Comprehensive Physiology Wiley Online Library

Cyclic Nucleotides and Blood Vessel Contraction

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 null
2 Effects of Vasoactive Agents on Cyclic Nucleotide Levels
3 Effects of Externally Applied Cyclic Nucleotides
4 Adenylate and Guanylate Cyclases
5 Cyclic Nucleotide Phosphodiesterases and Phosphodiesterase Inhibitors
5.1 Distribution
5.2 Multiple Forms of Phosphodiesterase
5.3 Inhibitors
5.4 Comparative Studies in Hypertensive Rats
6 Cyclic Nucleotide‐Dependent Protein Kinases
7 Interactions Between Cyclic Nucleotides and Ca2+
8 Conclusion
References
 1. Åberg, G., and R. Andersson. Studies on mechanical actions of mepivacaine (carbocaine®) and its optically active isomers on isolated smooth muscle: role of Ca++ and cyclic AMP. Acta Pharmacol. Toxicol. 31: 321–336, 1972.
 2. Adachi, K., and F. Numano. Phosphodiesterase inhibitors: their comparative effectiveness in vitro in various organs. Japan. J. Pharmacol. 27: 97–103, 1977.
 3. Al‐Jeboory, A., and R. J. Marshall. Relaxant effects of dopamine and isoprenaline on canine isolated coronary arteries—relationship to cyclic AMP production. Brit. J. Pharmacol. 62: 373P–375P, 1978.
 4. Allen, J. C. Ca++‐binding properties of canine aortic microsomes: lack of effect of c‐AMP. Blood Vessels 14: 91–104, 1977.
 5. Amer, M. S. Cyclic adenosine monophosphate and hypertension in rats. Science 179: 807–809, 1973.
 6. Amer, M. S. Minireview: cyclic nucleotides in disease; on the biochemical etiology of hypertension. Life Sci. 17: 1021–1038, 1975.
 7. Amer, M. S., N. Doba, and D. J. Reis. Changes in cyclic nucleotide metabolism in aorta and heart of neurogenically hypertensive rats: possible trigger mechanism of hypertension. Proc. Natl. Acad. Sci. US 72: 2135–2139, 1975.
 8. Amer, M. S., A. W. Gomoll, J. L. Perhach, Jr., H. C. Ferguson, and G. R. McKinney. Aberrations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive rats. Proc. Natl. Acad. Sci. US 71: 4930–4934, 1974.
 9. Amer, M. S., and W. E. Kreighbaum. Cyclic nucleotide phosphodiesterases: properties, activators, inhibitors, structure‐activity relationships, and possible role in drug development. J. Pharm. Sci. 64: 1–37, 1975.
 10. Andersson, R. Cyclic AMP as a mediator of the relaxing action of papaverine, nitroglycerine, diazoxide and hydralazine in intestinal and vascular smooth muscle. Acta Pharmacol. Toxicol. 32: 321–336, 1973.
 11. Andersson, R. Role of cyclic AMP and Ca++ in mechanical and metabolic events in isometrically contracting vascular smooth muscle. Acta Physiol. Scand. 87: 84–95, 1973.
 12. Andersson, R., H. J. Arnqvist, and L. Lundholm. Influence of cyclic nucleotides on protein synthesis in vascular smooth muscle. Experientia 32: 601–602, 1976.
 13. Andersson, R., L. Lundholm, E. Mohme‐Lundholm, and K. Nilsson. Role of cyclic AMP and Ca++ in metabolic and mechanical events in smooth muscle. Advan. Cyclic Nucleotide Res. 1: 213–229, 1972.
 14. Andersson, R., and K. Nilsson. Cyclic AMP and calcium in relaxation in intestinal smooth muscle. Nature New Biol. 238: 119–120, 1972.
 15. Andersson, R., K. Nilsson, J. Wikberg, S. Johansson, E. Mohme‐Lundholm, and L. Lundholm. Cyclic nucleotides and the contraction of smooth muscle. Advan. Cyclic Nucleotide Res. 5: 491–518, 1975.
 16. Angles D'Auriac, G., and M. Worcel. Cellular levels of cAMP and cGMP in rat uterus smooth muscle. In: Smooth Muscle Pharmacology and Physiology, edited by M. Worcel and G. Vassort. Paris: Institut National de la Santé et de la Recherche Médicale, 1976, vol. 50, p. 101–112.
 17. Appleman, M. M., W. J. Thompson, and T. R. Russell. Cyclic nucleotide phosphodiesterases. Advan. Cyclic Nucleotide Res. 3: 65–98, 1973.
 18. Bär, H. Cyclic nucleotides and smooth muscle. Advan. Cyclic Nucleotide Res. 4: 195–237, 1974.
 19. Bartelstone, H. J., P. A. Nasmyth, and J. M. Telford. The significance of adenosine cyclic 3′,5′‐monophosphate for the contraction of smooth muscle. J. Physiol. London 188: 159–176, 1967.
 20. Baudouin‐Legros, M., and P. Meyer. Effects of angiotensin, catecholamines and cyclic AMP on calcium storage in aortic microsomes. Brit. J. Pharmacol. 47: 377–385, 1973.
 21. Berne, R. M., J. T. Herlihy, J. Schrader, and R. Rubio. Effect of adenosine on contraction of vascular smooth muscle. In: Ionic Actions on Vascular Smooth Muscle, edited by E. Betz. Berlin: Springer‐Verlag, 1976, p. 137–148.
 22. Berridge, M. J. The interaction of cyclic nucleotides and calcium in the control of cellular activity. Advan. Cyclic Nucleotide Res. 6: 1–98, 1975.
 23. Berti, F., V. Bernareggi, and V. Mandelli. Contraction and relaxation of in vitro perfused rat caudal artery: a possible role for cyclic 3′,5′‐AMP. Arch. Intern. Pharmacodyn. 192: 247–254, 1971.
 24. Berti, F., C. Sirtori, and M. M. Usardi. Cyclic 3′,5′‐AMP, its dibutyryl derivative and theophylline effects on the rat portal vein in vitro. Arch. Intern. Pharmacodyn. 184: 328–333, 1970.
 25. Bhalla, R. C., R. C. Webb, and T. Brock. cAMP‐dependent protein kinase activity in blood vessels of spontaneously hypertensive rats (Abstract). Federation Proc. 35: 398, 1976.
 26. Bhalla, R. C., R. C. Webb, and D. Singh. Role of cyclic AMP in vascular smooth muscle and its altered function in spontaneously hypertensive rat (Abstract). Advan. Cyclic Nucleotide Res. 9: 762, 1978.
 27. Blumenthal, D. K., J. T. Stull, and G. N. Gill. Phosphorylation of cardiac troponin by guanosine 3′:5′‐monophosphate‐dependent protein kinase. J. Biol. Chem. 253: 334–336, 1978.
 28. Böhme, E., W. Arsenow, and H. Graf. Stimulation of platelet guanylate cyclase by sodium pentacyanonitrosylferrate (III) (Abstract). Hoppe‐Seylers Z. Physiol. Chem. 358: 217, 1977.
 29. Böhme, E., H. Graf, H.‐U. Hill, and W. Arsenow. Stimulation of guanylate cyclase by sodium nitroprusside (Abstract). Naunyn‐Schmiedebergs Arch. Pharmacol. 297: R12, 1977.
 30. Böhme, E., H. Graf, and G. Schultz. Effects of sodium nitroprusside and other smooth muscle‐relaxants on cyclic GMP formation in smooth muscle and platelets. Advan. Cyclic Nucleotide Res. 9: 131–143, 1978.
 31. Buonassisi, V., and J. C. Venter. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. US 73: 1612–1616, 1976.
 32. Bresnahan, S. J., J. L. Borowitz, and T. S. Miya. Some steric factors affecting smooth muscle relaxation by cAMP analogs. Arch. Intern. Pharmacodyn. 218: 180–185, 1975.
 33. Brostrom, C. O., Y.‐C. Huang, B. M. Breckenridge, and D. J. Wolff. Identification of a calcium‐binding protein as a calcium‐dependent regulator of brain adenylate cyclase. Proc. Natl. Acad. Sci. US 72: 64–68, 1975.
 34. Browning, E. T. Site of action of papaverine as an inhibitor of respiration (Abstract). Pharmacologist 16: 265, 1974.
 35. Browning, E. T., V. E. Groppi, and C. Kon. Papaverine, a potent inhibitor of respiration in C‐6 astrocytoma cells. Mol. Pharmacol. 10: 175–181, 1974.
 36. Bülbring, E., and J. G. Hardman. Effects on smooth muscle of nucleotides and the dibutyryl analogs of cyclic nucleotides. In: Smooth Muscle Pharmacology and Physiology, edited by M. Worcel and G. Vassort. Paris: Institut National de la Santé et de la Recherche Médicale, 1976, vol. 50, p. 125–131.
 37. Burkard, W. P. Effects of sodium nitroprusside on contractile state and cyclic nucleotide levels in rabbit arteries (Abstract). Naunyn‐Schmiedebergs Arch. Pharmacol. 297: R12, 1977.
 38. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24: 509–581, 1972.
 39. Busse, E. Nachweis von Guanylatzyklase‐Aktivität in der Arteria coronaria des Rindes. Acta Biol. Med. Ger. 35: 1595–1601, 1976.
 40. Busse, E., and H. Banaschak. Nachweis von Adenylatzyklase‐Aktivität in der Arteria coronaria des Rindes. Acta Biol. Med. Ger. 35: 1587–1594, 1976.
 41. Busse, E., and H. Banaschak. Nachweis von Proteinkinase‐Aktivitäten in der Arteria coronaria des Rindes. Acta Biol. Med. Ger. 35: 1603–1611, 1976.
 42. Casnellie, J. E., and P. Greengard. Guanosine 3′: 5′‐cyclic monophosphate‐dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc. Natl. Acad. Sci. US 71: 1891–1895, 1974.
 43. Chasin, M., and D. N. Harris. Inhibitors and activators of cyclic nucleotide phosphodiesterase. Advan. Cyclic Nucleotide Res. 7: 225–264, 1976.
 44. Clyman, R. I., A. S. Blacksin, V. C. Manganiello, and M. Vaughan. Oxygen and cyclic nucleotides in human umbilical artery. Proc. Natl. Acad. Sci. US 72: 3883–3887, 1975.
 45. Clyman, R. I., A. S. Blacksin, J. A. Sandler, V. C. Manganiello, and M. Vaughan. The role of calcium in regulation of cyclic nucleotide content in human umbilical artery. J. Biol. Chem. 250: 4718–4721, 1975.
 46. Clyman, R. I., V. C. Manganiello, C. J. Lovell‐Smith, and M. Vaughan. Calcium uptake by subcellular fractions of human umbilical artery. Am. J. Physiol. 231: 1074–1081, 1976.
 47. Clyman, R. I., J. A. Sandler, V. C. Manganiello, and M. Vaughan. Guanosine 3′,5′‐monophosphate and adenosine 3′,5′‐monophosphate content of human umbilical artery. J. Clin. Invest. 55: 1020–1025, 1975.
 48. Cohen, M. L., and B. A. Berkowitz. Age‐related changes in vascular responsiveness to cyclic nucleotides and contractile agonists. J. Pharmacol. Exptl. Therap. 191: 147–155, 1974.
 49. Cohen, M. L., and B. Berkowitz. Contraction and cyclic nucleotide‐induced relaxation of aortic strips from the spontaneously hypertensive rat (Abstract). Pharmacologist 16: 288, 1974.
 50. Cohen, M. L., and B. Berkowitz. Differences between the effects of dopamine and apomorphine on rat aortic strips. European J. Pharmacol. 34: 49–58, 1975.
 51. Cohen, M. L., A. S. Blume, and B. A. Berkowitz. Vascular adenylate cyclase: role of age and guanine nucleotide activation. Blood Vessels 14: 25–42, 1977.
 52. Cole, H. A., and S. V. Perry. The phosphorylation of troponin I from cardiac muscle. Biochem. J. 149: 525–533, 1975.
 53. Collins, G. A., and M. C. Sutter. Quantitative aspects of cyclic AMP and relaxation in the rabbit anterior mesentericportal vein. Can. J. Physiol. Pharmacol. 53: 989–997, 1975.
 54. Dabrowska, R., J. M. F. Sherry, D. K. Aromatorio, and D. J. Hartshorne. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry 17: 253–258, 1978.
 55. Daniel, E. E., and J. Crankshaw. Relation of c‐AMP to relaxation of pulmonary artery. Blood Vessels 11: 295–311, 1974.
 56. Davis, C. W., V. V. Murthy, and J. F. Kuo. Modifications in the reactivity of the cyclic nucleotide systems in the aorta of rabbits with experimental atherosclerosis (Abstract). Federation Proc. 34: 260, 1975.
 57. DeGubareff, T., and W. Sleator, Jr. Effects of caffeine on mammalian atrial muscle, and its interaction with adenosine and calcium. J. Pharmacol. Exptl. Therap. 148: 202–214, 1965.
 58. Demesy, F., and J. C. Stoclet. On the mechanism of papaverine action on the control of vascular smooth muscle contractile activity by extracellular calcium. J. Pharm. Pharmacol. 23: 712–713, 1971.
 59. Demesy‐Waeldele, F., and J. C. Stoclet. Effect of papaverine on cyclic nucleotide levels in the isolated rat aorta. European J. Pharmacol. 46: 63–66, 1977.
 60. Deth, R., and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J. Gen. Physiol. 69: 401–416, 1977.
 61. Diamond, J., and K. S. Blisard. Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery. Mol. Pharmacol. 12: 688–692, 1976.
 62. Diamond, J., and D. K. Hartle. Cyclic nucleotide levels during carbachol‐induced smooth muscle contractions. J. Cyclic Nucleotide Res. 2: 179–188, 1976.
 63. Diamond, J., and T. G. Holmes. Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium. Can. J. Physiol. Pharmacol. 53: 1099–1107, 1975.
 64. Diamond, J., and R. A. Janis. Increases in cyclic GMP levels may not mediate relaxant effects of sodium nitroprusside, verapamil and hydralazine in rat vas deferens. Nature 271: 472–473, 1978.
 65. Dunham, E. W., M. K. Haddox, and N. D. Goldberg. Alteration of vein cyclic 3′: 5′ nucleotide concentrations during changes in contractility. Proc. Natl. Acad. Sci. US 71: 815–819, 1974.
 66. Ericsson, E., and L. Lundholm. Adrenergic β‐receptor activity and cyclic AMP metabolism in vascular smooth muscle; variations with age. Mech. Ageing Develop. 4: 1–6, 1975.
 67. Ferrari, M. Effects of papaverine on smooth muscle and their mechanisms. Pharmacol. Res. Commun. 6: 97–115, 1974.
 68. Fitzpatrick, D. F., and A. Szentivanyi. Stimulation of calcium uptake into aortic microsomes by cyclic AMP and cyclic AMP‐dependent protein kinase. Naunyn‐Schmiedebergs Arch. Pharmacol. 298: 255–257, 1977.
 69. Flamm, E. S., A. T. Viau, J. Ransohoff, and N. E. Naftchi. Experimental alterations in cyclic adenosine monophosphate concentrations in the cat basilar artery. Neurology 26: 664–666, 1976.
 70. Garst, J. E., G. L. Kramer, Y. J. Wu, and J. N. Wells. Inhibition of separated forms of phosphodiesterases from pig coronary arteries by uracils and by 7‐substituted derivatives of 1‐methyl‐3‐isobutylxanthine. J. Med. Chem. 19: 499–503, 1976.
 71. Gilbert, C. H., and D. J. Galton. The presence of a hormone‐sensitive cyclase system in the rat aorta and its relation to lipolysis. Atherosclerosis 18: 257–264, 1973.
 72. Goldberg, N. D., and M. K. Haddox. Cyclic GMP metabolism and involvement in biological regulation. In: Annual Review of Biochemistry, edited by E. E. Snell, P. D. Boyer, A. Meister, and C. C. Richardson. Palo Alto, CA: Ann. Rev., 1977, vol. 46, p. 823–896.
 73. Goren, E. N., and O. M. Rosen. Purification and properties of a cyclic nucleotide phosphodiesterase from bovine heart. Arch. Biochem. Biophys. 153: 384–397, 1972.
 74. Graf, H., E. Bohme, and G. Schultz. Stimulatory effect of sodium pentacyanonitrosylferrate (III) on guanylate cyclase from hog brain (Abstract). Hoppe‐Seylers Z. Physiol. Chem. 358: 238, 1977.
 75. Greengard, P. Phosphorylated proteins as physiological effectors. Science 199: 146–152, 1978.
 76. Hamet, P., C. E. Baird, and J. G. Hardman. Characteristics of adenylate cyclase activity in pig coronary arteries. J. Cyclic Nucleotide Res. 4: 183–199, 1978.
 77. Hamilton, T. C. The effects of some phosphodiesterase inhibitors on the conductance of the perfused vascular beds of the chloralosed cat. Brit. J. Pharmacol. 46: 386–394, 1972.
 78. Harbon, S., M.‐F. Vesin, and L. Do Khac. The effects of epinephrine and prostaglandins on cAMP formation and binding to its intracellular receptors. Correlations with myometrial activity. In: Smooth Muscle Pharmacology and Physiology, edited by M. Worcel and G. Vassort. Paris: Institut National de la Santé et de la Recherche Médicale, 1976, vol. 50, p. 83–100.
 79. Hardman, J. G., J. N. Wells, and P. Hamet. Cyclic nucleotide metabolism in cell‐free systems from vascular tissue. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore: Univ. Park, 1977, p. 329–342.
 80. Herihy, J. T., E. L. Bockman, R. M. Berne, and R. Rubio. Adenosine relaxation of isolated vascular smooth muscle. Am. J. Physiol. 230: 1239–1243, 1976.
 81. Hidaka, H., T. Asano, and T. Shimamoto. Cyclic 3′,5′‐AMP phosphodiesterase of rabbit aorta. Biochim. Biophys. Acta 377: 103–116, 1975.
 82. Hidaka, H., T. Yamaki, M. Asano, and T. Totsuka. Involvement of calcium in cyclic nucleotide metabolism in human vascular smooth muscle. Blood Vessels 15: 55–64, 1978.
 83. Horrobin, D. F., M. S. Manku, D. J. Franks, and P. Hamet. Methyl xanthine phosphodiesterase inhibitors behave as prostaglandin antagonists in a perfused rat mesenteric artery preparation. Prostaglandins 13: 33–40, 1977.
 84. Ives, H. E., J. E. Casnellie, P. Greengard, and J. D. Jamieson. Cyclic GMP‐dependent protein phosphorylation in isolated aortic smooth muscle cells (Abstract). J. Cell Biol. 75: 325, 1977.
 85. Kadowitz, P. J., P. D. Joiner, A. L. Hyman, and W. J. George. Influence of prostaglandins E1 and F2α on pulmonary vascular resistance, isolated lobar vessels and cyclic nucleotide levels. J. Pharmacol. Exptl. Therap. 192: 677–687, 1975.
 86. Kalsner, S. Mechanism of potentiation of contractor responses to catecholamines by methylxanthines in aortic strips. Brit. J. Pharmacol. 43: 379–388, 1971.
 87. Katsuki, S., W. P. Arnold, and F. Murad. Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J. Cyclic Nucleotide Res. 3: 239–247, 1977.
 88. Katsuki, S., and F. Murad. Regulation of adenosine cyclic 3′,5′‐monophosphate and guanosine cyclic 3′,5′‐monophosphate levels and contractility in bovine tracheal smooth muscle. Mol. Pharmacol. 13: 330–341, 1977.
 89. Katz, A. M., M. Tada, and M. A. Kirchberger. Control of calcium transport in the myocardium by the cyclic AMP‐protein kinase system. Advan. Cyclic Nucleotide Res. 5: 453–472, 1975.
 90. Klainer, L. M., Y.‐M. Chi, S. L. Freidberg, T. W. Rall, and E. W. Sutherland. Adenyl cyclase. IV. The effects of neurohormones on the formation of adenosine 3′,5′‐phosphate by preparations from brain and other tissues. J. Biol. Chem. 237: 1239–1243, 1962.
 91. Klenerová, V., I. Albrecht, and S. Hynie. The activity of adenylate cyclase and phosphodiesterase in hearts and aortas of spontaneous hypertensive rats. Pharmacol. Res. Commun. 7: 453–462, 1975.
 92. Korenman, S. G., and J. F. Krall. The role of cyclic AMP in the regulation of smooth muscle cell contraction in the uterus. Biol. Reprod. 16: 1–17, 1977.
 93. Kramer, G. L., J. E. Garst, S. S. Mitchel, and J. N. Wells. Selective inhibition of cyclic nucleotide phosphodiesterases by analogues of 1‐methyl‐3‐isobutylxanthine. Biochemistry 16: 3316–3321, 1977.
 94. Kramer, G. L., and J. N. Wells. Phosphodiesterase inhibition and coronary artery relaxation by xanthine derivatives (Abstract). Advan. Cyclic Nucleotide Res. 9: 758, 1978.
 95. Kranz, D., and A. Wollenberger. Adenylatzyklase‐Aktivität und cAMP‐Bildung in Aorta und A. femoralis von Ratten in Abhängigkeit vom Lebensalter. Z. Alternsforsch 31: 461–466, 1976.
 96. Kranz, D., A. Wollenberger, M. Poppei, and K. Hecht. Hormonelle Stimulierung der Bildung von zyklischem Adenosin‐3′,5′‐monphosphat in zellfreien Partikelpäparaten und intakten Zellen der glatten Muskulatur der Aorta und A. femoralis von Ratten im Verlaufe eines Immobilisationsstresses. Acta Biol. Med. Ger. 35: 819–828, 1976.
 97. Krause, E.‐G., H. Will, B. Schirpke, and A. Wollenberger. Cyclic AMP‐enhanced protein phosphorylation and calcium binding in a cell‐membrane‐enriched fraction from myocardium. Advan. Cyclic Nucleotide Res. 5: 473–490, 1975.
 98. Kreye, V. A. W., and G. Schultz. Inhibition of norepinephrine‐, angiotensin II‐, and vasopressin‐induced contractions of smooth muscle by acyl derivatives of adenosine‐3′,5′‐monophosphate. European J. Pharmacol. 18: 297–302, 1972.
 99. Kukovetz, W. R., and G. Pöch. Inhibition of cyclic‐3′,5′‐nucleotide‐phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs. Naunyn‐Schmiedebergs Arch. Pharmakol. 267: 189–194, 1970.
 100. Kukovetz, W. R., G. Pöch, A. Wurm, S. Holzmann, and E. Paietta. Effect of phosphodiesterase‐inhibition on smooth muscle tone. In: Ionic Actions on Vascular Smooth Muscle, edited by E. Betz. Berlin: Springer‐Verlag, 1976, p. 124–131.
 101. Kuo, J. F. Guanosine 3′:5′‐monophosphate‐dependent protein kinases in mammalian tissues. Proc. Natl. Acad. Sci. US 71: 4037–4041, 1974.
 102. Kuo, J. F., and C. W. Davis. Decreased levels of cyclic GMP‐dependent protein kinase in the heart of hypertensive rats and in the liver of diabetic mice (Abstract). Federation Proc. 34: 262, 1975.
 103. Kuo, J. F., and P. Greengard. Cyclic nucleotide‐dependent protein kinases. IV. Widespread occurrence of adenosine, 3′,5′‐monophosphate‐dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. Natl. Acad. Sci. US 64: 1349–1355, 1969.
 104. Kuo, J. F., W.‐N. Kuo, M. Shoji, C. W. Davis, V. L. Seery, and T. E. Donnelly, Jr. Purification and general properties of guanosine 3′:5′‐monophosphate‐dependent protein kinase from guinea pig fetal lung. J. Biol. Chem. 251: 1759–1766, 1976.
 105. Kuo, J. F., E. J. Malveaux, J. G. Patrick, C. W. Davis, W.‐N. Kuo, and A. W. Pruitt. Cyclic GMP‐dependent and cyclic AMP‐dependent protein kinases, protein kinase modulators and phosphodiesterases in arteries and veins of dogs. Distribution and effects of arteriovenous fistula and arterial occlusion. Biochim. Biophys. Acta 497: 785–796, 1977.
 106. Lee, T.‐P., J. F. Kuo, and P. Greengard. Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′‐cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. US 69: 3287–3291, 1972.
 107. Leslie, S. W., J. L. Borowitz, and T. S. Miya. Adenosine analogs: structure‐activity relationships in vascular and intestinal smooth muscle. J. Pharm. Sci. 62: 1449–1452, 1973.
 108. Levin, R. M., and B. Weiss. Binding of trifluoperazine to the calcium‐dependent activator of cyclic nucleotide phosphodiesterase. Mol. Pharmacol. 13: 690–697, 1977.
 109. Levy, J. V. Papaverine antagonism of prostaglandin E2‐induced contraction of rabbit aortic strips. Res. Commun. Chem. Pathol. Pharmacol. 5: 297–310, 1973.
 110. Lin, Y. M., Y. P. Liu, and W. Y. Cheung. Cyclic 3′:5′‐nucleotide phosphodiesterase: purification, characterization, and active form of the protein activator from bovine brain. J. Biol. Chem. 249: 4943–4954, 1974.
 111. Lincoln, T. M., and J. D. Corbin. On the role of the cAMP and cGMP‐dependent protein kinases in cell function. J. Cyclic Nucleotide Res. 4: 3–14, 1978.
 112. Lincoln, T. M., and J. D. Corbin. Purified cyclic GMP‐dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN‐I). J. Biol. Chem. 253: 337–339, 1978.
 113. Lockwood, R, and S. Phornchirasilp. Selective block of cardiovascular adenylate cyclase activation in vivo. J. Pharm. Pharmacol. 29: 184–186, 1977.
 114. Lugnier, C., Y. Bertrand, and J. C. Stoclet. Cyclic nucleotide phosphodiesterase inhibition and vascular smooth muscle relaxation. European J. Pharmacol. 19: 134–136, 1972.
 115. Lugnier, C., T. Michon, and J. C. Stoclet. Evolution of aortic and cardiac cyclic AMP phosphodiesterase during the onset of mineralocorticoid hypertension in the rat. Brit. J. Pharmacol. 58: 434P–435P, 1976.
 116. Maguire, M. E., E. M. Ross, and A. G. Gilman. β‐Adrenergic receptor: ligand binding properties and the interaction with adenylyl cyclase. Advan. Cyclic Nucleotide Res. 8: 1–83, 1977.
 117. Mailman, D., W. Pawlik, A. P. Shepherd, L. L. Tague, and E. D. Jacobson. Cyclic nucleotide metabolism and vasodilation in canine mesenteric artery. Am. J. Physiol. 232: H191–H196, 1977 or
 118. Am. J. Physiol.: Heart Circ. Physiol. 1: H191–H196, 1977.
 119. McNeill, J. H., R. V. Barnes, R. S. Davis, and J. B. Hook. The effect of vasodilator drugs on the noradrenaline constrictor response in the isolated mesenteric artery. Can. J. Physiol. Pharmacol. 47: 663–669, 1969.
 120. McNeill, J. H., J. B. Hook, and R. S. Davis. Inhibition and enhancement of the noradrenaline constrictor response by methylxanthines. Can. J. Physiol. Pharmacol. 51: 553–555, 1973.
 121. Mittal, C. K., and F. Murad. Properties and oxidative regulation of guanylate cyclase. J. Cyclic Nucleotide Res. 3: 381–391, 1977.
 122. Murthy, V. V., J.‐C. Gilbert, L. I. Goldberg, and J. F. Kuo. Dopamine‐sensitive adenylate cyclase in canine renal artery. J. Pharm. Pharmacol. 28: 567–571, 1976.
 123. Namm, D. H. The activation of glycogen phosphorylase in arterial smooth muscle. J. Pharmacol. Exptl. Therap. 178: 299–310, 1971.
 124. Namm, D. H., and J. P. Leader. Occurrence and function of cyclic nucleotides in blood vessels. Blood Vessels 13: 24–47, 1976.
 125. Nguyen‐Duong, H., K. Brecht, and G. Gebert. Cyclic AMP and the potassium‐induced vasodilation. Pfluegers Arch. European J. Physiol. 356: 3–8, 1975.
 126. Nimmo, H. G., and P. Cohen. Hormonal control of protein phosphorylation. Advan. Cyclic Nucleotide Res. 8: 145–266, 1977.
 127. Patterson, W. D., J. G. Hardman, and E. W. Sutherland. Apparent multiple forms of cyclic AMP phosphodiesterase from rat erythrocytes. Mol. Cellular Endocrinol. 5: 51–66, 1976.
 128. Perkins, J. P. Adenyl cyclase. Advan. Cyclic Nucleotide Res. 3: 1–64, 1973.
 129. Peterson, E. W., R. LeBlanc, and F. Lebel. Cyclic adenosine monophosphate antagonism of prostaglandin induced vasospasm. Surg. Neurol. 3: 490–496, 1975.
 130. Phornchirasilp, S., and R. Lockwood. Selective activation of cardiovascular adenylate cyclase in vivo. Arch. Intern. Pharmacodyn. 225: 98–103, 1977.
 131. Pöch, G., H. Juan, and W. R. Kukovetz. Einfluss von herzund gefässwirksamen Substanzen auf die Aktivität der Phosphodiesterase (Abstract). Naunyn‐Schmiedebergs Arch. Pharmakol. Exptl. Pathol. 264: 293–294, 1969.
 132. Pöch, G., and W. R. Kukovetz. Studies on the possible role of cyclic AMP in drug‐induced coronary vasodilation. Advan. Cyclic Nucleotide Res. 1: 195–211, 1972.
 133. Ramanathan, S., and S. Shibata. Cyclic AMP blood vessels of spontaneously hypertensive rat. Blood Vessels 11: 312–318, 1974.
 134. Rasmussen, H., and D. B. P. Goodman. Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. 3: 421–509, 1977.
 135. Reinhardt, V. D. Zum Wirkungsmechanismus von Histamin auf myokard und glatte Gefässmuskulatur. Fortschr. Med. 95: 2251–2255, 1977.
 136. Rinner, I., A. Wurm, and R. Edlinger. Stimulation of adenylyl cyclase in coronary arterial tissue by adenosine (Abstract). Naunyn‐Schmiedebergs Arch. Pharmacol. 297: R12, 1977.
 137. Robison, G. A., R. W. Butcher, and E. W. Sutherland. Cyclic AMP. New York: Academic, 1971.
 138. Rodbell, M., M. C. Lin, Y. Salomon, C. Londos, J. P. Harwood, B. R. Martin, M. Rendell, and M. Berman. Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multi‐site transition states. Advan. Cyclic Nucleotide Res. 5: 3–29, 1975.
 139. Rubin, B., E. H. O'Keefe, M. H. Waugh, D. G. Kotler, D. A. Demaio, and Z. P. Horovitz. Activities in vitro of 8‐substituted derivatives of adenosine‐3′,5′‐cyclic monophosphate on guinea pig trachea and rat portal vein. Proc. Soc. Exptl. Biol. Med. 137: 1244–1248, 1971.
 140. Sakai, T., H. Makino, and R. Tanaka. Increased activity of cyclic AMP phosphodiesterase from frozen‐thawed rat liver. A role of lysosomal protease in enzyme activation. Biochim. Biophys. Acta 522: 477–490, 1978.
 141. Sands, H., J. Mascali, and E. Paietta. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Biochim. Biophys. Acta 500: 223–234, 1977.
 142. Sands, H., W. Penberthy, T. A. Meyer, and R. Jorgensen. Cyclic AMP‐stimulated phosphorylation of bovine tracheal smooth muscle contractile and non‐contractile proteins. Biochim. Biophys. Acta 445: 791–801, 1976.
 143. Sands, H., D. Sinclair, and J. Mascali. Cyclic AMP and protein kinase in the spontaneously hypertensive rat aorta and tissue‐cultured aortic smooth muscle cells. Blood Vessels 13: 361–373, 1976.
 144. Schlichter, D. J., J. E. Casnellie, and P. Greengard. An endogenous substrate for cGMP‐dependent protein kinase in mammalian cerebellum. Nature 273: 61–62, 1978.
 145. Schonhofer, P. S., I. F. Skidmore, J. Forn, and J. H. Fleisch. Adenyl cyclase activity of rabbit aorta. J. Pharm. Pharmacol. 23: 28–31, 1971.
 146. Schultz, G., and J. G. Hardman. Regulation of cyclic GMP levels in the ductus deferens of the rat. Advan. Cyclic Nucleotide Res. 5: 339–351, 1975.
 147. Schultz, G., J. G. Hardman, K. Schultz, C. E. Baird, and E. W. Sutherland. The importance of calcium ions for the regulation of guanosine 3′:5′‐cyclic monophosphate levels. Proc. Natl. Acad. Sci. US 70: 3889–3893, 1973.
 148. Schultz, G., J. G. Hardman, and E. W. Sutherland. Cyclic nucleotides and smooth muscle function. In: Asthma, Physiology, Immunopharmacology and Treatment, edited by K. F. Austen and L. M. Lichtenstein. New York: Academic, 1973, p. 123–137.
 149. Schultz, G., K. Schultz, and J. G. Hardman. Effects of norepinephrine on cyclic nucleotide levels in the ductus deferens of the rat. Metabolism 24: 429–437, 1975.
 150. Schultz, K.‐D. Effects of 8‐Br‐cGMP on the tonus of rat ductus deferens and aorta (Abstract). Naunyn‐Schmiedebergs Arch. Pharmacol. 297: R12, 1977.
 151. Schultz, K.‐D., K. Schultz, and G. Schultz. Sodium nitroprusside and other smooth muscle‐relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265: 750–751, 1977.
 152. Seidel, C. L., and T. Addison. cAMP and coronary artery adrenergic receptors (Abstract). Federation Proc. 33: 451, 1974.
 153. Seidel, C. L., R. L. Schnarr, and H. V. Sparks. Coronary artery cyclic AMP content during adrenergic receptor stimulation. Am. J. Physiol. 229: 265–269, 1975.
 154. Shepherd, A. P., C. C. Mao, E. D. Jacobson, and L. L. Shanbour. The role of cyclic AMP in mesenteric vasodilation. Microvascular Res. 6: 332–341, 1973.
 155. Sheppard, H., and W. H. Tsien. Alterations in the hydrolytic activity, inhibitor sensitivity and molecular size of the rat erythrocyte cyclic AMP phosphodiesterase by calcium and hypertonic sodium chloride. J. Cyclic Nucleotide Res. 1: 237–242, 1975.
 156. Shibata, N., S. Nosaka, T. Yamagami, and S. Toyama. Arterial cyclic AMP (cAMP) dependent protein kinase and its function (Abstract). J. Mol. Cellular Cardiol. 9: 46, 1977.
 157. Shoji, M., J. G. Patrick, J. Tse, and J. F. Kuo. Studies on the cyclic GMP‐dependent protein kinase from bovine aorta. J. Biol. Chem. 252: 4347–4353, 1977.
 158. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev. 22: 249–353, 1970.
 159. Somlyo, A. P., and A. V. Somlyo. Electrophysiological correlates of the inequality of maximal vascular smooth muscle contractions elicited by drugs. In: Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 216–226. (Symp. on the Physiology and Pharmacology of Vascular Neuroeffector Systems, Interlaken, July 20–21, 1969.)
 160. Somlyo, A. P., A. V. Somlyo, and V. Smieško. Cyclic AMP and vascular smooth muscle. Advan. Cyclic Nucleotide Res. 1: 175–194, 1972.
 161. Somlyo, A. V., G. Haeusler, and A. P. Somlyo. Cyclic adenosine monophosphate: potassium‐dependent action on vascular smooth muscle membrane potential. Science 169: 490–491, 1970.
 162. Sprague, D. H., and S. H. Ngai. Effects of cyclopropane on contractility and the cyclic 3′,5′‐adenosine monophosphate system in the rat aorta. Anesthesiology 40: 336–339, 1974.
 163. Sprague, D. H., J. C. Yang, and S. H. Ngai. Effects of isoflurane and halothane on contractility and the cyclic 3′,5′‐adenosine monophosphate system in the rat aorta. Anesthesiology 40: 162–167, 1974.
 164. Stefanovich, V. Effect of 3,7‐dimethyl‐1‐(5‐oxo‐hexyl)‐xanthine and 1‐hexyl‐3,7‐dimethyl xanthine on cyclic AMP phosphodiesterase of the human umbilical cord vessels. Res. Commun. Chem. Pathol. Pharmacol. 5: 655–662, 1973.
 165. Stoclet, J.‐C., T. Michon, J.‐M. Scheftel, and F. Demesy‐Waeldele. Calcium and regulation of cyclic nucleotides in rat aorta. In: Ionic Actions on Vascular Smooth Muscle, edited by E. Betz. Berlin: Springer‐Verlag, 1976, p. 34–38.
 166. Stull, J. T., and J. E. Buss. Phosphorylation of cardiac troponin by cyclic adenosine 3′:5′‐monophosphate‐dependent protein kinase. J. Biol. Chem. 252: 851–857, 1977.
 167. Sutherland, C. A., G. Schultz, J. G. Hardman, and E. W. Sutherland. Effects of vasoactive agents on cyclic nucleotide levels in pig coronary arteries (Abstract). Federation Proc. 32: 773, 1973.
 168. Sutherland, E. W., and T. W. Rall. The relation of adenosine‐3′,5′‐phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12: 265–299, 1960.
 169. Sutherland, E. W., T. W. Rall, and T. Menon. Adenyl cyclase. I. Distribution, preparation, and properties. J. Biol. Chem. 237: 1220–1227, 1962.
 170. Takayanagi, I., H. Ohkubo, and K. Takagi. Drug‐induced smooth muscle contraction with no change in the level of cyclic GMP. Japan. J. Pharmacol. 26: 501–504, 1976.
 171. Taylor, J. E., and D. Y. Shirachi. Cyclic nucleotide phosphodiesterase activity in cardiac and vascular smooth muscle of the spontaneously hypertensive rat. Proc. Western. Pharmacol. Soc. 20: 307–310, 1977.
 172. Teo, T. S., T. H. Wang, and J. H. Wang. Purification and properties of the protein activator of bovine heart cyclic adenosine 3′,5′‐monophosphate phosphodiesterase. J. Biol. Chem. 248: 588–595, 1973.
 173. Triner, L., G. G. Nahas, Y. Vulliemoz, N. I. A. Overweg, M. Verosky, D. V. Habif, and S. H. Ngai. Cyclic AMP and smooth muscle function. Ann. NY Acad. Sci. 185: 458–476, 1971.
 174. Triner, L., Y. Vulliemoz, I. Schwartz, and G. G. Nahas. Cyclic phosphodiesterase activity and the action of papaverine. Biochem. Biophys. Res. Commun. 40: 64–69, 1970.
 175. Triner, L., Y. Vulliemoz, M. Verosky, D. V. Habif, and G. G. Nahas. Adenyl cyclase‐phosphodiesterase system in arterial smooth muscle. Life Sci. Part 1: 11: 817–824, 1972.
 176. Triner, L., Y. Vulliemoz, M. Verosky, and W. M. Manger. Cyclic adenosine monophosphate and vascular reactivity in spontaneously hypertensive rats. Biochem. Pharmacol. 24: 743–745, 1975.
 177. Van Breeman, C. Transmembrane calcium transport in vascular smooth muscle. In: Vascular Neuroeffector Mechanisms: Proceedings, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 67. (Symp. on Vascular Neuroeffector Mechanisms, 2nd Intern., Odense, July‐August, 1975.)
 178. Van Inwegen, R. G., W. J. Pledger, S. J. Strada, and W. J. Thompson. Characterization of cyclic nucleotide phosphodiesterases with multiple separation techniques. Arch. Biochem. Biophys. 175: 700–709, 1976.
 179. Verhaeghe, R. H. Action of adenosine and adenine nucleotides on dogs' isolated veins. Am. J. Physiol. 233: H114–H121, 1977, or
 180. Am. J. Physiol.: Heart Circ. Physiol. 2: H114–H121, 1977.
 181. Vesin, M.‐F., and S. Harbon. The effects of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3′,5′‐monophosphate concentrations and motility of the rat uterus. Mol. Pharmacol. 10: 457–473, 1974.
 182. Volicer, L., and S. Hynie. Effect of catecholamines and angiotensin on cyclic AMP in rat aorta and tail artery. European J. Pharmacol. 15: 214–220, 1971.
 183. Volicer, L., P. Polgar, S. L. N. Rao, and A. M. Rutenburg. Localization of the cyclic AMP system in the arterial wall. Pharmacology 9: 317–323, 1973.
 184. Vulliemoz, Y., M. Verosky, and L. Triner. Phosphodiesterase activity in smooth muscle (Abstract). Federation Proc. 33: 451, 1974.
 185. Vulliemoz, Y., M. Verosky, and L. Triner. Effect of albuterol and terbutaline, synthetic beta adrenergic stimulants, on the cyclic 3′,5′‐adenosine monophosphate system in smooth muscle. J. Pharmacol. Exptl. Therap. 195: 549–556, 1975.
 186. Walland, A. cAMP as a second messenger in central blood pressure control. Naunyn‐Schmiedebergs Arch. Pharmacol. 290: 419–423, 1975.
 187. Watterson, D. M., W. G. Harrelson, Jr., P. M. Keller, F. Sharief, and T. C. Vanaman. Structural similarities between the Ca2+‐dependent regulatory proteins of 3′:5′‐cyclic nucleotide phosphodiesterase and actomyosin ATPase. J. Biol. Chem. 251: 4501–4513, 1976.
 188. Webb, R. C., and R. C. Bhalla. Calcium sequestration by subcellular fractions isolated from vascular smooth muscle: effect of cyclic nucleotides and prostaglandins. J. Mol. Cellular Cardiol. 8: 145–157, 1976.
 189. Weiss, B., and W. N. Hait. Selective cyclic nucleotide phosphodiesterase inhibitors as potential therapeutic agents. In: Annual Review of Pharmacology and Toxicology, edited by H. W. Elliott, R. George, and R. Okun. Palo Alto, CA: Ann. Rev., 1977, vol. 17, p. 441–477.
 190. Wells, J. N., C. E. Baird, Y. J. Wu, and J. G. Hardman. Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim. Biophys. Acta 384: 430–442, 1975.
 191. Wells, J. N., and J. G. Hardman. Cyclic nucleotide phosphodiesterases. Advan. Cyclic Nucleotide Res. 8: 119–143, 1977.
 192. Wells, J. N., Y. J. Wu, C. E. Baird, and J. G. Hardman. Phosphodiesterases from porcine coronary arteries: inhibition of separated forms by xanthines, papaverine, and cyclic nucleotides. Mol. Pharmacol. 11: 775–783, 1975.
 193. Wikberg, J., and R. G. G. Andersson. Potentiation of the contractile response in guinea pig ductus deferens by dibutyrylcyclic GMP (Abstract). Advan. Cyclic Nucleotide Res. 9: 763, 1978.
 194. Wolfe, B. B., T. K. Harden, and P. B. Molinoff. In vitro study of β‐adrenergic receptors. In: Annual Review of Pharmacology and Toxicology, edited by H. W. Elliott, R. George, and R. Okun. Palo Alto, CA: Ann. Rev., 1977, vol. 17, p. 575–604.
 195. Wurm, A., S. Holzmann, G. Pöch, and W. R. Kukovetz. Role of cyclic AMP in adenosine‐induced relaxation of coronary smooth muscle (Abstract). Naunyn‐Schmiedebergs Arch. Pharmacol. 294: R13, 1976.
 196. Yagi, K., M. Yazawa, S. Kakiuchi, M. Ohshima, and K. Uenishi. Identification of an activator protein for myosin light chain kinase as the Ca2+‐dependent modulator protein. J. Biol. Chem. 253: 1338–1340, 1978.

Related Articles:

Pulmonary Vascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

George L. Kramer, Joel G. Hardman. Cyclic Nucleotides and Blood Vessel Contraction. Compr Physiol 2011, Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle: 179-199. First published in print 1980. doi: 10.1002/cphy.cp020208