References |
1. |
Winfree, A. T.
When Time Breaks Down.
Princeton, N.J.:
Princeton University Press,
1987.
|
2. |
Kucera, J. P.,
A. G. Kleber, and
S. Rohr.
Slow conduction in cardiac tissue: II. effects of branching tissue geometry.
Circ. Res.
83:
795–805,
1998.
|
3. |
Shaw, R. M., and
Y. Rudy.
Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L‐type calcium currents during reduced excitability and decreased gap junction coupling.
Circ. Res.
81:
727–741,
1997.
|
4. |
Joyner, R. W.,
F. Ramon, and
J. W. Moore.
Simulation of action potential propagation in an inhomogeneous sheet of coupled excitable cells.
Circ. Res.
36:
654–661,
1975.
|
5. |
Beeler, G. W., and
H. Reuter.
Reconstruction of the action potential of ventricular myocardial fibres.
J. Physiol. (Lond.)
268:
177–210,
1977.
|
6. |
Ebihara, L., and
E. A. Johnson.
Fast sodium current in cardiac muscle. A quantitative description.
Biophys. J.
32:
779–790,
1980.
|
7. |
Luo, C. H., and
Y. Rudy.
A model of the ventricular cardiac action potential—depolarization, repolarization, and their interaction.
Circ. Res.
68:
1501–1526,
1991.
|
8. |
Luo, C. H., and
Y. Rudy.
A dynamic model of the cardiac ventricular action potential. 1. Simulations of ionic currents and concentration changes.
Circ. Res.
74:
1071–1096,
1994.
|
9. |
Noble, D.
The development of mathematical models of the heart.
Chaos Solitons and Fractals.
5:
321–333,
1995.
|
10. |
Jack, J. J. B.,
D. Noble, and
R. W. Tsien.
Electric Current Flow in Excitable Cells.
Oxford:
Clarendon Press,
1975.
|
11. |
Hodgkin, A. L., and
W. A. H. Rushton.
The electrical constants of crustacean nerve fibers.
Proc. R. Soc. (Lond.)
B133:
444–479,
1946.
|
12. |
Weidmann, S.
The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.
J. Physiol. (Lond.)
187:
323–342,
1966.
|
13. |
Weidmann, S.
The electrical constants of Purkinje fibres.
J. Physiol. (Lond.)
118:
348–360,
1952.
|
14. |
Weidmann, S.
Electrical constants of trabecular muscle from mammalian heart.
J. Physiol. (Lond.)
210:
1041–1054,
1970.
|
15. |
Woodbury, J. W., and
W. E. Crill.
On the problem of impulse conduction in the atrium. In:
Nervous Inhibition,
edited by L. Florey.
New York:
Plenum Press,
124–135,
1961.
|
16. |
Jongsma, H. J. and
H. E. van Rijn.
Electrotonic spread of current in monolayer cultures of neonatal rat heart cells.
J. Membr. Biol.
9:
341–360,
1972.
|
17. |
Pressler, M. L.
Cable analysis in quiescent and active sheep Purkinje fibres.
J. Physiol. (Lond.)
352:
739–757,
1984.
|
18. |
Fleischhauer, J.,
L. Lehmann,
A. G. Kléber.
Electrical resistances of interstitial and microvascular space as determinants of the extracellular electrical field and velocity of propagation in ventricular myocardium.
Circulation
92:
587–594,
1995.
|
19. |
Weidmann, S.
The effect of the cardiac membrane potential on the rapid availability of the sodium‐carrying system.
J. Physiol. (Lond.)
127:
213–224,
1955.
|
20. |
Spach, M. S., and
J. M. Kootsey.
Relating the sodium current and conductance to the shape of transmembrane and extracellular potentials by simulation: effects of propagation boundaries.
IEEE Trans. Biomed. Eng.
32:
743–755,
1985.
|
21. |
Walton, M. K., and
H. A. Fozzard.
The conducted action potential: models and comparison to experiments.
Biophys. J.
44:
9–26,
1983.
|
22. |
Hodgkin A. L.
A note on conduction velocity.
J. Physiol. (Lond.)
125:
221–224,
1954.
|
23. |
Tasaki I. and
S. Hagiwara.
Capacity of muscle fiber membrane.
Am. J. Physiol.
188:
423–429,
1957.
|
24. |
Sommer, J. R., and
B. Scherer.
Geometry of cell and bundle appositions in cardiac muscle: light microscopy.
Am. J. Physiol.
248
(Heart Circ. Physiol. 17):
H792–H803,
1985.
|
25. |
Le Grice, I. J.,
B. H. Smaill,
L. Z. Chai,
S. G. Edgar,
J. B. Gavin, and
P. J. Hunter.
Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.
Am. J. Physiol.
269
(Heart Circ. Physiol. 38):
H571–H582,
1995.
|
26. |
Rudy, Y., and
W. Quan.
A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
Circ. Res.
61:
815–823,
1987.
|
27. |
Leon, L. J., and
F. A. Roberge.
Directional characteristics of action potential propagation in cardiac muscle. A model study.
Circ. Res.
69:
378–395,
1991.
|
28. |
Muller‐Borer, B. J.,
D. J. Erdman, and
J. W. Buchanan.
Electrical coupling and impulse propagation in anatomically modeled ventricular tissue.
IEEE Trans. Biomed. Eng.
41:
445–454,
1994.
|
29. |
Spach, M. S., and
J. F. Heidlage.
The stochastic nature of cardiac propagation at a microscopic level—electrical description of myocardial architecture and its application to conduction.
Circ. Res.
76:
366–380,
1995.
|
30. |
Buchanan, J. W.,
T. Saito, and
L. S. Gettes.
The effects of antiarrhythmic drugs, stimulation frequency, and potassium‐induced resting membrane potential changes on conduction velocity and dV/dtmax in guinea pig myocardium.
Circ. Res.
56:
696–703,
1985.
|
31. |
Kléber, A. G.,
C. B. Riegger, and
M. J. Janse.
Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle.
Circ. Res.
61:
271–279,
1987.
|
32. |
Kléber, A. G., and
C. B. Riegger.
Electrical constants of arterially perfused rabbit papillary muscle.
J. Physiol. (Lond.)
385:
307–324,
1987.
|
33. |
Riegger, C. B.,
G. Alperovich, and
A. G. Kléber.
Effect of oxygen withdrawal on active and passive electrical properties of arterially perfused rabbit ventricular muscle.
Circ. Res.
64:
532–541,
1989.
|
34. |
Fast, V. G.,
B. J. Darrow,
J. E. Saffitz, and
A. G. Kléber.
Anisotropic activation spread in heart cell monolayers assessed by high‐resolution optical mapping: role of tissue discontinuities.
Circ. Res.
79:
115–127,
1996.
|
35. |
Keener, J. P.
A geometrical theory for spiral waves in excitable media.
SIAM J. Appl. Math.
46:
1039–1056,
1986.
|
36. |
Zykov, V. S., and
O. L. Morozova.
Speed of spread of excitation in two‐dimensional excitable medium.
Biofizika
24:
739–744,
1979.
|
37. |
Zykov, V. S.
Analytical evaluation of the dependence of the speed of an excitation wave in a two‐dimensional excitable medium on the curvature of its front.
Biophysics
25:
906–911,
1980.
|
38. |
Zykov, V. S.
Simulation of Wave Processes in Excitable Media.
Manchester, England:
Manchester University Press,
1987.
|
39. |
Knisley, S. B., and
B. C. Hill.
Effects of bipolar point and line stimulation in anisotropic rabbit epicardium: assessment of the critical radius of curvature for longitudinal block.
IEEE Trans. Biomed. Eng.
42:
957–966,
1995.
|
40. |
Noble, D.
The relation of Rushton “liminal length” for excitation to the resting and active conductances of excitable cells.
J. Physiol. (Lond.)
226:
573–591,
1972.
|
41. |
Fozzard, H. A., and
M. Schoenberg.
Strength‐duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution.
J. Physiol. (Lond.)
226:
593–618,
1972.
|
42. |
Rushton, W. A. H.
Initiation of the propagated disturbance.
Proc. R. Soc.
B124:
210,
1937.
|
43. |
Lindemans, F. W., and
J. J. D. van der Gon.
Current thresholds and liminal size in excitations of heart muscle.
Cardiovasc. Res.
12:
477–485,
1978.
|
44. |
Ramza, B. M.,
R. W. Joyner,
R. C. Tan, and
T. Osaka.
Cellular mechanism of the functional refractory period in ventricular muscle.
Circ. Res.
66:
147–162,
1990.
|
45. |
Lindemans, F. W., and
A. N. E. Zimmerman.
Acute voltage, charge, and energy thresholds as functions of electrode size for electrical stimulation of the canine heart.
Cardiovasc. Res.
13:
383–391,
1979.
|
46. |
Winfree, A. T.
The electrical thresholds of ventricular myocardium.
J. Cardiovasc. Electrophysiol.
1:
393–410,
1990.
|
47. |
Hoyt, R. H.,
M. L. Cohen, and
J. E. Saffitz.
Distribution and three‐dimensional structure of intercellular junctions in canine myocardium.
Circ. Res.
64:
563–574,
1989.
|
48. |
Saffitz, J. E.,
H. L. Kanter,
K. G. Green,
T. K. Tolley, and
E. C. Beyer.
Tissue‐specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.
Circ. Res.
74:
1065–1070,
1994.
|
49. |
Luke, R., and
J. Saffitz.
Remodelling of ventricular conduction pathways in healed canine infarct border zones.
J. Clin. Invest.
87:
1594–1602,
1991.
|
50. |
Saffitz, J. E.,
M. D. Lloyd,
B. J. Darrow,
H. L. Kanter,
J. G. Laing, and
E. C. Beyer.
The molecular basis of anisotropy: role of gap junctions.
J. Cardiovasc. Electrophysiol.
6:
498–510,
1995.
|
51. |
Davis, L. M.,
H. L. Kanter,
E. C. Beyer, and
J. E. Saffitz.
Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties.
J. Am. Coll. Cardiol.
24:
1124–1132,
1994.
|
52. |
Kanter, H.,
J. Saffitz, and
E. Beyer.
Cardiac myocytes express multiple gap junction proteins.
Circ. Res.
70:
438–444,
1992.
|
53. |
Gourdie, R.,
C. Green,
N. Severs, and
R. Thompson.
Immuno‐labelling patterns of gap junction connexins in the developing and mature rat heart.
Anat. Embryol.
185:
163–178,
1992.
|
54. |
Oosthoek, P. W.,
S. Viragh,
A. E. M. Mayen,
M. J. A. Vankempen,
W. H. Lamers, and
A. F. M. Moorman.
Immunohistochemical delineation of the conduction system: 1. The sinoatrial node.
Circ. Res.
73:
473–481,
1993.
|
55. |
Oosthoek, P. W.,
S. Viragh,
W. H. Lamers, and
A. F. M. Moorman.
Immunohistochemical delineation of the conduction system. 2. The atrioventricular node and Purkinje fibers.
Circ. Res.
73:
482–491,
1993.
|
56. |
Van Kempen, M. J. A.,
C. Fromaget,
D. Gros,
A. F. M. Moorman, and
W. H. Lamers.
Spatial distribution of connexin‐43, the major cardiac gap junction protein‐in the developing and adult rat heart.
Circ. Res.
68:
1638–1651,
1991.
|
57. |
Anumonwo, J. M. B.,
H. Z. Wang,
E. Trabkajanik,
B. Dunham,
R. D. Veenstra,
M. Delmar, and
J. Jalife.
Gap junctional channels in adult mammalian sinus nodal cells—immunolocalization and electrophysiology.
Circ. Res.
71:
229–239,
1992.
|
58. |
Trabka, Janik E.,
W. Coombs,
L. F. Lemanski,
M. Delmar, and
J. Jalife.
Immunohistochemical localization of gap junction protein channels in hamster sinoatrial node in correlation with electrophysiologic mapping of the pacemaker region.
J. Cardiovasc. Electrophysiol.
5:
125–137,
1994.
|
59. |
Opthof, T.
Gap junctions in the sino‐atrial node: immunohistochemical localization and correlation with activation pattern.
J. Cardiovasc. Electrophysiol.
5:
138–143,
1994.
|
60. |
Kwong, K. F.,
R. B. Schuessler,
K. G. Green,
J. G. Laing,
E. C. Beyer,
J. P. Boineau, and
J. E. Saffitz.
Differential expression of gap junction proteins in the canine sinus node.
Circ Res.
82:
604–612,
1998.
|
61. |
Chen, S.,
L. M. Davis,
L. M. Westphale,
E. C. Beyer, and
J. E. Saffitz.
Expression of multiple gap junction proteins in human fetal and infant heart.
Pediatr. Res.
36:
561–566,
1994.
|
62. |
Bastide, B.,
L. Neyses,
D. Ganten,
M. Paul, and
K. Willecke.
Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of the rat myocardium and is increased under hypertensive conditions.
Circ. Res.
73:
1138–1149,
1993.
|
63. |
Gros, D.,
T. Jarryguichard,
I. Tenvelde,
A. De Maziere,
M. J. A. Van Kempen,
J. Davoust,
J. P. Briand,
A. F. M. Moorman, and
H. J. Jongsma.
Restricted distribution of connexin40, a gap junctional protein, in mammalian heart.
Circ. Res.
74:
839–851,
1994.
|
64. |
Dolber, P. C.,
E. C. Beyer,
J. L. Junker, and
M. S. Spach.
Distribution of gap junctions in dog and rat ventricle studied with a double‐label technique.
J. Mol. Cell. Cardiol.
24:
1443–1457,
1992.
|
65. |
Smith, J. H.,
C. R. Green,
N. S. Peters,
S. Rothery, and
N. J. Severs.
Altered patterns of gap junction distribution in ischemic heart disease—an immunohistochemical study of human myocardium using laser scanning confocal microscopy.
Am. J. Pathol.
139:
801–821,
1991.
|
66. |
Peters, N. S.
New insights into myocardial arrhythmogenesis: distribution of gap‐junctional coupling in normal, ischaemic and hypertrophied human hearts.
Clin. Sci.
90:
447–452,
1996.
|
67. |
Darrow, B. J.,
V. G. Fast,
A. G. Kléber,
E. C. Beyer, and
J. E. Saffitz.
Functional and structural assessment of intercellular communication: increased conduction velocity and enhanced connexin expression in dibutyryl cAMP‐treated cultured cardiac myocytes.
Circ. Res.
79:
174–183,
1996.
|
68. |
Zhuang, J.,
K. A. Yamada,
J. E. Saffitz, and
A. K. Kléber.
Pulsatile stretch remodels cell‐to‐cell communication in cultured myocytes.
Circ. Res.
87:
316–322,
2000.
|
69. |
Joyner, R. W.
Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium.
Circ. Res.
50:
192–200,
1982.
|
70. |
Spach, M. S.,
R. C. Barr,
G. S. Serwer,
E. A. Johnson, and
J. M. Kootsey.
Collision of excitation waves in the dog Purkinje system: extracellular identification.
Circ. Res.
24:
499–511,
1971.
|
71. |
Joyner, R. W.,
R. Veenstra,
D. Rawling, and
A. Chorro.
Propagation through electrically coupled cells. Effects of a resistive barrier.
Biophys. J.
45:
1017–1025,
1984.
|
72. |
Fast, V. G., and
A. G. Kléber.
Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
Cardiovasc. Res.
29:
697–707,
1995.
|
73. |
Fast, V. G., and
A. G. Kléber.
Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2‐ and 3‐dimensional computer models.
Cardiovasc. Res.
30:
449–459,
1995.
|
74. |
Spach, M. S, and
M. E. Josephson.
Initiating reentry: the role of nonuniform anisotropy in small circuits.
J. Cardiovasc. Electrophysiol.
5:
182–209,
1994.
|
75. |
Henriquez, C. S., and
R. Plonsey.
Effects of resistive discontinuities on waveshape and velocity in a single cardiac fibre.
Med. Biol. Eng. Comput.
25:
428–438,
1987.
|
76. |
Tan, R. C., and
R. W. Joyner.
Electrotonic influences on action potentials from isolated ventricular cells.
Circ. Res.
67:
1071–1081,
1990.
|
77. |
Joyner, R. W.,
H. Sugiura, and
R. C. Tan.
Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance.
Biophys. J.
60:
1038–1045,
1991.
|
78. |
Sugiura, H., and
R. W. Joyner.
Action potential conduction between guinea pig ventricular cells can be modulated by calcium current.
Am. J. Physiol.
263
(Heart Circ. Physiol. 32):
H1591–H1604,
1992.
|
79. |
Kumar, R. R., and
R. W. Joyner.
Calcium currents of ventricular cell pairs during action potential conduction.
Am. J. Physiol.
268
(Heart Circ. Physiol. 37):
H2476–H2486,
1995.
|
80. |
Rohr, S.,
A. G. Kléber, and
J. P. Kucera.
Induction of very slow and discontinuous conduction by palmitoleic acid in linear strands of rat ventricular myocytes.
Biophys. J.
70:
A279,
1996.
|
81. |
Rudy, Y., and
W. Quan.
Propagation delays across cardiac gap junctions and their reflection in extracellular potentials: a simulation study.
J. Cardiovasc. Electrophys.
2:
299–315,
1991.
|
82. |
Rohr, S., and
B. M. Salzberg.
Discontinuities in action potential propagation along chains of single ventricular myocytes in culture : multiple site optical recording of transmembrane voltage (MSORTV) suggests propagation delays at the junctional sites between cells.
Biol. Bull. Mar. Biol. Lab.
183:
342–343,
1992.
|
83. |
Fast, V. G., and
A. G. Kléber.
Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage‐sensitive dyes.
Circ. Res.
73:
914–925,
1993.
|
84. |
Purdy, J. E.,
M. Lieberman,
A. E. Roggeveen, and
R. G. Kirk.
Synthetic strands of cardiac muscle. Formation and ultrastructure.
J. Cell Biol.
55:
563–578,
1972.
|
85. |
Lieberman, M.,
A. E. Roggeveen,
J. E. Purdy, and
E. A. Johnson.
Synthetic strands of cardiac muscle: growth and physiological implication.
Science.
175:
909–911,
1972.
|
86. |
Horres, C. R.,
M. Lieberman, and
J. E. Purdy.
Growth orientation of heart cells on nylon monofilament: determination of the volume‐to‐surface ratio and intracellular potassium concentration.
J. Membr. Biol.
34:
313–329,
1977.
|
87. |
Rohr, S.,
D. M. Schölly, and
A. G. Kléber.
Patterned growth of neonatal rat heart cells in culture: morphological and electrophysiological characterization.
Circ. Res.
68:
114–130,
1991.
|
88. |
Rohr, S.
Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multisite optical mapping of transmembrane voltage.
J. Cardiovasc. Electrophysiol.
6:
551–568,
1995.
|
89. |
Buchanan, J. W., and
L. S. Gettes.
Ionic environment and propagation. In:
Cardiac Electrophysiology: From Cell to Bedside,
edited by D. P. Zipes and
J. Jalife,
F. L.
Orlando:
W. B. Saunders;
149–156,
1990.
|
90. |
Clerc, L.
Directional differences of impulse spread in trabecular muscle from mammalian heart.
J. Physiol. (Lond.)
255:
335–346,
1976.
|
91. |
Spach, M. S.,
J. F. Heidlage,
P. C. Dolber, and
R. C. Barr.
Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth.
Circ. Res.
86:
302–311,
2000.
|
92. |
Spach, M. S., and
J. M. Kootsey.
The nature of electrical propagation in cardiac muscle.
Am. J. Physiol.
244
(Heart Circ. Physiol. 13):
H3–H22,
1983.
|
93. |
Spach, M. S.,
W. T. I. Miller,
D. B. Gezelowitz,
R. C. Barr,
J. M. Kootsey, and
E. A. Johnson.
The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuties of intracellular resistance that affect the membrane currents.
Circ. Res.
48:
39–54,
1981.
|
94. |
Spach, M. S., and
P. C. Dolber.
Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side‐to‐side fiber connections with increasing age.
Circ. Res.
58:
356–371,
1986.
|
95. |
Spach, M. S.,
P. C. Dolber, and
J. F. Heidlage.
Properties of discontinuous anisotropic propagation at a microscopic level.
Ann. N.Y. Acad. Sci.
591:
62–74,
1990.
|
96. |
Cole, W. C.,
J. B. Picone, and
N. Sperelakis.
Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulation.
Biophys. J.
53:
809–818,
1988.
|
97. |
Fast, V. G., and
A. G. Kléber.
Anisotropic conduction in monolayers of neonatal rat heart cells cultured on collagen substrate.
Circ. Res.
75:
591–595,
1994.
|
98. |
Spach, M. S.,
J. F. Heidlage,
E. D. Darken,
E. Hofer,
K. H. Raines, and
C. F. Starmer.
Cellular dV/dtmax reflects both membrane properties and the load presented by ajoining cells.
Am. J. Physiol.
263
(Heart Circ. Physiol. 32):
H1885–H1863,
1992.
|
99. |
Mays, D. J.,
J. M. Foose,
L. H. Philipson, and
M. M. Tamkun.
Localization of the Kv1.5 K+ channel in explanted cardiac tissue.
J. Clin. Invest.
96:
282–292,
1995.
|
100. |
Rohr, S.,
R. Flückiger, and
S. Cohen.
Immunocytochemical localization of sodium and calcium channels in cultured neonatal rat ventricular myocytes.
Biophys J.
76:
A366,
1999
(abstract).
|
101. |
Petrecca, K.,
F. Amellal,
D. W. Laird,
S. A. Cohen, and
A. Shrier.
Sodium channel distribution within the rabbit atrioventricular node as analysed by confocal microscopy.
J Physiol (Lond.)
501:
263–274,
1997.
|
102. |
Cohen, S. A.
Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks.
Circulation
94:
3083–3086,
1996.
|
103. |
Kadish, A. H.,
J. F. Spear,
J. H. Levine, and
E. N. Moore.
The effects of procainamide on conduction in anisotropic canine ventricular myocardium.
Circulation
74:
616–625,
1986.
|
104. |
Delgado, C.,
B. Steinhaus,
M. Delmar,
D. R. Chialvo, and
J. Jalife.
Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle.
Circ. Res.
67:
97–110,
1990.
|
105. |
Roberts, D. E.,
L. T. Hersh, and
A. M. Scher.
Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog.
Circ. Res.
44:
701–712,
1979.
|
106. |
Vander Ark, C. R., and
E. W. Reynolds.
An experimental study of propagated electrical activity in the canine heart.
Circ. Res.
26:
451–460,
1970.
|
107. |
Suenson, M.
Interaction between ventricular cells during the early part of excitation in the ferret heart.
Acta Physiol. Scand.
125:
81–90,
1985.
|
108. |
Roth, B. J.
Action potential propagation in a thick strand of cardiac muscle.
Circ. Res.
68:
162–173,
1991.
|
109. |
Henriquez, C. S.,
A. L. Muzikant, and
C. K. Smoak.
Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three‐dimensional bidomain model.
J. Cardiovasc. Electrophysiol.
7:
424–444,
1996.
|
110. |
Henriquez, C. S.
Structure and volume conductor effects on propagation in cardiac tissue. In:
Durham, North Carolina, USA:
Department of Biomedical Engeneering, Duke University;
1988.
|
111. |
Roth, B. J.
The effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue.
Ann. Biomed. Eng.
24:
639–646,
1996.
|
112. |
Sepulveda, N. G.,
B. J. Roth, and
J. P. Wikswo.
Current injection into a two‐dimensional anisotropic bidomain.
Biophys. J.
55:
987–999,
1989.
|
113. |
Wikswo, J. P.,
T. A. Wisialowski,
W. A. Altemeier,
J. R. Balser,
H. A. Kopelman, and
D. M. Roden.
Virtual electrode effects during stimulation of cardiac muscle. Two‐dimensional in vivo experiments.
Circ. Res.
68:
513–530,
1991.
|
114. |
Wikswo, J. P.,
S.‐F. Lin, and
R. A. Abbas.
Virtual electrode effect in cardiac tissue: a common mechanism for anodal and cathodal stimulation.
Biophys. J.
69:
2195–2210,
1995.
|
115. |
Knisley, S. B.
Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
Circ. Res.
77:
1229–1239,
1995.
|
116. |
Neunlist, M., and
L. Tung.
Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode.
PACE
17:
1641–1654,
1994.
|
117. |
Wikswo, J. P.
Tissue ansiotropy, the cardiac bidomain, and the virtual cathode effect. In:
Cardiac Electrophysiology: From Cell to Bedside,
edited by D. Zipes and
J. Jalife.
Orlando, FL:
W. B. Saunders;
348–361,
1990.
|
118. |
Plonsey, R.,
C. Henriquez, and
N. Trayanova.
Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology.
Med. Biol. Eng. Comp.
26:
126–129,
1987.
|
119. |
Henriquez, C. S.
Simulating the electrical behavior of cardiac tissue using the bidomain model.
Crit. Rev. Biomed. Eng.
21:
1–77,
1993.
|
120. |
Wu, J.
The anatomical basis of anisotropic propagation in cardiac muscle. In:
Durham, North Carolina, USA:
Department of Biomedical Engineering, Duke University,
1993.
|
121. |
Spach, M. S.,
J. F. Heidlage,
P. C. Dolber, and
R. C. Barr.
Extracellular discontinuities in cardiac muscle: evidence for capillary effects on the action potential foot.
Circ. Res.
83:
1144–1164,
1998.
|
122. |
Spach, M. S., and
R. C. Barr.
Effects of cardiac microstructure on propagating electrical waveforms. [In Process Citation].
Circ. Res.
86:
E23–E28,
2000.
|
123. |
Keith, A., and
M. Flack.
The form and nature of the muscular connections between the primary dividions of the vertebrate heart.
J. Anat. Physiol.
41:
172–189,
1907.
|
124. |
Tranum‐Jensen, J.
The fine structure of the sinus node: a survey. In:
The sinus node,
edited by F. J. M. Bonke.
The Hague:
Nijhoff;
149–165,
1978.
|
125. |
Masson‐Pévet, M.,
W. K. Bleeker,
A. J. C. Mackaay,
L. N. Bouman, and
J. M. Houtkooper.
Sinus node and atrial cells from the rabbit heart: a quantitative electron microscopic description after electrophysiological localization.
J. Mol. Cell. Cardiol.
11:
555–568,
1979.
|
126. |
Bleeker, W. K.,
A. J. Mackaay,
M. Masson‐Pévet,
L. N. Bouman, and
A. E. Becker.
Functional and morphological organization of the rabbit sinus node.
Circ. Res.
46:
11–22,
1980.
|
127. |
Opthof, T.
The mammalian sinoatrial node.
Cardiovasc. Drugs Ther.
1:
573–597,
1988.
|
128. |
James, T. N.
The sinus node.
Am. J. Cardiol.
40:
965–986,
1977.
|
129. |
Opthof, T.,
B. de Jonge,
A. J. Mackaay,
W. K. Bleeker,
M. Masson‐Pévet,
H. J. Jongsma, and
L. N. Bouman.
Functional and morphological organization of the guinea‐pig sinoatrial node compared with the rabbit sinoatrial node.
J. Mol. Cell Cardiol.
17:
549–564,
1985.
|
130. |
Opthof, T.,
B. de Jonge,
M. Masson‐Pévet,
H. J. Jongsma, and
L. N. Bouman.
Functional and morphological organization of the cat sinoatrial node.
J. Mol. Cell Cardiol.
18:
1015–1031,
1986.
|
131. |
Opthof, T.,
B. de Jonge,
H. J. Jongsma, and
L. N. Bouman.
Functional morphology of the pig sinoatrial node.
J. Mol. Cell Cardiol.
19:
1221–1236,
1987.
|
132. |
Davies, M. J.
Pathology of atrial arrhythmias. In:
M. J. Davies,
R. H. Anderson, and
A. E. Becker eds.
The Conduction System of the Heart.
London:
Butterworths;
203–215,
1983.
|
133. |
Alings, A. M. W.
The aging sino‐atrial node. In:
University of Amsterdam.
Amsterdam, The Netherlands:
University of Amsterdam;
1993.
|
134. |
Wybauw, R.
Sur le point d'origine de la systole cardiaque dans l'oreillette droite.
Arch. Int. Physiol.
10:
78–89,
1910.
|
135. |
Lewis, T.,
B. S. Oppenheimer, and
A. Oppenheimer.
The site of origin of the mammalian heart beat: the pacemaker in the dog heart.
Heart
2:
147–169,
1910.
|
136. |
Trautwein, W., and
K. Zink.
Ueber Membran‐und Aktionspotentiale einzelner Muskelfasern des Kalt‐und Warmblüterherzens.
Pflugers Arch.
256:
68–84,
1952.
|
137. |
West, T. C.
Ultramicroelectrode recording from the cardiac pacemaker.
J. Pharmacol. Exp. Ther.
115:
283–290,
1955.
|
138. |
Yanagihara, K., and
H. Irisawa.
Inward current activated during hyperpolarization in the rabbit sinoatrial node cell.
Pflugers Arch.
385:
11–19,
1980.
|
139. |
DiFrancesco, D., and
C. Ojeda.
Properties of the current if in the sino‐atrial node of the rabbit compared with those of the current iK, in Purkinje fibres.
J. Physiol. (Lond.)
308:
353–367,
1980.
|
140. |
Reuter, H.
Ion channels in cardiac cell membranes.
Annu. Rev. Physiol.
46:
473–484,
1984.
|
141. |
DiFrancesco, D.,
A. Ferroni,
M. Mazzanti, and
C. Tromba.
Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node.
J. Physiol. (Lond.)
377:
61–88,
1986.
|
142. |
Trautwein, W., and
K. Uchizono.
Electrophysiologic study of the pacemaker in the sino‐atrial node of the rabbit heart.
Z. Zellforsch.
61:
96–109,
1963.
|
143. |
Janse, M. J.,
J. Tranum‐Jensen,
A. G. Kléber, and
F. J. L. Van Cappelle.
Techniques and problems in correlating cellular electrophysiology and morphology in cardiac nodal tissue. In:
The Sinus Node,
edited by F. J. M. Bonke.
The Hague:
Nijhoff;
183–194,
1978.
|
144. |
Sano, T., and
S. Yamagishi.
Spread of excitation from the sinus node.
Circ. Res.
16:
423–431,
1965.
|
145. |
Steinbeck, G.,
M. A. Allessie,
F. I. M. Bonke, and
W. E. J. P. Lammers.
The response of the sinus node to premature stimulation of the atrium studied with microelectrodes in isolated atrial preparations of the rabbit heart. In:
The Sinus Node,
edited by F. I. M. Bonke.
The Hague:
Nijhoff;
245–257,
1978.
|
146. |
Bouman, L. N.,
A. J. C. Mackaay,
W. K. Bleeker, and
A. E. Becker.
Pacemaker shifts in the sinus node. Effects of vagal stimulation, temperature and reduction of extracellular calcium. In:
The Sinus Node,
edited by F. I. M. Bonke.
The Hague:
Nijhoff;
245–257,
1978.
|
147. |
Bouman, L. N., and
H. J. Jongsma.
Structure and function of the SA node: a review.
Europ. Heart J.
7:
94–104,
1986.
|
148. |
Noble, D.
Discussion on models of entrainment of cardiac cells by R. L. de Haan. In:
Cardiac Rate and Rhythm,
edited by L. N. Bouman and
H. J. Jongsma.
The Hague, Boston, New York:
Martinus Nijhoff Publishers;
359–361,
1982.
|
149. |
Rook, M. B.,
B. de Jonge, and
H. L. Jongsma.
Gap junction formation and functional intercation between neonatal rat cardiocytes in culture.
J. Membr. Biol.
118:
179–192,
1990.
|
150. |
Kodama, I., and
M. R. Boyett.
Regional differences in the electrical activity of the rabbit sinus node.
Pflugers Arch.
404:
214–226,
1985.
|
151. |
Kirchhof, C. J.,
F. I. M. Bonke,
M. A. Allessie, and
W. E. J. P. Lammers.
The influence of the atrial myocardium on impulse formation in the rabbit sinus node.
Pflugers Arch.
410:
198–203,
1987.
|
152. |
Joyner, R. W., and
F. J. L. van Capelle.
Propagation through electrically coupled cells. How a small SA node drives a large atrium.
Biophys. J.
50:
1157–1164,
1986.
|
153. |
Optho, T.,
W. K. Bleeker,
M. Masson‐Pévet,
H. J. Jongsma, and
L. N. Bouman.
Little‐excitable transitional cells in the rabbit sinoatrial node: a statistical, morphological and electrophysiological study.
Experientia
39:
1099–1101,
1983.
|
154. |
Meek, W. J., and
J. A. E. Eyster.
Experiments on the origin and propagation of the impulse in the heart. IV. The effect of vagal stimulation and cooling on the location of the pacemaker within the sino‐atrial node.
Am. J. Physiol.
34:
368–383,
1914.
|
155. |
Bouman, L. N.,
E. D. Gerlings,
P. A. Biersteker, and
F. I. M. Bonke.
Pacemaker shift in the sino‐atrial node during vagal stimulation.
Pflugers Arch.
302:
255–267,
1968.
|
156. |
Mackaay, A. J. C.,
T. Opthof,
W. K. Bleeker,
H. J. Jongsma, and
L. N. Bouman.
Interaction of adrenaline and acetylcholine on sinus node function. In:
Cardiac Rate and Rhythm,
edited by L. N. Bouman and
H. J. Jongsma.
The Hague:
Nijhoff;
507–523,
1982.
|
157. |
Cramer, M.,
M. Siegal,
J. T. J. Bigger, and
B. F. Hoffman.
Characteristics of extracellular potentials recorded from the sinoatrial pacemaker of the rabbit.
Circ. Res.
41:
292–300,
1977.
|
158. |
Cramer, M.,
R. J. Hariman,
R. Boxer, and
B. F. Hoffman.
Electrograms from the canine sinoatrial pacemaker recorded in vitro and in situ.
Am. J. Cardiol.
42:
939–946,
1978.
|
159. |
Hariman, R. J.,
B. F. Hoffman, and
R. E. Naylor.
Electrical activity from the sinus node region in conscious dogs.
Circ. Res.
47:
775–791,
1980.
|
160. |
Hariman, R. J.,
E. Krongrad,
R. A. Boxer,
F. O. Bowman,
J. R. Malm, and
B. F. Hoffman.
Methods for recording electrograms from the sino‐atrial node during cardiac surgery in man.
Circulation
61:
1024–1029,
1980.
|
161. |
Rijlant, P.
The pacemaker of the mammalian heart.
J. Physiol. (Lond.)
75:
28P–29P,
1932.
|
162. |
Van der Kooi, M. W.,
D. Durrer,
R. T. Van Dam, and
L. H. Van der Tweel.
Electrical activity in the sinus node and atrioventricular node.
Am. Heart J.
51:
684–700,
1956.
|
163. |
Masuda, M. O., and
A. Paes de Carvalho.
Sinoatrial transmission and atrial invasion during normal rhythm in the rabbit heart.
Circ. Res.
37:
414–421,
1975.
|
164. |
Boineau, J. P.,
R. B. Schuessler,
C. R. Mooney,
A. C. Wylds,
C. B. Miller,
R. D. Hudson,
J. M. Borremans, and
C. W. Brockus.
Multicentric origin of the atrial depolarization wave: the pacemaker complex. Relation to dynamics of atrial conduction, P‐wave changes and heart rate control.
Circulation
58:
1036–1048,
1978.
|
165. |
Boineau, J. P.,
C. B. Miller,
R. B. Schuessler,
W. R. Roeske,
L. J. Autry,
A. C. Wylds, and
D. A. Hill.
Activation sequence and potential distribution maps demonstrating multicentric atrial impulse origin in dogs.
Circ. Res.
54:
332–347,
1984.
|
166. |
Schuessler, R. B.,
J. P. Boineau, and
B. I. Bromberg.
Origin of the sinus impulse.
J. Cardiovasc. Electrophysiol.
7:
263–274,
1996.
|
167. |
Lewis T.
Lectures on the Heart:
New York:
Paul H. Hoeber,
London:
Shaw and Sons,
1915.
|
168. |
Rothberger, C. G., and
D. Scherf.
Zur Kenntnis der Erregungsausbreitung vom Sinusknoten auf den Vorhof.
Z. Ges. Exp. Med.
53:
792–835,
1926.
|
169. |
Puech, P.,
M. Esclavissat,
D. Sodi‐Pallares, and
F. Cineros.
Normal auricular activation in the dog's heart.
Am. Heart J.
47:
174–191,
1954.
|
170. |
Yamada, K.,
M. Horiba,
Y. Sakaida,
M. Okajima,
H. Horibe,
H. Muraki,
T. Kobayashi,
A. Miyauchi,
H. Oishi,
A. Nonogawa,
K. Ishikawa, and
J. Toyama.
Origination and transmission of impulse in the right auricle.
Jpn. Heart J.
6:
71–97,
1965.
|
171. |
Spach, M. S.,
T. D. King,
R. C. Barr,
D. E. Boaz,
M. N. Morrow, and
S. Herman‐Giddens.
Electrical potential distribution surrounding the atria during depolarization and repolarization in the dog.
Circ. Res.
24:
857–873,
1969.
|
172. |
Hamlin, R. L.,
D. L. Smetzer,
T. Senta, and
C. R. Smith.
Atrial activation paths and P waves in horses.
Am. J. Physiol.
219:
306–313,
1970.
|
173. |
Durrer, D.,
R. T. Van Dam,
G. E. Freud,
M. J. Janse,
F. L. Meijler, and
R. C. Arzbaecher.
Total excitation of the isolated humane heart.
Circulation
41:
895–912,
1970.
|
174. |
Goodman, D.,
A. B. M. van der Steen, and
R. T. van Dam.
Endocardial and epicardial activation pathways of the canine right atrium.
Am. J. Physiol.
220:
1–11,
1971.
|
175. |
Spach, M. S.,
M. Lieberman,
J. G. Scott,
R. C. Barr,
E. A. Johnson, and
J. M. Kootsey.
Excitation sequences of the atrial septum and the AV node in isolated hearts of the dog and rabbit.
Circ. Res.
29:
156–172,
1971.
|
176. |
Janse, M. J., and
R. H. Anderson.
Specialized internodal atrial pathways: fact or fiction?.
Eur. J. Cardiol.
2:
117–136,
1974.
|
177. |
Wittig, J. H.,
M. R. de Leval, and
G. Stark.
Intraoperative mapping of atrial activation before, during and after the Mustard operation.
J. Thorac. Cardiovasc. Surg.
73:
1–13,
1977.
|
178. |
Sherf, L., and
T. N. James.
Fine structure of cells and their histologic organization within internodal pathways of the heart: clinical and electrocardiographic implications.
Am. J. Cardiol.
44:
345–369,
1979.
|
179. |
Tranum‐Jensen, J., and
M. J. Janse.
Fine structural identification of individual cells subjected to microelectrode recording in perfused cardiac preparations.
J. Mol. Cell. Cardiol.
14:
233–247,
1982.
|
180. |
Moore, E. N.,
S. L. Jomain,
J. H. Stuckey,
J. W. Buchanan, and
B. F. Hoffman.
Studies on ectopic atrial rhythms in dogs.
Am. J. Cardiol.
19:
676–685,
1967.
|
181. |
Moore, E. N.,
J. Melbin,
J. F. Spear, and
J. D. Hill.
Sequence of atrial excitation in the dog during antegrade and retrograde activation.
J. Electrocardiol.
4:
283–290,
1971.
|
182. |
Waldo, A. L.,
K. J. Vittikainen, and
B. F. Hoffman.
The sequence of retrograde atrial activation in the canine heart: correlation with positive and negative retrograde p waves.
Circ. Res.
37:
156–163,
1975.
|
183. |
Janse, M. J.,
R. H. Anderson,
M. A. McGuire, and
S. Y. Ho.
“AV‐nodal” reentry: Part I: “AV‐nodal” reentry revisited.
J. Cardiovasc. Electrophysiol.
4:
561–572,
1993.
|
184. |
Scherf, D., and
J. Cohen.
The Atrioventricular Node and Selected Cardiac Arrhythmias.
New York:
Grune and Stratton;
1964.
|
185. |
Tawara, S.
Das Reizleitungssystem des Säugetierherzens.
Eine anatomisch‐histologissche Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden.
Jena:
Fischer;
1906.
|
186. |
Anderson, R. H.
Histologic and histochemical evidence concerning the presence of morphologically distinct cellular zones within the rabbit atrioventricular node.
Anat. Rec.
173:
7–23,
1972.
|
187. |
Woods, W. T.,
L. Sherf, and
T. N. James.
Structure and function of specific regions in the canine atrioventricular node.
Am. J. Physiol.
243
(Heart Circ. Physiol. 12):
H41–H50,
1982.
|
188. |
Paes de Carvalho, A. and
D. F. de Almeida.
Spread of activity through the atrioventricular node.
Circ. Res.
8:
801–809,
1960.
|
189. |
Becker, A. E., and
R. H. Anderson.
Morphologyy of the human atrioventricular junctional area. In:
H. J. J. Wellens,
K. I. Lie
M. J. Janse, eds.
The Conduction System of the Heart: Structure, Function and Clinical Implication,
edited by H. J. J. Wellens,
K. I. Lie, and
M. J. Janse.
Philadelphia:
Lea and Febiger;
263–286,
1976.
|
190. |
Kawamura, K., and
T. N. James.
Comparative ultrastructure of cellular junctions in working myocardium and the conduction system under normal and pathological conditions.
J. Mol. Cell. Cardiol.
3:
31–60,
1972.
|
191. |
Marino, T. A.
The atrioventricular bundle in the ferret heart. A light and quantitative electron microscopic study.
Am. J. Anat.
154:
365–392,
1979.
|
192. |
Thaemert, J. C.
Fine structure of the atrioventricular node as viewed in serial sections.
Am. J. Anat.
136:
43–66,
1973.
|
193. |
Billette, J.
Atrioventricular nodal activation during premature stimulation of the atrium.
Am. J. Physiol.
252
(Heart Circ. Physiol. 21):
H163–H177,
1987.
|
194. |
Anderson, R. H.,
M. J. Janse,
F. J. L. Van Capelle
Billette, J.,
A. E. Becker, and
D. Durrer.
A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart.
Circ. Res.
35:
909–922,
1974.
|
195. |
Nagata, F.
An experimental study on the conduction of excitation in the A‐V nodal region.
Jpn. Circ. J.
30:
1507–1527,
1966.
|
196. |
Takayasu, M.,
Y. Tateishi,
H. Tamai,
J. Kanazu,
T. Nagata, and
K. Kawamura.
Conduction of excitation in the A‐V nodal region. In:
T. Sano,
V. Mizuhira, and
K. Matsuda, eds.
Electrophysiology and Ultrastructure of the Heart, edited by
J. Jans,
V. Mizuhira, and
K. Matsuda.
New York:
Grune and Stratton;
143–152,
1967.
|
197. |
McGuire, M. A.,
J. M. T. De Bakker,
J. T. Vermeulen,
A. F. Moorman,
P. Loh,
B. Thibault,
J. L. M. Vermeulen,
A. E. Becker, and
M. J. Janse.
Atrioventricular junctional tissue. Discrepancy between histological and electrophysiological characteristics.
Circulation
94:
571–577,
1996.
|
198. |
McGuire, M. A.,
J. M. T. De Bakker,
J. T. Vermeulen,
T. Opthof,
A. E. Becker, and
M. J. Janse.
Origin and significance of double potentials near the atrioventricular node. Correlation of extracellular potentials, intracellular potentials, and histology.
Circulation
89:
2351–2360,
1994.
|
199. |
Billette, J.,
M. J. Janse,
F. J. L. Van Capelle,
R. H. Anderson,
P. Touboul, and
D. Durrer.
Cycle‐length‐dependent properties of AV nodal activation in rabbit hearts.
Am. J. Physiol.
231:
1129–1139,
1976.
|
200. |
Janse, M. J.,
F. J. L. Van Capelle,
R. H. Anderson,
P. Touboul, and
J. Billette.
Electrophysiology and structure of the atrioventricular node of the rabbit heart. In:
The Conduction System of the Heart,
edited by H. J. J. Wellens,
K. I. Lie, and
M. J. Janse.
Leiden:
Stenfert Kroese;
296–315,
1976.
|
201. |
Van Capelle, F. J. L.,
M. J. Janse,
P. J. Varghese,
G. E. Freud,
C. Mater, and
D. Durrer.
Spread of excitation in the atrioventricular node of isolated rabbit hearts studied by multiple microelectrode recording.
Circ. Res.
31:
602–616,
1972.
|
202. |
Watanabe, Y., and
L. S. Dreifus.
Sites of impulse formation within the atrioventricular junction of the rabbit.
Circ. Res.
22:
717–727,
1968.
|
203. |
McGuire, M. A.,
M. J. Janse, and
D. L. Ross.
“AV nodal” re‐entry: Part II: AV nodal, AV junctional, or atrionodal reentry?.
J. Cardiovasc. Electrophysiol.
4:
573–586,
1993.
|
204. |
Akhtar, M.,
M. R. Jazayeri,
J. Sra,
Z. Blanck,
S. Deshpande, and
A. Dhala.
Atrioventricular nodal reentry: clinical, electrophysiological, and therapeutic considerations.
Circulation
88:
282–295,
1993.
|
205. |
Mines, G. R.
On dynamic equilibrium in the heart.
J. Physiol. (Lond.)
46:
349–382,
1913.
|
206. |
White, P. D.
A study of atrioventricular rhythm following auricular flutter.
Arch. Intern. Med.
16:
517–535,
1915.
|
207. |
Scherf, D., and
C. Shookhoff.
Experimentelle Untersuchungen ueber die “Umkehr‐Extrasystole” (reciprocating beats).
Wien. Arch. Inn. Med.
12:
501–529,
1926.
|
208. |
Moe, G. K.,
J. B. Preston, and
H. J. Burlington.
Physiologic evidence for a dual A‐V transmission system.
Circ. Res.
4:
357–375,
1956.
|
209. |
Rosenblueth A.
Ventricular “echoes”.
Am. J. Physiol.
195:
53–60,
1958.
|
210. |
Kistin, A. D.
Atrial reciprocating rhythm.
Circulation
32:
687–707,
1965.
|
211. |
Puech, P.
La conduction reciproque par le noeud de Tawara. Bases experimentales et aspects cliniques.
Ann. Cardiol. Angiol.
19:
21–40,
1970.
|
212. |
Schuilenburg, R. M., and
D. Durrer.
Atrial echo beats in the human heart elicited by induced atrial premature beats.
Circulation
37:
680–693,
1968.
|
213. |
Schuilenburg, R. M., and
D. Durrer.
Ventricular echo beats in the human heart elicited by induced ventricular premature beats.
Circulation
40:
337–347,
1969.
|
214. |
Bigger J. T. and
B. N. Goldreyer.
The mechanism of supraventricular tachycardia.
Circulation
42:
673–688,
1970.
|
215. |
Mendez, C.,
J. Han,
P. D. Garcia de Jalon, and
G. K. Moe.
Some characteristics of ventricular echoes.
Circ. Res.
16:
562–581,
1965.
|
216. |
Mignone, R. J., and
A. G. Wallace.
Ventricular echoes. Evidence for dissociation of conduction and reentry within the A‐V node.
Circ. Res.
19:
638–649,
1966.
|
217. |
Mendez, C., and
G. K. Moe.
Demonstration of a dual AV nodal conduction system in the isolated rabbit heart.
Circ. Res.
19:
378–393,
1966.
|
218. |
Moe, G. K.,
W. Cohen, and
R. L. Vick.
Experimentally induced paroxysmal A‐V nodal tachycardia in the dog.
Am. Heart J.
65:
87–92,
1963.
|
219. |
Janse, M. J.,
F. J. L. Van Capelle,
G. E. Freud, and
D. Durrer.
Circus movement within the A‐V node as a basis of supraventricular tachycardia as shown by multiple microelectrode recording in the isolated rabbit heart.
Circ. Res.
28:
403–414,
1971.
|
220. |
Wit, A. L.,
B. N. Goldreyer, and
A. N. Damato.
An in vitro model of paroxysmal supraventricular tachycardia.
Circulation
43:
862–875,
1971.
|
221. |
Coumel, P.,
C. Cabrol,
A. Fabiato,
R. Gourgon, and
R. Slama.
Tachycardie permanente par rythme reciproque.
Arch. Mal. Coeur Vaiss.
60:
1830–1864,
1967.
|
222. |
Casta, A.,
G. Wolff,
A. Mehta,
D. Tamer,
O. L. Garcia,
A. S. Pickoff,
P. L. Ferrer,
R. J. Sung, and
H. Gelband.
Dual atrioventricular nodal pathways. A benign finding in arrhythmiafree children with heart disease.
Am. J. Cardiol.
46:
1013–1018,
1980.
|
223. |
Denes, P.,
D. Wu,
R. C. Dhingra,
E. AmatyLeon,
C. R. C. Wyndham, and
K. M. Rosen.
Dual A‐V nodal pathways. A common electrophysiological response.
Br. Heart J.
37:
1069–1076,
1975.
|
224. |
Denes, P.,
D. Wu,
R. C. Dhingra,
R. Chuquimia, and
K. Rosen.
Demonstration of dual A‐V nodal pathways in patients with paroxysmal supraventricular tachycardia.
Circulation
48:
549–555,
1973.
|
225. |
McGuire, M. A.,
J. P. Bourke,
M. C. Robotin,
I. C. Johnson,
W. Meldrum‐Hanna,
G. R. Nunn,
J. B. Uther, and
D. L. Ross.
High resolution mapping in Koch's triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia.
Circulation
88:
2315–2328,
1993.
|
226. |
Sung, R. J.,
H. L. Waxman,
S. Saksena,
Z. Juma.
Sequence of retrograde atrial activation in patients with dual atrioventricular nodal pathways.
Circulation
64:
1059–1067,
1981.
|
227. |
Ross, D. L.,
D. C. Johnson,
A. R. Denniss,
M. J. Cooper,
D. A. Richards, and
J. B. Uther.
Curative surgery for atrioventricular junctional (“AV nodal”) reentrant tachycardia.
J. Am. Coll. Cardiol.
6:
1383–1392,
1985.
|
228. |
Jackman, W. M.,
K. J. Beckman,
J. H. McClelland,
X. Wang,
K. J. Friday,
C. A. Roman,
K. P. Moulton,
N. Twidale,
A. Hazlitt,
M. I. Prior,
J. Oren,
E. D. Overholt, and
R. Lazzara.
Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency ablation of slow‐pathway conduction.
N. Engl. J. Med.
327:
313–318,
1992.
|
229. |
Haissaguerre, M.,
F. Gaita,
B. Fischer,
D. Commenges,
P. Montserrat,
P. d'lvernois,
P. Lemetayer, and
J. Warin.
Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy.
Circulation
85:
2162–2175,
1992.
|
230. |
Cox, J. L.,
W. L. Holman, and
M. E. Cain.
Cryosurgical treatment of atrioventricular node reentrant tachycardia.
Circulation
76:
1329–1336,
1987.
|
231. |
Ho, S. Y.,
J. M. McComb,
C. D. Scott, and
R. H. Anderson.
Morphology of the cardiac conduction system in patients with electrophysiologically proven dual atrioventricular pathways.
J. Cardiovasc. Electrophysiol.
4:
504–512,
1993.
|
232. |
Loh, P.,
J. M. de Bakker,
M. Hocini,
B. Thibault,
R. N. Hauer, and
M. J. Janse.
Reentrant pathway during ventricular echoes is confined to the atrioventricular node: high‐resolution mapping and dissection of the triangle of Koch in isolated, perfused canine hearts.
Circulation
100:
1346–1353,
1999.
|
233. |
Medkour, D.,
A. E. Becker,
K. Khalife, and
J. Billette.
Anatomic and functional characteristics of a slow posterior AV nodal pathway: role in dual‐pathway physiology and reentry.
Circulation
98:
164–174,
1998.
|
234. |
Lin, L. J.,
J. Billette,
K. Khalife,
K. Martel,
J. Wang, and
D. Medkour.
Characteristics, circuit, mechanism, and ablation of reentry in the rabbit atrioventricular node.
J. Cardiovasc. Electrophysiol.
10:
p954–964,
1999.
|
235. |
Mazgalev, T., and
P. Tschou.
Atrial‐AV nodal electrophysiology: a view from the millenium.
Armonk, NY:
Futura Publishing Company;
2000.
|
236. |
Zipes, D.
The atrioventricular node: a riddle wrapped in a mistery inside an enigma. In:
T. Mazgalev,
P. Tschou eds.
Atrial‐AV Nodal Electrophysiology: A View from the Millennium.
Armonk, NY:
Futura Publishing Company;
2000.
|
237. |
Mazgalev, T., and
P. Tschou.
The AV nodal dual pathway electrophysiology: still a controversial concept. In:
Atrial‐AV Nodal Electrophysiology: A View from the Millennium,
edited by J. Mazgalev and
P. Tschou.
Armonk, NY:
Futura Publishing Company;
2000.
|
238. |
Bukauskas F. F., and
R. P. Veteikis.
Passive electrical properties of the atrioventricular region of the rabbit heart.
Biofizika
22:
499–504,
1977.
|
239. |
De Mello, W. C.
Passive electrical properties of the atrioventricular node.
Pflugers Arch.
371:
135–139,
1977.
|
240. |
Ikeda, N.,
J. Toyama,
T. Shimizu,
I. Kodama, and
K. Yamada.
The role of electrical uncoupling in the genesis of atrioventricular conduction disturbance.
J. Mol. Cell Cardiol.
12:
809–826,
1980.
|
241. |
Kokubun, S.,
M. Nishimura,
A. Noma, and
H. Irisawa.
Membrane currents in the rabbit atrioventricular node cell.
Pflugers Arch.
393:
15–22,
1982.
|
242. |
Cranefield, P. E.,
B. F. Hoffman, and
A. Paes de Carvalho.
Effects of acetylcholine on single fibers of the atrio‐ventricular node.
Circ. Res.
7:
19–23,
1959.
|
243. |
Janse, M. J.
Influence of the direction of the atrial wave front on A‐V nodal transmission in isolated hearts of rabbits.
Circ. Res.
25:
439–449,
1969.
|
244. |
Mazgalev, T.,
L. S. Dreifus,
H. Iinuma, and
E. L. Michelson.
Effects of the site and timing of atrio‐ventricular nodal input on atrio‐ventricular conduction in the isolated perfused rabbit heart.
Circulation
70:
748–759,
1984.
|
245. |
Zipes, D. P.,
C. Mendez, and
G. K. Moe.
Evidence for summation and voltage dependency in rabbit atrioventricular nodal fibers.
Circ. Res.
32:
170–177,
1973.
|
246. |
Hoffman, B. F.
Physiology of atrioventricular transmission.
Circulation
24:
506–517,
1961.
|
247. |
Mendez, C.
Characteristics of impüulse propagation in the mammalian atrioventricular node. In:
Normal and Abnormal Conduction in the Heart,
edited by A. Paes de Carvalho,
B. F. Hoffman, and
M. Lieberman.
Mount Kisco, NY:
Futura;
363–377,
1982.
|
248. |
Noma, A.,
H. Irisawa,
S. Kokobun,
H. Kotake,
M. Nishimura, and
Y. Watanabe.
Slow current systems in the A‐V node of the rabbit heart.
Nature
285:
228–229,
1980.
|
249. |
Wit, A. L., and
P. F. Cranefield.
Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular tachycardias.
Circ. Res.
35:
413–425,
1974.
|
250. |
Zipes, D. P. and
C. Mendez.
Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts.
Circ. Res.
32:
447–454,
1973.
|
251. |
Akiyama, T., and
H. A. Fozzard.
Ca and Na selectivity of the active membrane of rabbit AV nodal cells.
Am. J. Physiol.
236
(Cell Physiol. 5):
C1–C8,
1979.
|
252. |
Van Capelle, F. J., and
M. J. Janse.
Influences of geometry on the shape of the propagated action potential. In:
The Conduction System of the Heart,
edited by H. J. J. Wellens,
K. I. Lie, and
M. J. Janse.
Leiden:
Stenfert Kroese;
316–335,
1976.
|
253. |
Shigeto, N., and
H. Irisawa.
Slow conduction in the atrioventricular node of the cat: a possible explanation.
Experientia
28:
1442–1443,
1972.
|
254. |
Ruiz‐Ceretti, I., and
A. Ponce Zumino.
Action potential changes under varied (Na+) and (Ca2+) indicating the existence of two inward currents in cells of the rabbit atrioventricular node.
Circ. Res.
39:
326–336,
1976.
|
255. |
Gettes, L. S. and
H. Reuter.
Slow recovery from inactivation of inward currents in mammalian myocardial fibres.
J. Physiol. (Lond.)
240:
703–724,
1974.
|
256. |
Maglaveras, N.,
F. J. L. van Cappelle,
J. M. T. de Bakker,
C. Pappas, and
M. J. Janse.
Activation delay in healed myocardial infarction: a comparison between model and experiment.
Am. J. Physiol.
269
(Heart Circ. Physiol. 38):
H1441–1449,
1995.
|
257. |
Truex, R. C.
Comparative anatomy and functional considerations of the cardiac conduction system. In:
A. Paes de Carvalho,
W. C. de Mello, and
B. F. Hoffman, eds.
The Specialized Tissues of the Heart,
edited by A. Paes de Carvalho,
W. C. de Mello, and
B. F. Hoffman.
Amsterdam:
Elsevier;
22–43,
1961.
|
258. |
Hoffman, B. F., and
P. F. Cranefield.
Electrophysiology of the Heart.
New York:
McGraw‐Hill;
1960.
|
259. |
Demoulin, G. C., and
H. E. Kulbertus.
Histopathological examination of concept of left hemiblock.
Br. Heart J.
34:
807–814,
1972.
|
260. |
Truex, R. C., and
M. Q. Smythe.
Comparative morphology of the cardiac conduction tissue in animals.
Ann. N.Y. Acad. Sci.
127:
19–33,
1965.
|
261. |
Myerburg, R. J.,
K. Nilsson, and
H. Gelband.
Physiology of canine intraventricular conduction and endocardial excitation.
Circ. Res.
30:
217–243,
1972.
|
262. |
Van Dam, T. T., and
M. J. Janse.
Activation of the heart. In:
Comprehensive Electrocardiology,
edited by P. W. MacFarlane, and
T. D. Veitch Lawrie.
New York:
Pergamon Press;
101–128,
1988.
|
263. |
Rosenbaum, M. B.,
M. V. Elizari, and
J. O. Lazzari.
The Hemiblocks: New Concepts of Intraventricular Conduction Based on Human Anatomical, Physiological and Clinical Studies.
Oldsmar:
Tampa Tracings;
1970.
|
264. |
Veenstram, R. D.,
R. W. Joyner, and
D. A. Rawling.
Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje‐ventricular conduction delay.
Circ. Res.
54:
500–515,
1984.
|
265. |
Overholt, E. D.,
R. W. Joyner,
R. D. Veenstra,
D. Rawling, and
R. Wiedmann.
Unidirectional block between Purkinje and ventricular layers of papillary muscle.
Am. J. Physiol.
247
(Heart Circ. Physiol. 16):
H584–H595,
1984.
|
266. |
Mendez, C.,
W. J. Mueller, and
X. Urguiaga.
Propagation of impulses across the Purkinje fiber‐muscle junctions in the dog heart.
Circ. Res.
36:
135–150,
1970.
|
267. |
Rawling, D. A.,
R. W. Joyner, and
E. D. Overholt.
Variations in the functional electrical coupling between the subendocardial Purkinje and ventricular layers of the canine left ventricle.
Circ. Res.
57:
252–261,
1985.
|
268. |
Alanis, J.,
D. Benitez, and
G. Pilar.
A functional discontinuity between the Purkinje and ventricular muscle cells.
Acta Physiol. Latino Am.
11:
171–183,
1961.
|
269. |
Alanis, J., and
D. Benitez.
Transitional potentials and the propagation of impulses through different cardiac cells. In:
Electrophysiology and Ultrastructure of the Heart,
edited by T. Sano,
V. Misuhira, and
K. Matsuda.
New York:
Grune & Stratton;
153–175,
1967.
|
270. |
Matsuda, K.,
A. Kamiyama, and
T. Hoshi.
Configuration of the transmembrane action potential of the Purkinje‐ventricular fiber junction and its analysis. In:
Electrophysiology and Ultrastructure of the Heart,
edited by T. Sano,
V. Misuhira, and
K. Matsuda.
New York:
Grune & Stratton;
177–187,
1967.
|
271. |
Martinez‐Palomo, A.,
J. Alanis, and
D. Benitez.
Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features.
J. Cell Biol.
47:
1–17,
1970.
|
272. |
Tranum Jensen, J.,
A. A. Wilde,
J. T. Vermeulen, and
M. J. Janse.
Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts.
Circ. Res.
69:
429–437,
1991.
|
273. |
Scher, A. M. and
A. C. Young.
Ventricular depolarization and the genesis of QRS.
Ann. N. Y. Acad. Sci.
65:
766–778,
1957.
|
274. |
Nagao, K.,
J. Toyama,
I. Kodama, and
K. Yamada.
Role of the conduction system in the endocardial excitation spread in the right ventricle.
Am. J. Cardiol.
48:
864–870,
1981.
|
275. |
Wang, Y., Y.
Rudy Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism.
Am. J. Physiol.
278
(Heart Circ. Physiol. 47):
H1019–H1029,
2000.
|
276. |
Dominguez, G., and
H. A. Fozzard.
Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers.
Circ. Res.
26:
565–574,
1970.
|
277. |
Han, J.,
A. M. Malozzi, and
G. K. Moe.
Transient ventricular conduction disturbances produced by intra‐atrial injection of single doses of KCl.
Circ. Res.
21:
3–8,
1967.
|
278. |
Antoni, H., and
T. Zerweck.
Besitzen die sympathischen Uberträgerstoffe einen direkten Einfluss auf die Leitungsgeschwindigkeit des Säugetiermyokards.
Pflugers Arch.
293:
310–330,
1967.
|
279. |
Spear, J. E., and
E. N. Moore.
Supernormal excitability and conduction in the His‐Purkinje system of the dog.
Circ. Res.
35:
782–792,
1974.
|
280. |
Spear, J. F., and
E. N. Moore.
Supernormal conduction in the canine bundle of His and proximal bundle branches.
Am. J. Physiol.
238
(Heart Circ. Physiol. 7):
H300–H306,
1980.
|
281. |
Peon, J.,
G. R. Ferrier, and
G. K. Moe.
The relationship of excitability to conduction velocity in canine Purkinje tissue.
Circ. Res.
43:
125–135,
1978.
|
282. |
Weidmann, S.
Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibers.
J. Physiol. (Lond.)
129:
568–582,
1955.
|
283. |
Corrado, G.,
R. J. Levi,
G. J. Nau, and
M. B. Rosenbaum.
Paroxysmal atrioventriculasr block related to phase 4 bilateral bundle branch block.
Am. J. Cardiol.
33:
553–556,
1974.
|
284. |
Elizari, M. V.,
G. J. Nau,
R. J. Levi,
J. O. Lazzari,
M. S. Halpern, and
M. B. Rosenbaum.
Experimental production of rate‐dependent bundle branch block in the canine heart.
Circ. Res.
34:
730–742,
1974.
|
285. |
Singer, D. H.,
R. Lazzara, and
B. F. Hoffman.
Interrelationships between automaticity and conduction in Purkinje fibers.
Circ. Res.
21:
537–558,
1967.
|
286. |
Jalife, J.,
C. Antzelevitch,
V. Lamanna, and
G. K. Moe.
Rate‐dependent changes in excitability of depressed cardiac Purkinje fibers as a mechanism of intermittent bundle branch block.
Circulation
67:
912–922,
1983.
|
287. |
Kléber, A. G.,
M. J. Janse,
F. J. G. Wilms‐Schopmann,
A. A. M. Wilde, and
R. Coronel.
Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart.
Circ. Res.
73:
189–198,
1986.
|
288. |
Kishida, H.,
B. Surawicz, and
L. T. Fu.
Effects of K+ and K+‐ induced depolarization on (dV/dt)max, threshold potential, and membrane input resistance in guinea pig and cat ventricular myocardium.
Circ. Res.
44:
800–814,
1979.
|
289. |
Whalley, D. W.,
D. J. Wendt,
C. F. Starmer,
Y. Rudy, and
A. O. Grant.
Voltage‐independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes.
Circ. Res.
75:
491–502,
1994.
|
290. |
Noma, A.
ATP‐regulated K channels in cardiac muscle.
Nature
305:
147–148,
1983.
|
291. |
Grant, A. O.,
C. F. Starmer, and
H. C. Strauss.
Antiarrhythmic drug action: blockade of inward sodium current.
Circ. Res.
55:
427–439,
1984.
|
292. |
Janse, M. J., and
A. L. Wit.
Electrophysiological mechanisms of ventricular arrhythmias resulting from ischemia and infarction.
Physiol. Rev.
69:
1049–1169,
1989.
|
293. |
Janse, M. J., and
A. G. Kléber.
Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia.
Circ. Res.
49:
1069–1081,
1981.
|
294. |
Schütz, E.
Electrophysiologie des Herzens bei einphasischer Ableitung.
Ergebn. Physiol.
38:
493–620,
1936.
|
295. |
Moréna, H.,
M. J. Janse,
J. W. T. Fiolet,
W. J. G. Krieger,
H. Crijns, and
D. Durrer.
Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart.
Circ. Res.
46:
635–646,
1980.
|
296. |
Downar, E.,
M. J. Janse, and
D. Durrer.
The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart.
Circulation
56:
217–224,
1977.
|
297. |
Kodama, I.,
A. A. M. Wilde,
M. J. Janse,
D. Durrer, and
K. Yamada.
Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential and excitability of guinea‐pig ventricular muscle.
J. Mol. Cell Cardiol.
16:
247–259,
1984.
|
298. |
Nakayama, T.,
Y. Kurachi,
A. Noma, and
H. Irisawa.
Action potential and membrane currents of single pacemaker cells of the rabbit heart.
Pflugers Arch.
402:
248–257,
1984.
|
299. |
Gomez, J. P.,
J. E. Potreau,
J. E. Branka, and
G. Raymond.
Developmental changes in Ca2+ current from newborn rat cardiomyocytes in primary culture.
Pflugers Arch.
428:
241–249,
1994.
|
300. |
Cranefield, P. F.,
H. O. Klein, and
B. . Hoffman.
Conduction of the cardiac impulse. 1. Delay, block, and one‐way block in depressed Purkinje fibers.
Circ. Res.
28:
199–219,
1971.
|
301. |
Cranefield, P. E.,
A. L. Wit, and
B. F. Hoffman.
Conduction of the cardiac impulse. 3. Characteristics of very slow conduction.
J. Gen. Physiol.
59:
227–246,
1972.
|
302. |
Wit, A. L.,
B. F. Hoffman, and
P. F. Cranefield.
Slow conduction and reentry in the ventricular conducting system. I. Return extrasystole in canine Purkinje fibers.
Circ. Res.
30:
1–10,
1972.
|
303. |
Weingart, R.
Electrical properties of the nexal membrane studied in rat ventricular cell pairs.
J. Physiol. (Lond.)
370:
267–284,
1986.
|
304. |
Weingart, R., and
P. Maurer.
Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles.
Circ. Res.
63:
72–80,
1988.
|
305. |
Rohr, S.,
J. P. Kucera, and
A. G. Kleber.
Slow conduction in cardiac tissue: I. Effects of a reduction of excitability vs. a reduction in cell‐to‐cell coupling on microconduction.
Circ. Res.
83:
781–794,
1998.
|
306. |
Streit, J.
Effects of hypoxia and glycolytic inhibition on electrical properties of sheep cardiac Purkinje fibers.
J. Mol. Cell. Cardiol.
19:
875–885,
1987.
|
307. |
Wojtczak, J.
Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia.
Circ. Res.
44:
88–95,
1979.
|
308. |
Kaplinsky, E.,
S. Ogawa,
C. W. Balke, and
L. S. Dreifus.
Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model.
Circulation
60:
397–403,
1979.
|
309. |
Smith, W. T.,
W. F. Fleet,
T. A. Johnson,
C. L. Engle, and
W. E. Cascio.
The 1b phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell‐to‐cell coupling.
Circulation
92:
3051–3060,
1995.
|
310. |
Starmer, C. F.,
V. N. Biktashev,
D. N. Romashko,
M. R. Stepanov,
O. N. Makarova, and
V. I. Krinsky.
Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.
Biophys. J.
65:
1775–1787,
1993.
|
311. |
Quan, W., and
Y. Rudy.
Induced unidirectional block and reentry of cardiac excitation.
Proc. 9th Annu. Conf. IEEE Eng.
1:
210–211,
1987.
|
312. |
Quan, W., and
Y. Rudy.
Unidirectional block and reentry of cardiac excitation: a model study.
Circ. Res.
66:
367–382,
1990.
|
313. |
Van, Capelle F. J. L. and
D. Durrer.
Computer simulation of arrhythmias in a network of coupled excitable elements.
Circ. Res.
47:
453–466,
1980.
|
314. |
Janse, M. J.
The effects of changes of heart rate on the refractory period of the heart. In:.
Amsterdam:
University of Amsterdam;
1971.
|
315. |
Han, J., and
G. K. Moe.
Nonuniform recovery of excitability of ventricular muscle.
Circ. Res.
14:
44–60,
1964.
|
316. |
Kuo, C. S.,
K. Munakata,
C. P. Reddy, and
B. Surawicz.
Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations.
Circulation
67:
1356–1367,
1983.
|
317. |
Wallace, A. G., and
R. J. Mignone.
Physiologic evidence concerning the re‐entry hypothesis for ectopic beats.
Am. Heart J.
72:
60–70,
1966.
|
318. |
Allessie, M. A.,
F. I. M. Bonke, and
F. J. C. Schopman.
Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block as studied with multiple microelectrodes.
Circ. Res.
39:
168–177,
1976.
|
319. |
Engelmann, T. W.
Über die reziproke und irreziproke Reizleitung mit besonderer Beziehung auf das Herz.
Pflugers Arch.
61:
272–284,
1895.
|
320. |
Schmitt, F. O., and
J. Erlanger.
Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic anf fibrillatory contractions.
Am. J. Physiol.
87:
326–347,
1928.
|
321. |
Downar, E., and
M. B. Waxman.
Depressed conduction and unidirectional block in Purkinje fibers. In:
H. J. J. Wellens,
K. I. Lie, and
M. J. Janse. eds.
The Conduction System of the Heart,
Philadelphia:
Lea & Febiger;
393–409,
1976.
|
322. |
Waxman, M. B.,
E. Downar, and
R. W. Wald.
Unidirectional block in Purkinje fibers.
Can. J. Physiol. Pharmacol.
58:
925–933,
1980.
|
323. |
Engelmann T. W.
Versuche über die irreziproke Reizleitung in Muskelfasern.
Pflugers Arch.
62:
400–414,
1896.
|
324. |
Spach, M. S.,
W. T. Miller,
P. C. Dolber,
J. M. Kootsey,
J. R. Sommer, and
C. E. J. Mosher.
The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity.
Circ. Res.
50:
175–191,
1982.
|
325. |
De Bakker, J. M. T.,
F. J. L. Van Capelle,
M. J. Janse,
S. Tasseron,
J. T. Vermeulen,
N. Dejonge, and
J. R. Lahpor.
Slow conduction in the infarcted human heart—zigzag course of activation.
Circulation
88:
915–926,
1993.
|
326. |
Rohr, S., and
B. M. Salzberg.
Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures.
J. Gen. Physiol.
104:
287–309,
1994.
|
327. |
Rohr, S.,
J. P. Kucera,
V. G. Fast, and
A. G. Kleber.
Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling.
Science
275:
841–844,
1997.
|
328. |
Spach, M. S.,
P. C. Dolber, and
J. F. Heidlage.
Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation.
Circ. Res.
62:
811–832,
1988.
|
329. |
Delmar, M.,
D. C. Michaels,
T. Johnson, and
J. Jalife.
Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle.
Circ. Res.
60:
780–785,
1987.
|
330. |
Schalij, M. J.
Anisotropic conduction and ventricular tachycardia. In:.
Maastricht, The Netherlands:
Rijksuniversiteit Limburg;
1988.
|
331. |
Girouard, S. D.,
J. M. Pastore,
K. R. Laurita,
K. W. Gregory, and
D. S. Rosenbaum.
Optical mapping in a new guinea pig model of ventricular trachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit.
Circulation
93:
603–613,
1996.
|
332. |
Cabo, C. A. M. Pertsov,
W. T. Baxter,
J. M. Davidenko,
R. A. Gray, and
J. Jalife.
Wave‐front curvature as a cause of slow conduction and block in isolated cardiac muscle.
Circ. Res.
75:
1014–1028,
1994.
|
333. |
De la Fuente, D.,
B. Sasyniuk, and
G. K. Moe.
Conduction through a narrow isthmus in isolated canine atrial tissue. A model of the W‐P‐W syndrome.
Circulation
44:
803–809,
1971.
|
334. |
Lin, S. F.,
B. J. Roth,
D. S. Echt, and
J. P. Wikswo.
Complex dynamics following unipolar stimulation during the vulnerable phase.
Circulation
94:
I–174,
1996.
|
335. |
Saypol, J. M., and
B. J. Roth.
A mechanism for anisotropic reentry in electrically active tissue.
J. Cardiovasc. Electrophysiol.
3:
558–566,
1992.
|
336. |
Efimov, I. R.,
Y. N. Cheng,
W. D. Van,
T. N. Mazgalev, and
P. J. Tchou.
Virtual electrodes induced phase singularity: a basic mechanism of defibrillation failure.
Circ Res.
82:
918–925,
1998.
|
337. |
Mayer, A. G.
Nerve conduction and other reactions in Cassiopea.
Am. J. Physiol.
39:
375–393,
1916.
|
338. |
Mayer, A. G.
Rhythmical pulsation in scyphomedusae. II. In:
Papers from the Marine Biological Laboratory at Tortugas. Washington;
115–131,
1908.
|
339. |
Mines, G. R.
On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation.
Trans. R. Soc. Can. Sect.
IV:
43–52,
1914.
|
340. |
Durrer, D., and
J. P. Roos.
Epicardial excitation of the ventricles in a patient with Wolff‐Parkinson‐White syndrome (type B).
Circulation
35:
15–21,
1967.
|
341. |
Durrer, D.,
L. Schoo,
R. M. Schuilenburg, and
H. J. J. Wellens.
The role of premature beats in the initiation and termination of supraventricular tachycardia in Wolff‐Parkinsin‐White syndrome.
Circulation
36:
644–662,
1967.
|
342. |
Holzmann, M., and
D. Scherf.
Über Elektrokardiogramme und verkürzter Vorhof‐Kammerdistanz und positiven P‐Zacken.
Z. Klin. Med.
121:
404–410,
1932.
|
343. |
Wolff, L.,
J. Parkinson, and
P. D. White.
Bundle branch block with short PR‐interval in healthy young people prone to paroxysmal tachycardia.
Am. Heart J.
5:
685–692,
1930.
|
344. |
Janse, M. J.
Reentrant arrhythmias. In:
The Heart and Cardiovascular System,
2nd Edition,
edited by H. A. Fozzard.
New York:
Raven Press;
2055–2094,
1992.
|
345. |
MacLean, W. A. H.,
V. J. Plumb, and
A. L. Waldo.
Transient entrainment and interruption of ventricular tachycardia.
PACE
4:
358–365,
1981.
|
346. |
Arenal, A.,
J. Almendral,
D. San Román,
J. L. Delcan, and
M. E. Josephson.
Frequency and implications of resetting and entrainment with right atrial stimulation in atrial flutter.
Am. J. Cardiol.
70:
1292–1298,
1992.
|
347. |
Boersma, L.,
J. Brugada,
C. Kirchhof, and
M. Allessie.
Entrainment of reentrant ventricular tachycardia in anisotropic rings of rabbit myocardium—mechanisms of termination, changes in morphology, and acceleration.
Circulation
88:
1852–1865,
1993.
|
348. |
Frazier, D. W. and
M. S. Stanton.
Resetting and transient entrainment of ventricular tachycardia.
Pacing Clin. Electrophysiol.
18:
1919–1946,
1995.
|
349. |
Waldecker, B.,
J. Coromilas,
A. E. Saltman,
S. M. Dillon, and
A. L. Wit.
Overdrive stimulation of functional reentrant circuits causing ventricular tachycardia in the infarcted canine heart—resetting and entrainment.
Circulation
87:
1286–1305,
1993.
|
350. |
Allessie, M. A.,
F. I. M. Bonke, and
F. J. C. Schopman.
Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.
Circ. Res.
41:
9–18,
1977.
|
351. |
Smeets, J. L. R. M.,
M. A. Allessie,
L. W. J. E. P. F. I. M. Bonke, and
J. Hollen.
The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium.
Circ. Res.
58:
96–108,
1986.
|
352. |
Frame, L. H.,
R. L. Page, and
B. F. Hoffman.
Atrial reentry around an anatomic barrier with a partially refractory excitable gap. A canine model of atrial flutter.
Circ. Res.
58:
495–511,
1986.
|
353. |
Baeriswyl, G.,
M. Zimmermann, and
R. Adamec.
Efficacy of rapid atrial pacing for conversion of atrial flutter in medically treated patients.
Clin. Cardiol.
17:
246–250,
1994.
|
354. |
Simson, M. B.,
J. F. Spear,
E. N. Moore.
Stability of an experimental atrioventricular reentrant tachycardia in dogs.
Am. J. Physiol.
240
(Heart Circ. Physiol. 9):
H947–H953,
1981.
|
355. |
Vinet, A., and
F. A. Roberge.
The dynamics of sustained reentry in a ring model of cardiac tissue.
Ann. Biomed. Eng.
22:
568–591,
1994.
|
356. |
Ito, H., and
L. Glass.
Theory of reentrant excitation in a ring of cardiac tissue.
Physica D.
56:
84–106,
1992.
|
357. |
Frame, L. H., and
M. B. Simson.
Oscillations of conduction, action potential duration, and refractoriness. A mechanism for spontaneous termination of reentrant tachycardias.
Circulation
78:
1277–1287,
1988.
|
358. |
Garrey, W. E.
Auricular fibrillation.
Physiol. Rev.
4:
215–250,
1924.
|
359. |
Allessie, M. A.,
F. I. M. Bonke, and
F. J. C. Schopman.
Circus movement in rabbit atrial muscle as a mechanism of tachycardia.
Circ. Res.
33:
54–62,
1973.
|
360. |
El‐Sherif, N.,
R. Mehra,
W. B. Gough, and
R. H. Zeiler.
Reentrant ventricular arrhythmias in the late myocardial infarction period. Interruption of reentrant circuits by cryothermal techniques.
Circulation
68:
644–656,
1983.
|
361. |
El‐Sherif, N.,
A. Smith, and
K. Evans.
Canine ventricular arrhythmias in the late myocardial infarction period: epicardial mapping of reentrant circuits.
Circ. Res.
1981:
255–265,
1981.
|
362. |
Gough, W. B.,
R. Mehra,
M. Restivo,
R. H. Zeiler, and
N. El‐Sherif.
Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps.
Circ. Res.
57:
432–442,
1985.
|
363. |
Hoffman, B. F., and
M. R. Rosen.
Cellular mechanisms for cardiac arrhythmias.
Circ. Res.
49:
1–15,
1981.
|
364. |
Allessie, M. A.,
W. J. E. P. Lammers,
F. I. M. Bonke, and
J. Hollen.
Experimental evaluation of Moe's multiple wavelet hypotheis of atrial fibrillation. In:
Cardiac Arrhythmias,
edited by D. P. Zipes and
J. Jalife.
New York:
Grune & Stratton;
265–276,
1985.
|
365. |
Janse, M. J.,
F. J. L. Van Capelle,
H. Morsink,
A. G. Kléber,
F. J. G. Wilms‐Schopman,
R. Cardinal,
C. Naumann d'Alnoncourt, and
D. Durrer.
Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for 2 different arrhythmogenic mechanisms.
Circ. Res.
47:
151–165,
1980.
|
366. |
Müller, S. C.,
T. Plesser,
B. Hess.
The structure of the core of the spiral wave in the Belousov‐Zhabotinskii reaction.
Science
230:
661–663,
1985.
|
367. |
Winfree, A. T.
Spiral waves of chemical activity.
Science
175:
634–636,
1972.
|
368. |
Gorelova, N. A. and
J. Bures.
Spiral waves of spreading depression in the isolated chicken retina.
J. Neurobiol.
14:
353–363,
1983.
|
369. |
Shibata, J. and
J. Bures.
Optimum topographical conditions for reverberating cortical spreading depression in rats.
J. Neurobiol.
5:
107–118,
1974.
|
370. |
Lechleiter, J.,
S. Girard,
E. Peralta, and
D. Clapham.
Spiral calcium wave propagation and annihilation in. Xenopus laevis oocytes.
Science
252:
123–126,
1991.
|
371. |
Lipp, P. and
E. Niggli.
Microscopic spiral waves reveal positive feedback in subcellular calcium signaling.
Biophys. J.
65:
2272–2276,
1993.
|
372. |
Tomchik, K. J. and
P. N. Devreotes.
Adenosine 3′,5′‐monophosphate waves in. Dictyostelium discoideum: a demonstration by isotope dilution‐fluorography.
Science
212:
443–446,
1981.
|
373. |
Selfridge, O.
Studies of flutter and fibrillation.
Arch. Inst. Cardiologia de Mexico.
18:
177–187,
1948.
|
374. |
Balakhovsky, I. S.
Several modes of excitation movement in ideal excitable tissue.
Biophysics
10:
1175–1179,
1965.
|
375. |
Gul'ko, F. B. and
A. A. Petrov.
Mechanism of the formation of closed pathways of conduction in excitable media.
Biophysics
17:
271–282,
1972.
|
376. |
Davidenko, J. M.,
A. V. Pertsov,
R. Salomonsz,
W. Baxter, and
J. Jalife.
Stationary and drifting spiral waves of excitation in isolated cardiac muscle.
Nature
355:
349–351,
1992.
|
377. |
Gray, R.,
A. Pertsov, and
J. Jalife.
Spatial and temporal organization during cardiac fibrillation.
Nature
392:
75–78,
1998.
|
378. |
Fast, V. G. and
A. M. Pertsov.
Shift and termination of functional reentry in isolated ventricular preparations with quinidine‐induced inhomogeneity on refractory period.
J. Cardiovasc. Electrophysiol.
3:
255–265,
1992.
|
379. |
Frazier, D. W.,
P. D. Wolf,
J. M. Wharton,
A. S. L. Tang,
W. M. Smith, and
R. E. Ideker.
Stimulus‐induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium.
J. Clin. Invest.
83:
1039–1052,
1989.
|
380. |
Davidenko, J. M.
Spiral wave activity: a possible common mechanism for polymorphic and monomorphic ventricular tachycardias.
J. Cardiovasc. Electrophysiol.
4:
730–746,
1993.
|
381. |
Pertsov, A. M.,
A. V. Panfilov, and
F. U. Medvedeva.
Instabilities of autowaves in excitable media associated with critical curvature phenomenon.
Biofizika
28:
100–102,
1983.
|
382. |
Agladze, K.,
J. P. Keener,
S. C. Muller, and
A. Panfilov.
Rotating spiral waves created by geometry.
Science
264:
1746–1748,
1994.
|
383. |
Fast, V. G.,
I. R. Efimov, and
V. I. Krinsky.
Transition from circular to linear rotation of a vortex in an excitable cellular medium.
Physics Lett. A
151:
157–161,
1990.
|
384. |
Krinsky, V. I.,
I. R. Efimov, and
J. Jalife.
Vortices with linear cores in excitable media.
Proc. R. Soc. London Ser. A.
437:
645–655,
1992.
|
385. |
Winfree, A. T.
Scroll‐shaped waves of chemical activity in three dimensions.
Science
181:
937–939,
1973.
|
386. |
Zykov, V. S.
Cycloid circulation of spiral waves in excitable medium.
Biophysics
31:
940–944,
1986.
|
387. |
Lugosi, E.
Analysis of meandering in Zykov kinetics.
Physica D
40:
331–337,
1989.
|
388. |
Gerhardt, M.,
H. Schuster, and
J. J. Tyson.
A cellular automaton model of excitable media. II. Curvature, dispersion, rotating waves and meandering waves.
Physica D
46:
392–415,
1990.
|
389. |
Efimov, I.,
V. Krinsky, and
J. Jalife.
Dynamics of rotating vortices in the Beeler‐Reuter model of cardiac tissue.
Chaos, Solitons & Fractals
5:
513–526,
1995.
|
390. |
Holden, A. V. and
H. Zhang.
Characteristics of atrial re‐entry and meander computed from a model of a rabbit single atrial cell.
J. Theor. Biol.
175:
545–551,
1995.
|
391. |
Starmer, C. F.,
D. N. Romashko,
R. S. Reddy,
Y. I. Zilberter,
J. Starobin,
A. O. Grant, and
V. I. Krinsky.
Proarrhythmic response to potassium channel blockade: numerical studies of polymorphic tachyarrhythmias.
Circulation
92:
595–605,
1995.
|
392. |
El‐Sherif, N.
Reentrant mechanisms in ventricular arrhythmias. In:
Cardiac Electrophysiology: From Cell to Bedside,
edited by D. P. Zipes and
J. Jalife.
Philadelphia:
W. B. Sounders;
567–582,
1995.
|
393. |
Gray, R. A.,
J. Jalife,
A. Panfilov,
W. T. Baxter,
C. Cabo,
J. M. Davidenko, and
A. M. Pertsov.
Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart.
Circulation
91:
2454–2469,
1995.
|
394. |
Courtemanche, M. and
A. T. Winfree.
Two dimensional rotating depolarization waves in a modified Beeler‐Reuter model of cardiac cell activity. In:
Science at the John von Neumann National Supercomputer Center,
edited by G. Cook.
Princeton, NJ:
Consortium for Scientific Computing,
79–86,
1990.
|
395. |
Leon, L. J.,
F. A. Roberge, and
A. Vinet.
Simulation of two‐dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics.
Ann. Biomed. Eng.
22:
592–609,
1994.
|
396. |
Courtemanche, M.
Complex spiral wave dynamics in a spatially distributed ionic model of cardiac activity.
Chaos
6:
579–600,
1996.
|
397. |
Qu, Z.,
J. N. Weiss,
A. Garfinkel.
Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
Am J Physiol.
276
(Heart Circ. Physiol. 45):
H269–283,
1999.
|
398. |
Cao, J. M.,
Z. Qu,
Y. H. Kim,
T. J. Wu,
A. Garfinkel,
J. N. Weiss,
H. S. Karagueuzian, and
P. S. Chen.
Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties.
Circ. Res.
84:
1318–1331,
1999.
|
399. |
Ito, H. and
L. Glass.
Spiral breakup in a new model of discrete excitable media.
Phys. Rev. Lett.
66:
671–674,
1991.
|
400. |
Karma, A.
Spiral breakup in model equations of action potential propagation in cardiac tissue.
Phys. Rev. Lett.
71:
1103–1106,
1993.
|
401. |
Panfilov, A. and
P. Hogeweg.
Spiral breakup in a modified Fitzhugh‐Nagumo model.
Phys. Lett. A.
176:
295–299,
1993.
|
402. |
Karma A.
Electrical alternans and spiral wave breakup in cardiac tissue.
Chaos
4:
461–472,
1994.
|
403. |
Koller, M. L.,
M. L. Riccio, and
R. F. Gilmour, Jr.
Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation.
Am J Physiol.
275
(Heart Circ. Physiol. 44):
H1635–1642,
1998.
|
404. |
Riccio, M. L.,
M. L. Koller, and
R. F. Gilmour, Jr.
Electrical restitution and spatiotemporal organization during ventricular fibrillation.
Circ. Res.
84:
955–963,
1999.
|
405. |
Panfilov, A. V. and
B. N. Vasiev.
Vortex initiation in a heterogeneous excitable medium.
Physica D
49:
107–113,
1991.
|
406. |
Fast, V. G. and
I. R. Efimov.
Stability of vortex rotation in an excitable cellular medium.
Physica D
49:
75–81,
1991.
|
407. |
Fast, V. G. and
A. M. Pertsov.
Drift of a vortex in the myocardium.
Biophysics
35:
489–494,
1990.
|
408. |
Pertsov, A. M.,
J. M. Davidenko,
R. Salomonsz,
W. T. Baxter, and
J. Jalife.
Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.
Circ. Res.
72:
631–650,
1993.
|
409. |
Abildskov, J. A. and
R. L. Lux.
The mechanism of simulated torsade de pointes in a computer model of propagated excitation.
J. Cardiovasc. Electrophysiol.
2:
224–237,
1991.
|
410. |
Jalife, J. and
R. Gray.
Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart.
Acta. Physiol. Scand.
157:
123–131,
1996.
|
411. |
Schalij, M. J.,
W. E. J. P. Lammers,
P. L. Rensma, and
M. A. Allessie.
Anisotropic conduction and reentry in perfused epicardium of rabbit left ventricle.
Am. J. Physiol.
263
(Heart Circ. Physiol. 32):
H1466–H1478,
1992.
|
412. |
Wit, A. L. and
S. M. Dillon.
Anisotropic reentry. In:
Cardiac Electrophysiology. From Cell to Bedside,
edited by D. P. Zipes and
J. Jalife.
Philadelphia:
W. B. Saunders,
353–364,
1990.
|
413. |
Pertsov, A. M.,
J. Jalife.
Three‐dimensional vortex‐like reentry. In:
Cardiac Electrophysiology: From Cell to Bedside,
edited by D. P. Zipes and
J. Jalife.
Philadelphia:
W. B. Saunders;
403–409,
1995.
|
414. |
Panfilov, A. V. and
A. M. Pertsov.
Vortex rings in a three‐dimensional medium described by reaction‐diffusion equations.
Doklady AN SSSR
274:
58–60,
1984.
|
415. |
Winfree, A. T.
Electrical turbulence in three‐dimensional heart muscle.
Science
266:
1003–1006,
1994.
|
416. |
Dillon, S. M.,
M. A. Allessie,
P. C. Ursell, and
A. L. Wit.
Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts.
Circ. Res.
63:
182–206,
1988.
|
417. |
Ursell, P. C.,
P. I. Gardner,
A. Albala,
J. J. J. Fenoglio, and
A. L. Wit.
Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing.
Circ. Res.
56:
436–451,
1985.
|
418. |
Restivo, M.,
H. Yin,
E. B. Caref,
A. I. Patel,
G. Ndrepepa,
M. J. Avitable,
M. A. Assadi,
N. Isber and
N. Elsherif.
Reentrant arrhythmias in the subacute infarction period: the proarrhythmic effect of flecainide acetate on functional reentrant circuits.
Circulation
91:
1236–1246,
1995.
|
419. |
El‐Sherif, N.,
H. Yin,
E. B. Caref, and
M. Restivo.
Electrophysiological mechanisms of spontaneous termination of sustained monomorphic reentrant ventricular tachycardia in the canine postinfarction heart.
Circulation
93:
1567–1578,
1996.
|
420. |
Boersma, L.,
J. Brugada,
M. J. Schalij,
C. Kirchhof, and
M. Allessie.
The effects of K+ on anisotropic conduction in sheets of perfused rabbit ventricular epicardium.
J. Cardiovasc. Electrophysiol.
2:
492–502,
1991.
|
421. |
Wit, A. L.,
S. M. Dillon, and
J. Coromilas.
Anisotropic reentry as a cause of ventricular tachyarrhythmias in myocardial infarction. In:
Cardiac Electrophysiology: From Cell to Bedside,
edited by D. P. Zipis and
J. Jalife.
Philadelphia:
W. B. Saunders;
511–526,
1995.
|
422. |
Kadish, A.,
M. Shinnar,
E. N. Moore,
J. H. Levine,
C. W. Balke, and
J. F. Spear.
Interaction of fiber orientation and direction of impulse propagation with anatomic barriers in anisotropic canine myocardium.
Circulation
78:
1478–1494,
1988.
|
423. |
Bonke, F. I. M.
Electrotonic spread in the sinoatrial node of the rabbit heart.
Pflugers Arch.
339:
17–23,
1973.
|
424. |
Bonke, F. I. M.
Passive electrical properties of atrial fibers of the rabbit heart.
Pflugers Arch.
339:
1–15,
1973.
|
425. |
Sakamoto, Y., and
M. Goto.
A study of the membrane constant in the dog myocardium.
Jpn. J. Physiol.
20:
30–41,
1970.
|
426. |
Tille, J.
Electronic interaction between muscle fibers in the rabbit ventricle.
J. Gen. Physiol.
50:
189–202,
1966.
|
427. |
Daut, J.
The passive electrical properties of Guinea‐pig ventricular muscle as examined with a voltage‐clamp technique.
J. Physiol. (Lond.)
330:
221–242,
1982.
|
428. |
Horiba, M.
Stimulus conduction in atria studied by means of intracellular microelectrode. Part I. That in Bachmann's bundle.
Jpn. Heart. J.
4:
333–345,
1963.
|
429. |
Wagner, M. L.,
R. Lazzara,
R. M. Weiss, and
B. F. Hoffman.
Specialized conducting fibers in the interatrial band.
Circ. Res.
18:
502–518,
1966.
|
430. |
Spach, M., and
P. C. Dolber.
The relation between discontinuous propagation in anisotropic cardiac muscle and the vulnerable period of reentry. In:
Cardiac Electrophysiology,
edited by D. P. Zipes and
J. Jalife.
New York:
Grune and Stratton;
241–252,
1985.
|
431. |
Kirchhof, C.,
M. Wijffels,
J. Brugada,
J. Planellas, and
M. Allessie.
Mode of action of a new class IC drug (ORG 7797) against atrial fibrillation in conscious dogs.
J. Cardiovasc. Pharmacol.
17:
116–124,
1991.
|
432. |
Horibe, H.
Studies on the spread of the right atrial activation by means of intracellular microelectrode.
Jpn. Circ. J.
25:
583–593,
1961.
|
433. |
Hogan, P. M. and
L. D. Davis.
Electrophysiological characteristics of canine atrial plateau fibers.
Circ. Res.
28:
62–73,
1971.
|
434. |
Brendel, W.,
W. Raule and
W. Trautwein.
Leitungsgeschwindigkeitund Erregungsausbreitung in den Vörhofendes Hundes.
Pflugers Arch.
253:
106–113,
1950.
|
435. |
Frame, L. H.,
R. L. Page,
P. A. Boyden,
J. J. Fenoglio, and
B. F. Hoffman.
Circus movement in the canine atrium around the tricuspid ring during experimental atrial flutter and during reentry in vitro.
Circulation
76:
1155–1175,
1987.
|
436. |
Draper, M. H., and
S. Weidmann.
Cardiac resting and action potentials recorded with an intracellular electrode.
J. Physiol. (Lond.)
115:
74–94,
1951.
|
437. |
Trautwein, W.,
U. Gottstein, and
K. Federschmidt.
Der Einfluss der Temperatur auf den Actionsstrom des excidierten Purkinje‐Fadens, gemessen mit einer intracellulären Electrode.
Pflugers Arch.
258:
243–260,
1953.
|
438. |
Hoffman, B. F.,
P. F. Cranefield, and
J. H. Stuckey, et al.
Direct measurement of conduction velocity in. in situ specialized conduction system of mammalian heart.
Proc. Soc. Exp. Biol. Med.
102:
55–57,
1959.
|
439. |
Draper, M. H., and
M. Mya‐Tu.
A comparison of the conduction velocity in cardiac tissues of various mammals.
Q. J. Exp. Physiol.
44:
91–109,
1959.
|
440. |
Rosen, M. R.,
M. J. Legato, and
R. M. Weiss.
Developmental changes in impulse conduction in the canine heart.
Am. J. Physiol.
240
(Heart Circ. Physiol. 9):
H546–H554,
1981.
|
441. |
Pressler, M. L.,
V. Elharrar, and
J. C. Bailey.
Effects of extracellular calcium ions, verapamil, and lanthanum on active and passive properties of canine cardiac Purkinje fibers.
Circ. Res.
51:
637–651,
1982.
|
442. |
Sano, T.,
N. Takayama, and
T. Shimamoto.
Directional difference of conduction velocity in the cardiac ventricular syncytium studied by microelectrodes.
Circ. Res.
VII:
262–267,
1959.
|
443. |
Roberts, D. E., and
A. M. Scher.
Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ.
Circ. Res.
50:
342–351,
1982.
|
444. |
Spear, J. F.,
E. L. Michelson, and
E. N. Moore.
Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias.
J. Am. Coll. Cardiol.
1:
1099–1110,
1983.
|
445. |
Tsuboi, N.,
I. Kodama,
J. Tayama, and
K. Yamada.
Anisotropic conduction properties of canine ventricular muscles.
Jpn. Circ. J.
49:
487–498,
1985.
|
446. |
Balke, C. W.,
M. D. Lesh,
J. F. Spear,
A. Kadish,
J. H. Levine, and
E. N. Moore.
Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium.
Circ. Res.
63:
879–892,
1988.
|
447. |
Quinteiro, R. A.,
M. O. Biagetti,
E. de Forteza.
Relationship between Vmax and conduction velocity in uniform anisotropic canine ventricular muscle: differences between the effects of lidocaine and amiodarone.
J. Cardiovasc. Pharmacol.
16:
931–939,
1990.
|
448. |
Lewis, T.
The Mechanism and Graphic Registration of the Heart Beat.
London:
Shaws & Sons,
1920.
|
449. |
Tranum‐Jensen, J.
The fine structure of the atrial and atrioventricular (AV) junctional specialized tissues of the rabbit heart. In:
The Conduction System of the Heart,
edited H. J. J. Wellens,
K. I. Lie, and
M. J. Janse.
Leiden:
Stenfert Kroese,
1976.
|
450. |
Krinsky, V. I.,
I. R. Efimov.
Vortices with linear cores in mathematical models of excitable media.
Physica A
188:
55–60,
1992.
|