
355. |
Wendt, I. R. and
D. G. Stephenson.
Effects of caffeine on Ca‐activated force production in skinned cardiac and skeletal muscle fibres of the rat.
Pflugers. Arch.
398:
210–216,
1983.
|
356. |
Wier W. G. and
C. W. Balke.
Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation‐contraction coupling in normal heart muscle.
Circ. Res.
85:
770–776,
1999.
|
357. |
Wier, W. G.,
T. M. Egan,
J. R. López‐López, and
C. W. Balke.
Local control of excitation‐contraction coupling in rat heart cells.
J. Physiol. (Lond.)
474:
463–471,
1994.
|
358. |
Williams, A. J. and
S. R. M. Holmberg.
Sulmazole (AR‐L 115BS) activates the sheep cardiac muscle sarcoplasmic reticulum calcium‐release channel in the presence and absence of calcium.
J. Membr. Biol.
115:
167–178,
1990.
|
359. |
Wohlfart, B.
Relationship between peak force, action potential duration and stimulus interval in rabbit myocardium.
Acta Physiol. Scand.
106:
395–409,
1979.
|
360. |
Wrzosek, A.,
H. Schneider,
S. Grueninger, and
M. Chiesi:
Effect of thapsigargin on cardiac muscle cells.
Cell. Calcium
13:
281–292,
1992
|
361. |
Xu A.,
C. Hawkins,
N. Narayanan.
Phosphorylation and activation of the Ca‐pumping ATPase of cardiac sarcoplasmic reticulum by Ca/calmodulin‐dependent protein kinase.
J. Biol. Chem.
268:
8394–8397,
1993.
|
362. |
Ying, W. L.,
J. Emerson,
M. J. Clarke, and
D. R. Sanadi.
Inhibition of mitochondrial calcium ion transport by oxo‐bridged dinuclear ruthenium amine complex.
Biochemistry
30:
4949–4952,
1991.
|
363. |
Yuan, W. and
D. M. Bers.
Ca‐dependent facilitation of cardiac Ca current is due to Ca‐calmodulin dependent protein kinase.
Am. J. Physiol.
267
(Heart Circ. Physiol. 36):
H982–H993,
1994.
|
364. |
Yuan, W. and
D. M. Bers.
Protein kinase inhibitor H‐89 reverses forskolin stimulation of cardiac L‐type calcium current.
Am. J. Physiol.
267
(Cell Physiol. 36):
C651–C659,
1995.
|
365. |
Yuan, W.,
K. S. Ginsburg, and
D. M. Bers.
Comparison of sarcolemmal Ca channel current in rabbit and rat ventricular myocytes.
J. Physiol. (Lond.)
493:
733–746,
1996.
|
366. |
Yue, D. T.,
D. Burkhoff,
M. R. Franz,
W. C. Hunter, and
K. Sagawa.
Postextrasystolic potentiation of the isolated canine left ventricle.
Circ. Res.
56:
340–350,
1985.
|
367. |
Yue, D. T.,
E. Marban, and
W. G. Wier.
Relationship between force and intracellular[Ca2+] in tetanized mammalian heart muscle.
J. Gen. Physiol.
87:
223–242,
1986.
|
368. |
Zhou, Z.,
M. A. Matlib, and
D. M. Bers.
Cytosolic and mitochondrial Ca2+ signals in patch clamped ventricular myocytes.
J. Physiol.
507:
379–403,
1998.
|
369. |
Zorzato, F.,
G. Salviati,
T. Facchinetti, and
P. Volpe.
Doxorubicin induces calcium release from terminal cisternae of skeletal muscle.
J. Biol. Chem.
260:
7349–7355,
1985.
|
370. |
Zorzato, F.,
J. Fujii,
K. Otsu,
M. Phillips,
N. M. Green,
F. A. Lai,
G. Meissner, and
D. H. Maclennan.
Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum.
J. Biol. Chem.
265:
2244–2256,
1990.
|
371. |
Zühlke, R. D.,
G. S. Pitt,
K. Deisseroth,
R. W. Tsien, and
H. Reuter:
Calmodulin supports both inactivation and facilitation of L‐type calcium channels.
Nature
399:
159–162,
1999.
|