Comprehensive Physiology Wiley Online Library

A Modern View of Heart Failure: Practical Applications of Cardiovascular Physiology

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Paradigmatic Shifts
2 Definition of Heart Failure
3 The Paradigm of Organ Physiology: The Failing Heart as a Defective Pump
3.1 Backward and Forward Failure
3.2 Systolic and Diastolic Dysfunction
3.3 Right and Left Heart Failure
3.4 The Neurohumoral Response in Heart Failure
3.5 Crossover Between Functional and Proliferative Signaling
3.6 Coupling Between the Failing Heart and the Circulation: Pressure–Volume Loops
3.7 Architectural Changes in the Failing Heart
4 The Paradigm of Biochemistry and Biophysics: The Failing Heart as a Weakly Contracting, Incompletely Relaxing Muscle
4.1 Inotropic and Lusitropic Abnormalities
4.2 Energy‐Starvation
4.3 Molecular Alterations and Architectural Changes
5 The Paradigm of Gene Expression: The Failing Heart as an Abnormal Molecular Structure
5.1 Adaptive and Maladaptive Hypertrophy
5.2 Cardiac Myocyte Phenotypes
5.3 Shape Changes in the Cells of the Overloaded Heart
5.4 Myocardial Cell Death
6 Summary and Conclusions
Figure 1. Figure 1.

Left ventricular pressure‐volume loops. A: Preload, which is generated during diastole by the venous return and atrial systole, determines the point along the end‐diastolic pressure–volume relationship (the lusitropic state) at which systole begins. After the onset of ventricular systole, the mitral valve closes and wall stress continues to increase during isovolumic contraction (A), which ends when the aortic valve opens and the ventricle meets its afterload, the aortic pressure. Aortic pressure rises and falls during ejection (B), when volume decreases. Systole ends when ventricular pressure and volume reach the end‐systolic pressure–volume relationship that describes the inotropic state of the ventricle. After aortic valve closure removes the afterload (aortic pressure) from the ventricular cavity, blood can neither enter nor leave the ventricle; as a result, relaxation begins under isovolumic conditions (C). When left ventricular pressure falls below that in the left atrium, the mitral valve opens and blood flows from the atrium into the ventricle during the filling phase (D). The cycle ends when ventricular pressure and volume reach the end‐diastolic pressure–volume relationship and the next cycle begins. B: A negative inotropic intervention shifts the end‐systolic pressure–volume relationship to the right and downward (solid curves); if afterload remains constant, stroke volume will be reduced. (The control loop and end‐systolic and end‐diastolic pressure–volume relationships are shown as dashed lines.) C: A negative lusitropic intervention shifts the end‐diastolic PV relationship to the left and upward (solid curves); if afterload remains constant, stroke volume is reduced.

From reference 54
Figure 2. Figure 2.

Schematic diagram showing key structures (Left) and calcium fluxes (Right) that control cardiac excitation‐contraction coupling and relaxation in the heart. Left: the calcium “pools” are in bold capital letters. Right: which shows the calcium fluxes between these pools, the thickness of the arrows indicates the magnitude of the calcium fluxes, while their vertical orientations describe their “energetics”: downward arrows represent passive calcium fluxes and upward arrows represent energy‐dependent active calcium transport. Most of the calcium that enters the cell from the extracellular fluid via L‐type calcium channels (arrow A) triggers calcium release from the sarcoplasmic reticulum; only a small portion directly activates the contractile proteins (arrow A1). Calcium is actively transported back into the extracellular fluid by the plasma membrane calcium pump ATPase (PMCA, arrow B1), and the Na/Ca exchanger (arrow B2); the sodium that enters the cell in exchange for calcium via the latter is pumped out of the cytosol by the sodium pump (dashed lines). Two calcium fluxes are regulated by the sarcoplasmic reticulum: calcium efflux from the subsarcolemmal cisternae via calcium release channels (arrow C) and calcium uptake into the sarcotubular network by the sarco(endo)plasmic reticulum calcium pump ATPase (arrow D). Calcium diffuses within the sarcoplasmic reticulum from the sarcotubular network to the subsarcolemmal cisternae (arrow G), where it is stored in a complex with calsequestrin and other calciumbinding proteins. Calcium binding to (arrow E) and dissociation from (arrow F) high‐affinity calcium‐binding sites of troponin C activate and inhibit the interactions of the contractile proteins. Calcium movements into and out of mitochondria (arrow H) buffer cytosolic calcium concentration. The extracellular calcium cycle consists of arrows A, B1, and B2, while the intracellular cycle involves arrows C, E, F, D, and G.

From reference 54
Figure 3. Figure 3.

Effects of changing cardiac phenotype (below) on the pressure‐volume loop (above). A: Concentric hypertrophy; B: normal; C. eccentric hypertrophy. Note that the major cause of reduced stroke volume is not a decrease in contractility (the end‐systolic pressure volume relationship), but instead, architectural changes in the ventricle.

From reference 54


Figure 1.

Left ventricular pressure‐volume loops. A: Preload, which is generated during diastole by the venous return and atrial systole, determines the point along the end‐diastolic pressure–volume relationship (the lusitropic state) at which systole begins. After the onset of ventricular systole, the mitral valve closes and wall stress continues to increase during isovolumic contraction (A), which ends when the aortic valve opens and the ventricle meets its afterload, the aortic pressure. Aortic pressure rises and falls during ejection (B), when volume decreases. Systole ends when ventricular pressure and volume reach the end‐systolic pressure–volume relationship that describes the inotropic state of the ventricle. After aortic valve closure removes the afterload (aortic pressure) from the ventricular cavity, blood can neither enter nor leave the ventricle; as a result, relaxation begins under isovolumic conditions (C). When left ventricular pressure falls below that in the left atrium, the mitral valve opens and blood flows from the atrium into the ventricle during the filling phase (D). The cycle ends when ventricular pressure and volume reach the end‐diastolic pressure–volume relationship and the next cycle begins. B: A negative inotropic intervention shifts the end‐systolic pressure–volume relationship to the right and downward (solid curves); if afterload remains constant, stroke volume will be reduced. (The control loop and end‐systolic and end‐diastolic pressure–volume relationships are shown as dashed lines.) C: A negative lusitropic intervention shifts the end‐diastolic PV relationship to the left and upward (solid curves); if afterload remains constant, stroke volume is reduced.

From reference 54


Figure 2.

Schematic diagram showing key structures (Left) and calcium fluxes (Right) that control cardiac excitation‐contraction coupling and relaxation in the heart. Left: the calcium “pools” are in bold capital letters. Right: which shows the calcium fluxes between these pools, the thickness of the arrows indicates the magnitude of the calcium fluxes, while their vertical orientations describe their “energetics”: downward arrows represent passive calcium fluxes and upward arrows represent energy‐dependent active calcium transport. Most of the calcium that enters the cell from the extracellular fluid via L‐type calcium channels (arrow A) triggers calcium release from the sarcoplasmic reticulum; only a small portion directly activates the contractile proteins (arrow A1). Calcium is actively transported back into the extracellular fluid by the plasma membrane calcium pump ATPase (PMCA, arrow B1), and the Na/Ca exchanger (arrow B2); the sodium that enters the cell in exchange for calcium via the latter is pumped out of the cytosol by the sodium pump (dashed lines). Two calcium fluxes are regulated by the sarcoplasmic reticulum: calcium efflux from the subsarcolemmal cisternae via calcium release channels (arrow C) and calcium uptake into the sarcotubular network by the sarco(endo)plasmic reticulum calcium pump ATPase (arrow D). Calcium diffuses within the sarcoplasmic reticulum from the sarcotubular network to the subsarcolemmal cisternae (arrow G), where it is stored in a complex with calsequestrin and other calciumbinding proteins. Calcium binding to (arrow E) and dissociation from (arrow F) high‐affinity calcium‐binding sites of troponin C activate and inhibit the interactions of the contractile proteins. Calcium movements into and out of mitochondria (arrow H) buffer cytosolic calcium concentration. The extracellular calcium cycle consists of arrows A, B1, and B2, while the intracellular cycle involves arrows C, E, F, D, and G.

From reference 54


Figure 3.

Effects of changing cardiac phenotype (below) on the pressure‐volume loop (above). A: Concentric hypertrophy; B: normal; C. eccentric hypertrophy. Note that the major cause of reduced stroke volume is not a decrease in contractility (the end‐systolic pressure volume relationship), but instead, architectural changes in the ventricle.

From reference 54
References
 1. Alpert, N. R., and M. S. Gordon. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am. J. Physiol. 202: 940–946, 1962.
 2. Anversa, P. Myocyte death in the pathological heart. Circ. Res. 86: 121–124, 2000.
 3. Apstein, C. S., F. N. Gravino and C. C. Haudenschild. Determinants of a protective effect of glucose and insulin on the ischemic myocardium: Effects on contractile function, diastolic compliance, metabolism and ultrastructure during ischemia and reperfusion. Circ. Res. 52: 515–526, 1983.
 4. Baig, M. K., J. H. Goldman, A. L. P. Caforio, A. S. Coonar, P. J. Keeling, and W. J. McKenna. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J. Am. Coll. Cardiol. 31: 195–201, 1998.
 5. Barger, P. M., and D. P. Kelly. Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am. J. Med. Sci. 318: 36–42, 1999.
 6. Beltrami, C. A., N. Finato, M. Rocco, G. A. Feruglio, C. Puricelli, E. Cigola, F. Quaini, E. H. Sonnenblick, G. Olivetti, and P. Anversa. Structural basis for end‐stage failure in ischemic cardiomyopathy in humans. Circulation 89: 151–163, 1994.
 7. Benotti, J. R., W. Grossman, E. Braunwald, D. D. Dovolos, and A. A. Alousi. Hemodynamic assessment of amrinone: a new inotropic agent. N. Engl. J. Med. 299: 1373–1377, 1978.
 8. Bonne, G., L. Carrier, P. Richard, B. Hainque, and K. Schwartz. Familial hypertrophic cardiomyopathy. From mutations to functional defects. Circ. Res. 83: 580–593, 1998.
 9. Bugaisky, L., M. Gupta, M. G. Gupta, and R. Zak. Cellular and molecular mechanisms of hypertrophy In: The Heart and Cardiovascular System, Second Ed., edited by H. Fozzard, E. Haber, A. Katz, R. Jennings, and H. E. Morgan. New York: Raven Press. 1992: 1621–1640.
 10. Buja, L. M., and M. L. Entman. Models of myocardial cell injury and cell death in ischemic heart disease. Circulation 98: 1355–1357, 1998.
 11. Calderone, A., N. Takahashi, N. J. Izzo, Jr., C. M. Thaik, and W. S. Colucci. Pressure‐ and volume‐induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 92: 2385–2390, 1995.
 12. CIBIS‐II Investigators and Committees The cardiac insufficiency bisoprolol study II (CIBIS‐II): a randomised trial. Lancet 353: 9–13, 1999.
 13. Cohn, J. N. Introduction. The Vasodilator‐Heart Failure Trials (V‐HeFT). Mechanistic studies from the VA cooperative studies. Circulation 87 (Suppl VI): VI‐1–VI‐4, 1993.
 14. Cohn, J. N. Treatment of heart failure. N. Engl. J. Med. 335: 490–498, 1996.
 15. Cohn, J. N., D. G. Archibald, S. Ziesche, J. A. Franciosa, W. E. Harston, F. E. Tristani, W. B. Dunkman, W. Jacobs, G. S. Francis, F. R. Cobb, P. M. Shah, R. Saunders, R. D. Fletcher, H. S. Loeb, V. C. Hughes, and B. Baker. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration cooperative study (V‐HeFT). N. Engl. J. Med. 314: 1547–1552, 1986.
 16. Cohn, J. N., S. O. Goldstein, B. H. Greenberg, B. H. Lorell, R. C. Bourge, B. E. Jaski, S. O. Gottleib, F. McGrew, D. L. DeMets, and B. G. White. A dose‐dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N. Engl. J. Med. 339: 1810–1816, 1998.
 17. Cunningham, M. L., C. S. Apstein, E. O. Weinberg, W. M. Vogel, and B. H. Lorell. Influence of glucose and insulin on the exaggerated diastolic and systolic dysfunction of hypertrophied rat hearts during hypoxia. Circ. Res. 66: 406–415, 1990.
 18. Eichhorn, E. J., and M. R. Bristow. Medial therapy can improve the biological properties of the chronically failing heart. Circulation 94: 2285–2296, 1996.
 19. Eichhorn, E. J., B. Hatfield, L. Marcoux and R. C. Risser. Functional importance of myocardial relaxation in patients with congestive heart failure. J. Cardiac Failure 1: 45–56, 1994.
 20. Francis, G. S., S. R. Goldsmith, T. B. Levine, M. T. Olivari, and J. N. Cohn. The neurohumoral axis in congestive heart failure. Ann. Intern. Med. 101: 370–377, 1984.
 21. Gerdes, A. M., and J. M. Capasso. Editorial Review: structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J. Mol. Cell. Cardiol. 27: 849–856, 1995.
 22. Gerdes, A. M., S. E. Kellerman, K. B. Malec, and D. D. Schocken. Transverse shape characteristics of cardiac myocytes from rats and humans. Cardioscience 5: 31–36, 1994.
 23. Gerdes A. M., S. E. Kellerman, J. A. Moore, K. E. Muffy, L. C. Clark, P. Y. Reeves, K. B. Malec, P. P. McKeown, and D. D. Schocken. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 85: 426–430, 1992.
 24. Gerdes A. M., S. E. Kellerman, and D. D. Schocken. Implications of cardiomyocyte remodeling in heart dysfunction. In: The Failing Heart, edited by N. S. Dhalla, R. E. Beamish, N. Takeda, and M. Nagano. Philadelphia: Lippincott‐Raven, 1995: 197–205.
 25. Graham, R. M., and W. A. Owens. Pathogenesis of inherited forms of dilated cardiomyopathy. N. Engl. J. Med. 341: 1759–1762, 1999.
 26. Grossman, W., D. Jones, and L. P. McLaurin. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56: 56–64, 1975.
 27. Grünig, E., J. A. Tasman, H. Kücherer, W. Franz, W. Kübler, and H. A. Katus. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 31: 186–194, 1998.
 28. Hall, S. A., C. G. Cigarroa, L. Marcoux, R. C. Risser, P. A. Grayburn, and E. J. Eichhorn. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta‐adrenergic blockade. J. Am. Coll. Cardiol. 25: 1154–1161, 1995.
 29. Harris, P. Evolution and the cardiac patient. Cardiovasc. Res. 17: 313–319, 373–378, 437–445, 1983.
 30. Haunstetter, A., and S. Izumo. Apoptosis. basic mechanisms and implications for cardiovascular disease. Circ. Res. 82: 1111–1129, 1998.
 31. Hennen, J., H. M. Krumholz, and M. J. Radford. Twenty most frequent DRG groups among Medicare inpatients age 65 or older in Connecticut hospitals, fiscal years 1991, 1992, and 1993. Conn. Med. 59: 11–15, 1995.
 32. Hood, W. P., Jr., C. E. Rackley, and E. L. Rolett. Wall stress in the normal and hypertrophied human left ventricle. Am. J. Cardiol. 22: 5550–558, 1968.
 33. Ho, K. K. L., K. M. Anderson, W. B. Kannel, W. Grossman, and D. Levy. Survival after the onset of congestive heart failure in Framingham heart study subjects. Circulation 88: 107–115, 1993.
 34. Hoffman, J. E. I. Transmural myocardial perfusion. Prog. Cardiovasc. Dis. 29: 429–464, 1987.
 35. Hosenpud, J. D., and B. H. Greenberg. Congestive Heart Failure, 2nd Ed. Baltimore. Lippincott Williams and Wilkins, 2000.
 36. Illingworth, J. A., W. Christopher, L. Ford, K. Kobayashi, and J. R. Williamson. Regulation of myocardial energy metabolism. In: Recent Advances in Studies on Cardiac Structure and Metabolism, edited by P‐E. Roy and P. Harris. 1975: 271–290, vol. 8.
 37. Ingwall, J. S. Is cardiac failure a consequence of decreased energy reserve. Circulation 87 (Suppl VII): VII–58–VII‐62, 1993.
 38. Ingwall, J. S., M. F. Kramer, M. A. Fifer, B. H. Lorell, R. Shemin, W. Grossman, and P. D. Allen. The creatine kinase sytem in normal and depressed human myocardium. N. Engl. J. Med. 313: 1050–1054, 1985.
 39. Jacobus W. E. Respiratory control and the integration of heart high‐energy metabolism by mitochondrial creatine kinase. Annu. Rev. Physiol. 47: 707–725, 1985.
 40. Kagaya Y., E. O. Weinberg, N. Ito, T. Mochizuki, W. H. Barry, and B. H. Lorell. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. J. Clin. Invest. 95: 2766–2776, 1995.
 41. Kajstura, J., X. Zhang, K. Reiss, E. Szoke, P. Li, C. Lagrasta, W. Cheng. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing‐induced cardiomyopathy in rats. Circ. Res. 74: 383–400, 1994.
 42. Kalsi, K. K., R. T. Smolenski, R. D. Pritchart, A. Khagani, A. M. Seymour, and M. H. Yacoub. Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. Eur. J. Clin. Invest. 29: 469–477, 1999.
 43. Kammermeier, H., P. Schmidt, and E. Jüngling. Free energy change of ATP‐hydrolysis: a causal factor of early hypoxic failure of the myocardium? J. Mol. Cell. Cardiol. 14: 267–277, 1982.
 44. Kass, D. A. Evaluation of left‐ventricular systolic function. Heart Failure 4: 198–205, 1988.
 45. Katz, A. M. Biochemical “defect” in the hypertrophied and failing heart: deleterious or compensatory? Circulation 47: 1076–1079, 1973.
 46. Katz, A. M. Congestive heart failure: role of altered myocardial cellular control. N. Engl. J. Med. 293: 1184–1191, 1975.
 47. Katz, A. M. Influence of altered inotropy and lusitropy on ventricular pressure‐volume loops. J. Am. Coll. Cardiol. 11: 438–445, 1988.
 48. Katz, A. M. Molecular biology in cardiology, a paradigmatic shift. J. Mol. Cell. Cardiol. 20: 355–366, 1988.
 49. Katz, A. M. Changing strategies in the management of heart failure. J. Am. Coll. Cardiol. 13: 513–523, 1989.
 50. Katz, A. M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med. 322: 100–110, 1990.
 51. Katz, A. M. Cardiomyopathy of overload. An unnatural growth response in the hypertrophied heart. Ann. Intern. Med. 121: 363–371, 1994.
 52. Katz, A. M. Evolving concepts of heart failure: cooling furnace, malfunctioning pump, enlarging muscle. J. Cardiac Failure. 3: 319–334, 1997;
 53. J. Cardiac Failure. 4: 67–81, 1998.
 54. Katz, A. M. Heart Failure: Pathophysiology, Molecular Biology, Clinical Management. Philadelphia: Lippincott Williams and Wilkins, 2000.
 55. Katz, A. M. Physiology of the Heart, Third Ed. Philadelphia: Lippincott Williams and Wilkins, 2001.
 56. Keeling, P. J., Y. Gang, G. Smith, H. Seo, S. E. Bent, V. Murday, A. L. P. Caforio, and W. J. McKenna. Familial dilated cardiomyopathy in the United Kingdom. Br. Heart J. 73: 417–421, 1995.
 57. Kuhn, T. S. The Structure of Scientific Revolutions, 2nd Ed. Chicago: The University of Chicago Press, 1970.
 58. LeChat, P., M. Packer, S. Chalon, M. Cucherat, T. Arab, and J‐P. Boissel. Clinical effects of β‐adrenergic blockade in chronic heart failure. Circulation 98: 1184–1191, 1998.
 59. Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5: 370–382, 1960.
 60. Lubbe, W. F., T. Podzweit, P. S. Daries, and L. H. Opie. The role of cyclic adenosine monophosphate in adrenergic effects on ventricular vulnerability to fibrillation in the isolated perfused heart. J. Clin. Invest. 61: 1260–1269, 1978.
 61. Malhotra, A., S. Penpargkul, T. Schaible, and J. Scheuer. Contractile proteins and sarcoplasmic reticulum in physiologic cardiac hypertrophy. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H263–H267, 1981.
 62. Mann, D. L. Mechanisms of heart failure. Circulation 100: 999–1008, 1999.
 63. McCall, D., and S. H. Rahimtoola Heart Failure. New York: Chapman & Hall, 1995.
 64. Marcus, M. L., D. B. Doty, L. F. Hiratzka, C. B. Wright, and C. L. Eastham. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N. Engl. J. Med. 307: 1362–1366, 1982.
 65. Meerson, F. Z. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor et Vasa 3: 161–177, 1961.
 66. Meerson, F. Z., and M. P. Javick. Isozyme pattern and activity of myocardial creatine phosphokinase under heart adaptation to chronic overload. Basic Res. Cardiol. 77: 349–358, 1982.
 67. Merit‐HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT‐HF) Lancet 353: 2001–2007, 1999.
 68. Neubauer, S., M. Horn, A. Naumann, R. Tian, M. Laser, J. Friedrich, P. Gaudron, K. Schnackerz, J. S. Ingwall, and G. Errl. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J. Clin. Invest. 95: 1092–1100, 1995.
 69. Obayashi, T. K., S. Hattori, S. Sugiyama, M. Taneka, T. Tanaka, S. Itoyama. Point mutations in mitochondrial DNA in patients with hypertrophic cardiomyopathy. Am. Heart J. 124: 1263–1269, 1992.
 70. O'Connor, C. M., W. A. Gattis B. F. Uretsky K. F. Adams, Jr., S. E. McNulty, S. H. Grossman, W. J. McKenna, F. Zannad, K. Swedberg, M. Gheorghiade, and R. M. Califf. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am. Heart. J. 138: 78–86, 1999.
 71. Olivetti, G., J. M. Capasso, E. H. Sonnenblick, and P. Anversa. Side‐to‐side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ. Res. 67: 23–34, 1990.
 72. Packer, M. The neurohumoral hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20: 248–254, 1992.
 73. Packer, M., M. R. Bristow, J. N. Cohn, W. S. Colucci, M. B. Fowler, E. M. Gilbert. N. Engl. J. Med. 334: 1349–1355, 1996.
 74. Packer, M., J. R. Carver, R. J. Rodeheffer, R. J. Ivanhoe, R. DiBianco, S. M. Zeldis, G. H. Hendrix, W. J. Bommer, U. Elkayam, M. L. Kukin, G. I. Mallis, J. A. Sollano, J. Shannon, P. K. Tandon, and D. L. DeMets. Effect of oral milrinone on mortality in severe heart failure. N. Engl. J. Med. 325: 1468–1475, 1991.
 75. Packer, M., and J. N. Cohn. Consensus recommendations for the management of heart failure Am. J. Cardiol. 83 (Suppl 2a): 1A–38A, 1999.
 76. Penpargkul, S., D. I. Repke, A. M. Katz, and J. Scheuer. Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circ. Res. 40: 134–138, 1977.
 77. Podzuweit, T., W. F. Lubbe, and L. H. Opie. Cyclic adenosine monophosphate, ventricular fibrillation, and antiarrhythmic drugs. Lancet 1: 341–342, 1976.
 78. Poole‐Wilson, P. A., W. S. Colucci, B. M. Massie, K. Chatterjee, A. S. Coats Heart Failure. Scientific Principles and Clinical Practice. New York: Churchill Livingstone, 1997.
 79. Rauch, B., B. Schultze, and H. P. Schultheiss. Alteration of the cytosolic‐mitochondrial distribution of high‐energy phosphates during global myocardial ischemia may contribute to early contractile failure. Circ. Res. 75: 760–769, 1994.
 80. Remes, A. M., I. E. Hassinen, M. J. Ikäheimo, R. Herva, J. Hirvonen, and K. J. Peuhkurinen. Mitochondrial DNA deletions in dilated cardiomyopathy: a clinical study employing endomyocardial sampling. J. Am. Coll. Cardiol. 23: 935–942, 1993.
 81. Ross, J., Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog. Cardiovasc. Dis. 18: 255–264, 1976.
 82. Sabbah, H. N., H. Shimoyama, T. Kono, R. C. Gupta, V. G. Sharov, G. Scicli, T. B. Levine, and S. Goldstein. Effect of longterm monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilatation in dogs with reduced ejection fraction. Circulation 89: 2852–2859, 1994.
 83. Sandler, H., and H. T. Dodge. Left ventricular tension and stress in man. Circ. Res. 13: 91–104, 1963.
 84. Schaper, J., A. Elsässer, and S. Kostin. The role of cell death in heart failure. Circ. Res. 85: 867–869, 1999.
 85. Schieffer, B., A. Wirger, M. Meybrunn, S. Seitz, J. Holtz, U. N. Riede, H. Drexler. Comparative effects of chronic angiotensin‐converting enzyme inhibition and angiotensin type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89: 2273–2282, 1994.
 86. Smith, V‐E., M. L. Weisfeldt, and A. M. Katz. Relaxation and diastolic properties of the heart. In The Heart and Cardiovascular System, edited by H. Fozzard, E. Haber, A. Katz, R. Jennings, and H. E. Morgan. New York: Raven Press, 1986: 803–818.
 87. Spann, J. F., Jr., R. A. Bucino, E. H. Sonnenblick, and E. Braunwald. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21341–21354, 1967.
 88. Spirito, P., C. E. Seidman, W. J. McKenna, and B. J. Maron. The management of hypertrophic cardiomyopathy. N. Engl. J. Med. 336: 775–785, 1997.
 89. Stevenson, L. W., B. M. Massie, and G. S. Francis. Optimizing therapy for complex or refractory heart failure: a management problem. Am. Heart J. 135: S293–S309, 1998.
 90. Suomalainen, A., A. Paetau, H. Leinonen, A. Majander, L. Peltonen, and H. Somer. Inherited idiopathic dilated cardiomyopathy with multiple deletions of mitochondrial DNA. Lancet 340: 1319–1320, 1992.
 91. Swynghedauw, B. Molecular mechanisms of myocardial remodeling. Physiol. Rev. 79: 215–262, 1999.
 92. Tian, R., M. E. Christe, M. Spindler, J. C. A. Hopkins, J. M. Halow, S. A. Camacho, and J. S. Ingwall. Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J. Clin. Invest. 99: 745–751, 1997.
 93. Tian, R. and J. S. Ingwall. Energetic basis for reduced contractile reserve in isolated rat hearts. Am. J. Physiol. 270 (Heart Circ. Physiol. 39): H1207–H1216, 1996.
 94. Tian, R., L. Nascimben, J. S. Ingwall, and B. H. Lorell. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96: 1313–1319, 1997.
 95. Ucker, D. S. Death by suicide: one way to go in mammalian development? New Biologist 3: 103–109, 1991.
 96. Vasan, R. S., E. J. Benjamin, J. C. Evans, M. G. Larson, C. K. Reiss, and D. Levy. Prognosis of diastolic heart failure: Framingham Heart Study. (abstract) Circulation 92: (Suppl I) 1–665, 1996.
 97. Wangler, R. D., K. G. Peters, M. L. Marcus, and R. J. Tomanek. Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasodilator rserve. Circ. Res. 51: 10–18, 1982.
 98. Weber, K. T., J. S. Janicki, S. G. Schroff, R. Pick, R. M. Chen, and R. I. Bashey. Collagen remodeling of the pressureoverloaded, hypertrophied nonhuman primate myocardium. Circ. Res. 62: 757–65, 1988.
 99. Wicker, P., R. C. Tarazi, and K. Kobayashi. Coronary blood flow during the development and regression of left ventricular hypertrophy in renovascular hypertensive rats. Am. J. Cardiol. 51: 1744–1749, 1983.
 100. Wollert, K. C., T. Taga, M. Saito, M. Narazaki, T. Kishimoto, C. C. Glembotski, A. B. Vernallis, J. K. Heath, D. Pennica, W. I. Wood, K. R. Chien. Corticotrophin‐1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor‐dependent pathways. J. Biol. Chem. 271: 9535–9545, 1996.
 101. Wood, P. Diseases of the Heart, 2nd Ed. London: Routledge. 1956.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Arnold M. Katz. A Modern View of Heart Failure: Practical Applications of Cardiovascular Physiology. Compr Physiol 2011, Supplement 6: Handbook of Physiology, The Cardiovascular System, The Heart: 786-804. First published in print 2002. doi: 10.1002/cphy.cp020121