Comprehensive Physiology Wiley Online Library

Interaction of Cardiovascular Reflexes in Circulatory Control

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Determinants of Neurogenic Control
2 Definitions
2.1 Cardiovascular Reflex Arc
2.2 Open‐Loop Versus Closed‐Loop Response
2.3 Types of Interactions
3 Central Nervous System Substrate
3.1 Medullary Nuclei
3.2 Hypothalamus and Cardiovascular Control
3.3 Inferior Olive: Suppression of Baroreflex
3.4 Cerebellar Control: Hypothalamic and Baroreceptor Interactions
3.5 Suprabulbar and Cortical Connections
3.6 Sleep and Sinoaortic Reflexes
3.7 Respiratory Influences on Baroreceptor Control of Vagal Neurons
3.8 Spinal Preganglionic Sympathetic Neurons
3.9 Medullary Preganglionic Vagal Neurons to Heart
3.10 Neuropeptides: Regulation of Arterial Pressure
3.11 Brain Amines: Reflex Control
4 Cardiovascular Reflexes that Might Interact
4.1 Sinoaortic Baroreflexes
4.2 Cardiac Receptors With Afferent Vagal Fibers
4.3 Cardiac Receptors With Afferent Sympathetic Fibers
4.4 Reflexes Originating From Chemoreceptor Stimulation
4.5 Reflexes Originating in Lung
4.6 Reflexes Originating In Skeletal Muscle During Exercise
4.7 Reflexes Originating From Facial and Upper Airway Receptors: Diving Reflex
4.8 Vestibulocerebellar Reflexes
5 Interaction of Specific Reflexes in Autonomic Control of Circulation
5.1 Selectivity and Nonuniformity of Autonomic Control When One Sensory Afferent Input is Activated or Withdrawn
5.2 Simultaneously Activating Sensory Stimuli
5.3 Redundancy in Baroreceptor Control of Preganglionic Neurons
5.4 Sensitizing Sensory Receptors and Modulating Efferent Sympathetic Neurotransmission
5.5 Regulating Renin and Vasopressin
6 Clinical Implications
6.1 Integrated Neural Responses to Myocardial Ischemia and Infarction
6.2 Interaction of Reflexes in Heart Failure
6.3 Reflex Interactions in Hypertension
7 Conclusion
Figure 1. Figure 1.

Schematic of open‐loop vs. closed‐loop reflex responses. In latter condition, response modifies sensory input caused by a specific stimulus.

Figure 2. Figure 2.

Three examples of summation and interaction of reflexes causing directionally similar responses. Hypothetical patterns of afferent convergence are diagrammed with anticipated responses. Carotid sinus nerves and aortic nerves inhibit sympathetic neurons and activate vagal neurons. Apnea and facial immersion activate vagal neurons. Sympathetic neurons but not vagal neurons seem to show redundancy (see also Fig. 28).

Figure 3. Figure 3.

Summation and interaction of reflexes causing opposite responses. Hypothetical pre‐ and postsynaptic interactions explain observed responses. Solid lines, inhibition of sympathetic efferent activity caused by activating arterial baroreceptors (A, B, C) or electrically stimulating cardiac vagal afferents (D). Dashed lines, influence of simultaneous stimulation of chemoreceptors. A: no change in any parameter except for simple additive shift of the baroreceptor curve upward with chemoreceptor stimulation; B: increased baroreflex threshold, but chemoreceptor stimulation changes neither gain nor range. C: increased threshold and baroreflex gain and inhibited chemoreflex at high arterial pressure. This interaction more closely represents interaction between chemoreceptors and baroreceptors with respect to renal and muscle resistances 278,368,673. D: cardiac reflex inhibited by stimulation of chemoreceptors with respect to muscle resistance 671,673.

Figure 4. Figure 4.

A: relationship between carotid baroreceptor stimulation and gracilis perfusion pressure without and with stimulating carotid chemoreceptors in dog. Baroreflex gain is increased and the chemoreflex is suppressed at high carotid sinus pressure. B : interaction between arterial baroreceptors and chemoreceptors (systemic hypoxia) with respect to renal and splanchnic nerve activity in rabbit. Interaction with respect to the renal nerve activity is similar to that in Fig. 3C.

A from Heistad, Abboud, et al. 278 by copyright permission of the American Society for Clinical Investigation; B from Korner 365
Figure 5. Figure 5.

Influence of changes in carotid transmural pressure on reflex changes in arterial pressure in normotensive (N) and hypertensive (H) subjects. Curve H shifts to right, and the set point (arrow) is closer to threshold transmural pressure than on curve N, which may account for reported differences in responses to carotid distension and compression in H vs. N subjects.

Adapted from Mancia et al. 425
Figure 6. Figure 6.

Changes in hindlimb perfusion pressure (mean ± SE) with changes in frequency of stimulation of lumbar sympathetic nerves in rabbits. Stimulation varied around a low base‐line frequency averaging 1.5 Hz (curve A) and a high base‐line frequency averaging 4 Hz (curve B). Slope of resistance change for a similar change in frequency of stimulation was the same or less in curve B than in curve A.

From Guo, Thames, and Abboud 255, by permission of the American Heart Association
Figure 7. Figure 7.

Comparison of reflex increases in gracilis muscle perfusion pressure (mean ± SE) during stimulation of somatic afferents (left panel) and intra‐arterial norepinephrine (right panel) at levels of carotid sinus pressure (75, 125, and 175 mmHg). Decreased reactivity to norepinephrine did not suppress somatic reflex at high carotid sinus pressure.

From Abboud, Mark, and Thames 16, by permission of the American Heart Association
Figure 8. Figure 8.

Distribution of major excitatory and inhibitory nuclei and pathways in medulla (A, B, C), suprabulbar regions (A), and spinal cord (D). A: bulbar and suprabulbar regions. Solid lines, ascending pathways to reticulobulbar formation and then to hypothalamus (Hypoth), septum (S), amygdala (Am), and neocortex; to the thalamus, limbic system, and neocortex; and to cerebellum. Descending pathways (dashed lines) may originate in neocortex, limbic system, hypothalamus, or cerebellum [fastigial nucleus (FN)]. LC, locus ceruleus; ON, olivary nucleus; TS, tractus solitarius; IX and X, carotid sinus and vagal afferents, respectively. B: dorsal surface of medulla. Nucleus tractus solitarius (NTS) and TS projected onto dorsal surface of medulla and floor of 4th ventricle. Carotid sinus nerve afferents, carotid baroreceptors, and glossopharyngeal nerve (dashed area) and aortic nerve afferents and vagus nerve (dotted area) centrally projected. C: transverse section of medulla near obex. Note major cardiovascular nu‐ B clei and areas of noradrenergic and serotonergic (B2) neurons. Neurons containing catecholamines, dopamine, or serotonin are distributed in groups throughout central nervous system (CNS). A1 and A2, medullary noradrenergic groups connected to bulbospinal tracts that regulate cardiovascular function. A1 group is inhibitory. A2 neurons innervate NTS; their destruction causes hypertension. Locus ceruleus, another major catecholaminergic group of neurons is more rostral in dorsomedial medulla. B1 neurons are predominantly in and around raphe nuclei (R) in medulla and midbrain. Serotonergic bulbospinal tract may regulate preganglionic sympathetic neurons or inhibitory interneurons. AP, area postrema; XII, hypoglossal nucleus; X, dorsal motor nucleus of vagus; C and EC, cuneate and external cuneate; NA, nucleus ambiguus; SNV, spinal nucleus of trigeminal; LRN, lateral reticular nucleus; 10, inferior olivary nucleus; PMR, paramedial reticular nucleus. D: transverse section of thoracic spinal cord shows excitatory descending pathway (E) distribution from LRN and inhibitory descending pathways (I) from R, PMR, and ventromedial medulla. Preganglionic sympathetic neurons in intermediolateral horn (IML) are excitatory. Interneurons that may modulate IML activity have been described. Gebber and McCall 235 in 1976 described excitatory interneurons near preganglionic neurons that are not activated antidromically but by stimulating medullary pressor sites ∼10 ms earlier than antidromically driven preganglionic neurons. McCall et al. 446 in 1977 described neurons in intermediomedial region (IMM) of spinal gray that inhibit preganglionic excitatory neurons (believed to be inhibitory interneurons).

A and D adapted from Korner 365; B adapted from Spyer 594; C adapted from Loewy et al. 407
Figure 9. Figure 9.

Excitatory and inhibitory pathways regulating medullary pressor and depressor areas and preganglionic spinal sympathetic neurons (IML, IMM) and preganglionic medullary vagal neurons (VN). VRN, ventral reticular nuclei; A1, inhibitory noradrenergic neurons in ventral part of LRN; NE, norepinephrine; Ach, acetylcholine; Ms, skeletal muscle; Art. Baro., arterial baroreflex. Solid lines, pathways that stimulate neurons; dotted lines, pathways that suppress neurons.

Figure 10. Figure 10.

Activation of vagal neurons by anterior hypothalamus (Ant. Hypoth.) and NTS causing bradycardia (left) and inhibition of vagal neurons by the posterior hypothalamus (Post. Hypoth.) and by respiratory neurons causing tachycardia (right). V, respiratory neuronal activity that inhibits vagal neurons causing tachycardia; atropine blocks this inhibition.

Figure 11. Figure 11.

Electrical stimulation of diencephalon in decorticate paralyzed cats triggers simultaneously central hyperventilation (increased phrenic nerve activity) and increased motor activity of both biceps femoris nerves. Hyperventilation clearly does not depend on peripheral stimulus from contracting muscle or chemoreceptors.

From Eldridge et al. 193
Figure 12. Figure 12.

Cardiovascular responses to desynchronized sleep (means ± SE) before (solid lines) and after (dashed lines) sinoaortic denervation (6 episodes; 1 cat). Sleep induces hypotension, mesenteric vasodilatation, and iliac vasodilatation, but latter is reflexly buffered and reversed to vasoconstriction when baroreflexes are intact (solid lines). Sinoaortic denervation unmasks dilatation.

From Baccelli et al. 43, by permission of the American Heart Association
Figure 13. Figure 13.

A: carotid sinus blood pressure (BP), air flow, and single cardiac vagal efferent nerve (CVE) activity in dogs. Burst of firing caused by baroreceptor stimulation occurs only in expiration. B: effect of repeated brief baroreceptor stimulations by neck suction in humans (lower tracing) on RR interval (HP), during expiration (suctions 1, 3), and during inspiration (suctions 2, 4). Reflex bradycardia is greater during expiration.

A from Spyer 594; B adapted from Trzebski et al. 643
Figure 14. Figure 14.

Excitatory neurons of vasomotor center (VMC) in brain stem [catecholaminergic (CA) or serotonergic (5‐HT)] may stimulate preganglionic neurons in IML to increase sympathetic activity and cause hypertension. Normally inhibited, these neurons are disinhibited by 1) decreased activity of inhibitory central CA nerves to VMC as in DOCA‐salt or renal hypertension, 2) decreased activity of arterial baroreceptor nerve or other central CA nerves to NTS, or 3) decreased activity of inhibitory CA nerves between NTS and VMC.

From Chalmers 101, by permission of the American Heart Association
Figure 15. Figure 15.

Stimulation of the carotid chemoreceptors with nicotine causes a reflex fall in coronary perfusion pressure (PP) and coronary vasodilatation during constant cardiac pacing and constant coronary blood flow (perfusion pump). Dilatation is not metabolic in view of the rise in coronary sinus O2 pressure (PO2). Atropine and vagotomy partially block it.

From Heistad and Abboud 274, by permission of the American Heart Association
Figure 16. Figure 16.

Activating carotid chemoreceptors by carotid hypoxemia causes hypertension, bradycardia, and reflex vasodilatation in paw and constriction in muscle. Paw and muscle perfused separately at constant blood flow. Carotid baroreceptor stimulation (BARO) in contrast causes hypotension, bradycardia, and vasodilatation in muscle and paw. SAP, systemic arterial pressure.

From Abboud et al. 11 and Heistad, Abboud, et al. 281
Figure 17. Figure 17.

Dopamine (1 and 5 μg/kg−‐1/min) suppresses hyperventilatory response () to hypoxia (10% O2) in humans. Minimal suppression during normoxia; none during hyperoxia, suggesting chemoreceptor mediation of dopamine action.

From Heistad and Abboud 274, by permission of the American Heart Association
Figure 18. Figure 18.

Blood flow to gracilis muscle (Grac. M.) and paw maintained constant with pump. During sustained stimulation of carotid sinus nerve (CSS), close to bulb to exclusively activate baroreceptor nerves, withdrawal of sympathetic tone caused reflex hypotension and dilatation in muscle and paw. Cyanide (CN) injected into ascending aorta during electrical stimulation of baroreceptors activated chemoreceptors, causing vasoconstriction in muscle and further dilatation in paw.

From Calvelo, Abboud, et al. 96, by permission of the American Heart Association
Figure 19. Figure 19.

Repeated brief (2‐min) carotid sinus nerve (CSN) stimulations (25 Hz, 0.5 ms, 0.25‐1.5 V; heavy horizontal lines), resulting in significant increases in phrenic nerve activity that outlast stimulus by up to 5 min of afterdischarge. Also inspiratory activity has long‐lasting increase (> 30 min) that becomes progressively larger with each stimulus and is blocked by intravenous methysergide (lower panel). Data normalized so highest value during stimulation equals 100 units. Partial CO2 pressure is 34 mmHg.

From Millhorn et al. 461
Figure 20. Figure 20.

Pressor responses to ischemic exercise in normal leg (solid line) and insensitive leg (dashed line) were similar. Ischemia of normal leg without exercise sustained pressor response, but ischemia of insensitive leg did not.

From Rowell et al. 542, by permission of the American Heart Association, adapted from Alam and Smirk 29
Figure 21. Figure 21.

Electrical lumbar nerve stimulation (0.1‐100 Hz) causes significant constriction in arterioles of gracilis muscle (solid lines) and hind paw (dashed lines) of dog, as indicated by marked increases in perfusion pressures at constant blood flow. Constriction is much more pronounced in venules and veins of paw than in muscle. In contrast to responses to direct nerve stimulation, reflex vasoconstrictor responses to chemoreceptor stimulation are selective to arterioles in muscle (Figs. 16, 18). cps, Cycles per second.

From Calvelo, Abboud, et al. 96, by permission of the American Heart Association
Figure 22. Figure 22.

Changes in heart rate (HR) and renal and muscle resistances during stimulation of cardiac afferents (upper panels) and arterial baroreceptors (lower panels). Both sets of afferents are inhibitory with some selectivity. For example, cardiac afferents cause a significantly greater inhibition of renal resistance. Interactions between arterial baroreceptors and cardiac afferents and input from chemoreceptors and hypothalamic defense area cause a variety of responses. Variable interactions point to specificity in patterns of afferent convergence on various groups of brain stem neurons or connecting pathways. For example, chemoreceptor stimulation prevents cardiac afferents from inhibiting skeletal muscle resistance but does not influence inhibitory influence of arterial baroreceptors. (Schematic drawn from data in refs. 5,12,278,365,375,671,672,673).

Figure 23. Figure 23.

Reduced forearm blood flow (Plethysmographic tracings in upper panels) and forearm volume at constant venous congesting pressure of 20 mmHg (lower panels) indicate increases in arteriolar resistances and venous tone, respectively. Responses are to intra‐arterial infusions of norepinephrine (left panels) and to lower‐body negative pressure (LBNP, −60 mmHg) sufficient to lower arterial pressure and pulse pressure (right panels). Arteriolar constriction was comparable with 2 interventions, but venous tone increase was negligible during LBNP compared to intra‐arterial NE.

From Abboud et al. 12
Figure 24. Figure 24.

Upnght tilt does not increase venous tone in calf of humans. Veins of limbs are not sensitive to arterial or cardiopulmonary baroreflexes, but arterioles are. Other venous segments, e.g., splanchnic veins, are sensitive to these baroreflexes, whereas veins of extremities are more sensitive to temperature or respiratory reflexes (cf. Fig. 23).

From Abboud et al. 12,15
Figure 25. Figure 25.

Hyperventilatory response to stimulating carotid chemoreceptors with nicotine is augmented during systemic hypotension and inhibited during hypertension in anesthetized dogs. The rise in systemic arterial pressure suppresses base‐line ventilation, which tends to increase during hypotension.

From Heistad, Abboud, et al. 279
Figure 26. Figure 26.

Responses (means ± SE) to electrical stimulation of somatic afferents during volume expansion and after bilateral vagotomy (V). Volume expansion with +5, +10, and +15 ml/kg of 6% dextran in normal saline suppressed reflex renal vasoconstrictor response to electrical stimulation of somatic afferents in dogs with sinoaortic deafferentation as compared to control (C). Bilateral vagotomy markedly increased reflex vasoconstriction. Neither volume expansion nor vagotomy altered reflex increases in arterial pressure or heart rate.

From Thames and Abboud 615
Figure 27. Figure 27.

Effect of sequential denervation of carotid sinus nerves (C), aortic afferents (A), and vagi (V) in anesthetized rabbits. Means ± SE of increases in arterial pressure, perfusion pressure in the hindlimb (perfused at constant blood flow), and heart rate are shown. Denervation of carotid sinus nerves when aortic afferents are intact or after vagotomy causes much smaller increases in arterial pressure and perfusion pressure than their denervation after aortic afferents are cut. The same is true for aortic nerves before and after section of carotid sinus nerves and vagotomy. Also bilateral vagotomy causes much smaller increases in pressures when carotid and aortic afferents are intact than when they have been cut. These interactions are not apparent with respect to heart rate.

Figure 28. Figure 28.

Reflex changes in heart rate (upper panels) and in hindlimb perfusion pressure (lower panels) in anesthetized rabbits during changes in arterial pressure provoked with phenylephrine (PE) and nitroglycerin (NG). Solid lines, control responses; dashed lines, responses after section of carotid sinus nerves (CBRX; A panels) or aortic nerves (ABRX; B panels), or after sinoaortic denervation (SAD; C panels). Sectioning 1 set of afferents significantly reduces gain of baroreflex control of heart rate but not of hindlimb vascular resistance.

From Guo, Thames, and Abboud 255, by permission of the American Heart Association
Figure 29. Figure 29.

Left: effect of volume expansion with intravenous dextran in an anesthetized dog; integrated renal nerve activity declines. Right: correlations between changes in renal nerve activity (ΔRNA) and mean arterial pressure (ΔMAP) or mean pulmonary artery wedge pressure (PAW) during volume expansion. Sinoaortic denervation (SAD) had a minimal effect on changes in renal nerve activity, whereas bilateral vagotomy essentially abolished reflex.

From Abboud 5 and Thames, Miller, and Abboud 621
Figure 30. Figure 30.

Left carotid sinus nerve activity decreases despite constant distending volume and isolated left carotid sinus pressure. Decrease resulted from a reflex triggered by distending right carotid sinus, causing withdrawal of sympathetic drive.

From Felder, Heesch, and Thames 204
Figure 31. Figure 31.

Responses (mean ± SE) of carotid sinus nerve activity during changes in carotid sinus pressure (Cvp, CN) before and after exposure of the carotid sinus to verapamil (VP; 5 μg/ml) or nifedipine (N; 10 μg/ml). *P < 0.05 for difference in slope of responses. (VP, 5 dogs; N, 6 dogs.)

From Heesch, Thames, and Abboud 273
Figure 32. Figure 32.

Activity of atrial vagal afferents during volume expansion in control dogs (solid line) and dogs in heart failure (dashed lines) in correlation to central venous pressure 241 and left atrial pressure 690. The afferent activity is markedly impaired in heart failure.

Adapted from Greenberg et al 251, by permission of the American Heart Association, and Zucker et al. 690
Figure 33. Figure 33.

Interaction between somatic afferents and arterial and cardiopulmonary afferents. Reflex vasoconstrictor response to activating somatic afferents is augmented when inhibitory input for arterial and cardiopulmonary receptors is impaired.

From Abboud, Thames, and Mark 19
Figure 34. Figure 34.

Ouabain enhances atrial receptor discharge during volume expansion for similar levels of left atrial pressure (LAP) 691. Acetylstrophanthidin (AS) in coronary arteries enhances reflex inhibition of renal efferent nerve activity in anesthetized dogs for equivalent level of LAP. No inhibition is seen after bilateral vagotomy.

Adapted from Thames, Waickman, and Abboud 626 and Zucker et al. 691
Figure 35. Figure 35.

Left panel: interaction between activity of cardiac vagal afferents and carotid baroreflex control of renal nerve activity in anesthetized dogs. Reduction in carotid sinus pressure in dogs with section of the aortic depressor nerves causes significant increases in renal nerve activity Reflex gain in bar graphs (means ± SE of renal nerve activity change in Hz per unit change in arterial pressure) declines significantly during occlusion of circumflex (Cx) but not during occlusion of left anterior descending arteries (LAD). After bilateral vagotomy, gain is markedly enhanced and Cx and LAD occlusion have no effect on the gain.

Data from Abboud 6 and Waickman and Abboud 656


Figure 1.

Schematic of open‐loop vs. closed‐loop reflex responses. In latter condition, response modifies sensory input caused by a specific stimulus.



Figure 2.

Three examples of summation and interaction of reflexes causing directionally similar responses. Hypothetical patterns of afferent convergence are diagrammed with anticipated responses. Carotid sinus nerves and aortic nerves inhibit sympathetic neurons and activate vagal neurons. Apnea and facial immersion activate vagal neurons. Sympathetic neurons but not vagal neurons seem to show redundancy (see also Fig. 28).



Figure 3.

Summation and interaction of reflexes causing opposite responses. Hypothetical pre‐ and postsynaptic interactions explain observed responses. Solid lines, inhibition of sympathetic efferent activity caused by activating arterial baroreceptors (A, B, C) or electrically stimulating cardiac vagal afferents (D). Dashed lines, influence of simultaneous stimulation of chemoreceptors. A: no change in any parameter except for simple additive shift of the baroreceptor curve upward with chemoreceptor stimulation; B: increased baroreflex threshold, but chemoreceptor stimulation changes neither gain nor range. C: increased threshold and baroreflex gain and inhibited chemoreflex at high arterial pressure. This interaction more closely represents interaction between chemoreceptors and baroreceptors with respect to renal and muscle resistances 278,368,673. D: cardiac reflex inhibited by stimulation of chemoreceptors with respect to muscle resistance 671,673.



Figure 4.

A: relationship between carotid baroreceptor stimulation and gracilis perfusion pressure without and with stimulating carotid chemoreceptors in dog. Baroreflex gain is increased and the chemoreflex is suppressed at high carotid sinus pressure. B : interaction between arterial baroreceptors and chemoreceptors (systemic hypoxia) with respect to renal and splanchnic nerve activity in rabbit. Interaction with respect to the renal nerve activity is similar to that in Fig. 3C.

A from Heistad, Abboud, et al. 278 by copyright permission of the American Society for Clinical Investigation; B from Korner 365


Figure 5.

Influence of changes in carotid transmural pressure on reflex changes in arterial pressure in normotensive (N) and hypertensive (H) subjects. Curve H shifts to right, and the set point (arrow) is closer to threshold transmural pressure than on curve N, which may account for reported differences in responses to carotid distension and compression in H vs. N subjects.

Adapted from Mancia et al. 425


Figure 6.

Changes in hindlimb perfusion pressure (mean ± SE) with changes in frequency of stimulation of lumbar sympathetic nerves in rabbits. Stimulation varied around a low base‐line frequency averaging 1.5 Hz (curve A) and a high base‐line frequency averaging 4 Hz (curve B). Slope of resistance change for a similar change in frequency of stimulation was the same or less in curve B than in curve A.

From Guo, Thames, and Abboud 255, by permission of the American Heart Association


Figure 7.

Comparison of reflex increases in gracilis muscle perfusion pressure (mean ± SE) during stimulation of somatic afferents (left panel) and intra‐arterial norepinephrine (right panel) at levels of carotid sinus pressure (75, 125, and 175 mmHg). Decreased reactivity to norepinephrine did not suppress somatic reflex at high carotid sinus pressure.

From Abboud, Mark, and Thames 16, by permission of the American Heart Association


Figure 8.

Distribution of major excitatory and inhibitory nuclei and pathways in medulla (A, B, C), suprabulbar regions (A), and spinal cord (D). A: bulbar and suprabulbar regions. Solid lines, ascending pathways to reticulobulbar formation and then to hypothalamus (Hypoth), septum (S), amygdala (Am), and neocortex; to the thalamus, limbic system, and neocortex; and to cerebellum. Descending pathways (dashed lines) may originate in neocortex, limbic system, hypothalamus, or cerebellum [fastigial nucleus (FN)]. LC, locus ceruleus; ON, olivary nucleus; TS, tractus solitarius; IX and X, carotid sinus and vagal afferents, respectively. B: dorsal surface of medulla. Nucleus tractus solitarius (NTS) and TS projected onto dorsal surface of medulla and floor of 4th ventricle. Carotid sinus nerve afferents, carotid baroreceptors, and glossopharyngeal nerve (dashed area) and aortic nerve afferents and vagus nerve (dotted area) centrally projected. C: transverse section of medulla near obex. Note major cardiovascular nu‐ B clei and areas of noradrenergic and serotonergic (B2) neurons. Neurons containing catecholamines, dopamine, or serotonin are distributed in groups throughout central nervous system (CNS). A1 and A2, medullary noradrenergic groups connected to bulbospinal tracts that regulate cardiovascular function. A1 group is inhibitory. A2 neurons innervate NTS; their destruction causes hypertension. Locus ceruleus, another major catecholaminergic group of neurons is more rostral in dorsomedial medulla. B1 neurons are predominantly in and around raphe nuclei (R) in medulla and midbrain. Serotonergic bulbospinal tract may regulate preganglionic sympathetic neurons or inhibitory interneurons. AP, area postrema; XII, hypoglossal nucleus; X, dorsal motor nucleus of vagus; C and EC, cuneate and external cuneate; NA, nucleus ambiguus; SNV, spinal nucleus of trigeminal; LRN, lateral reticular nucleus; 10, inferior olivary nucleus; PMR, paramedial reticular nucleus. D: transverse section of thoracic spinal cord shows excitatory descending pathway (E) distribution from LRN and inhibitory descending pathways (I) from R, PMR, and ventromedial medulla. Preganglionic sympathetic neurons in intermediolateral horn (IML) are excitatory. Interneurons that may modulate IML activity have been described. Gebber and McCall 235 in 1976 described excitatory interneurons near preganglionic neurons that are not activated antidromically but by stimulating medullary pressor sites ∼10 ms earlier than antidromically driven preganglionic neurons. McCall et al. 446 in 1977 described neurons in intermediomedial region (IMM) of spinal gray that inhibit preganglionic excitatory neurons (believed to be inhibitory interneurons).

A and D adapted from Korner 365; B adapted from Spyer 594; C adapted from Loewy et al. 407


Figure 9.

Excitatory and inhibitory pathways regulating medullary pressor and depressor areas and preganglionic spinal sympathetic neurons (IML, IMM) and preganglionic medullary vagal neurons (VN). VRN, ventral reticular nuclei; A1, inhibitory noradrenergic neurons in ventral part of LRN; NE, norepinephrine; Ach, acetylcholine; Ms, skeletal muscle; Art. Baro., arterial baroreflex. Solid lines, pathways that stimulate neurons; dotted lines, pathways that suppress neurons.



Figure 10.

Activation of vagal neurons by anterior hypothalamus (Ant. Hypoth.) and NTS causing bradycardia (left) and inhibition of vagal neurons by the posterior hypothalamus (Post. Hypoth.) and by respiratory neurons causing tachycardia (right). V, respiratory neuronal activity that inhibits vagal neurons causing tachycardia; atropine blocks this inhibition.



Figure 11.

Electrical stimulation of diencephalon in decorticate paralyzed cats triggers simultaneously central hyperventilation (increased phrenic nerve activity) and increased motor activity of both biceps femoris nerves. Hyperventilation clearly does not depend on peripheral stimulus from contracting muscle or chemoreceptors.

From Eldridge et al. 193


Figure 12.

Cardiovascular responses to desynchronized sleep (means ± SE) before (solid lines) and after (dashed lines) sinoaortic denervation (6 episodes; 1 cat). Sleep induces hypotension, mesenteric vasodilatation, and iliac vasodilatation, but latter is reflexly buffered and reversed to vasoconstriction when baroreflexes are intact (solid lines). Sinoaortic denervation unmasks dilatation.

From Baccelli et al. 43, by permission of the American Heart Association


Figure 13.

A: carotid sinus blood pressure (BP), air flow, and single cardiac vagal efferent nerve (CVE) activity in dogs. Burst of firing caused by baroreceptor stimulation occurs only in expiration. B: effect of repeated brief baroreceptor stimulations by neck suction in humans (lower tracing) on RR interval (HP), during expiration (suctions 1, 3), and during inspiration (suctions 2, 4). Reflex bradycardia is greater during expiration.

A from Spyer 594; B adapted from Trzebski et al. 643


Figure 14.

Excitatory neurons of vasomotor center (VMC) in brain stem [catecholaminergic (CA) or serotonergic (5‐HT)] may stimulate preganglionic neurons in IML to increase sympathetic activity and cause hypertension. Normally inhibited, these neurons are disinhibited by 1) decreased activity of inhibitory central CA nerves to VMC as in DOCA‐salt or renal hypertension, 2) decreased activity of arterial baroreceptor nerve or other central CA nerves to NTS, or 3) decreased activity of inhibitory CA nerves between NTS and VMC.

From Chalmers 101, by permission of the American Heart Association


Figure 15.

Stimulation of the carotid chemoreceptors with nicotine causes a reflex fall in coronary perfusion pressure (PP) and coronary vasodilatation during constant cardiac pacing and constant coronary blood flow (perfusion pump). Dilatation is not metabolic in view of the rise in coronary sinus O2 pressure (PO2). Atropine and vagotomy partially block it.

From Heistad and Abboud 274, by permission of the American Heart Association


Figure 16.

Activating carotid chemoreceptors by carotid hypoxemia causes hypertension, bradycardia, and reflex vasodilatation in paw and constriction in muscle. Paw and muscle perfused separately at constant blood flow. Carotid baroreceptor stimulation (BARO) in contrast causes hypotension, bradycardia, and vasodilatation in muscle and paw. SAP, systemic arterial pressure.

From Abboud et al. 11 and Heistad, Abboud, et al. 281


Figure 17.

Dopamine (1 and 5 μg/kg−‐1/min) suppresses hyperventilatory response () to hypoxia (10% O2) in humans. Minimal suppression during normoxia; none during hyperoxia, suggesting chemoreceptor mediation of dopamine action.

From Heistad and Abboud 274, by permission of the American Heart Association


Figure 18.

Blood flow to gracilis muscle (Grac. M.) and paw maintained constant with pump. During sustained stimulation of carotid sinus nerve (CSS), close to bulb to exclusively activate baroreceptor nerves, withdrawal of sympathetic tone caused reflex hypotension and dilatation in muscle and paw. Cyanide (CN) injected into ascending aorta during electrical stimulation of baroreceptors activated chemoreceptors, causing vasoconstriction in muscle and further dilatation in paw.

From Calvelo, Abboud, et al. 96, by permission of the American Heart Association


Figure 19.

Repeated brief (2‐min) carotid sinus nerve (CSN) stimulations (25 Hz, 0.5 ms, 0.25‐1.5 V; heavy horizontal lines), resulting in significant increases in phrenic nerve activity that outlast stimulus by up to 5 min of afterdischarge. Also inspiratory activity has long‐lasting increase (> 30 min) that becomes progressively larger with each stimulus and is blocked by intravenous methysergide (lower panel). Data normalized so highest value during stimulation equals 100 units. Partial CO2 pressure is 34 mmHg.

From Millhorn et al. 461


Figure 20.

Pressor responses to ischemic exercise in normal leg (solid line) and insensitive leg (dashed line) were similar. Ischemia of normal leg without exercise sustained pressor response, but ischemia of insensitive leg did not.

From Rowell et al. 542, by permission of the American Heart Association, adapted from Alam and Smirk 29


Figure 21.

Electrical lumbar nerve stimulation (0.1‐100 Hz) causes significant constriction in arterioles of gracilis muscle (solid lines) and hind paw (dashed lines) of dog, as indicated by marked increases in perfusion pressures at constant blood flow. Constriction is much more pronounced in venules and veins of paw than in muscle. In contrast to responses to direct nerve stimulation, reflex vasoconstrictor responses to chemoreceptor stimulation are selective to arterioles in muscle (Figs. 16, 18). cps, Cycles per second.

From Calvelo, Abboud, et al. 96, by permission of the American Heart Association


Figure 22.

Changes in heart rate (HR) and renal and muscle resistances during stimulation of cardiac afferents (upper panels) and arterial baroreceptors (lower panels). Both sets of afferents are inhibitory with some selectivity. For example, cardiac afferents cause a significantly greater inhibition of renal resistance. Interactions between arterial baroreceptors and cardiac afferents and input from chemoreceptors and hypothalamic defense area cause a variety of responses. Variable interactions point to specificity in patterns of afferent convergence on various groups of brain stem neurons or connecting pathways. For example, chemoreceptor stimulation prevents cardiac afferents from inhibiting skeletal muscle resistance but does not influence inhibitory influence of arterial baroreceptors. (Schematic drawn from data in refs. 5,12,278,365,375,671,672,673).



Figure 23.

Reduced forearm blood flow (Plethysmographic tracings in upper panels) and forearm volume at constant venous congesting pressure of 20 mmHg (lower panels) indicate increases in arteriolar resistances and venous tone, respectively. Responses are to intra‐arterial infusions of norepinephrine (left panels) and to lower‐body negative pressure (LBNP, −60 mmHg) sufficient to lower arterial pressure and pulse pressure (right panels). Arteriolar constriction was comparable with 2 interventions, but venous tone increase was negligible during LBNP compared to intra‐arterial NE.

From Abboud et al. 12


Figure 24.

Upnght tilt does not increase venous tone in calf of humans. Veins of limbs are not sensitive to arterial or cardiopulmonary baroreflexes, but arterioles are. Other venous segments, e.g., splanchnic veins, are sensitive to these baroreflexes, whereas veins of extremities are more sensitive to temperature or respiratory reflexes (cf. Fig. 23).

From Abboud et al. 12,15


Figure 25.

Hyperventilatory response to stimulating carotid chemoreceptors with nicotine is augmented during systemic hypotension and inhibited during hypertension in anesthetized dogs. The rise in systemic arterial pressure suppresses base‐line ventilation, which tends to increase during hypotension.

From Heistad, Abboud, et al. 279


Figure 26.

Responses (means ± SE) to electrical stimulation of somatic afferents during volume expansion and after bilateral vagotomy (V). Volume expansion with +5, +10, and +15 ml/kg of 6% dextran in normal saline suppressed reflex renal vasoconstrictor response to electrical stimulation of somatic afferents in dogs with sinoaortic deafferentation as compared to control (C). Bilateral vagotomy markedly increased reflex vasoconstriction. Neither volume expansion nor vagotomy altered reflex increases in arterial pressure or heart rate.

From Thames and Abboud 615


Figure 27.

Effect of sequential denervation of carotid sinus nerves (C), aortic afferents (A), and vagi (V) in anesthetized rabbits. Means ± SE of increases in arterial pressure, perfusion pressure in the hindlimb (perfused at constant blood flow), and heart rate are shown. Denervation of carotid sinus nerves when aortic afferents are intact or after vagotomy causes much smaller increases in arterial pressure and perfusion pressure than their denervation after aortic afferents are cut. The same is true for aortic nerves before and after section of carotid sinus nerves and vagotomy. Also bilateral vagotomy causes much smaller increases in pressures when carotid and aortic afferents are intact than when they have been cut. These interactions are not apparent with respect to heart rate.



Figure 28.

Reflex changes in heart rate (upper panels) and in hindlimb perfusion pressure (lower panels) in anesthetized rabbits during changes in arterial pressure provoked with phenylephrine (PE) and nitroglycerin (NG). Solid lines, control responses; dashed lines, responses after section of carotid sinus nerves (CBRX; A panels) or aortic nerves (ABRX; B panels), or after sinoaortic denervation (SAD; C panels). Sectioning 1 set of afferents significantly reduces gain of baroreflex control of heart rate but not of hindlimb vascular resistance.

From Guo, Thames, and Abboud 255, by permission of the American Heart Association


Figure 29.

Left: effect of volume expansion with intravenous dextran in an anesthetized dog; integrated renal nerve activity declines. Right: correlations between changes in renal nerve activity (ΔRNA) and mean arterial pressure (ΔMAP) or mean pulmonary artery wedge pressure (PAW) during volume expansion. Sinoaortic denervation (SAD) had a minimal effect on changes in renal nerve activity, whereas bilateral vagotomy essentially abolished reflex.

From Abboud 5 and Thames, Miller, and Abboud 621


Figure 30.

Left carotid sinus nerve activity decreases despite constant distending volume and isolated left carotid sinus pressure. Decrease resulted from a reflex triggered by distending right carotid sinus, causing withdrawal of sympathetic drive.

From Felder, Heesch, and Thames 204


Figure 31.

Responses (mean ± SE) of carotid sinus nerve activity during changes in carotid sinus pressure (Cvp, CN) before and after exposure of the carotid sinus to verapamil (VP; 5 μg/ml) or nifedipine (N; 10 μg/ml). *P < 0.05 for difference in slope of responses. (VP, 5 dogs; N, 6 dogs.)

From Heesch, Thames, and Abboud 273


Figure 32.

Activity of atrial vagal afferents during volume expansion in control dogs (solid line) and dogs in heart failure (dashed lines) in correlation to central venous pressure 241 and left atrial pressure 690. The afferent activity is markedly impaired in heart failure.

Adapted from Greenberg et al 251, by permission of the American Heart Association, and Zucker et al. 690


Figure 33.

Interaction between somatic afferents and arterial and cardiopulmonary afferents. Reflex vasoconstrictor response to activating somatic afferents is augmented when inhibitory input for arterial and cardiopulmonary receptors is impaired.

From Abboud, Thames, and Mark 19


Figure 34.

Ouabain enhances atrial receptor discharge during volume expansion for similar levels of left atrial pressure (LAP) 691. Acetylstrophanthidin (AS) in coronary arteries enhances reflex inhibition of renal efferent nerve activity in anesthetized dogs for equivalent level of LAP. No inhibition is seen after bilateral vagotomy.

Adapted from Thames, Waickman, and Abboud 626 and Zucker et al. 691


Figure 35.

Left panel: interaction between activity of cardiac vagal afferents and carotid baroreflex control of renal nerve activity in anesthetized dogs. Reduction in carotid sinus pressure in dogs with section of the aortic depressor nerves causes significant increases in renal nerve activity Reflex gain in bar graphs (means ± SE of renal nerve activity change in Hz per unit change in arterial pressure) declines significantly during occlusion of circumflex (Cx) but not during occlusion of left anterior descending arteries (LAD). After bilateral vagotomy, gain is markedly enhanced and Cx and LAD occlusion have no effect on the gain.

Data from Abboud 6 and Waickman and Abboud 656
References
 1. Aars, H. Aortic baroreceptor activity in normal and hypertensive rabbits. Acta Physiol. Scand. 72: 298–309, 1968.
 2. Aars, H., L. Myhre, and B. A. Haswell. The role of nonmyelinated afferents in the baroreceptor reflex. Acta Med. Scand. Suppl. 602: 52–54, 1977.
 3. Abboud, F. M. Control of the various components of the peripheral vasculature. Federation Proc. 31: 1226–1239, 1972.
 4. Abboud, F. M. Effects of sodium, angiotensin and steroids on vascular reactivity in man. Federation Proc. 33: 143–149, 1974.
 5. Abboud, F. M. Integration of reflex responses in the control of blood pressure and resistance. Am. J. Cardiol. 44: 903–911, 1979.
 6. Abboud, F. M. The sympathetic system in hypertension. State‐of‐the‐art review. Hypertension 4, Suppl. 2: II208–II225, 1982.
 7. Abboud, F. M., D. L. Eckberg, U. J. Johannson, and A. L. Mark. Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J. Physiol. London 286: 173–184, 1979.
 8. Abboud, F. M., and J. W. Eckstein. Active reflex vasodilatation in man. Federation Proc. 25: 1611–1617, 1966.
 9. Abboud, F. M., and J. W. Eckstein. Comparative changes in segmental vascular resistance in response to nerve stimulation and to norepinephrine. Circ. Res. 18: 263–277, 1966.
 10. Abboud, F. M., and J. W. Eckstein. Reflex vasoconstrictor and vasodilator responses in man. Circ. Res. 18/19, Suppl. 1: 96–103, 1966.
 11. Abboud, F. M., D. D. Heistad, A. L. Mark, and P. G. Schmid. Differential responses of the coronary circulation and other vascular beds to chemoreceptor stimulation. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 427–447.
 12. Abboud, F. M., D. D. Heistad, A. L. Mark, and P. G. Schmid. Reflex control of the peripheral circulation. Prog. Cardiovasc. Dis. 18: 371–403, 1976.
 13. Abboud, F. M., and J. H. Huston. Measurement of arterial aging in hypertensive patients. J. Clin. Invest. 40: 1915–1921, 1961.
 14. Abboud, F. M., and A. L. Mark. Cardiac baroreceptors in circulatory control in humans. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. London: Cambridge Univ. Press, 1978, p. 437–462.
 15. Abboud, F. M., A. L. Mark, D. D. Heistad, D. L. Eckberg, and P. G. Schmid. Selectivity of autonomic control of the peripheral circulation in man. Trans. Am. Clin. Climatol. Assoc. 86: 184–197, 1975.
 16. Abboud, F. M., A. L. Mark, and M. D. Thames. Modulation of the somatic reflex by carotid baroreceptors and by cardiopulmonary afferents in animals and in humans. Circ. Res. 48, pt. 2: I131–I137, 1981.
 17. Abboud, F. M., and P. G. Schmid. Circulatory adjustment to heart failure. In: Heart Failure, edited by A. P. Fishman. Washington, DC: Hemisphere, 1978, p. 249–260.
 18. Abboud, F. M., P. G. Schmid, and J. W. Eckstein. Vascular responses after alpha‐adrenergic receptor blockade. I. Responses of capacitance and resistance vessels to norepinephrine in man. J. Clin. Invest. 47: 1–9, 1968.
 19. Abboud, F. M., M. D. Thames, and A. L. Mark. Role of cardiac afferent nerves in the regulation of the circulation during coronary occlusion and heart failure. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc., 1981, p. 65–86.
 20. Abdel‐Sayed, W. A., F. M. Abboud, and M. G. Calvelo. Effect of local cooling on responsiveness of muscular and cutaneous arteries and veins. Am. J. Physiol. 219: 1772–1778, 1970.
 21. Abel, P. W., and K. Hermsmeyer. Sympathetic cross‐innervation of SHR and genetic controls suggest a trophic influence on vascular muscle membranes. Circ. Res. 49: 1311–1318, 1981.
 22. Abrahams, V. C., S. M. Hilton, and A. Zbrozyna. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J. Physiol. London 154: 491–513, 1960.
 23. Abrahams, V. C., S. M. Hilton, and A. W. Zbrozyna. The role of active muscle vasodilatation in the alerting stage of the defence reaction. J. Physiol. London 171: 189–202, 1964.
 24. Achari, N. K., S. S. Al‐Ubaidy, and C. B. B. Downman. Spinal sympathoexcitatory pathways activated by stimulating fastigial nuclei, hypothalamus and lower brain stem in cats. Exp. Neurol. 62: 230–240, 1978.
 25. Achari, N. K., and C. B. B. Downman. Inhibition of reflex bradycardia by stimulation of cerebral motor cortex. Brain Res. 150: 198–200, 1978.
 26. Adair, J. R., and J. W. Manning. Hypothalamic modulation of baroreceptor afferent unit activity. Am. J. Physiol. 229: 1357–1364, 1975.
 27. Akre, S., and H. Aars. Pressure‐independent inhibition of sympathetic activity by noradrenaline: role of baroreceptor C fibres. Acta Physiol. Scand. 100: 303–308, 1977.
 28. Alam, M., and F. H. Smirk. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J. Physiol. London 89: 372–383, 1937.
 29. Alam, M., and F. H. Smirk. Observations in man on a pulse‐accelerating reflex from the voluntary muscles of the legs. J. Physiol. London 92: 167–177, 1938.
 30. Anden, N. E., H. Corrodi, K. Fuxe, B. Hökfelt, T. Hökfelt, C. Rydin, and T. Svensson. Evidence for a central noradrenaline receptor stimulation by conidine. Life Sci. 9: 513–523, 1970.
 31. Andresen, M. C., S. Kuraoka, and A. M. Brown. Individual and combined actions of calcium, sodium, and potassium ions on baroreceptors in the rat. Circ. Res. 45: 757–763, 1979.
 32. Angell‐James, J. E. Characteristics of single aortic and right subclavian baroreceptor fiber activity in rabbits with chronic renal hypertension. Circ. Res. 32: 149–161, 1973.
 33. Angell‐James, J. E., and M. de B. Daly. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J. Physiol. London 201: 87–104, 1969.
 34. Angell‐James, J. E., and M. de B. Daly. Nasal reflexes. Proc. R. Soc. Med. 62: 1287–1293, 1969.
 35. Angell‐James, J., and M. de B. Daly. Comparison of reflex vasomotor responses to separate and combined stimulation of carotid sinus and aortic arch baroreceptors by pulsatile and non‐pulsatile pressures in the dog. J. Physiol. London 209: 257–293, 1970.
 36. Angell‐James, J. E., and M. de B. Daly. Some aspects of upper respiratory tract reflexes. Acta Oto Laryngol. 79: 242–251, 1975.
 37. Angell‐James, J. E., and M. de B. Daly. The effects of artificial lung inflation on reflexly induced bradycardia associated with apnoea in the dog. J. Physiol. London 274: 349–366, 1978.
 38. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. London Ser. B 119: 191–217, 1936.
 39. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of the heart‐rate. II. The central mechanism of respiratory arrhythmia and the inter‐relationships between central and reflex mechanisms. Proc. R. Soc. London Ser. B 119: 218–230, 1936.
 40. Antelman, S. M., and A. R. Caggiula. Norepinephrine‐dopamine interactions and behavior. Science 195: 646–653, 1977.
 41. Antonaccio, M. J., L. Kerwin, and D. G. Taylor. Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology 17: 783–791, 1978.
 42. Arndt, J. O., P. Brambring, K. Hindorf, and M. Rohnelt. The afferent discharge pattern of atrial mechanoreceptors in the cat during a sinusoidal stretch of atrial strip in situ. J. Physiol. London 240: 33–52, 1974.
 43. Baccelli, G., R. Albertini, G. Mancia, and A. Zanchetti. Interactions between sino‐aortic reflexes and cardiovascular effects of sleep and emotional behavior in the cat. Circ. Res. 38, Suppl. 2: 30–34, 1976.
 44. Baertschi, A. J., R. G. Munzer, D. G. Ward, R. N. Johnson, and D. S. Gann. Right and left atrial B‐fiber input to the medulla of the cat. Brain Res. 98: 189–193, 1975.
 45. Baker, D. G., H. M. Coleridge, and J. C. G. Coleridge. Vagal afferent C fibers from the ventricle. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. London: Cambridge Univ. Press, 1979, p. 117–137.
 46. Ballard, D. R., F. M. Abboud, and H. E. Mayer. Release of a humoral vasodilator substance during neurogenic vasodilatation. Am. J. Physiol. 219: 1451–1457, 1970.
 47. Barcroft, H., and O. G. Edholm. On the vasodilatation in human skeletal muscle during post‐haemorrhagic fainting. J. Physiol. London 104: 165–175, 1945.
 48. Barger, A. C. The pathogenesis of sodium retention in congestive heart failure. Metabolism 5: 480–489, 1956.
 49. Bartorelli, C., E. Bizzi, A. Libretti, and A. Zanchetti. Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomic activity and sham rage behaviour. Arch. Ital. Biol. 98: 308–326, 1960.
 50. Beck, L. Active reflex dilatation in the innervated perfused hind leg of the dog. Am. J. Physiol. 201: 123–128, 1961.
 51. Belleau, L., H. Mion, S. Simard, P. Granger, E. Bertranou, W. Nowaczynski, R. Boucher, and J. Genest. Studies on the mechanism of experimental congestive heart failure in dogs. Can. J. Physiol. Pharmacol. 48: 450–456, 1970.
 52. Bennett, T., D. Evans, J. R. Hampton, and D. J. Hosking. Abnormal cardiovascular reflexes in subjects with autonomic neuropathy (Abstract). J. Physiol. London 246: 47P–48P, 1975.
 53. Bernthal, T. Changes in peripheral blood flow accompanying localized exposure of carotid sinus region to low O2 and high CO2. Am. J. Physiol. 109: 8, 1934.
 54. Bernthal, T., W. Greene, Jr, and A. M. Revzin. Role of the carotid body chemoreceptors in hypoxic cardiac acceleration. Proc. Soc. Exp. Biol. Med. 76: 121–124, 1951.
 55. Bernthal, T., and F. J. Schwind. A comparison in intestine and leg of the reflex vascular response to carotid‐aortic chemoreceptor stimulation. Am. J. Physiol. 143: 361–372, 1945.
 56. Bevan, R. D. Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circ. Res. 37: 14–19, 1975.
 57. Bevegård, B. S., and J. T. Shepherd. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966.
 58. Bevegård, B. S., and J. T. Shepherd. Reaction in man of resistance and capacity vessels in forearm and hand to leg exercise. J. Appl. Physiol. 21: 123–132, 1966.
 59. Birchner, F. F., F. Lamprecht, A. Phillipi, and R. Steinriede. Die beziehung Zwischen der Activität sympathischer Nierennerven und der Plasmareninaktivität bei narkotisierten. Katzen. Z. Kreislaufforsch. 61: 52–59, 1972.
 60. Biscoe, T. J., and S. R. Sampson. Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 341–358, 1970.
 61. Biscoe, T. J., and S. R. Sampson. Responses of cells in the brainstem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 359–373, 1970.
 62. Bishop, V. S., F. Lombardi, A. Malliani, M. Pagani, and G. Recordati. Reflex sympathetic tachycardia during intravenous infusions in chronic spinal cats. Am. J. Physiol. 230: 25–29, 1976.
 63. Bishop, V. S., and D. F. Peterson. The circulatory influences of vagal afferents at rest and during coronary occlusion in dogs. Circ. Res. 43: 840–846, 1978.
 64. Bisset, G. W., H. S. Chowdrey, and W. Feldberg. Release of vasopressin by enkephalin. Br. J. Pharmacol. 62: 370–371, 1978.
 65. Bizzi, E., A. Libretti, A. Malliani, and A. Zanchetti. Reflex chemoceptive excitation of diencephalic sham rage behavior. Am. J. Physiol. 200: 923–926, 1961.
 66. Black, A. M. S., J. H. Comroe, Jr, and L. Jacobs. Species difference in carotid body response of cat and dog to dopamine and serotonin. Am. J. Physiol. 223: 1097–1102, 1972.
 67. Blair, D. A., W. E. Glover, A. D. M. Greenfield, and I. C. Roddie. Excitation of cholinergic vasodilator nerves to human skeletal muscles during emotional stress. J. Physiol. London 148: 633–647, 1959.
 68. Blix, A. S., G. Wennergren, and B. Folkow. Cardiac receptors in ducks—a link between vasoconstriction and bradycardia during diving. Acta Physiol. Scand. 97: 13–19, 1976.
 69. Bolme, P., and K. Fuxe. Adrenergic and cholinergic nerve terminals in skeletal muscle vessels. Acta Physiol. Scand. 78: 52–59, 1970.
 70. Bolter, C. P., and J. R. Ledsome. Effect of cervical sympathetic nerve stimulation on canine carotid sinus reflex. Am. J. Physiol. 230: 1026–1030, 1976.
 71. Bonvallet, M., P. Dell, and G. Hiebel. Sinus carotidien et activité électrique cerebrale. C. R. Soc. Biol. 147: 1166–1169, 1953.
 72. Bosnjak, Z. J., E. J. Zuperku, R. L. Coon, and J. P. Kampine. Acute coronary artery occlusion and cardiac sympathetic afferent nerve activity. Proc. Soc. Exp. Biol. Med. 161: 142–148, 1979.
 73. Bradley, P. B., and A. Dray. Modification of the responses of brainstem neurones to transmitter substances by anaesthetic agents. Br. J. Pharmacol. 48: 212–224, 1973.
 74. Bradley, S. E., and W. D. Blake. Pathogenesis of renal dysfunction during congestive heart failure. Am. J. Med. 6: 470–480, 1949.
 75. Brender, D., and M. D. Webb‐Peploe. Influence of carotid baroreceptors on different components of the vascular system. J. Physiol. London 205: 257–274, 1969.
 76. Brennan, L. A., A. L. Henninger, K. E. Jochim, and R. L. Malvin. Relationship between carotid sinus pressure and plasma renin level. Am. J. Physiol. 227: 295–299, 1974.
 77. Brick, I. Circulatory responses to immersing the face in water. J. Appl. Physiol. 21: 33–36, 1966.
 78. Brigden, W., and E. P. Sharpey‐Schafer. Postural changes in peripheral blood flow in cases with left heart failure. Clin. Sci. 9: 93–100, 1950.
 79. Brody, M. J. Neurohumoral mediation of active reflex vasodilatation. Federation Proc. 25: 1583–1592, 1966.
 80. Brody, M. J., and A. K. Johnson. Role of forebrain structures in models of experimental hypertension. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc., 1981, p. 105–117.
 81. Brody, M. J., and P. J. Kadowitz. Prostaglandins as modulators of the autonomic nervous system. Federation Proc. 33: 48–60, 1974.
 82. Brosnihan, K. B., J. E. Szilagyi, and C. M. Ferrario. Effect of chronic sodium depletion on cerebrospinal fluid and plasma catecholamines. Hypertension 3: 233–239, 1981.
 83. Brosnihan, K. B., and R. M. Travis. Influence of the vagus and the carotid sinus nerves on plasma renin in the cat. J. Endocrinol. 71: 59–65, 1976.
 84. Brown, A. M. Excitation of afferent cardiac sympathetic nerve fibers during myocardial ischemia. J. Physiol. London 190: 35–53, 1967.
 85. Brown, A. M. Receptors under pressure: an update on baroreceptors. Circ. Res. 46: 1–10, 1980.
 86. Brown, A. M., and A. Malliani. Spinal sympathetic reflexes initiated by coronary receptors. J. Physiol. London 212: 685–705, 1971.
 87. Brown, A. M., W. R. Saum, and F. H. Tuley. A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circ. Res. 39: 488–496, 1976.
 88. Brown, J. J., D. L. Davies, A. F. Lever, D. McPherson, and J. I. S. Robertson. Plasma renin concentration in relation to changes in posture. Clin. Sci. 30: 279–284, 1966.
 89. Buggy, J., G. D. Fink, J. R. Haywood, A. K. Johnson, and M. J. Brody. Interruption of the maintenance phase of established hypertension by ablation of the anteroventral third ventricle (AV3V) in rats. Clin. Exp. Hypertens. 1: 337–353, 1978.
 90. Buggy, J., A. E. Fisher, W. E. Hoffman, A. K. Johnson, and M. I. Phillips. Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin. Science 190: 72–74, 1975.
 91. Buggy, J., and A. K. Johnson. Angiotensin induced thirst: effects of third ventricle obstruction and periventricular ablation. Brain Res. 149: 117–128, 1978.
 92. Bull, M. B., R. S. Hillman, P. J. Cannon, and J. H. Laragh. Renin and aldosterone secretion in man as influenced by changes in electrolyte balance and blood volume. Circ. Res. 27: 953–960, 1970.
 93. Buñag, R. D., I. H. Page, and J. W. McCubbin. Neural stimulation of renin release. Circ. Res. 19: 851–858, 1966.
 94. Calaresu, F. R., and J. Ciriello. Projections to the hypothalamus from buffer nerves and nucleus tractus solitarius in the cat. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8): R130–R136, 1980.
 95. Calaresu, F. R., and J. Ciriello. The renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J. Auton. Nerv. Syst. 3: 311–320, 1981.
 96. Calvelo, M. G., F. M. Abboud, D. R. Ballard, and W. Abdel‐Sayed. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide: activation of adrenergic constriction in muscle and noncholinergic dilatation in dog's paw. Circ. Res. 27: 259–276, 1970.
 97. Campbell, G. R., J. Chamley‐Campbell, N. Short, R. B. Robinson, and K. Hermsmeyer. Effect of cross‐transplantation on normotensive and spontaneously hypertensive rat arterial muscle membrane. Hypertension 3: 534–543, 1981.
 98. Carey, F. M., R. G. Dacey, J. A. Jane, H. R. Winn, C. R. Ayers, and G. W. Tyson. Production of sustained hypertension by lesions of the nucleus tractus solitarii of the American foxhound. Hypertension 1: 246–254, 1979.
 99. Cassidy, S. S., W. L. Eshenbacher, and R. L. Johnson, Jr. Reflex cardiovascular depression during unilateral lung hyperinflation in the dog. J. Clin. Invest. 64: 620–626, 1979.
 100. Cassidy, S. S., and R. L. Johnson, Jr. Pressure‐volume (P‐V) characteristics of the reflex cardiovascular (CV) response to lung inflation in dogs (Abstract). Physiologist 22 (4): 18, 1979.
 101. Chalmers, J. P. Brain amines and models of experimental hypertension. Circ. Res. 36: 469–480, 1975.
 102. Chalmers, J. P., P. I. Korner, and S. White. The relative roles of the aortic and carotid sinus nerves in the rabbits in the control of respiration and circulation during arterial hypoxia and hypercapnia. J. Physiol. London 188: 435–450, 1967.
 103. Chalmers, J. P., and R. J. Wurtman. Participation of central noradrenergic neurons in arterial baroreceptor reflexes in the rabbit. Circ. Res. 28: 480–491, 1971.
 104. Chiba, T., and M. Kato. Synaptic structures and quantification of catecholaminergic axons in the nucleus tractus solitarius of the rat; possible modulatory roles of catecholamines in baroreceptor reflexes. Brain Res. 151: 323–338, 1978.
 105. Chidsey, C. A., G. A. Kaiser, E. H. Sonnenblick, J. F. Spann, and E. Braunwald. Cardiac norepinephrine stores in experimental heart failure in the dog. J. Clin. Invest. 43: 2386–2393, 1964.
 106. Ciriello, J., and F. R. Calaresu. Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8): R137–R142, 1980.
 107. Clark, B. J., and M. Rocha e Silva, Jr An afferent pathway for the selective release of vasopressin in response to carotid occlusion and haemorrhage in the cat. J. Physiol. London 191: 529–542, 1967.
 108. Clarke, N. P., O. A. Smith, and D. W. Shearn. Topographical representation of vascular smooth muscle of limbs in primate motor cortex. Am. J. Physiol. 214: 122–129, 1968.
 109. Clemens, J. A., E. B. Smalstig, and C. J. Shaar. Inhibition of prolactin secretion by lergotrile mesylate: mechanism of action. Acta Endocrinol. 79: 230–237, 1975.
 110. Cobbold, A., B. Folkow, O. Lundgren, and I. Wallentin. Blood flow, capillary filtration coefficients and regional blood volume responses in the intestine of the cat during stimulation of the hypothalamic “defence” area. Acta Physiol. Scand. 61: 467–475, 1964.
 111. Cohen, E. L., J. W. Conn, and D. R. Rovner. Postural augmentation of plasma renin activity and aldosterone excretion in normal people. J. Clin. Invest. 46: 418–428, 1967.
 112. Coleridge, H. M., and J. C. G. Coleridge. Afferents of the pulmonary vascular bed and their role. In: Integrative Functions of the Autonomic Nervous System, edited by C. M. Brooks, K. Koizumi, and A. Sato. Amsterdam: Elsevier, p. 98–110, 1979.
 113. Coleridge, H. M., and J. C. G. Coleridge. Afferent vagal C‐fibers in the dog lung: their discharge during spontaneous breathing, and their stimulation by alloxan and pulmonary congestion. In: Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 396–406. (Proc. Krogh Centenary Symp.).
 114. Coleridge, H. M., and J. C. G. Coleridge. Cardiovascular afferents involved in regulation of peripheral vessels. Annu. Rev. Physiol. 42: 413–427, 1980.
 115. Coleridge, H. M., J. C. G. Coleridge, and R. B. Banzett. Effect of CO2 on afferent vagal endings in the canine lung. Respir. Physiol. 34: 135–151, 1978.
 116. Coleridge, H. M., J. C. G. Coleridge, K. H. Ginzel, D. G. Baker, R. B. Banzett, and M. A. Morrison. Stimulation of “irritant” receptors and afferent C‐fibres in the lungs by prostaglandins. Nature London 264: 451–453, 1976.
 117. Coleridge, H. M., J. C. G. Coleridge, and A. Howe. A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the new‐born and adult animal. J. Physiol. London 191: 353–374, 1967.
 118. Coleridge, H. M., J. C. G. Coleridge, and A. Howe. Thoracic chemoreceptors in the dog: a histological and electrophysiological study of the location, innervation and blood supply of the aortic bodies. Circ. Res. 26: 235–247, 1970.
 119. Coleridge, H. M., J. C. G. Coleridge, M. P. Kaufman, and A. Dangel. Operational sensitivity and acute resetting of aortic baroreceptors in dogs. Circ. Res. 48: 676–684, 1981.
 120. Coleridge, H. M., J. C. G. Coleridge, and C. Kidd. Cardiac receptors in the dog, with partial reference to two types of afferent endings in the ventricular wall. J. Physiol. London 174: 323–339, 1964.
 121. Coleridge, H. M., J. C. G. Coleridge, and C. Kidd. Afferent innervation of the heart and great vessels: a comparison of the vagal and sympathetic components. Acta Physiol. Pol. Supl. 29: 55–79, 1978.
 122. Coleridge, H. M., J. C. G. Coleridge, and J. C. Luck. Pulmonary afferent fibers of small diameter stimulated by capsaicin and by hyperinflation of the lung. J. Physiol. London 179: 248–252, 1965.
 123. Coleridge, H. M., J. C. G. Coleridge, J. C. Luck, and J. Norman. Effect of four volatile anaesthetic agents on the impulse activity of two types of pulmonary receptor. Br. J. Anaesth. 40: 484–492, 1968.
 124. Coleridge, H. M., J. C. G. Coleridge, and F. Rosenthal. Prolonged inactivation of cortical pyramidal tract neurones in cats by distension of the carotid sinus. J. Physiol. London 256: 635–649, 1976.
 125. Coleridge, J. C. G., and C. Kidd. Vascular receptors in the lungs (Abstract). J. Physiol. London 148: 30P, 1959.
 126. Coleridge, J. C. G., and C. Kidd. Relationship between pulmonary arterial pressure and impulse activity in pulmonary arterial baroreceptor fibres. J. Physiol. London 158: 197–205, 1961.
 127. Coleridge, J. C. G., and C. Kidd. Reflex effects of stimulating baroreceptors in the pulmonary artery. J. Physiol. London 166: 197–210, 1963.
 128. Comroe, J. H., Jr. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 129. Comroe, J. H., Jr.. The peripheral chemoreceptors. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 23, p. 557–583.
 130. Coote, J. H., S. M. Hilton, and A. W. Zbrożyna. The pontomedullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J. Physiol. London 229: 257–274, 1973.
 131. Coote, J. H., and V. H. Macleod. The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Physiol. London 241: 453–457, 1974.
 132. Coote, J. H., and D. R. Westbury. The influence of the carotid sinus baroreceptors on activity in single sympathetic preganglionic neurones. J. Physiol. London 241: 22–23, 1974.
 133. Coote, J. H., and D. R. Westbury. Functional grouping of sympathetic preganglionic neurones in the third thoracic segment of the spinal cord. Brain Res. 179: 367–372, 1979.
 134. Costantin, L. Extracardiac factors contributing to hypertension during coronary occlusion. Am. J. Cardiol. 11: 205–217, 1963.
 135. Cowley, A. W., Jr., J. F. Liard, and A. C. Guyton. Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ. Res. 32: 564–576, 1973.
 136. Crill, W. E., and D. J. Reis. Distribution of carotid sinus and depressor nerves in the cat brain stem. Am. J. Physiol. 214: 269–276, 1968.
 137. Cross, K. W., and S. R. Lewis. Upper respiratory obstruction and cot death. Arch. Dis. Child. 46: 211–213, 1971.
 138. Cross, K. W., and P. Warner. Effect of inhalation of high and low oxygen concentrations on respiration of newborn infants. J. Physiol. London 114: 283–295, 1951.
 139. Crossley, R. J., A. D. M. Greenfield, G. C. Plassaras, and D. Stephens. The interrelation of thermoregulatory and baroreceptor reflexes in the control of the blood vessels in the human forearm. J. Physiol. London 183: 628–636, 1966.
 140. Cseh, G., I. K. Szabo, T. Lang, and M. Palkovits. Distribution of prostaglandin E and F in different regions of the rat brain. Brain Res. Bull. 3: 293–298, 1978.
 141. Cuello, A. C., and I. Kanazawa. The distribution of substance P immunoreactive fibres in the rat central nervous system. J. Comp. Neurol. 178: 129–156, 1978.
 142. Cunningham, D. J. C., E. N. Hey, J. M. Patrick, and B. B. Lloyd. The effect of noradrenaline infusion on the relation between pulmonary ventilation and alveolar Po2 and Pco2 in man. Ann. NY Acad. Sci. 109: 756–770, 1963.
 143. Cunningham, D. J. C., E. S. Petersen, R. Peto, T. G. Pickering, and P. Sleight. Comparison of the effect of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol. Scand. 86: 444–455, 1972.
 144. Cunningham, S. G., E. O. Feigl, and A. M. Scher. Carotid sinus reflex influence on plasma renin activity. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H670–H678, 1978.
 145. Dahlstrom, A., and K. Fuxe. Evidence for the existence of monoamine‐containing neurons in the central nervous system. I. Demonstration of monoamine in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl. 232: 1–55, 1964.
 146. Daily, W. J. R., M. Klaus, and H. B. P. Meyer. Apnea in premature infants: monitoring, incidence in heart rate changes, and an effect on environmental temperature. Pediatrics 510–518, 1969.
 147. Daly, I. de B, and C. Hebb. Pulmonary and Bronchial Vascular Systems. Baltimore, MD: Williams & Wilkins, 1966.
 148. Daly, M. de B. Interaction of cardiovascular reflexes. In: Scientific Basis of Medicine Annual Reviews, edited by I. Gilliland and J. Francis. London: Athlone, 1972, p. 307–332.
 149. Daly, M. de B, and J. E. Angell‐James. Role of the arterial chemoreceptors in the control of the cardiovascular responses to breath‐hold diving. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 387–407.
 150. Daly, M. de B, J. E. Angell‐James, and R. Elsner. Role of carotid‐body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet 1: 764–767, 1979.
 151. Daly, M. de B, and J. L. Hazzledine. The effects of artificially induced hyperventilation on the primary cardiac reflex response to stimulation of the carotid bodies in the dog. J. Physiol. London 168: 872–889, 1963.
 152. Daly, M. de B, J. L. Hazzledine, and A. Ungar. The reflex effects of alterations in lung volume on systemic vascular resistance in the dog. J. Physiol. London 188: 331–351, 1967.
 153. Daly, M. de B, P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular and respiratory effects of carotid body stimulation in the monkey. Clin. Exp. Pharmacol. Physiol. 5: 511–524, 1978.
 154. Daly, M. de B, P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular‐respiratory reflex interactions between carotid bodies and upper‐airways receptors in the monkey. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H293–H299, 1978.
 155. Daly, M. de B, and B. H. Robinson. An analysis of the reflex systemic vasodilator response elicted by lung inflation in the dog. J. Physiol. London 195: 387–406, 1968.
 156. Daly, M. de B, and M. J. Scott. An analysis of the primary reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 162: 555–573, 1962.
 157. Daly, M. de B, and M. J. Scott. The effects of stimulation of the carotid body chemoreceptors on the heart rate of the dog. J. Physiol. London 144: 148–166, 1958.
 158. Daly, M. de B, and M. J. Scott. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 165: 179–197, 1963.
 159. Daly, M. de B, and M. J. Scott. The cardiovascular effects of hypoxia in the dog with special reference to the contribution of the carotid body chemoreceptors. J. Physiol. London 173: 201–214, 1964.
 160. Daly, M. de B, and A. Ungar. Comparison of the reflex responses elicited by stimulation of the separately perfused carotid and aortic body chemoreceptors in the dog. J. Physiol. London 182: 379–403, 1966.
 161. Davidson, N. S., S. Goldner, and D. I. McCloskey. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart‐rate and cardiac vagal efferent nerve activity. J. Physiol. London 259: 523–530, 1976.
 162. Davis, A. L., D. I. McCloskey, and E. K. Potter. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J. Physiol. London 272: 691–703, 1977.
 163. Davis, J. O., and R. H. Freeman. Mechanisms regulating renin release. Physiol. Rev. 56: 1–56, 1976.
 164. Davis, J. O., R. H. Freeman, J. A. Johnson, and W. S. Spielman. Agents which block the action of the renin‐angiotensin system. Circ. Res. 34: 279–285, 1974.
 165. Day, M. D., and A. G. Roach. Central alpha and beta adrenoceptors modifying arterial blood pressure and heart rate in conscious cats. Br. J. Pharmacol. 51: 325, 1974.
 166. De Champlain, J., R. Boucher, and J. Genest. Arterial angiotensin levels in edematous patients. Proc. Soc. Exp. Biol. Med. 113: 932–937, 1963.
 167. De Champlain, J., and M. R. van Ameringen. Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circ. Res. 31: 617–628, 1972.
 168. De Champlain, J., and M. R. van Ameringen. Role of sympathetic fibers and of adrenal medulla in the maintenance of cardiovascular homeostasis in normotensive and hypertensive rats. In: Frontiers in Catecholamine Research, edited by E. Usdin and S. Snyder. Oxford, UK: Pergamon, 1973, p. 859–864.
 169. De Geest, H., M. N. Levy, and H. Zieske. Carotid chemoreceptor stimulation and ventricular performance. Am. J. Physiol. 209: 564–570, 1965.
 170. De Jong, W., P. Zandberg, M. Palkovits, and B. Bohus. Acute and chronic hypertension after lesions and transections of the rat brain stem. In: Progress in Brain Research, edited by W. De Jong, A. P. Provoost, and A. P. Shapiro. Amsterdam: Elsevier, 1977, vol. 47, p. 189–197.
 171. De Jong, W., P. Zandberg, D. H. G. Versteeg, and M. Palkovits. Brain‐stem structures and catecholamines in the control of arterial blood pressure in the rat. Clin. Sci. Mol. Med. 51: 381–383, 1976.
 172. DiBona, G. F. Neurogenic regulation of renal tubular sodium reabsorption. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F73–F81, 1977.
 173. DiMicco, J. A., K. Gale, B. Hamilton, and R. A. Gillis. GABA receptor control of parasympathetic outflow to heart: characterization and brainstem localization. Science 204: 1106–1109, 1979.
 174. Djojosugito, A. M., B. Folkow, P. H. Kylstra, B. Lisander, and R. S. Tuttle. Differentiated interaction between hypothalamic defence reaction and baroreceptor reflexes. Acta Physiol. Scand. 78: 376–385, 1970.
 175. Djojosugito, A. M., B. Folkow, B. Lisander, and H. Sparks. Mechanism of escape of skeletal muscle resistance vessels from the influence of sympathetic cholinergic vasodilator fibre activity. Acta Physiol. Scand. 72: 148–156, 1968.
 176. Doba, N., and D. J. Reis. Changes in regional blood flow and cardiodynamics evoked by electrical stimulation of the fastigial nucleus in the cat and their similarity to orthostatic reflexes. J. Physiol. London 227: 729–747, 1972.
 177. Doba, N., and D. J. Reis. Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ. Res. 34: 9–18, 1974.
 178. Doba, N., and D. J. Reis. Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in rat. Circ. Res. 34: 293–301, 1974.
 179. Dobbs, W. A., J. W. Prather, and A. C. Guyton. Relative importance of nervous control of cardiac output and arterial pressure. Am. J. Cardiol. 27: 507–512, 1971.
 180. Donald, D. E. Studies on the release of renin by direct and reflex activation of renal sympathetic nerves. Physiologist 22 (3): 39–42, 1979.
 181. Donald, D. E., and A. J. Edis. Comparison of aortic and carotid baroreflexes in the dog. J. Physiol. London 215: 521–538, 1971.
 182. Donald, D. E., and J. T. Shepherd. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc. Res. 12: 449–469, 1978.
 183. Donoghue, S., C. Kidd, and P. N. McWilliam. The distribution of neurones in the brain stem of the cat activated by A and C fibres of the aortic nerve (Abstract). J. Physiol. London 285: 56P–57P, 1978.
 184. Downing, S. E., J. P. Remensnyder, and J. H. Mitchell. Cardiovascular responses to hypoxic stimulation of the carotid bodies. Circ. Res. 10: 676–685, 1962.
 185. Eckberg, D. L., F. M. Abboud, and A. L. Mark. Modulation of carotid baroreflex responsiveness in man: effects of posture and propranolol. J. Appl. Physiol. 41: 383–387, 1976.
 186. Eckberg, D. L., M. S. Cavanagh, A. L. Mark, and F. M. Abboud. A simplified neck suction device for activation of carotid baroreceptors. J. Lab. Clin. Med. 85: 167–173, 1975.
 187. Eckberg, D. L., M. Drabinsky, and E. Braunwald. Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 285: 877–883, 1971.
 188. Eckberg, D. L., and C. R. Orshan. Respiratory and baroreceptor reflex interactions in man. J. Clin. Invest. 59: 780–785, 1977.
 189. Eckberg, D. L., C. W. White, J. M. Kioschos, and F. M. Abboud. Mechanisms mediating bradycardia during coronary arteriography. J. Clin. Invest. 54: 1445–1461, 1974.
 190. Eckstein, J. W., M. G. Wendling, and F. M. Abboud. Forearm venous responses to stimulation of adrenergic receptors. J. Clin. Invest. 44: 1151–1159, 1965.
 191. Eckstein, R. W., F. Shintani, H. E. Rowen, Jr, K. Shimomura, and N. Ohya. Identification of left coronary blood supply of aortic bodies in anesthetized dogs. J. Appl. Physiol. 30: 488–492, 1971.
 192. Eldridge, F. L., and P. Gill‐Kumar. Lack of effect of vagal afferent input on central neural respiratory afterdischarge. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 339–344, 1978.
 193. Eldridge, F. L., D. E. Millhorn, and T. G. Waldrop. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844–846, 1981.
 194. Eliasson, S., B. Folkow, P. Lindgren, and B. Uvnäs. Activation of sympathetic vasodilator nerves to skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol. Scand. 23: 333–351, 1951.
 195. Eliasson, S., P. Lindgren, and B. Uvnäs. Representation in the hypothalamus and the motor cortex in the dog of the sympathetic vasodilator outflow to the skeletal muscles. Acta Physiol. Scand. 27: 18–37, 1952.
 196. Ellison, G. D., and A. Zanchetti. Diffuse and specific activation of sympathetic cholinergic fibers of the cat. Am. J. Physiol. 225: 142–149, 1973.
 197. Elsner, R., D. L. Franklin, R. L. van Citters, and D. W. Kenney. Cardiovascular defense against asphyxia. Science 153: 941–949, 1966.
 198. Enna, S. J., J. F. Collins, and S. H. Snyder. Stereospecificity and structure activity requirements of GABA receptor binding of rat brain. Brain Res. 124: 185–190, 1977.
 199. Epstein, S. E., G. D. Beiser, R. E. Goldstein, M. Stampfer, A. S. Wachsler, G. Glick, and E. Braunwald. Circulatory effects of electrical stimulation of the carotid sinus nerves in man. Circulation 40: 269–276, 1969.
 200. Evans, M. H. Facilitation of reflex bradycardia by hypothalamic stimulation in the anaesthetized rabbit (Abstract). J. Physiol. London 265: 33P–34P, 1977.
 201. Falck, B., K. C. Nielsen, and C. H. Owman. Adrenergic innervation of the pial circulation. Scand. J. Clin. Lab. Invest. 22, Suppl. 102: VI:B, 1968.
 202. Fasola, A. F., and B. L. Martz. Peripheral venous renin activity during 70° tilt and lower body negative pressure. Aerosp. Med. 43: 713–715, 1972.
 203. Feigl, E., B. Johansson, and B. Löfving. Renal vasoconstriction and the “defence reaction.” Acta Physiol. Scand. 62: 429–435, 1964.
 204. Felder, R. B., C. M. Heesch, and M. D. Thames. Reflex modulation of carotid sinus baroreceptor activity in the dog. Am. J. Physiol. 244 (Heart Circ. Physiol. 13): H437–H443, 1983.
 205. Felder, R. B., and M. D. Thames. Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ. Res. 45: 728–736, 1979.
 206. Felder, R. B., and M. D. Thames. The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ. Res. 48: 685–692, 1981.
 207. Ferguson, D. W., M. D. Thames, and A. L. Mark. Effects of propranolol on reflex vascular responses to orthostatic stress in humans: role on ventricular baroreceptors. Circulation. 67 (4): 802–806, 1983.
 208. Ferrario, C. M., P. L. Gildenberg, and J. W. McCubbin. Cardiovascular effects of angiotensin mediated by the central nervous system. Circ. Res. 30: 257–262, 1972.
 209. Ferrario, C. M., S. Takishita, M. P. Lynn, J. E. Szilagyi, and K. B. Brosnihan. Effect of dietary sodium depletion on central and peripheral nervous system mechanisms regulating arterial pressure in the dog. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc, 1981, p. 119–131.
 210. Fidone, S. J., and A. Sato. A study of chemoreceptor and baroreceptor A‐ and C‐fibers in the cat carotid sinus nerve. J. Physiol. London 205: 527–548, 1969.
 211. Finch, L., G. Haeusler, and H. Thoenen. Failure to induce experimental hypertension in rats after intraventricular injection of 6‐hydroxydopamine. Br. J. Pharmacol. 44: 356–357, 1972.
 212. Fink, G. D., F. Kennedy, W. Bryan, and A. Werber. Pathogenesis of hypertension in rats with chronic aortic baroreceptor deafferentation. Hypertension 2: 319–325, 1980.
 213. Fisher, S. J., and R. L. Malvin. Role of neural pathways in renin response to intravascular volume expansion. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H611–H617, 1980.
 214. Folkow, B. Nervous control of the blood vessels. Physiol. Rev. 35: 629–663, 1955.
 215. Folkow, B. Cardiovascular structural adaptation: its role in the initiation and maintenance of primary hypertension. The Fourth Volhard Lecture. Clin. Sci. Mol. Med. 55: 3–22, 1978.
 216. Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62: 347–504, 1982.
 217. Folkow, B., C. Heymans, and E. Neil. Integrated aspects of cardiovascular regulation. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc. 1965, sect. 2, vol. 3, chapt. 49, p. 1787–1823.
 218. Folkow, B., B. Johansson, and B. Öberg. A hypothalamic structure with a marked inhibitory effect on tonic sympathetic activity. Acta Physiol. Scand. 47: 262–270, 1959.
 219. Folkow, B., J. Langston, B. Öberg, and I. Prerovsky. Reactions of the different series‐coupled vascular sections upon stimulation of the hypothalamic sympatho‐inhibitory area. Acta Physiol. Scand. 61: 476–483, 1964.
 220. Folkow, B., and E. H. Rubinstein. Behavioral and autonomic patterns evoked by stimulation of the lateral hypothalamic area in the cat. Acta Physiol. Scand. 65: 292–299, 1965.
 221. Foreman, R. D., and C. A. Ohata. Effects of coronary artery occlusion on thoracic spinal neurons receiving viscerosomatic inputs. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H667–H674, 1980.
 222. Fourman, J. The adrenergic innervation of the efferent arterioles and the vasa recta in the mammalian kidney. Experientia 26: 293–294, 1970.
 223. Fox, I. J., D. A. Gerash, and J. J. Leonard. Left ventricular mechanoreceptors: a hemodynamic study. J. Physiol. London 273: 405–425, 1977.
 224. Freund, P. R., L. B. Rowell, T. M. Murphy, S. F. Hobbs, and S. H. Butler. Blockade of the pressor response to muscle ischemia by sensory nerve block in man. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H433–H439, 1979.
 225. Freyschuss, U. Cardiovascular adjustment to somatomotor activation. Acta Physiol. Scand. Suppl. 342: 1–63, 1970.
 226. Fujita, T., W. L. Henry, F. C. Bartter, C. R. Lake, and C. S. Delea. Factors influencing blood pressure in salt‐sensitive patients with hypertension. Am. J. Med. 69: 334–344, 1980.
 227. Fukyama, K. Central modulation of baroreceptor reflex by angiotensin. Jpn. Heart J. 14: 135–139, 1973.
 228. Fussey, I. F., C. Kidd, and J. G. Whitwam. Activity evoked in the brain stem by stimulation of C fibres in the cervical vagus nerve in the dog. Brain Res. 49: 436–440, 1973.
 229. Gabriel, M., and H. Seller. Interaction of baroreceptor afferents from carotid sinus and aorta at the nucleus tractus solitarii. Pfluegers Arch. 318: 7–20, 1970.
 230. Ganten, D. T. Unger, B. Schölkens, W. Rascher, G. Speck, and G. Stock. Role of neuropeptides in regulation of blood pressure. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc., 1981, p. 139–151.
 231. Garcia, M., D. Jordan, and K. M. Spyer. Studies on the properties of cardiac vagal neurones (Abstract). Neurosci. Lett. Suppl. 1: S16, 1978.
 232. Gasser, H. S. Unmedullated fibers originating in dorsal root ganglia. J. Gen. Physiol. 33: 651–690, 1950.
 233. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 234. Gebber, G. L., and L. R. Klevans. Central nervous system modulation of cardiovascular reflexes. Federation Proc. 31: 1245–1252, 1972.
 235. Gebber, G. L., and R. B. McCall. Identification and discharge patterns of spinal sympathetic interneurons. Am. J. Physiol. 231: 722–733, 1976.
 236. Gebber, G. L., and D. W. Snyder. Hypothalamic control of baroreceptor reflexes. Am. J. Physiol. 218: 124–131, 1970.
 237. Gebber, G. L., D. G. Taylor, and L. C. Weaver. Electrophysiological studies on organization of central vasopressor pathways. Am. J. Physiol. 224: 470–481, 1973.
 238. Gellhorn, E. Autonomic Imbalance and the Hypothalamus. Minneapolis: Univ. Minnesota Press, 1957.
 239. Genest, J., P. Granger, J. de Champlain, and R. Boucher. Endocrine factors in congestive heart failure. Am. J. Cardiol. 22: 35–42, 1968.
 240. Gerber, U., and C. Polosa. Effects of pulmonary stretch receptor afferent stimulation on sympathetic preganglionic neuron firing. Can. J. Physiol. Pharmacol. 56: 191–198, 1978.
 241. Ginzel, K. H., and E. Eldred. Reflex depression of somatic motor activity from heart, lungs and carotid sinus. In: Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 358–395. (Proc. Krogh Centenary Symp.).
 242. Glick, G. Importance of the carotid sinus baroreceptors in the regulation of myocardial performance. J. Clin. Invest. 50: 1116–1123, 1971.
 243. Glick, G., A. S. Wechsler, and S. E. Epstein. Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J. Clin. Invest. 48: 467–473, 1969.
 244. Goetz, K. L., G. C. Bond, and D. D. Bloxham. Atrial receptors and renal function. Physiol. Rev. 55: 157–205, 1975.
 245. Goetz, K. L., G. C. Bond, and W. E. Smith. Effect of moderate hemorrhage in humans on plasma ADH and renin. Proc. Soc. Exp. Biol. Med. 145: 277–280, 1974.
 246. Goldman, W. F., and W. R. Saum. Alpha‐adrenergic modulation of multi‐ and single‐unit baroreceptor discharge (Abstract). Federation Proc. 39: 838, 1980.
 247. Goodwin, G. M., D. I. McCloskey, and J. H. Mitchell. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol. London 53: 481–494, 1972.
 248. Gordon, F. J., J. R. Haywood, M. J. Brody, J. F. E. Mann, D. Ganten, and A. K. Johnson. Effect of anteroventral third ventricle (AV3V) lesions on the development of hypertension in spontaneously hypertensive rats. Jpn. Heart J. 20: 116–118, 1979.
 249. Gordon, F. J., H. Matsuguchi, and A. L. Mark. Abnormal baroreflex control of heart rate in prehypertensive and hypertensive Dahl genetically salt‐sensitive rats. Hypertension 3: I135–I141, 1981.
 250. Graboys, T. B., R. D. Lille, B. J. Polansky, and A. V. Chobanian. Effects of lower body negative pressure on plasma catecholamine, plasma renin activity and the vectorcardiogram. Aerosp. Med. 45: 834–839, 1974.
 251. Greenberg, T. T., W. H. Richmond, R. A. Stocking, P. D. Gupta, J. P. Meehan, and J. P. Henry. Impaired atrial receptor responses in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ. Res. 32: 424–433, 1973.
 252. Gribbin, B., T. G. Pickering, P. Sleight, and R. Peto. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ. Res. 29: 424–431, 1971.
 253. Guillemin, R., T. Vargo, J. Rossier, S. Minick, N. Ling, C. Rivier, W. Vale, and F. Bloom. Beta‐endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367–1369, 1977.
 254. Guo, G. B., M. D. Thames, and F. M. Abboud. Impaired control of vascular resistance after denervation of either carotid or aortic baroreceptors in hypertension (Abstract). Clin. Res. 29: 201A, 1981.
 255. Guo, G. B., M. D. Thames, and F. M. Abboud. Differential baroreflex control of heart rate and vascular resistance in rabbits: relative role of carotid, aortic and cardiopulmonary baroreceptors. Circ. Res. 50: 554–565, 1982.
 256. Gupta, B. N., and M. D. Thames. Behavior of left ventricular mechanoreceptors with myelinated and nonmyelinated afferent vagal fibers in cats. Circ. Res. 52 (3): 291–301, 1983.
 257. Habak, P. A., A. L. Mark, J. M. Kioschos, D. R. McRaven, and F. M. Abboud. Effectiveness of congesting cuffs (“rotating tourniquets”) in patients with left heart failure. Circulation 50: 366–371, 1974.
 258. Hackett, J. B., F. M. Abboud, A. L. Mark, P. G. Schmid, and D. D. Heistad. Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: evidence for reflex activation of vagal cholinergic innervation. Circ. Res. 31: 8–17, 1972.
 259. Haddy, F. J., M. B. Pamnani, and D. L. Clough. Humoral factors and the sodium‐potassium pump in volume expanded hypertension. Life Sci. 24: 2105–2118, 1979.
 260. Hadjiminas, J., and B. Öberg. Effects of carotid baroreceptor reflexes on venous tone in skeletal muscle and intestine of the cat. Acta Physiol. Scand. 72: 518–532, 1968.
 261. Haeusler, G., L. Finch, and H. Thoenen. Central adrenergic neurons and the initiation and development of experimental hypertension. Experentia 28: 1200–1203, 1972.
 262. Haeusler, G., M. Gerold, and T. Thoenen. Cardiovascular effects of 6‐hydroxydopamine injected into a lateral brain ventricle of the rat. Naunyn Schmiedeberg's Arch. Pharmacol. 274: 211–228, 1972.
 263. Hainsworth, R. Circulating responses from lung inflation in anesthetized dogs. Am. J. Physiol. 226: 247–255, 1974.
 264. Hainsworth, R., C. Kidd, and R. J. Linden. Cardiac Receptors. London: Cambridge Univ. Press, 1979. (Proc. Int. Symp. Cardiac Receptors, Leeds, 1969.).
 265. Hamilton, W. F., R. G. Ellison, R. W. Pickering, E. E. Hague, and J. T. Rucker. Hemodynamic and endocrine responses to experimental mitral stenosis. Am. J. Physiol. 176: 445–451, 1954.
 266. Hanley, H. G., J. C. Costin, and N. S. Skinner, Jr. Differential reflex adjustments in cutaneous and muscle vascular bed during experimental coronary artery occlusion. Am. J. Cardiol. 27: 513–521, 1971.
 267. Hanley, H. G., A. E. Raizner, T. V. Inglesby, and N. S. Skinner, Jr. Response of renal vascular bed to acute experimental coronary artery occlusion. Am. J. Cardiol. 11: 205–217, 1963.
 268. Harris, M. C., and M. K. Spyer. Inhibition of ADH release by stimulation of afferent cardiac branches of the right vagus in cats (Abstract). J. Physiol. London 231: 15P–16P, 1973.
 269. Hayduk, K., H. M. Brecht, A. Vladutiu, S. Simard, J. M. Rojo‐Ortega, L. Belleau, R. Boucher, and J. Genest. Renin activity and norepinephrine, cation, and water contents of cardiovascular tissue of dogs with congestive heart failure and ascites. Can. J. Physiol. Pharmacol. 48: 463–468, 1970.
 270. Hedqvist, P. Studies on the effect of prostaglandins E1 and E2 on the sympathetic neuromuscular transmission in some animal tissues. Acta Physiol. Scand. Suppl. 345: 1–40, 1970.
 271. Hedwall, P. R., W. A. Abdel‐Sayed, P. G. Schmid, and F. M. Abboud. Inhibition of venoconstrictor responses by prostaglandin E1. Proc. Soc. Exp. Biol. Med. 135: 757–759, 1970.
 272. Heesch, C. M., and F. M. Abboud. Effects of nifedipine on cardiac baroreflex control of renal nerve activity (Abstract). Circulation 66, Suppl. 2: 34, 1982.
 273. Heesch, C. M., M. D. Thames, and F. M. Abboud. Effects of calcium antagonists on carotid sinus baroreceptors (Abstract). Fed. Proc. 41: 1116, 1982.
 274. Heistad, D. D., and F. M. Abboud. Circulatory adjustments to hypoxia. Circulation 61: 463–470, 1980.
 275. Heistad, D. D., F. M. Abboud, and D. R. Ballard. Relationship between plasma sodium concentration and vascular reactivity in man. J. Clin. Invest. 50: 2022–2032, 1971.
 276. Heistad, D. D., F. M. Abboud, and J. W. Eckstein. Vasoconstrictor response to simulated diving in man. J. Appl. Physiol. 25: 542–549, 1968.
 277. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Interaction of thermal and baroreceptor reflexes in man. J. Appl. Physiol. 35: 581–586, 1973.
 278. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Interaction of baroreceptor and chemoreceptor reflexes: modulation of the chemoreceptor reflex by changes in baroreceptor activity. J. Clin. Invest. 53: 1226–1236, 1974.
 279. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Effect of baroreceptor activity on ventilatory response to chemoreceptor stimulation. J. Appl. Physiol. 39: 411–416, 1975.
 280. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Effect of hypoxemia on responses to norepinephrine and angiotensin in coronary and muscular vessels. J. Pharmacol. Exp. Ther. 193: 941–950, 1975.
 281. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Response of muscular and cutaneous vessels to physiologic stimulation of chemoreceptors. Proc. Soc. Exp. Biol. Med. 148: 198–202, 1975.
 282. Heistad, D. D., M. L. Marcus, J. C. Ehrhardt, and F. M. Abboud. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ. Res. 38: 20–25, 1975.
 283. Heistad, D. D., and R. C. Wheeler. Effect of acute hypoxia on vascular responsiveness in man. I. Responsiveness to lower body negative pressure and ice on the forehead. II. Responses to norepinephrine and angiotensin. III. Effect of hypoxia and hypocapnia. J. Clin. Invest. 49: 1252–1265, 1970.
 284. Heistad, D. D., and R. C. Wheeler. Simulated diving during hypoxia in man. J. Appl. Physiol. 28: 652–656, 1970.
 285. Heistad, D. D., R. C. Wheeler, A. L. Mark, P. G. Schmid, and F. M. Abboud. Effects of adrenergic stimulation on ventilation in man. J. Clin. Invest. 51: 1469–1475, 1972.
 286. Hess, G. L., E. J. Zuperku, R. L. Coon, and J. P. Kampine. Sympathetic afferent nerve activity on left ventricular origin. Am. J. Physiol. 227: 543–546, 1974.
 287. Hesse, B., I. Nielsen, and J. F. Hansen. The effect of reduction in blood volume on plasma renin activity in man. Clin. Sci. Mol. Med. 49: 515–517, 1975.
 288. Higgins, C. B., S. F. Vatner, and E. Braunwald. Parasympathetic control of the heart. Pharmacol. Rev. 25: 120–155, 1973.
 289. Higgins, C. B., S. F. Vatner, D. L. Eckberg, and E. Braunwald. Alterations in the baroreceptor reflex in conscious dogs with heart failure. J. Clin. Invest. 51: 715–724, 1972.
 290. Higgins, C. B., S. F. Vatner, D. Franklin, and E. Braunwald. Effects of experimentally produced heart failure on the peripheral vascular response to severe exercise in conscious dogs. Circ. Res. 31: 186–194, 1972.
 291. Hildebrandt, J. R. Central connections of aortic depressor and carotid sinus nerves. Exp. Neurol. 45: 590–605, 1974.
 292. Hilton, S. M., and K. M. Spyer. Participation of the anterior hypothalamus in the baroreceptor reflex. J. Physiol. London 218: 271–293, 1971.
 293. Hilton, S. M., and K. M. Spyer. Central nervous regulation of vascular resistance. Annu. Rev. Physiol. 42: 399–411, 1980.
 294. Hockman, C. H., K. E. Livingston, and J. Talesnik. Cerebellar modulation of reflex vagal bradycardia. Brain Res. 23: 101–104, 1970.
 295. Hockman, C. H., J. Talesnik, and K. E. Livingston. Central nervous system modulation of baroreceptor reflexes. Am. J. Physiol. 217: 1681–1689, 1969.
 296. Hodge, R. L., R. D. Lowe, and J. R. Vane. Increased angiotensin formation in response to carotid occlusion in the dog. Nature London 211: 491–493, 1966.
 297. Hoff, E. C., J. F. Kell, Jr, and M. N. Carroll, Jr. Effects of cortical stimulation and lesions on cardiovascular function. Physiol. Rev. 43: 68–114, 1963.
 298. Hoff, J. T., and D. J. Reis. Localization of regions mediating the Cushing response in CNS of cat. Arch. Neurol. 23: 228–240, 1970.
 299. Hoffman, W. E., U. Ganten, M. I. Phillips, P. G. Schmid, P. Schelling, and D. Ganten. Inhibition of drinking in water‐deprived rats by combined central angiotensin II and cholinergic receptor blockade. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F41–F47, 1978.
 300. Hökfelt, T., R. Elde, O. Johansson, L. Terenius, and L. Stein. The distribution of enkephalin immunoreactive cell bodies in the rat central nervous system. Neurosci. Lett. 5: 25–31, 1977.
 301. Horeyseck, G., W. Janig, F. Kirchner, and V. Thamer. Activation and inhibition of muscle and cutaneous postganglionic neurones to the hindlimb during hypothalamically induced vasoconstriction and atropine‐sensitive vasodilation. Pfluegers Arch. 361: 231–240, 1976.
 302. Hosomi, H., and K. Sagawa. Sinovagal interaction in arterial pressure restoration after 10% hemorrhage. Am. J. Physiol. 237 (Regulatory Integrative Comp. Physiol. 6): R203–R209, 1979.
 303. Humphrey, D. R. Neuronal activity in medulla oblongata of the cat evoked by stimulation of the carotid nerve. In: Baroreceptors and Hypertension, edited by P. Kezdi. Oxford, UK: Pergamon, 1967, p. 131–167.
 304. Humphreys, P. W., N. Joels, and R. M. McAllen. Modification of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. J. Physiol. London 216: 461–482, 1970.
 305. Hunt, C. C., R. S. Wilkinson, and Y. Fukami. Ionic basis of the receptor potential in primary endings of mammalian muscle spindles. J. Gen. Physiol. 71: 683–698, 1978.
 306. Hutchinson, J. S., F. A. Mendelsohn, and A. E. Doyle. Blood pressure responses of conscious normotensive and spontaneously hypertensive rats to intracerebroventricular and peripheral administration of Captopril. Hypertension 2: 546–550, 1980.
 307. Iizuka, T., A. L. Mark, M. G. Wendling, P. G. Schmid, and J. W. Eckstein. Differences in responses of saphenous and mesenteric veins to reflex stimuli. Am. J. Physiol. 219: 1066–1070, 1970.
 308. Iriki, M., P. Dorward, and P. I. Korner. Baroreflex “resetting” by arterial hypoxia in the renal and cardiac sympathetic nerves of the rabbit. Pfluegers Arch. 370: 1–7, 1977.
 309. Iriuchijima, J., and M. Kumada. On the cardioinhibitory reflex originating from the superior laryngeal nerve. Jpn. J. Physiol. 18: 453–461, 1968.
 310. Irving, L. Changes in the blood flow through the brain and muscles during the arrest of breathing. Am. J. Physiol. 122: 207–214, 1938.
 311. Irving, L., P. F. Scholander, and S. W. Grinnell. Respiratory metabolism of the porpoise. Science 91: 455, 1940.
 312. Irving, L., P. F. Scholander, and S. W. Grinnell. The regulation of arterial blood pressure in the seal during diving. Am. J. Physiol. 135: 557–566, 1942.
 313. Ito, F., and Y. Komatsu. Calcium‐dependent regenerative responses in the afferent nerve terminals of the frog muscle spindle. Brain Res. 175: 160–164, 1979.
 314. Ito, F., Y. Komatsu, and N. Katsuta. Effects of calcium blockers on the discharge pattern of frog muscle spindle. Brain Res. 218: 383–392, 1981.
 315. Ito, A. S., and A. M. Scher. Arterial baroreceptor fibers from the aortic region of the dog in the cervical vagus nerve. Circ. Res. 32: 442–446, 1973.
 316. Ito, S. C., and A. M. Scher. Hypertension following denervation of aortic baroreceptors in unanesthetized dogs. Circ. Res. 45: 26–43, 1979.
 317. Jacobs, L., and J. H. Comroe, Jr. Stimulation of the carotid chemoreceptors of the dog by dopamine. Proc. Natl. Acad. Sci. USA 54: 1187–1193, 1968.
 318. Jacobs, L., and J. H. Comroe, Jr. Reflex apnea, bradycardia and hypotension produced by serotonin and phenyldiguanide acting on the nodose ganglia of the cat. Circ. Res. 29: 145–155, 1971.
 319. Jacobs, L., S. R. Sampson, and J. H. Comroe, Jr. Carotid sinus versus carotid body origin of nicotine and cyanide bradycardia in the dog. Am. J. Physiol. 220: 472–476, 1971.
 320. James, T. N., J. H. Isobe, and F. Urthaler. Analysis of components in a cardiogenic hypertensive chemoreflex. Circulation 52: 179–192, 1975.
 321. Jarecki, M., P. N. Thorén, and D. E. Donald. Release of renin by the carotid baroreflex in anesthetized dogs: role of cardiopulmonary vagal afferents and renal arterial pressure. Circ. Res. 42: 614–619, 1978.
 322. Jarrott, B., A. McQueen, and W. J. Louis. Serotonin levels in vascular tissue and the effects of a serotonin synthesis inhibitor on blood pressure in rats. Clin. Exp. Pharmacol. Physiol. In press.
 323. Jasmin, G., B. Solymoss, and L. Proschek. Therapeutic trials in hamster dystrophy. In: Muscular Dystrophy and Other Inherited Diseases of Skeletal Muscle in Animals. New York: NY Acad. Sci., 1979, vol. 317, p. 338–347.
 324. Johnson, A. K., W. E. Hoffman, and J. Buggy. Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic‐hypothalamic periventricular ablation. Brain Res. 157: 161–166, 1978.
 325. Johnson, A. K., J. Schoun, J. R. McNeill, and J. Mohring. Periventricular tissue of the anteroventral third ventricle (AV3V): a role for the control of vasopressin (VP) release (Abstract). Federation Proc. 39: 986, 1980.
 326. Johnson, J. M., L. B. Rowell, M. Niederberger, and M. M. Eisman. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ. Res. 34: 515–524, 1974.
 327. Jones, J. V., and P. N. Thorén. Characteristics of aortic baroreceptors with non‐medullated afferents arising from the aortic arch of rabbits with chronic renovascular hypertension. Acta Physiol. Scand. 101: 286–293, 1977.
 328. Jordan, D., M. E. Khalid, N. Schneiderman, and K. M. Spyer. Preganglionic vagal cardiomotor neurones in the rabbit: location and properties (Abstract). J. Physiol. London 296: 20P–21P, 1979.
 329. Jordan, D., and K. M. Spyer. Studies on the termination of sinus nerve afferents. Pfluegers Arch. 369: 65–73, 1977.
 330. Jordan, D., and K. M. Spyer. The distribution and excitability of myelinated aortic nerve afferent terminals. Neurosci. Lett. 8: 113–117, 1978.
 331. Jordan, D., and K. M. Spyer. The excitability of sinus nerve afferent terminals during the respiratory cycle (Abstract). J. Physiol. London 277: 66P, 1978.
 332. Kaada, B. R. Somato‐motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primate, cat and dog. Acta Physiol. Scand. Suppl. 83: 1–285, 1951.
 333. Kalia, M. Central neural mechanisms of respiration: introduction. Federation Proc. 36: 2365–2366, 1977.
 334. Kalia, M., S. S. Mei, and F. F. Kao. Central projections from ergoreceptors (C fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ. Res. 48, pt. 2: 148–162, 1981.
 335. Kappagoda, C. T., R. J. Linden, and D. A. S. G. Mary. Atrial receptors in the cat. J. Physiol. London 262: 431–446, 1976.
 336. Kardon, M. B., Peterson, D. F., and V. S. Bishop. Reflex heart rate control via specific aortic nerve afferents in the rabbit. Circ. Res. 37: 41–47, 1975.
 337. Katholi, R. E., A. J. Naftilan, and S. Oparil. Importance of renal sympathetic tone in the development of DOCA‐salt hypertension in the rat. Hypertension 2: 266–273, 1980.
 338. Katholi, R. E., S. R. Winternitz, and S. Oparil. Role of the renal nerves in the pathogenesis of one‐kidney renal hypertension in the rat. Hypertension 3: 404–409, 1981.
 339. Katona, P. G., D. Lipson, and P. J. Dauchot. Opposing central and peripheral effects of atropine on parasympathetic cardiac control. Am. J. Physiol. 232 (Heart Circ. Physiol 1): H146–H151, 1977.
 340. Katzin, D. B., and E. H. Rubinstein. Vagal control of heart rate during hypoxia in the cat. Proc. Soc. Exp. Biol. Med. 147: 551–557, 1974.
 341. Kaufman, M. P., R. B. Hamilton, J. H. Wallach, G. K. Petrik, and N. Schneiderman. Lateral subthalamic area as mediator of bradycardia responses in rabbits. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H471–H479, 1979.
 342. Kaufman, M. P., G. A. Iwamoto, J. H. Ashton, and S. S. Cassidy. Responses to inflation of vagal afferents with endings in the lung of dogs. Circ. Res. 51: 525–231, 1982.
 343. Kawasaki, T., C. S. Dulea, F. C. Bartter, and H. Smith. The effect of high‐sodium and low‐sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 64: 193–198, 1978.
 344. Kent, B. B., J. W. Drane, and J. W. Manning. Suprapontine contributions to the carotid sinus reflex in the cat. Circ. Res. 29: 534–541, 1971.
 345. Kezdi, P. Cardiac reflexes conducted by vagal afferents in normotensive and renal hypertensive dogs (Abstract). Clin. Sci. Mol. Med. 51: 353A, 1976.
 346. Kezdi, P., and E. Geller. Baroreceptor control of post‐ganglionic sympathetic nerve discharge. Am. J. Physiol. 214: 427–435, 1968.
 347. Kirchheim, H. R. Systemic arterial baroreceptor reflexes. Physiol. Rev. 56: 100–176, 1976.
 348. Kirkendall, W. M., W. E. Connor, F. M. Abboud, S. P. Rastogi, T. A. Anderson, and M. Fry. The effect of dietary sodium chloride on blood pressure, body fluids, electrolytes, renal function and serum lipids of normotensive man. J. Lab. Clin. Med. 87: 418–434, 1976.
 349. Kjaergaard, J. Anatomy of the carotid glomus and carotid glomus‐like bodies (non‐chromaffin paraganglia). Copenhagen: FADL's Forlag, 1973, p. 328.
 350. Kloppenborg, P. W. C., T. C. Benraad, and C. L. H. Majoor. The secretion rate of aldosterone in patients with heart failure. Acta Endocrinol. Suppl. 119: 93, 1967.
 351. Kniffki, K.‐D., S. Mense, and R. F. Schmidt. Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ. Res. 48, pt. 1: 125–131, 1981.
 352. Knuepfer, M. M., J. S. Mohrland, R. A. Shaffer, G. J. Gebhart, A. K. Johnson, and M. J. Brody. Effects of afferent renal nerve (ARN) stimulation and baroreceptor activation on unit activity (UA) in the anteroventral third ventricle (AV3V) region (Abstract). Federation Proc. 39: 837, 1980.
 353. Kobayashi, R. M., M. Brownstein, J. M. Saavedra, and M. Palkovits. Choline acetyltransferase content in discrete regions of the rat brain stem. J. Neurochem. 24: 637–640, 1975.
 354. Koester, J., E. Mayeri, G. Liebeswar, and E. R. Kandel. Neural control of circulation in Aplysia. II. Interneurons. J. Neurophysiol. 37: 476–496, 1974.
 355. Koike, H., A. L. Mark, and F. M. Abboud. Effects of coronary occlusion on carotid chemoreceptor reflex (Abstract). Federation Proc. 33: 295, 1974.
 356. Koike, H., A. L. Mark, D. D. Heistad, and P. G. Schmid. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ. Res. 37: 422–429, 1975.
 357. Koizumi, K., and H. Yamashita. Influence of atrial stretch receptors on hypothalamic neurosecretory neurones. J. Physiol. London 285: 341–358, 1978.
 358. Kontos, H. A., D. W. Richardson, and J. E. Norvell. Norepinephrine depletion in idiopathic orthostatic hypotension. Ann. Intern. Med. 82: 336–341, 1975.
 359. Kontos, H. A., G. W. Vetrovec, and D. W. Richardson. Role of carotid chemoreceptors in circulatory response to hypoxia in dogs. J. Appl. Physiol 28: 561–565, 1970.
 360. Kontos, H. A., E. P. Wei, A. J. Raper, W. I. Rosenblum, R. M. Navari, and J. L. Patterson, Jr. Role of tissue hypoxia in local regulation of cerebral microcirculation. Am. J. Physiol 234 (Heart Circ. Physiol. 3): H582–H591, 1978.
 361. Kordy, M. T., E. Neil, and J. F. Palmer. The influence of laryngeal afferent stimulation on cardiac vagal responses to carotid chemoreceptor excitation (Abstract). J. Physiol. London 247: 24P–25P, 1975.
 362. Korner, P. I. Effects of low oxygen and of carbon monoxide on the renal circulation in unanesthetized rabbits. Circ. Res. 12: 361–374, 1963.
 363. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 364. Korner, P. I. Central and peripheral “resetting” of the baroreceptor system. Clin. Exp. Pharmacol. Physiol. 2, Suppl. 2: 171–178, 1975.
 365. Korner, P. I. Central nervous control of autonomic cardiovascular function. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. 1, chapt. 20, p. 691–739.
 366. Korner, P. I., J. Shaw, M. J. West, J. R. Oliver, and R. G. Hilder. Integrative reflex control of heart rate in the rabbit during hypoxia and hyperventilation. Circ. Res. 33: 63–73, 1973.
 367. Korner, P. I., and J. B. Uther. Dynamic characteristics of the cardiovascular autonomic effects during severe arterial hypoxia in the unanesthetized rabbit. Circ. Res. 24: 671–687, 1969.
 368. Korner, P. I., J. B. Uther, and S. W. White. Central nervous integration of the circulatory and respiratory responses to arterial hypoxemia in the rabbit. Circ. Res. 24: 757–776, 1969.
 369. Kostreva, D. R., E. J. Zuperku, R. V. Purtock, R. L. Coon, and J. P. Kampine. Sympathetic afferent nerve activity of right heart origin. Am. J. Physiol. 229: 911–915, 1975.
 370. Krahl, V. E. The glomus pulmonale: its location and microscopic anatomy. In: Pulmonary Structure and Function, edited by A. V. S. Reuck and M. O'Connor. London: Churchill, 1962, p. 53–69. (Ciba Found. Symp.).
 371. Kramer, R. S., D. T. Mason, and E. Braunwald. Augmented sympathetic neurotransmitter activity in the peripheral vascular bed of patients with congestive heart failure and cardiac norepinephrine depletion. Circulation 38: 629–634, 1968.
 372. Krieger, E. M. Time course of baroreceptor resetting in acute hypertension. Am. J. Physiol. 218: 486–490, 1970.
 373. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. London 47: 112–136, 1914.
 374. Kumada, M., and K. Sagawa. Modulation of the baroreceptor reflex by central gray stimulation. J. Phys. Soc. Jpn. 36: 147–148, 1974.
 375. Kumada, M., L. P. Schramm, R. A. Altmansberger, and K. Sagawa. Modulation of carotid sinus baroreceptor reflex by hypothalamic defense response. Am. J. Physiol. 228: 34–45, 1975.
 376. Kunze, D. L. Calcium and magnesium sensitivity of the carotid baroreceptor reflex in cats. Circ. Res. 45: 815–821, 1979.
 377. Kunze, D. L. Norepinephrine effects on baroreceptor discharge in the absence of arterial smooth muscle (Abstract). Circulation 62, Suppl. 2: 23, 1980.
 378. Kunze, D. L., and A. M. Brown. Sodium sensitivity of baroreceptors. Reflex effects on blood pressure and fluid volume in the cat. Circ. Res. 42: 714–720, 1978.
 379. Landgren, S., E. Neil, and Y. Zotterman. The response of the carotid baroreceptors to the local administration of drugs. Acta Physiol. Scand. 25: 24–37, 1952.
 380. Lang, W. J., C. Bell, E. Conway, and R. Padanyi. Cutaneous and muscular vasodilatation in the canine hind‐limb evoked by central stimulation. Circ. Res. 39: 560–566, 1976.
 381. Langer, S. Z. Presynaptic receptors and their role in the regulation of transmitter release. Br. J. Pharmacol. 60: 481–497, 1977.
 382. laragh, J. H. Hormones and the pathogenesis of congestive heart failure, vasopressin, aldosterone and angiotensin II. Circulation 25: 1015–1023, 1962.
 383. Laughlin, M. H., and J. N. Diana. Myocardial transcapillary exchange in the hypertrophied heart of the dog. Am. J. Physiol. 229: 838–846, 1975.
 384. Ledsome, J. R., and W.‐O. Kan. Reflex changes in hindlimb and renal vascular resistance in response to distension of the isolated pulmonary arteries of the dog. Circ. Res. 40: 64–72, 1977.
 385. Lee, T. M., J. S. Kuo, and C. Y. Chai. Central integrating mechanism of the Bezold‐Jarisch and baroreceptor reflexes. Am. J. Physiol. 222: 713–720, 1972.
 386. Lee, W. B., M. J. Ismay, and E. R. Lumber. Mechanism by which angiotensin II affects the heart rate of the conscious sheep. Circ. Res. 47: 286–292, 1980.
 387. Levine, T. B., K. A. Gross, and J. N. Cohn. Sympathetic and renin response to orthostasis in congestive heart failure (Abstract). Am. J. Cardiol. 45: 433, 1980.
 388. Levy, M. N. Sympathetic‐parasympathetic interactions in the heart. Circ. Res. 29: 437–445, 1971.
 389. Levy, M. N., M. L. Ny, R. I. Lipman, and H. Zieske. Vagus nerves and baroreceptor control of ventricular performance. Circ. Res. 19: 930–939, 1966.
 390. Lew, J. Y., Y. Matsumoto, J. Pearson, M. Goldstein, T. Hökfelt, and K. Fuxe. Localization and characterization of phenylethanolamine N‐methyltransferase in the brain of various mammalian species. Brain Res. 119: 199–210, 1977.
 391. Lewis, P. J., J. L. Reid, J. P. Chalmers, and C. T. Dollery. Importance of central catecholaminergic neurons in the development of renal hypertension. Clin. Sci. Mol. Med. 45, Suppl. 2: 5S–8S, 1973.
 392. Linden, R. J. Reflexes from the heart. Prog. Cardiovasc. Dis. 18: 201–221, 1975.
 393. Linden, R. J., D. A. S. G. Mary, and D. Weatherill. The nature of the atrial receptors responsible for a reflex decrease in activity in renal nerves in the dog. J. Physiol. London 300: 31–40, 1980.
 394. Lindgren, I., and H. Olivecrona. Surgical treatment of angina pectoris. J. Neurosurg. 4: 19–39, 1947.
 395. Lindgren, P., A. Rosén, P. Strandberg, and B. Uvnäs. The sympathetic vasodilator outflow: a control of spinal anatomic pathway. J. Comp. Neurol. 105: 95–109, 1956.
 396. Lipski, J., J. H. Coote, and A. Trzebski. Temporal patterns of antidromic invasion latencies of sympathetic preganglionic neurons related to central inspiratory activity and pulmonary stretch receptor reflex. Brain Res. 135: 162–166, 1977.
 397. Lipski, J., R. M. McAllen, and K. M. Spyer. The sinus nerve and baroreceptor input to the medulla of the cat. J. Physiol. London 251: 61–78, 1975.
 398. Lipski, J., and A. Trzebski. Bulbo‐spinal neurons activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurons. Pfluegers Arch. 356: 181–192, 1975.
 399. Lisander, B., and J. Martner. Cerebellar suppression of the autonomic components of the defense reaction. Acta Physiol. Scand. 81: 84–95, 1971.
 400. Lisander, B., and J. Martner. Interaction between the fastigial pressor response and the baroreceptor reflex. Acta Physiol. Scand. 83: 505–514, 1971.
 401. Lisander, B., and J. Martner. Interaction between the fastigial pressor response and the defense reaction. Acta Physiol. Scand. 87: 359–367, 1973.
 402. Litchfield, R., W. Benge, W. Dull, J. Sopko, R. Kerber, A. Mark, and M. Marcus. Preservation of exercise capacity despite severe left ventricular dysfunction (Abstract). Clin. Res. 27: 616A, 1979.
 403. Little, R., G. Wennergren, and B. Öberg. Aspects of the central integration of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol. Scand. 93: 85–96, 1975.
 404. Lloyd, T. C., Jr. Control of systemic vascular resistance by pulmonary and left heart baroreflexes. Am. J. Physiol. 222: 1511–1517, 1972.
 405. Loeschcke, H. H., J. De Lattre, M. E. Schläfke, and C. O. Trouth. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir. Physiol. 10: 184–197, 1970.
 406. Loewy, A. D., and H. Burton. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J. Comp. Neurol. 181: 421–450, 1978.
 407. Loewy, A. D., J. H. Wallach, and S. McKellar. Efferent connections of the ventral medulla oblongata in the rat. Brain. Res. 228: 63–80, 1981.
 408. Löfving, B. Cardiovascular adjustments induced from the rostral cingulate gyrus. Acta Physiol. Scand. Suppl. 184: 1–82, 1961.
 409. Löfving, B. Differentiated vascular adjustments reflexly induced by changes in the carotid baro‐ and chemoreceptor activity and by asphyxia. Med. Exp. 4: 307–312, 1961.
 410. Lokhandwala, M. F., and R. J. Barrett. Pharmacological role of presynaptic dopamine receptors in the cardiovascular actions of dopaminergic agents. In: Central Nervous System Mechanisms in Hypertension, edited by J. P. Buckley and C. M. Ferrario. New York: Raven, 1981, p. 203–213.
 411. Lokhandwala, M. F., and J. P. Buckley. Presynaptic dopamine receptors as mediators of dopamine‐induced inhibition of neurogenic vasoconstriction. Eur. J. Pharmacol. 45: 305–309, 1977.
 412. Lombardi, F., A. Malliani, and M. Pagani. Nervous activity of afferent sympathetic fibers innervating the pulmonary veins. Brain Res. 113: 197–200, 1976.
 413. Long, J. P., S. Heintz, J. G. Cannon, and J. Kim. Inhibition of the sympathetic nervous system by 5,6‐dihydroxy‐2‐dimethylaminotetralin (M‐7), apomorphine and dopamine. J. Pharmacol. Exp. Ther. 192: 336–342, 1974.
 414. Lopes, O. U., and J. F. Palmer. Mechanisms of hypothalamic control of cardiac component of sinus nerve reflex. Q. J. Exp. Physiol. 63: 231–254, 1978.
 415. Ludbrook, J., I. B. Faris, J. Iannos, G. G. Jamieson, and W. J. Russell. Lack of effect of isometric handgrip exercise on the responses of the carotid sinus baroreceptor reflex in man. Clin. Sci. Mol. Med. 55: 189–194, 1978.
 416. Luft, F. C., L. I. Rankin, D. P. Henry, R. Bloch, C. E. Grim, A. E. Weyman, R. H. Murray, and M. H. Weinberger. Plasma and urinary norepinephrine values at extremes of sodium intake in normal man. Hypertension 1: 261–266, 1979.
 417. Lugliani, F., B. J. Whipp, and K. Wasserman. A role for the carotid body in cardiovascular control in man. Chest 63: 744–750, 1973.
 418. Malliani, A. Afferent cardiovascular sympathetic nerve fibers and their function in the neural regulation of the circulation. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, p. 313–337, 1979.
 419. Malliani, A., and F. Lombardi. Neural reflexes associated with myocardial ischemia. In: Neural Mechanisms in Cardiac Arrhythmias, edited by P. J. Schwartz, A. M. Brown, A. Malliani, and A. Zanchetti. New York: Raven, 1978, p. 209–219.
 420. Malliani, A., G. Recordati, and P. J. Schwartz. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J. Physiol. London 229: 457–469, 1973.
 421. Mancia, G., and D. E. Donald. Demonstration that atria, ventricles, and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ. Res. 36: 310–318, 1975.
 422. Mancia, G., D. E. Donald, and J. T. Shepherd. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res. 33: 713–721, 1973.
 423. Mancia, G., A. Ferrari, L. Gregorini, G. Parati, M. C. Ferrari, G. Pomidossi, and A. Zanchetti. Control of blood pressure by carotid sinus baroreceptors in human beings. Am. J. Cardiol. 44: 895–902, 1979.
 424. Mancia, G., G. Leonetti, L. Terzoli, and A. Zanchetti. Reflex control of renin release in essential hypertension. Clin. Sci. Mol. Med. 54: 217–222, 1978.
 425. Mancia, G., J. Ludbrook, A. Ferrari, L. Gregorini, and A. Zanchetti. Baroreceptor reflexes in human hypertension. Circ. Res. 43: 170–177, 1978.
 426. Mancia, G., J. C. Romero, and C. G. Strong. Neural influence on canine renal prostaglandin secretion. Acta Physiol. Lat. Am. 24: 555–560, 1974.
 427. Mancia, G., J. T. Shepherd, and D. E. Donald. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes in dogs. Am. J. Physiol. 230: 19–24, 1976.
 428. Mancia, G., and A. Zanchetti. Hypothalamic control of autonomic functions. In: Handbook of Hypothalamus, edited by P. J. Pankseep and J. Morgane. New York: Dekker, 1981, p. 147–202.
 429. Mann, J. F. E., M. I. Phillips, R. Dietz, H. Haebara, and D. Ganten. Effects of central and peripheral angiotensin blockade in hypertensive rats. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H629–H637, 1978.
 430. Mannard, A., and C. Polosa. Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. J. Neurophysiol. 36: 398–408, 1973.
 431. Manning, J. W. Cardiovascular reflexes following lesions in medullary reticular formation. Am. J. Physiol. 208: 283–288, 1965.
 432. Mark, A. L., and F. M. Abboud. Low‐pressure baroreflex control of vascular resistance in young borderline hypertensive men (Abstract). Clin. Res. 27: 674A, 1979.
 433. Mark, A. L., F. M. Abboud, and A. E. Fitz. Influence of low‐and high‐pressure baroreceptors on plasma renin activity in humans. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H29–H33, 1978.
 434. Mark, A. L., F. M. Abboud, P. G. Schmid, and D. D. Heistad. Reflex vascular responses to left ventricular outflow obstruction and activation of ventricular baroreceptors. J. Clin. Invest. 52: 1147–1153, 1973.
 435. Mark, A. L., and R. E. Kerber. Augmentation of cardiopulmonary baroreflex control of forearm vascular resistance in borderline hypertension. Hypertension 4: 39–46, 1982.
 436. Mark, A. L., J. M. Kioschos, F. M. Abboud, D. D. Heistad, and P. G. Schmid. Abnormal vascular responses to exercise in patients with aortic stenosis. J. Clin. Invest. 52: 1138–1146, 1973.
 437. Mark, A. L., H. Koike, and F. M. Abboud. Inhibition of the somatic pressor reflex by increases in carotid baroreceptor activity (Abstract). Clin. Res. 23: 473A, 1975.
 438. Mark, A. L., W. J. Lawton, F. M. Abboud, A. E. Fitz, W. E. Connor, and D. D. Heistad. Effects of high and low sodium intake on arterial pressure and forearm vascular resistance in borderline hypertension. Circ. Res. 36/37, Suppl. 2: 94–98, 1975.
 439. Mark, A. L., H. E. Mayer, P. G. Schmid, D. D. Heistad, and F. M. Abboud. Adrenergic control of the peripheral circulation in cardiomyopathic hamsters with heart failure. Circ. Res. 33: 74–81, 1973.
 440. Mason, D. T., and E. Braunwald. Effects of guanethidine, reserpine and methyldopa on reflex venous and arterial constriction in man. J. Clin. Invest. 43: 1449–1463, 1964.
 441. Mayer, H. W., F. M. Abboud, D. R. Ballard, and J. W. Eckstein. Catecholamines in arteries and veins of the foreleg of the dog. Circ. Res. 23: 653–661, 1968.
 442. McAllen, R. M. The inhibition of the baroreceptor input to the medulla by stimulation of the hypothalamic defence area. J. Physiol. London 257: 45–46, 1976.
 443. McAllen, R. M., D. Jordan, and K. M. Spyer. The carotid baroreceptor input to the brain. In: Central Interactions Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hiltom, and A. Trzebski. Berlin: Springer‐Verlag, 1979, p. 87–92.
 444. McAllen, R. M., and K. M. Spyer. “Baroreceptor” neurones in the medulla of the cat. J. Physiol. London 222: 68–69, 1972.
 445. McAllen, R. M., and K. M. Spyer. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. London 282: 365–374, 1978.
 446. McCall, R. S., G. L. Gebber, and S. M. Barman. Spinal interneurons in the baroreceptor reflex arc. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H657–665, 1977.
 447. McCubbin, J. W., J. H. Green, and I. H. Page. Baroreceptor function in chronic renal hypertension. Circ. Res. 4: 205–210, 1956.
 448. McDonald, D. M., and R. A. Mitchell. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J. Neurocytol. 4: 177–230, 1975.
 449. McGiff, J. C., and D. M. Aviado. Differential response of renal and femoral blood flows and vascular resistances. Hypotensive and hypertensive procedures. Circ. Res. 9: 1327–1335, 1961.
 450. McKenna, O. C., and E. T. Angelakos. Adrenergic innervation of the canine kidney. Circ. Res. 22: 345–354, 1968.
 451. McNamara, R. F., P. G. Schmid, J. A. Schmidt, D. D. Lund, and R. K. Bhatnagar. Humoral regulation of vascular resistance after 30 days of pulmonary artery constriction. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H866–H872, 1979.
 452. McPhee, M. S., and W. H. Lakey. Neurologic release of renin in mongrel dogs. Can. J. Surg. 14: 142–146, 1971.
 453. McRaven, D. R., A. L. Mark, H. E. Mayer, and F. M. Abboud. Responses of coronary vessels to adrenergic stimuli. J. Clin. Invest. 50: 773–778, 1971.
 454. McRitchie, R. J., S. F. Vatner, D. Boettcher, G. R. Heyndrickx, T. A. Patrick, and E. Braunwald. Role of arterial baroreceptors in mediating cardiovascular response to exercise. Am. J. Physiol. 230: 85–89, 1976.
 455. Melcher, A., and D. E. Donald. Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H838–H849, 1981.
 456. Meninger, R. P. Response of supraoptic neurons to simultaneous changes in left atrial stretch and carotid occlusion (Abstract). Federation Proc. 37: 702, 1978.
 457. Meninger, R. P., and D. T. Frazier. Effects of blood volume and atrial stretch on hypothalamic single‐unit activity. Am. J. Physiol. 223: 288–293, 1972.
 458. Merrill, A. J., J. L. Morrison, and E. S. Brannon. Concentration of renin in renal venous blood in patients with chronic heart failure. Am. J. Med. 1: 468–472, 1946.
 459. Millard, R. W., C. B. Higgins, D. Franklin, and S. F. Vatner. Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circ. Res. 31: 881–888, 1972.
 460. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Prolonged stimulation of respiration by a new central neural mechanism. Respir. Physiol. 41: 87–103, 1980.
 461. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Prolonged stimulation of respiration by endogenous central serotonin. Respir. Physiol. 42: 171–188, 1980.
 462. Milner, A. D., R. A. Saunders, and I. E. Hopkin. Apnoea induced by airflow obstruction. Arch. Dis. Child. 52: 379–382, 1977.
 463. Miserocchi, G., and G. Sant Ambrogio. Responses of pulmonary stretch receptors to static pressure inflations. Respir. Physiol. 21: 77–85, 1974.
 464. Mitchell, J. H., B. Schibye, F. C. Payne III, and B. Saltin. Response of arterial blood pressure to static exercise in relation to muscle mass, force development, and electromyographic activity. Circ. Res. 48, pt. 2: I70–I75, 1981.
 465. Mitchell, R. A., H. H. Loeschcke, J. W. Severinghaus, B. W. Richardson, and W. H. Massion. Regions of respiratory chemosensitivity on the surface of the medulla. Ann. NY Acad. Sci. 109: 661–681, 1963.
 466. Mitchell, R. A., and D. A. McDonald. Adjustment of chemoreceptor sensitivity in the cat carotid body by reciprocal synapses. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 269–291.
 467. Miura, M., and D. J. Reis. Termination and secondary projections of carotid sinus nerve in the cat brain stem. Am. J. Physiol. 217: 142–153, 1969.
 468. Miura, M., and D. J. Reis. A blood pressure response from the fastigial nucleus and its relay pathway in brainstem. Am. J. Physiol. 219: 1330–1336, 1970.
 469. Miura, M., and D. J. Reis. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors. J. Physiol. London 223: 525–548, 1972.
 470. Morris, B. J., J. O. Davis, M. L. Zatzman, and G. M. Williams. The renin‐angiotensin‐aldosterone system in rabbits with congestive heart failure produced by aortic constriction. Circ. Res. 40: 275–282, 1977.
 471. Moruzzi, G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J. Neurophysiol. 3: 20–32, 1940.
 472. Muers, M. F., and P. Sleight. Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog. J. Physiol. London 221: 283–309, 1972.
 473. Murray, R. H., F. C. Luft, R. Bloch, and A. E. Weyman. Blood pressure responses to extremes of sodium intake in normal man. Proc. Soc. Exp. Biol. Med. 159: 432–436, 1978.
 474. Nakamura, K., M. Gerold, and H. Thoenen. Experimental hypertension of the rat: reciprocal changes of norepinephrine turnover in heart and brainstem. Naunyn Schmiedeberg's Arch. Pharmacol. 268: 125–139, 1971.
 475. Nathan, M. Pathways in the medulla oblongata of monkeys mediating splanchnic nerve activity. Electrophysiological and anatomical evidence. Brain Res. 45: 115–126, 1972.
 476. Nathan, M. A., and D. J. Reis. Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of the anterior hypothalamus in the rat. Circ. Res. 37: 226–235, 1975.
 477. Nathan, M. A., and D. J. Reis. Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ. Res. 40: 72–81, 1977.
 478. Ninomiya, I., and H. Irisawa. Summation of baroreceptor reflex effects on sympathetic nerve activities. Am. J. Physiol. 216: 1330–1336, 1969.
 479. Ninomiya, I., and H. Irisawa. Non‐uniformity of the sympathetic nerve activity in response to baroreceptor inputs. Brain Res. 87: 313–332, 1975.
 480. Nishi, K., M. Sakanashi, and F. Takenaka. Afferent fibers from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat. J. Physiol. London 240: 53–66, 1974.
 481. Öberg, B, and P. Thorén. Studies on left ventricular receptors. Signalling in non‐medullated vagal afferents. Acta Physiol. Scand. 85: 145–163, 1972.
 482. Öberg, B, and P. Thorén. Circulatory responses to stimulation of medullated and non‐medullated afferents in the cardiac nerve in the cat. Acta Physiol. Scand. 87: 121–132, 1973.
 483. Öberg, B, and S. White. Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol. Scand. 80: 383–394, 1970.
 484. Olsen, C. R., D. D. Fanestil, and P. F. Schloander. Some effects of apneic underwater diving on blood gases, lactate, and pressure in man. J. Appl. Physiol. 17: 938–942, 1962.
 485. Oparil, S., C. Vassaux, C. A. Sanders, and E. Haber. Role of renin in acute postural homeostasis. Circulation 41: 89–95, 1970.
 486. Osborne, M. P., and P. J. Butler. New theory for receptor mechanism of carotid body chemoreceptors. Nature London 254: 701–703, 1975.
 487. Ott, N. T., and J. T. Shepherd. Vasodepressor reflux from lung inflation in the rabbit. Am. J. Physiol. 221: 889–895, 1971.
 488. Overbeck, H. W., M. B. Pamnani, T. Akera, T. M. Brody, and F. J. Haddy. Depressed function of a ouabain‐sensitive sodium‐potassium pump in blood vessels from renal hypertensive dogs. Circ. Res. 38, Suppl 2: 48–52, 1976.
 489. Paintal, A. S. A study of ventricular pressure receptors and their role in the Bezold reflex. Q. J. Exp. Physiol. 40: 348–363, 1955.
 490. Paintal, A. S. Effects of drugs on vertebrate mechanoreceptors. Pharmacol. Rev. 16: 341–380, 1964.
 491. Paintal, A. S. Mechanism of stimulation of type J pulmonary receptors. J. Physiol. London 203: 511–532, 1969.
 492. Paintal, A. S. Cardiovascular receptors. In: Handbook of Sensory Physiology. Enteroceptors, edited by E. Neil. Berlin: Springer‐Verlag, 1972, vol. 3, pt. 1, p. 1–45.
 493. Palkovits, M. The anatomy of central cardiovascular neurons. In: Central Adrenaline Neurons: Basic Aspects and Their Role in Cardiovascular Functions, edited by K. Fuxe, M. Goldstein, B. Hökfelt, and T. Hökfelt. Oxford, UK: Pergamon, 1980, p. 3–17.
 494. Palkovits, M. Neuropeptides and biogenic amines in central cardiovascular control mechanisms. In: Central Nervous System Mechanisms in Hypertension, edited by J. P. Buckle and C. M. Ferrario. New York: Raven, 1981, p. 73–97.
 495. Palkovits, M., M. Brownstein, and J. M. Saavedra. Serotonin content of the brain stem nuclei in the rat. Brain Res. 80: 237–249, 1974.
 496. Palkovits, M., E. Mezey, and L. Zaborszky. Neuroanatomical evidences for direct neuronal connections between the brain stem baroreceptor centers and the forebrain areas involved in neural regulation of the blood pressure. In: Nervous System and Hypertension, edited by P. Meyer and H. Schmitt. Paris: Wiley‐Flammarian, 1979, p. 18–30.
 497. Palkovits, M., and L. Zaborszky. Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. In: Progress in Brain Research, edited by W. De Jong, A. P. Provoost, and A. P. Shapiro. Amsterdam: Elsevier, 1977 vol. 47, 9–34.
 498. Pelletier, C. L., D. L. Clement, and J. T. Shepherd. Comparison of afferent activity of canine aortic and sinus nerves. Circ. Res. 31: 557–568, 1972.
 499. Pelletier, C. L., A. J. Edis, and J. T. Shepherd. Circulatory reflex from vagal afferents in response to hemorrhage in the dog. Circ. Res. 29: 626–634, 1971.
 500. Pelletier, C. L., and J. T. Shepherd. Venous responses to stimulation of carotid chemoreceptors by hypoxia and hypercapnia. Am. J. Physiol. 223: 97–103, 1972.
 501. Pelletier, C. L., and J. T. Shepherd. Effect of hypoxia on vascular responses to the carotid baroreflex. Am. J. Physiol. 228: 331–336, 1975.
 502. Perez‐Gomez, F., R. M. De Dios, J. Rey, and A. Garcia‐Aguado. Prinzmetal's angina: reflex cardiovascular response during episode of pain. Br. Heart J. 42: 81–87, 1979.
 503. Perez‐Gomez, F., and A. Garcia‐Aguado. Origin of ventricular reflexes caused by coronary arteriography. Br. Heart J. 39: 967–973, 1977.
 504. Peterson, D. F., and V. S. Bishop. Reflex blood pressure control during acute myocardial ischemia in the conscious dog. Circ. Res. 34: 226–232, 1974.
 505. Peveler, R., D. H. Bergel, B. N. Gupta, P. Sleight, and J. Worley. Modulation of carotid sinus baroreceptor output and carotid sinus mechanical properties by stimulation of efferent sympathetic nerves. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 6–11.
 506. Phillips, M. I., J. Weyhenmeyer, D. Felix, D. Ganten, and W. E. Hoffman. Evidence for an endogenous brain renin‐angiotensin system. Federation Proc. 38: 2260–2266, 1979.
 507. Ponte, J., and M. J. Purves. The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol. London 237: 315, 1974.
 508. Pool, P. E., J. W. Covell, M. Levitt, J. Gibb, and E. Braunwald. Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure: its role in the depletion of cardiac norepinephrine stores. Circ. Res. 20: 349–353, 1967.
 509. Powis, D. A., and D. E. Donald. Involvement of renal α‐ and β‐adrenoceptors in release of renin by carotid baroreflex. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H580–H585, 1979.
 510. Price, H. L., S. Deutsch, B. E. Marshall, G. W. Stephen, M. G. Behner, and G. R. Neufeld. Hemodynamic and metabolic effect of hemorrhage in man, with particular reference to the splanchnic circulation. Circ. Res. 18: 469–474, 1966.
 511. Purtock, R. V., J. H. von Colditz, J. L. Seagard, F. O. Igler, E. J. Zuperku, and J. P. Kampine. Reflex effects of thoracic sympathetic afferent nerve stimulation on the kidney. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H580–H586, 1977.
 512. Purtock, R. V., E. J. Zuperku, S. R. Peters, R. L. Coon, and J. P. Kampine. Response of left ventricular mechanoreceptors to changes in pressure and muscle length. Proc. Soc. Exp. Biol. Med. 154: 500–504, 1977.
 513. Quest, J. A., and R. A. Gillis. Effect of digitalis on carotid sinus baroreceptor activity. Circ. Res. 35: 247–255, 1974.
 514. Ramsay, D. J., B. J. Rolls, and R. J. Wood. The relationship between elevated water intake and edema associated with congestive cardiac failure in the dog. J. Physiol. London 244: 303–312, 1975.
 515. Randall, D. C., D. M. Hasson, and J. V. Brady. Acute cardiovascular consequences of anterior descending coronary artery occlusion in unanesthetized monkey. Proc. Soc. Exp. Biol. Med. 58: 135–140, 1978.
 516. Randall, O. A., M. D. Esler, G. F. Bullock, A. S. Maisel, C. N. Ellis, A. J. Zweufler, and S. Julius. Relationship of age and blood pressure to baroreflex sensitivity and arterial compliance in man. Clin. Sci. Mol. Med. 51, Suppl. 3: 357S–360S, 1976.
 517. Raper, A. J., D. W. Richardson, H. A. Kontos, and J. L. Patterson, Jr. Circulatory responses to breath holding in man. J. Appl. Physiol. 22: 201–206, 1967.
 518. Recordati, G. Type A atrial receptors in the cat: effects of changes in atrial volume and contractility. J. Physiol. London 280: 303–317, 1978.
 519. Recordati, G., F. Lombardi, V. S. Bishop, and A. Malliani. Response of type B atrial vagal receptors to changes in wall tension during atrial filling. Circ. Res. 36: 683–691, 1975.
 520. Recordati, G. M., and N. G. Moss. Electrophysiological study of renal mechano‐ and chemoreceptors in the rat. Proc. Int. Congr. Nephrol, 7th, Montreal, 1978, p. 559.
 521. Reid, I. A., and A. Jones. Effects of carotid occlusion and Clonidine on renin secretion in anesthetized dogs. Clin. Sci. Mol. Med. 51: 1095–1115, 1976.
 522. Reid, I. A., B. J. Morris, and W. F. Ganong. The renin‐angiotensin system. Annu. Rev. Physiol. 40: 377–410, 1978.
 523. Reis, D. J. The brain and arterial hypertension: evidence for a neural‐imbalance hypothesis. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc, 1981, p. 87–104.
 524. Reis, D. J., and M. Cuénod. Central neural regulation of carotid baroreceptor reflexes in the cat. Am. J. Physiol. 209: 1267–1277, 1965.
 525. Reis, D. J., and P. R. McHugh. Hypoxia as a cause of bradycardia during amygdala stimulation in monkey. Am. J. Physiol. 214: 601–610, 1968.
 526. Ricardo, J. A., and E. T. Koh. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala and other forebrain structures in the rat. Brain Res. 153: 1–26, 1978.
 527. Richardson, D., A. Stella, G. Leonetti, A. Bartorelli, and A. Zanchetti. Mechanisms of renal release of renin by electrical stimulation of the brainstem in the cat. Circ. Res. 34: 425–434, 1974.
 528. Richet, C. La resistance des canards a Pasphyxie. C. R. Soc. Biol. 1: 244–245, 1894.
 529. Richsten, S.‐E., E. Noresson, and P. Thorén. Inhibition of renal sympathetic nerve traffic from cardiac receptors in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 106: 17–22, 1979.
 530. Rigatto, H., and J. P. Brady. Periodic breathing and apnea in preterm infants. I. Evidence of hypoventilation possibly due to central respiratory depression. Pediatrics 50: 202–218, 1972.
 531. Rigatto, H., and J. P. Brady. Periodic breathing and apnea in preterm infants. II. Hypoxia as a primary event. Pediatrics 50: 219–228, 1972.
 532. Roberts, G. W., P. L. Woodhams, M. G. Bryant, T. J. Crow, S. R. Bloom, and J. M. Polak. VIP in the brain: evidence for a major pathway linking the amygdala and hypothalamus via the stria terminalis. Histochemistry 65: 387–400, 1980.
 533. Rocchini, A. P., J. R. Cant, and A. C. Barger. Carotid sinus reflex in dogs with low to high sodium intake. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H196–H202, 1977.
 534. Rockhold, R. W., and R. W. Caldwell. Effects of lesions of the nucleus tractus solitarii on the cardiovascular actions of Clonidine in conscious rats. Neuropharmacology 18: 347–354, 1979.
 535. Roddie, I. C., J. T. Shepherd, and R. F. Whelan. Reflex changes in vasoconstrictor tone in human skeletal muscle in response to stimulation of receptors in a low‐pressure area of the intrathoracic vascular bed. J. Physiol. London 139: 369–376, 1957.
 536. Romoff, M. S., G. Keusch, V. M. Campese, M.‐S. Wang, R. M. Friedler, P. Weidmann, and S. G. Massry. Effect of sodium intake on plasma catecholamines in normal subjects. J. Clin. Endocrinol. Metab. 48: 26–31, 1979.
 537. Roskoski, R., Jr., H. E. Mayer, and P. G. Schmid. Choline acetyltransferase activity in guinea pig in vitro. J. Neurochem. 23: 1197–1200, 1974.
 538. Roskoski, R., Jr., P. G. Schmid, H. E. Mayer, and F. M. Abboud. In vitro acetylcholine biosynthesis in normal and failing guinea pig hearts. Circ. Res. 36: 547–552, 1975.
 539. Rossier, J., E. Battenberg, Q. Pittmann, A. Bayon, L. Koda, R. Miller, R. Guillemin, and F. Bloom. Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature London 277: 653–655, 1979.
 540. Rowell, L. B., J. R. Blackmon, and R. A. Bruce. Indocyanine green clearance and estimated hepatic blood flow during mild to maximal exercise in upright man. J. Clin. Invest. 43: 1677–1690, 1964.
 541. Rowell, L. B., G. L. Brengelmann, J.‐M. R. Detry, and C. Wyss. Venomotor responses to local and remote thermal stimuli to skin in exercising man. J. Appl. Physiol. 30: 72–77, 1971.
 542. Rowell, L. B., P. R. Freund, and S. F. Hobbs. Cardiovascular responses to muscle ischemia in humans. Circ. Res. 48, pt. 2: 137–147, 1981.
 543. Rowlands, D. J., and D. E. Donald. Sympathetic vasoconstrictive responses during exercise‐ or drug‐induced vasodilatation: a time‐dependent response. Circ. Res. 23: 45–60, 1968.
 544. Rusch, N. J., J. T. Shepherd, R. C. Webb, and P. M. Vanhoutte. Different behavior of the resistance vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Circ. Res. 48, pt. 2: I118–I130, 1981.
 545. Rushmer, R. F. Effects of nerve stimulation and hormones on the heart; the role of the heart in general circulatory regulation. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1962, sect. 2, vol. 1, chapt. 16, p. 533–550.
 546. Rutherford, J. D., and S. F. Vatner. Integrated carotid chemoreceptor and pulmonary inflation reflex control of peripheral vasoactivity in conscious dogs. Circ. Res. 43: 200–208, 1978.
 547. Saavedra, J. M., M. Palkovits, M. J. Brownstein, and J. Axelrod. Localization of phenylethanolamine N‐methyltransferase in the rat brain nuclei. Nature London 248: 695–696, 1974.
 548. Sagawa, K., and K. Watanabe. Summation of bilateral carotid sinus signals in the barostatic reflex. Am. J. Physiol. 209: 1278–1286, 1965.
 549. Sampson, S. R. Pharmacology of feedback inhibition of carotid body chemoreceptors in the cat. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 207–220.
 550. Sampson, S. R., and E. Mills. Effects of sympathetic stimulation on discharges of carotid sinus baroreceptors. Am. J. Physiol. 218: 1650–1653, 1970.
 551. Sampson, S. R., G. Nicolaysen, and R. A. Jaffe. Influence of centrifugal sinus nerve activity on carotid body catecholamines: microphotometric analysis of formaldehyde‐induced fluorescence. Brain Res. 85: 437–446, 1975.
 552. Sampson, S. R., and E. H. Vidruk. Properties of “irritant” receptors in canine lung. Respir. Physiol. 25: 9–22, 1975.
 553. Samueloff, S. L., N. L. Browse, and J. T. Shepherd. Response of capacity vessels in human limbs to head‐up tilt and suction on lower body. J. Appl. Physiol. 21: 47–54, 1966.
 554. Sancho, J., R. Re, J. Burton, A. C. Barger, and E. Haber. The role of the renin‐angiotensin‐aldosterone system in cardiovascular homeostasis in normal human subjects. Circulation 53: 400–405, 1976.
 555. Saper, C. B., A. D. Loewy, L. W. Swanson, and W. M. Cowan. Direct hypothalamo‐autonomic connections. Brain Res. 117: 305–312, 1976.
 556. Sapru, N. H., and A. J. Krieger. Role of receptor elements in baroreceptor function in normotensive and spontaneously hypertensive rats. Circ. Res. 39: 497–505, 1976.
 557. Sato, A., and R. F. Schmidt. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol. Rev. 53: 916–947, 1973.
 558. Saum, W. R., A. M. Brown, and F. J. Tuley. An electrogenic sodium pump and baroreceptor function in normotensive and spontaneously hypertensive rats. Circ. Res. 39: 497–505, 1976.
 559. Schmid, H. E., Jr. Renal autoregulation and renin release during changes in renal perfusion pressure. Am. J. Physiol. 222: 1132–1137, 1972.
 560. Schmid, P. G., R. H. Dykstra, H. E. Mayer, R. P. Oda, and J. J. Donnell. Evidence of nonuniform sympathetic neural activity in heart regions in guinea pigs. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H606–H611, 1979.
 561. Schmid, P. G., D. D. Lund, and R. Roskoski, Jr.. Efferent autonomic dysfunction in heart failure. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc, 1981, p. 33–49.
 562. Schmid, P. G., H. E. Mayer, A. L. Mark, D. D. Heistad, and F. M. Abboud. Differences in the regulation of vascular resistance in guinea pigs with right and left heart failure. Circ. Res. 41: 85–93, 1977.
 563. Schmidt, C. F., and J. H. Comroe, Jr. Functions of the carotid and aortic bodies. Physiol. Rev. 20: 115–157, 1940.
 564. Schoener, E. P., and H. M. Frankel. Effect of hyperthermia and Paco2 on the slowly adapting pulmonary stretch receptor. Am. J. Physiol. 222: 68–72, 1972.
 565. Scholander, P. F., H. T. Hammel, M. LeMessurier, E. Hemmingsen, and W. Garey. Circulatory adjustment in pearl divers. J. Appl. Physiol. 17: 184–190, 1962.
 566. Schramm, L. P., and K. E. Bignall. Central neural pathways mediating active sympathetic muscle vasodilation in cats. Am. J. Physiol. 221: 754–767, 1971.
 567. Schramm, L. P., C. R. Honig, and K. E. Bignall. Active muscle vasodilation in primates homologous with sympathetic vasodilation in carnivores. Am. J. Physiol. 221: 768–777, 1971.
 568. Schulte, F. J., H. D. Henatsch, and G. Busch. Über den Einfluss der Carotissinus‐Sensibilität auf die spinalmotorischen Systeme. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 269: 248–263, 1959.
 569. Schwartz, P. J., M. Pagani, F. Lombardi, A. Malliani, and A. M. Brown. A cardiocardiac sympathovagal reflex in the cat. Circ. Res. 32: 215–220, 1973.
 570. Schwegler, M. Sympathetic‐parasympathetic interactions on the ventricular myocardium: possible role of cyclic nucleotides. Basic Res. Cardiol. 3: 215–221, 1974.
 571. Share, L. Effects of carotid occlusion and left atrial distension on plasma vasopressin titer. Am. J. Physiol. 208: 219–223, 1965.
 572. Share, L. Role of peripheral receptors in the increased release of vasopressin in response to hemorrhage. Endocrinology 81: 1140–1146, 1967.
 573. Share, L. Control of plasma ADH titer in hemorrhage: role of atrial and arterial receptors. Am. J. Physiol. 215: 1384–1389, 1968.
 574. Share, L., and M. N. Levy. Cardiovascular receptors and blood titer of antidiuretic hormone. Am. J. Physiol. 203: 425–428, 1962.
 575. Shepherd, J. T. Lewis A Conner Memorial Lecture. The cardiac catheter and the American Heart Association. Circulation 50: 418–428, 1974.
 576. Shepherd, J. T. The lungs as receptor sites for cardiovascular regulation. Circulation 63: 1–10, 1981.
 577. Shepherd, J. T. Reflex control of arterial blood pressure. Cardiovasc. Res. 16: 357–383, 1982.
 578. Shepherd, J. T., and P. M. Vanhoutte. Veins and Their Control. Philadelphia, PA: Saunders, 1975, p. 269.
 579. Sims, K. B., D. L. Hoffman, S. I. Said, and E. A. Zimmerman. Vasoactive intestinal peptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res. 186: 165–184, 1980.
 580. Skinner, S. L., J. W. McCubbin, and I. H. Page. Control of renin secretion. Circ. Res. 15: 64–76, 1964.
 581. Sleight, P., A. Lall, and M. Muers. Reflex cardiovascular effects of epicardial stimulation by acetylstrophanthidin in dogs. Circ. Res. 25: 705–711, 1969.
 582. Sleight, P., J. L. Robinson, D. Brooks, and P. M. Rees. Characteristics of single carotid sinus baroreceptor fibers and whole nerve activity in the normotensive and the renal hypertensive dog. Circ. Res. 41: 750–758, 1977.
 583. Sleight, P., M. J. West, P. I. Korner, J. R. Oliver, J. P. Chalmers, and J. L. Robinson. The action of Clonidine on the baroreflex control of heart rate in conscious animals and man, and on single aortic baroreceptor discharge in the rabbit. Arch. Int. Pharmacodyn. Ther. 214: 4–11, 1975.
 584. Sleight, P., and J. G. Widdicombe. Action potentials in fibers from receptors in the epicardium and myocardium of the dog's left ventricle. J. Physiol. London 181: 235–258, 1965.
 585. Smith, O. A., and M. A. Nathan. Inhibition of carotid sinus reflex by inferior olive. Science 154: 674–675, 1966.
 586. Smyth, H. S., P. Sleight, and G. W. Pickering. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreceptor sensitivity. Circ. Res. 24: 109–121, 1969.
 587. Snyder, D. W., and G. L. Gebber. Relationships between medullary depressor region and central vasopressor pathways. Am. J. Physiol. 225: 1129–1137, 1973.
 588. Sofroniew, M. V., and A. Weindl. Projections from the parvocellular vasopressin‐ and neurophysin‐containing neurons of the suprachiasmatic nucleus. Am. J. Anat. 153: 391–430, 1978.
 589. Sole, M. J., C. M. Lo, C. W. Laird, E. H. Sonnenblick, and R. J. Wurtman. Norepinephrine turnover in the heart and spleen of the cardiomyopathic Syrian hamster. Circ. Res. 37: 855–862, 1975.
 590. Sole, M. J., G. R. van Loon, A. Shum, W. Lixfield, and D. C. MacGregor. Left ventricular receptors inhibit brain serotonin neurons during coronary artery occlusion. Science 201: 620–622, 1978.
 591. Sole, M. J., R. J. Wurtman, C. Lo, A. B. Ramble, and E. H. Sonnenblick. Tyrosine hydroxylase activity in the heart of the cardiomyopathic Syrian hamster. J. Mol. Cell. Cardiol. 9: 225–233, 1977.
 592. Spann, J. F., Jr., C. A. Chidsey, P. E. Pool, and E. Braunwald. Mechanisms of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ. Res. 17: 312–321, 1965.
 593. Spyer, K. M. Baroreceptor sensitive neurones in the anterior hypothalamus of the cat. J. Physiol. London 224: 245–257, 1972.
 594. Spyer, K. M. The neural organization and control of the baroreflex. Rev. Physiol. Biochem. Pharmacol. 88: 24–124, 1981.
 595. Stern, S., and E. Rapaport. Comparison of the reflexes elicited from combined or separate stimulation of the aortic and carotid chemoreceptors on myocardial contractility, cardiac output and systemic resistance. Circ. Res. 20: 214–227, 1967.
 596. Streatfeild, K. A., N. S. Davison, and D. I. McCloskey. Muscular reflex and baroreflex influences on heart rate during isometric contractions. Cardiovasc. Res. 11: 87–93, 1977.
 597. Stroh‐Werz, M., P. Langhorst, and H. Camerer. Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. I. Different discharge patterns related to the cardiac cycle. Brain Res. 133: 65–80, 1977.
 598. Stroh‐Werz, M., P. Langhorst, and H. Camerer. Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. II. Activity modulation in relationship to the respiratory cycle. Brain Res. 133: 81–93, 1977.
 599. Sundlöf, G., and B. G. Wallin. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J. Physiol. London 274: 621–637, 1978.
 600. Swanson, L. W., and B. K. Hartman. The central adrenergic system: an immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine‐β‐hydroxylase as a marker. J. Comp. Neurol. 163: 467–506, 1975.
 601. Sweet, C. S., and M. J. Brody. Central inhibition of reflex vasodilatation by angiotensin and reduced renal pressure. Am. J. Physiol. 219: 1751–1758, 1970.
 602. Takahashi, Y., K. Satoh, T. Sakumoto, M. Tohyama, and N. Shimizu. A major source of catecholamine terminals in the nucleus tractus solitarii. Brain Res. 172: 372–377, 1979.
 603. Takeda, K., and R. D. Bunãg. Chronic propranolol treatment inhibits sympathetic nerve activity and keeps blood pressure from rising in spontaneously hypertensive rats. Hypertension 2: 228–235, 1981.
 604. Takeshita, A., and A. L. Mark. Neurogenic contribution to hindquarters vasoconstriction during high sodium intake in Dahl strain of genetically hypertensive rat. Circ. Res. 43: 186–191, 1978.
 605. Takeshita, A., A. L. Mark, D. L. Eckberg, and F. M. Abboud. Effect of central venous pressure on arterial baroreflex control of heart rate. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H42–H47, 1979.
 606. Takeshita, A., S. Tanaka, A. Kuroiwa, and M. Nakamura. Reduced baroreceptor sensitivity in borderline hypertension. Circulation 51: 738–742, 1975.
 607. Takeuchi, T., and J. W. Manning. Hypothalamic mediation of sinus baroreceptor‐evoked muscle cholinergic dilator response. Am. J. Physiol. 224: 1280–1287, 1973.
 608. Talman, W. T., M. H. Perrone, and D. J. Reis. Evidence for l‐glutamate as the neurotransmitter of primary baroreceptor afferent nerve fibers. Science 209: 813–815, 1980.
 609. Talman, W. T., M. H. Perrone, and D. J. Reis. Acute hypertension after the local injection of kainic acid into the nucleus tractus solitarii of rats. Circ. Res. 48: 242–298, 1981.
 610. Talman, W. T., D. Snyder, and D. J. Reis. Chronic lability of arterial pressure produced by destruction of A2 catecholamine neurons in rat brainstem. Circ. Res. 46: 842–853, 1980.
 611. Thadani, U., and J. O. Parker. Hemodynamics at rest and during supine and sitting bicycle exercise in normal subjects. Am. J. Cardiol. 41: 52–59, 1978.
 612. Thames, M. D. Reflex suppression of renin release by ventricular receptors with vagal afferents. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H181–H184, 1977.
 613. Thames, M. D. Acetylstrophanthidin‐induced reflex inhibition of canine renal sympathetic nerve activity mediated by cardiac receptors with vagal afferents. Circ. Res. 44: 8–15, 1979.
 614. Thames, M. D. Effect of d‐ and l‐propranolol on the discharge of cardiac vagal C fibers. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H465–H470, 1980.
 615. Thames, M. D., and F. M. Abboud. Interaction of somatic and cardiopulmonary receptors in control of renal circulation. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H560–H565, 1979.
 616. Thames, M. D., and F. M. Abboud. Reflex inhibition of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptors with vagal afferents in dogs. J. Clin. Invest. 63: 395–402, 1979.
 617. Thames, M. D., and G. F. DiBona. Renal nerves modulate the secretion of renin mediated by nonneural mechanisms. Circ. Res. 44: 645–652, 1979.
 618. Thames, M. D., D. E. Donald, and J. T. Shepherd. Behavior of cardiac receptors with nonmyelinated vagal afferents during spontaneous respiration in cats. Circ. Res. 41: 694–701, 1977.
 619. Thames, M. D., M. Jarecki, and D. E. Donald. Neural control of renin secretion in anesthetized dogs: interaction of cardiopulmonary and carotid baroreceptors. Circ. Res. 42: 237–245, 1978.
 620. Thames, M. D., H. S. Klopfenstein, F. M. Abboud, A. L. Mark, and J. L. Walker. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ. Res. 43: 512–519, 1978.
 621. Thames, M. D., B. D. Miller, and F. M. Abboud. Baroreflex regulation of renal nerve activity during volume expansion. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H810–H814, 1982.
 622. Thames, M. D., B. D. Miller, and F. M. Abboud. Sensitization of vagal cardiopulmonary baroreflex by chronic digoxin. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H815–H818, 1982.
 623. Thames, M. D., M. G. Peterson, and P. G. Schmid. Stimulation of cardiac receptors with veratrum alkaloids inhibits ADH secretion. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H784–H788, 1980.
 624. Thames, M. D., and P. G. Schmid. Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H299–H304, 1979.
 625. Thames, M. D., and P. G. Schmid. Interaction of arterial baroreceptors and cardiopulmonary receptors with vagal afferents in the control of vasopressin secretion. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 186–191.
 626. Thames, M. D., L. A. Waickman, and F. M. Abboud. Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophanthidin. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H628–H635, 1980.
 627. Thames, M. D., Zubair‐ul‐Hassan, N. C. Brackett, Jr, R. R. Lower, and H. A. Kontos. Plasma renin responses to hemorrhage after cardiac autotransplantation. Am. J. Physiol. 221: 1115–1119, 1971.
 628. Thomas, M. R., and F. R. Calaresu. Responses of single units in the medial hypothalamus to electrical stimulation of the carotid sinus nerve in the cat. Brain Res. 44: 49–62, 1972.
 629. Thomas, M. R., and F. R. Calaresu. Hypothalamic inhibition of chemoreceptor‐induced bradycardia in the cat. Am. J. Physiol. 225: 201–208, 1973.
 630. Thorén, P. Evidence for a depressor reflex elicited from left ventricular receptors during occlusion of one coronary artery in the cat. Acta Physiol. Scand. 88: 23–34, 1973.
 631. Thorén, P. N. Activation of left ventricular receptors with nonmedullated vagal afferent fibers during occlusion of a coronary artery in the cat. Am. J. Cardiol. 37: 1046–1051, 1976.
 632. Thorén, P. Atrial receptors with nonmedullated vagal afferents in the cat: discharge frequency and pattern in relation to atrial pressure. Circ. Res. 38: 357–362, 1976.
 633. Thorén, P. Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ. Res. 40: 415–421, 1977.
 634. Thorén, P. Role of cardiac vagal C‐fibres in cardiovascular control. Rev. Physiol. Biochem. Pharmacol. 86: 1–94, 1979.
 635. Thorén, P., and J. V. Jones. Characteristics of aortic baroreceptor C‐fibres in the rabbit. Acta Physiol. Scand. 99: 448–456, 1977.
 636. Thorén, P., E. Noresson, and S.‐E. Ricksten. Resetting of cardiac C‐fibre endings in the spontaneously hypertensive rat. Acta Physiol. Scand. 107: 13–18, 1979.
 637. Thorén, P., and S.‐E. Ricksten. Cardiac C‐fiber endings in cardiovascular control under normal and pathophysiological conditions. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc., 1981, p. 17–31.
 638. Thorén, P., W. Saum, and A. M. Brown. Characteristics of rat aortic baroreceptors with nonmedullated afferent nerve fibers. Circ. Res. 40: 231–237, 1977.
 639. Timms, R. J. Cortical inhibition and facilitation of the defence reaction. J. Physiol. London 266: 98–99, 1977.
 640. Tomiyama, O., T. Shiiga, T. Ideura, K. Tonivita, Y. Mito, S. Shinohara, and J. Takeuchi. Baroreflex sensitivity in renal failure. Clin. Sci. 58: 21–27, 1980.
 641. Torii, S., and H. Kawamura. Effects of amygdaloid stimulation on blood pressure and electrical activity of hippocampus. Jpn. J. Physiol. 10: 374–384, 1960.
 642. Tournade, A., and J. Malmejac. Diversité des actions réflexes que déclenche l'excitation du sinus carotidien et de son nerf. C. R. Soc. Biol. 100: 708–711, 1929.
 643. Trzebski, A., M. Raczkowska, and L. Kubin. Carotid baroreceptor reflex in man, its modulation over the respiratory cycle. Acta Neurobiol. Exp. 40: 807–820, 1980.
 644. Trzebski, A., A. Zielinski, S. Majcherczyk, J. Lipski, and P. Szulczyk. Effect of chemical stimulation and depression of the medullary superficial areas on the respiratory motoneurones discharges, sympathetic activity and efferent control of carotid area receptors. In: Central Rhythm and Regulation, edited by W. Umbach and H. P. Koepchen. Stuttgart, West Germany: Hippokrates, 1974, p. 170–177.
 645. Uchida, Y., and S. Murao. Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am. J. Physiol. 226: 1094–1099, 1974.
 646. Uchida, Y., and A. Sakamoto. Role of autonomic nerves in the pathogenesis of hypotension produced by coronary embolization. Jpn. Circ. J. 38: 491–495, 1974.
 647. Uhl, G. R., R. R. Goodman, and S. H. Snyder. Neurotensin‐containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res. 166: 75–94, 1979.
 648. Uvnäs, B. Cholinergic vasodilator innervation in skeletal muscles. Circ. Res. 20/21, Suppl. 1: 83–90, 1967.
 649. Van der Gugten, J, M. Palkovits, H. L. J. M. Wijnen, and D. H. G. Versteeg. Regional distribution of adrenaline in rat brain. Brain Res. 107: 171–175, 1976.
 650. Vander, A. J. Control of renin release. Physiol. Rev. 47: 359–382, 1967.
 651. Vanhoutte, P. M., and J. T. Shepherd. Effect of temperature on reactivity of isolated cutaneous veins of the dog. Am. J. Physiol. 218: 187–190, 1970.
 652. Vanhoutte, P. M., T. J. Verbeuren, and R. C. Webb. Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol. Rev. 61: 151–247, 1981.
 653. Vatner, S. F., D. H. Bottcher, G. R. Heyndrick, and R. J. McRitchie. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ. Res. 37: 236–242, 1975.
 654. Vatner, S. F., C. B. Higgins, D. Franklin, and E. Braunwald. Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J. Clin. Invest. 51: 995–1008, 1972.
 655. Vatner, S. F., and P. A. Murray. Changes in autonomic control of peripheral vascular resistance in dogs with severe right ventricular hypertrophy and failure. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fozzard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc., 1981, p. 51–64.
 656. Waickman, L. A., and F. M. Abboud. Circumflex coronary occlusion inhibits the compensatory increase in sympathetic activity during arterial hypertension (Abstract). Clin. Res. 28: 717A, 1980.
 657. Walker, J. L., F. M. Abboud, A. L. Mark, and M. D. Thames. Interaction of cardiopulmonary receptors with somatic receptors in man. J. Clin. Invest. 65: 1491–1497, 1980.
 658. Walker, J. L., M. D. Thames, F. M. Abboud, A. L. Mark, and H. S. Klopfenstein. Preferential distribution of inhibitory cardiac receptors in left ventricle of the dog. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H188–H192, 1978.
 659. Wall, P. D., and G. D. Davis. Three cerebral cortical systems affecting autonomic function. J. Neurophysiol. 14: 507–517, 1951.
 660. Wallin, G., W. Delius, and K.‐E. Hagbarth. Comparison of sympathetic nerve activity in normotensive and hypertensive subjects. Circ. Res. 33: 9–21, 1973.
 661. Wasserman, K., R. A. Mitchell, A. J. Berger, R. Casaburi, and J. A. Davis. Mechanisms of the isoproterenol hyperpnea in the cat. Respir. Physiol. 38: 359–376, 1979.
 662. Wasserman, K., B. J. Whipp, and J. Castagna. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36: 457–464, 1974.
 663. Watanabe, A. M., and H. R. Besch. Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ. Res. 37: 209–317, 1975.
 664. Watkins, L., Jr., J. A. Burton, E. Haber, J. R. Cant, F. W. Smith, and A. C. Barger. The renin‐angiotensin‐aldosterone system in congestive failure in conscious dogs. J. Clin. Invest. 57: 1606–1617, 1976.
 665. Weaver, L. C. Cardiopulmonary sympathetic afferent influences on renal nerve activity. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H592–H599, 1977.
 666. Webb, S. W., A. A. Adgey, and J. F. Pantridge. Autonomic disturbance at onset of acute myocardial infarction. Br. Med. J. 3: 89–92, 1972.
 667. Webb‐Peploe, M., and J. T. Shepherd. Responses of the dog's cutaneous veins to local and central temperature changes. Circ. Res. 23: 693–699, 1968.
 668. Webb‐Peploe, M., and J. T. Shepherd. Peripheral mechanisms involved in response of dog's cutaneous veins to local temperature changes. Circ. Res. 23: 701–708, 1968.
 669. Weiss, G. K., and W. E. Crill. Carotid sinus nerve; primary afferent depolarisation evoked by hypothalamic stimulation. Brain Res. 16: 269–272, 1969.
 670. Welsh, M. J., D. D. Heistad, and F. M. Abboud. Depression of ventilation by dopamine: evidence for mediation through arterial chemoreceptors. J. Clin. Invest. 61: 708–713, 1978.
 671. Wennergren, G. Aspects of central integrative and efferent mechanisms in cardiovascular reflex control. Acta Physiol. Scand. Suppl. 428: 1–53, 1975.
 672. Wennergren, G., B. Lisander, and B. Öberg. Interaction between hypothalamic defence reaction and cardiac ventricular receptor reflexes. Acta Physiol. Scand. 96: 532–547, 1976.
 673. Wennergren, G., R. Little, and B. Öberg. Studies on central integration of excitatory chemoreceptor influences and inhibitory baroreceptor and cardiac receptor influences. Acta Physiol. Scand. 96: 1–18, 1976.
 674. Werning, C., N. Fischer, E. Kapi, D. Stiel, G. Trubestein, and H. Vetter. Erhohte Reninstimulation nach Orthostase bei labiler oder Grenzwerthypertonie. Dtsch. Med. Wochenschr. 97: 1038–1039, 1972.
 675. Wing, L. M. H., and J. P. Chalmers. Participation of central serotonergic neurons in the control of the circulation in the rabbit: a study using 5,6‐dihydroxytryptamine in experimental neurogenic and renal hypertension. Circ. Res. 35: 504–513, 1973.
 676. Winternitz, S. R., R. E. Katholi, and S. Oparil. Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J. Clin. Invest. 66: 971–978, 1980.
 677. Wolff, H. P., K. R. Koczorek, E. Buchborn, and G. Rieker. Endocrine factors. J. Chronic Dis. 9: 554–570, 1959.
 678. Wood, J. E. The mechanism of the increased venous pressure with exercise in congestive heart failure. J. Clin. Invest. 41: 2020–2024, 1962.
 679. Wurster, R. D., and S. Trobiani. Effects of cervical sympathetic stimulation on carotid occlusion reflexes in cats. Am. J. Physiol. 225: 978–981, 1973.
 680. Yamashita, H. Effect of baro‐ and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res. 126: 551–556, 1977.
 681. Yamashita, H., and K. Kozumi. Influence of carotid and aortic baroreceptors on neurosecretory neurons in supraoptic nuclei. Brain Res. 170: 259–277, 1979.
 682. Zanchetti, A., and A. Stella. Neural control of renin release. Clin. Sci. Mol. Med. 48, Suppl. 2: 215S–223S, 1975.
 683. Zanchetti, A., and A. Zoccolini. Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J. Neurophysiol. 17: 475–483, 1954.
 684. Zehr, J. E., and E. O. Feigl. Suppression of renin activity by hypothalamic stimulation. Circ. Res. 32, Suppl. 1: 17–26, 1973.
 685. Zehr, J. E., J. A. Hasbargen, and K. D. Kurz. Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Circ. Res. 38: 232–239, 1976.
 686. Zehr, J. E., A. Hawe, A. G. Tsakiris, G. C. Rastelli, D. C. McGoon, and W. E. Segar. ADH levels following non‐hypotensive hemorrhage in dogs with chronic mitral stenosis. Am. J. Physiol. 221: 312–317, 1971.
 687. Zimmerman, B. D. Evaluation of peripheral and central components of action of angiotensin on the sympathetic nervous system. J. Pharmacol. Exp. Ther. 158: 1–10, 1967.
 688. Zitnik, R. S., E. Ambrosioni, and J. T. Shepherd. Effect of temperature on cutaneous venomotor reflexes in man. J. Appl. Physiol. 31: 507–512, 1971.
 689. Zoller, R. P., A. L. Mark, F. M. Abboud, P. G. Schmid, and D. D. Heistad. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J. Clin. Invest. 51: 2967–2972, 1972.
 690. Zucker, I. H., A. M. Earle, and J. P. Gilmore. The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J. Clin. Invest. 60: 323–331, 1977.
 691. Zucker, I. H., T. V. Peterson, and J. P. Gilmore. Ouabain increases left atrial stretch receptor discharge in the dog. J. Pharmacol. Exp. Ther. 212: 320–324, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Francois M. Abboud, Marc D. Thames. Interaction of Cardiovascular Reflexes in Circulatory Control. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 675-753. First published in print 1983. doi: 10.1002/cphy.cp020319