Comprehensive Physiology Wiley Online Library

High‐Energy Phosphates in Smooth Muscle

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 High‐Energy Phosphate Contents
1.1 Variability in Reported Results
1.2 Comparison to Skeletal Muscle
1.3 ADP and Actin Contents
2 Energy Input During Muscle Contraction
2.1 ATP as the Immediate Energy Source
2.2 Recovery Reactions
3 High‐Energy Phosphates and Contraction
3.1 Validity of Energetics Experiments
3.2 Historical Review of Smooth Muscle Energetics
4 Chemical Energetics Studies on a Well‐Defined Smooth Muscle Preparation
4.1 Chemical Contents of Resting Muscle
4.2 Treatment to Stop Glycolysis and Oxidative Phosphorylation
4.3 ATP and Phosphocreatine Changes During an Isometric Tetanus
4.4 Absence of a Creatine Kinase Equilibrium
4.5 Average Rate of Energy Usage During Isometric Tetani
4.6 Energetics of Isometric Force Development and Force Maintenance
4.7 Energy Usage During Relaxation
5 Rigor
5.1 Rigor in Skeletal Muscle
5.2 Rigor in Smooth Muscle
Figure 1. Figure 1.

Phosphocreatine: total creatine contents of unstimulated rabbit taenia coli as a function of time after rewarming to 18°C. Muscles were initially treated for 30 min at 5°C in an iodoacetate (0.5 mM), fluoroacetate (5.0 mM), glucose‐free Krebs solution gassed with 95% N2 and 5% CO2. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23
Figure 2. Figure 2.

Adenosine triphosphate and phosphocreatine breakdown during isometric tetani of different durations in the rabbit taenia coli at 18°C. Muscle length is 83% of muscle length at which maximum active isometric tension is observed. (•) ΔPCr; (○), ΔATP. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23
Figure 3. Figure 3.

Comparison of observed changes in PCr and ATP as a function of total high‐energy phosphate usage and those changes expected if the myokinase and creatine kinase reactions remain near equilibrium. Solid lines show expected changes in ATP and PCr and are calculated using the constants given by McGilvery and Murray 73, which assume that the creatine kinase and myokinase were in equilibrium, that all PCr and ATP measured was free, and that 98% of initial ADP present was bound. Total high‐energy phosphate usage was calculated as ΔPCr/Crtot + ΔATP/Crtot ‐ ΔAMP/Crtot. (•), ΔPCr; (○), ΔATP. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23
Figure 4. Figure 4.

Comparison of rates of force development and associated energy usage in the frog sartorius muscle at 0°C and rabbit taenia coli at 18°C. Note differences in time scales. (X), total high‐energy phosphate utilization for rabbit taenia coli at 18°C; (•), total high‐energy phosphate utilization for frog sartorius muscle at 0°C. Mean ± SE.

From Butler, Davies, et al. 22


Figure 1.

Phosphocreatine: total creatine contents of unstimulated rabbit taenia coli as a function of time after rewarming to 18°C. Muscles were initially treated for 30 min at 5°C in an iodoacetate (0.5 mM), fluoroacetate (5.0 mM), glucose‐free Krebs solution gassed with 95% N2 and 5% CO2. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23


Figure 2.

Adenosine triphosphate and phosphocreatine breakdown during isometric tetani of different durations in the rabbit taenia coli at 18°C. Muscle length is 83% of muscle length at which maximum active isometric tension is observed. (•) ΔPCr; (○), ΔATP. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23


Figure 3.

Comparison of observed changes in PCr and ATP as a function of total high‐energy phosphate usage and those changes expected if the myokinase and creatine kinase reactions remain near equilibrium. Solid lines show expected changes in ATP and PCr and are calculated using the constants given by McGilvery and Murray 73, which assume that the creatine kinase and myokinase were in equilibrium, that all PCr and ATP measured was free, and that 98% of initial ADP present was bound. Total high‐energy phosphate usage was calculated as ΔPCr/Crtot + ΔATP/Crtot ‐ ΔAMP/Crtot. (•), ΔPCr; (○), ΔATP. Ct, total creatine. Mean ± SE.

From Butler, Davies, et al. 23


Figure 4.

Comparison of rates of force development and associated energy usage in the frog sartorius muscle at 0°C and rabbit taenia coli at 18°C. Note differences in time scales. (X), total high‐energy phosphate utilization for rabbit taenia coli at 18°C; (•), total high‐energy phosphate utilization for frog sartorius muscle at 0°C. Mean ± SE.

From Butler, Davies, et al. 22
References
 1. Ashton, F. T., A. V. Somlyo, and A. P. Somlyo. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J. Mol. Biol. 98: 17–29, 1975.
 2. Aubert, X. Le Couplage Energetique de la Contraction Musculaire. Brussels: Editions Aracia, 1956.
 3. Bárány, M., and K. Bárány. A proposal for the mechanism of contraction in intact frog muscle. Cold Spring Harbor Symp. Quant. Biol. 37: 157–167, 1973.
 4. Baylin, G. J., W. J. DeMaria, S. B. Baylin, R. P. Krueger, and A. P. Sanders. ATP concentration and localization of sites of epinephrine induced renal artery constriction. Proc. Soc. Exptl. Biol. Med. 122: 396–399, 1966.
 5. Bendall, J. R. Postmortem changes in muscle. In: The Structure and Function of Muscle, Structure (2nd ed.), edited by G. H. Bourne. New York: Academic, 1973, vol. 2, pt. 2, p. 243–309.
 6. Beviz, A., L. Lundholm, and E. Mohme‐Lundholm. Energy exchange in isometric contraction of vascular smooth muscle induced by K‐ions. Acta Physiol. Scand. 76: 441–445, 1969.
 7. Beviz, A., L. Lundholm, E. Mohme‐Lundholm, and N. Vamos. Hydrolysis of adenosinetriphosphate and creatine‐phosphate on isometric contraction of vascular smooth muscle. Acta Physiol. Scand. 65: 268–272, 1965.
 8. Borejdo, J., and A. Oplatka. Evidence for myosin‐linked regulation in guinea pig taenia coli muscle. Pfluegers Arch. European J. Physiol. 366: 177–184, 1976.
 9. Born, G. V. R. The relation between the tension and the high‐energy phosphate content of smooth muscle. J. Physiol. London 131: 704–711, 1956.
 10. Bose, D. Increase in resting tension of tracheal muscle due to rigor during metabolic inhibition. Am. J. Physiol. 231: 1470–1475, 1976.
 11. Bose, D., and R. Bose. Mechanics of guinea pig taenia coli smooth muscle during anoxia and rigor. Am. J. Physiol. 229: 324–328, 1975.
 12. Bremel, R. D. Myosin linked calcium regulation in vertebrate smooth muscle. Nature 252: 405–407, 1974.
 13. Bremel, R. D., and A. Weber. Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biol. 238: 97–101, 1972.
 14. Bueding, E., E. Bülbring, G. Gercken, J. T. Hawkins, and H. Kuriyama. The effect of adrenaline on the adenosine triphosphate and creatine content of intestinal smooth muscle. J. Physiol. London 193: 187–212, 1967.
 15. Bülbring, E. Measurements of oxygen consumption in smooth muscle. J. Physiol. London 122: 111–137, 1953.
 16. Burt, C. T., T. Glonek, and M. Bárány. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Biol. Chem. 251: 2584–2591, 1976.
 17. Butler, T. M. Chemical and Mechanical Changes upon Activation of Frog Skeletal Muscle and after Metabolic Depletion of Mammalian Smooth Muscle (Ph.D. thesis). Philadelphia: Univ. of Pennsylvania, 1974.
 18. Butler, T. M., and R. E. Davies. Determination of an upper limit for external work done per mole of phosphorylcreatine breakdown associated with crossbridge activity in the frog sartorius muscle (Abstract). Federation Proc. 33: 1401, 1974.
 19. Butler, T. M., and M. J. Siegman. Chemical changes in rabbit myometrium associated with estrogen treatment (Abstract). Federation Proc. 35: 776, 1976.
 20. Butler, T. M., M. J. Siegman, and R. E. Davies. Rigor and resistance to stretch in vertebrate smooth muscle. Am. J. Physiol. 231: 1509–1514, 1976.
 21. Butler, T. M., M. J. Siegman, and S. U. Mooers. The chemical energetics of force development following a quick release in mammalian smooth muscle (Abstract). Biophys. J. 21: 56a, 1978.
 22. Butler, T. M., M. J. Siegman, S. U. Mooers, and R. E. Davies. High energy phosphate utilization during force development and force maintenance in mammalian smooth muscle. In: Excitation‐Contraction Coupling in Smooth Muscle, edited by R. Casteels, T. Godfraind, and J. C. Rüegg. Amsterdam: Elsevier, 1977, p. 463–469.
 23. Butler, T. M., M. J. Siegman, S. U. Mooers, and R. E. Davies. Chemical energetics of single isometric tetani in mammalian smooth muscle. Am. J. Physiol. 235: C1–C7, 1978 or
 24. Am. J. Physiol.: Cell. Physiol. 4: C1–C7, 1978.
 25. Cain, D. F., and R. E. Davies. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem. Biophys. Res. Commun. 8: 361–366, 1962.
 26. Canfield, P., and G. Maréchal. Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20°C. J. Physiol. London 232: 453–466, 1973.
 27. Carlson, F. D., D. Hardy, and D. R. Wilkie. The relation between heat production and phosphocreatine hydrolysis in the isotonic twitch. J. Gen. Physiol. 46: 851–882, 1963.
 28. Carlson, F. D., D. Hardy, and D. R. Wilkie. The relation between heat production and phosphorylcreatine split during isometric contraction of frog's muscle. J. Physiol. London 189: 209–235, 1967.
 29. Casteels, R., C. van Breemen, and F. Wuytack. Effect of metabolic depletion on the membrane permeability of smooth muscle cells and its modification by La3+. Nature New Biol. 239: 249–251, 1972.
 30. Casteels, R., and F. Wuytack. Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport. J. Physiol. London 250: 203–220, 1975.
 31. Chance, B., and A. Weber. The steady state of cytochrome b during rest and after contraction in frog sartorius. J. Physiol. London 169: 263–277, 1963.
 32. Chance, B., and G. R. Williams. A simple and rapid assay of oxidative phosphorylation. Nature 175: 1120–1121, 1955.
 33. Curtin, N. A., and R. E. Davies. Chemical and mechanical changes during stretching of activated frog skeletal muscle. Cold Spring Harbor Symp. Quant. Biol. 37: 619–626, 1973.
 34. Curtin, N. A., C. Gilbert, K. M. Kretzschmar, and D. R. Wilkie. The effect of the performance of work on total energy output and metabolism during muscular contraction. J. Physiol. London 238: 455–472, 1974.
 35. Curtin, N. A., and R. C. Woledge. Energetics of relaxation in frog muscle. J. Physiol. London 437: 446, 1974.
 36. Daemers‐Lambert, C. Action du chlorure de potassium sur le métabolisme des esters phosphorés et le tonus du muscle artériel (carotide de bovidé). Angiologica 1: 249–274, 1964.
 37. Daemers‐Lambert, C. Dissociation par le fluorodinitrobenzène des effects ATP‐asiques métabolique et contractile, liés à l'augmentation de la concentration en potassium extracellulaire, dans le muscle lisse artériel (carotide de bovidé). Angiologica 5: 293–309, 1968.
 38. Daemers‐Lambert, C. Action du fluorodinitrobenzène sur le métabolisme phosphoré du muscle lisse artériel pendant la stimulation éléctrique (carotide de bovidé). Angiologica 6: 1–12, 1969.
 39. Daemers‐Lambert, C. Mechanochemical coupling in smooth muscle. In: Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore: Univ. Park, 1977, p. 51–82.
 40. Daemers‐Lambert, C., and J. Roland. Métabolisme des esters phosphorés pendant le développment et le maintien de la tension phasique du muscle lisse artériel (carotides de bovidé). Angiologica 4: 69–87, 1967.
 41. Davey, D. F., C. L. Gibbs, and H. C. McKirdy. Structural, mechanical and myothermic properties of rabbit rectococcygeus muscle. J. Physiol. London 248: 207–230, 1975.
 42. Davies, R. E. Recent theories on the mechanism of muscle contraction and rigor mortis. In: Proc. Meat Ind. Res. Conf., Chicago: Am. Meat Inst. Foundation, 1967, p. 39–53.
 43. Davies, R. E., T. M. Butler, M. J. Siegman, and S. U. Mooers. Chemical changes upon stimulation of intestinal smooth muscle (Abstract). Federation Proc. 35: 1744, 1976.
 44. Edwards, R. H. T., D. K. Hill, and D. A. Jones. Heat production and chemical changes during isometric contractions of the human quadriceps muscle. J. Physiol. London 251: 303–315, 1975.
 45. Engelhardt, W. A., and M. N. Ljubimowa. Myosine and adenosine triphosphatase. Nature 144: 668–669, 1939.
 46. Farrant, J. Calcium dependent contraction of smooth muscle after freezing in the presence of dimethyl sulphoxide. J. Physiol. London 170: 33P, 1964.
 47. Feinstein, M. B. Inhibition of muscle rigor by EDTA and EGTA. Life Sci. 5: 2177–2186, 1966.
 48. Gasser, H. S., and A. V. Hill. The dynamics of muscular contraction. Proc. Roy. Soc. London Ser. B 96: 398–437, 1924.
 49. Gilbert, C., K. M. Kretzschmar, D. R. Wilkie, and R. C. Woledge. Chemical change and energy output during muscular contraction. J. Physiol. London 218: 163–193, 1971.
 50. Gordon, A. R., and M. J. Siegman. Mechanical properties of smooth muscle. I. Length‐tension and force‐velocity relations. Am. J. Physiol. 221: 1243–1249, 1971.
 51. Gordon, A. R., and M. J. Siegman. Mechanical properties of smooth muscle. II. Active state. Am. J. Physiol. 221: 1250–1254, 1971.
 52. Gower, D., and K. M. Kretzschmar. Heat production and chemical change during isometric contraction of rat soleus muscle. J. Physiol. London 258: 659–671, 1976.
 53. Hill, A. V. A challenge to biochemists. Biochim. Biophys. Acta 4: 4–11, 1950.
 54. Homsher, E., W. F. H. M. Mommaerts, and N. V. Ricchiuti. Energetics of shortening muscles in twitches and tetanic contractions. II. Force‐determined shortening heat. J. Gen. Physiol. 62: 677–692, 1973.
 55. Homsher, E., W. F. H. M. Mommaerts, N. V. Ricchiuti, and A. Wallner. Activation heat, activation metabolism and tension‐related heat in frog semitendinosus muscles. J. Physiol. London 220: 601–625, 1972.
 56. Homsher, E., J. A. Rall, A. Wallner, and N. V. Ricchiuti. Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions. J. Gen. Physiol. 65: 1–21, 1975.
 57. Huxley, H. E., and W. Brown. The low‐angle x‐ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30: 383–434, 1967.
 58. Infante, A. A., and R. E. Davies. The effect of 2,4‐dinitrofluorobenzene on the activity of striated muscle. J. Biol. Chem. 240: 3996–4001, 1965.
 59. Infante, A. A., D. Klaupiks, and R. E. Davies. Length, tension and metabolism during short isometric contractions of frog sartorius muscles. Biochim. Biophys. Acta 88: 215–217, 1964.
 60. Iyengar, M. R., and C. W. L. Iyengar. Purification and properties of creatine kinase from uterine smooth muscle (Abstract). Federation Proc. 37: 1608, 1978.
 61. Kawai, M., and P. W. Brandt. Two rigor states in skinned crayfish single muscle fibers. J. Gen. Physiol. 68: 267–280, 1976.
 62. Knull, H. R., and D. Bose. Reversibility of mechanical and biochemical changes in smooth muscle due to anoxia and substrate depletion. Am. J. Physiol. 229: 329–333, 1975.
 63. Kroeger, E., and N. L. Stephens. Effect of hypoxia on energy and calcium metabolism in airway smooth muscle. Am. J. Physiol. 220: 1199–1204, 1971.
 64. Kuby, S. A., and T. A. Mahowald. Studies on ATP‐transphosphorylases (Abstract). Federation Proc. 18: 267, 1959.
 65. Kushmerick, M. J. Chemical changes in contracting muscle. In: Contractile Proteins and Muscle, edited by K. Laki. New York: Dekker, 1971, p. 315–339.
 66. Kushmerick, M. J., and R. E. Davies. The role of phosphate compounds in thaw contraction and the mechanism of thaw rigor. Biochim. Biophys. Acta 153: 279–287, 1968.
 67. Kushmerick, M. J., and R. E. Davies. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc. Roy. Soc. London Ser. B 174: 315–353, 1969.
 68. Kushmerick, M. J., R. E. Larson, and R. E. Davies. The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation‐relaxation processes. Proc. Roy. Soc. London Ser. B 174: 293–313, 1969.
 69. Lohmann, K. Über die enzymatische Aufspaltung der Kreatinphosphorsäure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem. Z. 271: 264–277, 1934.
 70. Lowy, J., and M. J. Mulvany. Mechanical properties of guinea pig taenia coli muscles. Acta Physiol. Scand. 88: 123–136, 1973.
 71. Lundholm, L., and E. Mohme‐Lundholm. The effects of adrenaline and glucose on the content of high‐energy phosphate esters in substrate‐depleted vascular smooth muscle. Acta Physiol. Scand. 56: 130–139, 1962.
 72. Lundholm, L., and E. Mohme‐Lundholm. Energetics of isometric and isotonic contraction in isolated vascular smooth muscle under anaerobic conditions. Acta Physiol. Scand. 64: 275–282, 1965.
 73. Lundholm, L., and E. Mohme‐Lundholm. Length at inactivated contractile elements, length‐tension diagram, active state and tone of vascular smooth muscle. Acta Physiol. Scand. 68: 347–359, 1966.
 74. Lundsgaard, E. Weitere Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem. Z. 227: 51–84, 1930.
 75. Maréchal, G., and W. F. H. M. Mommaerts. The metabolism of phosphocreatine during an isometric tetanus in frog sartorius muscle. Biochim. Biophys. Acta. 70: 53–67, 1963.
 76. Marsten, S. B., and R. T. Tregear. Evidence for a complex between myosin and ADP in relaxed muscle fibers. Nature New Biol. 235: 23–24, 1972.
 77. Mauriello, G. E., and A. Sandow. Active state of muscle in iodoacetate rigor. J. Gen. Physiol. 42: 865–881, 1959.
 78. Mawhinney, M. G., L. S. Oliver, D. H. Johe, J. W. Lloyd, and C. J. Malanga. Effect of testosterone on the concentration of ATP in the epithelium and muscle of the guinea‐pig seminal vesicle. J. Endocrinol. 59: 187–188, 1973.
 79. McGilvery, R. W., and T. W. Murray. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J. Biol. Chem. 249: 5845–5850, 1974.
 80. Mommaerts, W. F. H. M., K. Seraydarian, and A. Wallner. Demonstration of phosphocreatine splitting as an early reaction in contracting frog sartorius muscle. Biochim. Biophys. Acta 63: 75–81, 1962.
 81. Mulvany, M. J. Mechanical properties of frog skeletal muscles in iodoacetic acid rigor. J. Physiol. London 252: 319–334, 1975.
 82. Murphy, R. A. Correlations of ATP content with mechanical properties of metabolically inhibited muscle. Am. J. Physiol. 211: 1082–1088, 1966.
 83. Murphy, R. A. Contractile system function in mammalian muscle. Blood Vessels 13: 1–23, 1976.
 84. Murphy, R. A., J. T. Herlihy, and J. Megerman. Force generating capacity and contractile protein content of arterial smooth muscle. J. Gen. Physiol. 64: 691–705, 1974.
 85. Nauss, K. M., and R. E. Davies. Changes in phosphate compounds during the development and maintenance of rigor mortis. J. Biol. Chem. 241: 2918–2922, 1966.
 86. Needham, D. M. Machina Carnis. Cambridge, Engl.: Cambridge Univ. Press, 1971, chapt. 23, p. 545–577.
 87. Needleman, P., and D. J. Blehm. Effect of epinephrine and potassium chloride on contraction and energy intermediates in rabbit thoracic aorta strips. Life Sci. 9: 1181–1189, 1970.
 88. Paul, R. J., and J. W. Peterson. Relation between length, isometric force, and O2 consumption rate in vascular smooth muscle. Am. J. Physiol. 228: 915–922, 1975.
 89. Peterson, J. W., and R. J. Paul. Aerobic glycolysis in vascular smooth muscle: relation to isometric tension. Biochim. Biophys. Acta 357: 167–176, 1974.
 90. Rall, J. A., E. Homsher, A. Wallner, and W. F. H. M. Mommaerts. A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscles. J. Gen. Physiol. 68: 13–27, 1976.
 91. Rangachari, P. K., D. M. Paton, and E. E. Daniel. Potassium: ATP ratios in smooth muscle. Biochim. Biophys. Acta 274: 462–465, 1972.
 92. Sandberg, J. A., and F. D. Carlson. The dependence of phosphorylcreatine hydrolysis during an isometric tetanus. Biochem. Z. 345: 212–231, 1966.
 93. Seraydarian, K., W. F. H. M. Mommaerts, and A. Wallner. The amount and compartmentalization of adenosine diphosphate in muscle. Biochim. Biophys. Acta 65: 443–460, 1962.
 94. Siegel, G., A. Schott, and H. P. Koepchen. Increased active Na transport in dog's carotid artery during monoiodoacetate poisoning and its correlation to energy metabolism. Pfluegers Arch. European J. Physiol. 312: R48–R49, 1969.
 95. Siegman, M. J., T. M. Butler, S. U. Mooers, and R. E. Davies. Calcium‐dependent resistance to stretch and stress relaxation in resting smooth muscles. Am. J. Physiol. 231: 1501–1508, 1976.
 96. Siegman, M. J., T. M. Butler, S. U. Mooers, and R. E. Davies. Mechanical and energetic correlates of isometric relaxation in mammalian smooth muscle. In: Excitation‐Contraction Coupling in Smooth Muscle, edited by R. Casteels, T. Godfraind, and J. C. Rüegg. Amsterdam: Elsevier, 1977, p. 449–453.
 97. Solandt, D. Y. The effect of potassium on the excitability and resting metabolism of frog's muscle. J. Physiol. London 86: 162–170, 1936.
 98. Somlyo, A. P., R. E. Garfield, S. Chacko, and A. V. Somlyo. Golgi organelle response to the antibiotic X537A. J. Cell Biol. 66: 425–443, 1975.
 99. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 20: 197–272, 1968.
 100. Szent‐Györgyi, A. Studies on muscle. Acta Physiol. Scand. (Suppl. 25) 9: 1–115, 1945.
 101. Szent‐Györgyi, A. Chemistry of Muscular Contraction. New York: Academic, 1953.
 102. Taylor, E. W. Chemistry of muscle contraction. In: Annual Review of Biochemistry, edited by E. Snell, P. D. Boyer, A. Meister, C. C. Richardson, and R. L. Sinsheimer. Palo Alto, CA: Ann. Rev., 1972, vol. 41, p. 577–616.
 103. Weber, A. Parallel response of myofibrillar contraction and relaxation of four different nucleoside triphosphates. J. Gen. Physiol. 53: 781–791, 1969.
 104. Weber, A., and J. M. Murray. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53: 612–673, 1973.
 105. Weber, H. H. The Motility of Muscle and Cells. Cambridge: Harvard Univ. Press, 1958.
 106. Weiner, P. D., and A. M. Pearson. Inhibition of rigor mortis by ethylenediamine tetraacetic acid. Proc. Soc. Exptl. Biol. Med. 123: 185–187, 1966.
 107. White, D. C. S. Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle. J. Physiol. London 208: 583–605, 1970.
 108. Wilkie, D. R. Heat, work, and phosphorylcreatine break‐down in muscle. J. Physiol. London 195: 157–183, 1968.
 109. Woledge, R. C. Heat production and chemical change in muscle. Progr. Biophys. Mol. Biol. 22: 39–74, 1971.
 110. Woledge, R. C. In vitro calorimetric studies relating to the interpretation of muscle heat experiments. Cold Spring Harbor Symp. Quant. Biol. 37: 629–634, 1973.
 111. Wuytack, F., and R. Casteels. The energy‐rich phosphates in smooth muscle of the guinea‐pig taenia coli during metabolic depletion. Arch. Intern. Physiol. Biochim. 80: 829–830, 1972.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Thomas M. Butler, Robert E. Davies. High‐Energy Phosphates in Smooth Muscle. Compr Physiol 2011, Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle: 237-252. First published in print 1980. doi: 10.1002/cphy.cp020210