Comprehensive Physiology Wiley Online Library

Neural Control of Extracellular Volume in the Human and Nonhuman Primate

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Atriorenal Reflex
2 Contribution of Central Nervous System
3 Contribution of Spinal Pathways
4 Contribution of Sympathetic Pathways
5 Water Immersion
6 Extracellular Volume Expansion
7 Osmoreception
8 Atrial Natriuretic Factor
9 General Summary
Figure 1. Figure 1.

Renal responses to increase in circulating blood volume in the dog. ADH, antidiuretic hormone; BF, blood flow; GFR, glomerular filtration rate.

From Gilmore and Zucker 57
Figure 2. Figure 2.

Atrial receptor endings (stained with methylene blue; X 200) from dog (A), macaque (B), and human (C). Left atrium in C is close to pulmonary junction where nerve‐ending density is greatest. (From A. Earle, I. H. Zucker, and J. P. Gilmore, unpublished observations.)

Figure 3. Figure 3.

Tracing of original recording from type B left atrial receptor in open‐chest rhesus monkey. Control (A); after intravenous infusion of 20 ml (B) and 50 ml (C) of isotonic saline. Spikes, electrogram; ECG, electrocardiogram; AoP, aortic pressure; LAP, left atrial pressure.

From Zucker and Gilmore 141
Figure 4. Figure 4.

Relationship between change in discharge (spikes/cycle) and change in left atrial or central venous pressure for dog (n = 24) and monkey (n = 24). Vertical bars indicate SEM.

From Zucker and Gilmore 141
Figure 5. Figure 5.

Influence of balloon inflation in left atrium on renal function in the dog and monkey. , urine flow; UNa, sodium excretion; Ccr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; , free‐water clearance; LAP, left atrial pressure; MABP, mean arterial blood pressure; * P < 0.05.

Data from Gilmore and Zucker 56
Figure 6. Figure 6.

Hemodynamic effects of tightening a snare around left atrioventricular groove in the conscious monkey. Snare was tightened between 2 vertical arrows.

From Cornish and Gilmore 20
Figure 7. Figure 7.

Mean hemodynamic responses to atrioventricular groove snaring in the monkey. Snare was tightened between 2 arrows. LVEDP, left ventricular end‐diastolic pressure; *P < 0.05; **P <0.01.

From Cornish and Gilmore 20
Figure 8. Figure 8.

Renal responses to atrioventricular groove snaring in the monkey. , urine flow; UNa, sodium excretion; UK, potassium excretion; , free‐water excretion; *P < 0.05; **P < 0.01.

From Cornish and Gilmore 20
Figure 9. Figure 9.

Renal responses to atrioventricular groove snaring in the monkey; Cosm, osmolal clearance; FLE, filtered load excreted; Ccr, creatinine clearance; *P < 0.05; **P <0.01.

From Cornish and Gilmore 20
Figure 10. Figure 10.

Hemodynamic and renal responses to snaring of the atrioventricular groove in a conscious dog. LAP, left atrial pressure; Uosm, osmolal excretion; UNa, sodium excretion; , urine flow

From Cornish and Gilmore 20
Figure 11. Figure 11.

A: effect of left atrial balloon inflation on efferent renal nerve activity (RNA) in the intact monkey; B: after bilateral vagotomy; C: after bilateral vagotomy and sinoaortic denervation. IRNA, integrated renal nerve activity; AP, arterial pressure; LAP, left atrial pressure.

From Gilmore et al. 51
Figure 12. Figure 12.

Summary of data showing effect on the monkey of various interventions on relationship between change in renal nerve activity (RNA) and change in left atrial pressure (LAP) during atrial balloon inflation.

From Gilmore et al. 51
Figure 13. Figure 13.

Renal responses of the seated anesthetized monkey to head‐out water immersion. C, control; I, immersion; , urine flow; Cosm, osmolal clearance; , free‐water clearance; UNa, sodium excretion; FNa, fractional sodium excretion; *P < 0.05.

Data from Gilmore and Zucker 55
Figure 14. Figure 14.

Technique used to immerse recumbent anesthetized monkey.

From Peterson, Gilmore, and Zucker 108
Figure 15. Figure 15.

Renal responses of recumbent anesthetized monkey to water immersion. ABP, arterial blood pressure; , urine flow; CCr, creatinine clearance; CPAH, P‐aminohippuric acid clearance; UNa, sodium excretion; , free‐water clearance; CVP, central venous pressure.

From Peterson, Gilmore, and Zucker 108
Figure 16. Figure 16.

Renal and hemodynamic responses of bilateral vagotomized monkey to head‐out water immersion. Animal on positive‐pressure respiration throughout. AP, mean arterial blood pressure; , urine flow; CCr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; UNa, sodium excretion; , free‐water clearance.

From Gilmore and Zucker 55, by permission of the American Heart Association, Inc
Figure 17. Figure 17.

Hemodynamic (A) and renal (B, C) responses of the anesthetized, sympathectomized (stellate ganglion T7) monkey to head‐out water immersion. (From K. Cornish and J. P. Gilmore, unpublished observations.)

Figure 18. Figure 18.

Renal responses of anesthetized monkey to intravenous high‐molecular‐weight dextran in saline equaling 15% of estimated blood volume. , urine flow; UNa, sodium excretion; UK, potassium excretion; , free‐water clearance; CCr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; MAP, mean arterial pressure; LVEDP, left ventricular end‐diastolic pressure.

From Gilmore, Peterson, and Zucker 54, by permission of the American Heart Association, Inc
Figure 19. Figure 19.

Response of anesthetized cardiac‐denervated monkey to same infusion as in Fig. 18. Cosm, osmolal clearance. (From T. Peterson and C. E. Jones, unpublished observations.)

Figure 20. Figure 20.

Response of anesthetized, cardiac‐denervated, vagotomized, sinoaortic‐denervated monkey to the same infusion as in Fig. 18. (From T. Peterson and C. E. Jones, unpublished observations.)

Figure 21. Figure 21.

Effect of a 2‐step blood volume (BV) expansion on arterial pressure (AP), left ventricular end‐diastolic pressure (LVEDP), plasma antidiuretic hormone (PADH), and plasma osmolality (Posm) in the anesthetized monkey (see Fig. 22).

Data from Gilmore et al. 58
Figure 22. Figure 22.

Relationship between change in arterial pressure (ΔAP) and change in plasma antidiuretic hormone (ΔPADH) in response to volume expansion in the anesthetized monkey (see Fig. 21).

From Gilmore et al. 58
Figure 23. Figure 23.

Relationship of plasma arginine vasopressin (PAVP) to plasma osmolality (Posm) in healthy adults in varying states of water balance. Posm, was changed by acute water loading and/or variable periods of dehydration. Above a Posm of 280 mmol/kg, PAVP (pg/ml) = 0.38 (Posm − 280) where 0.38 is slope of regression line.

From Robertson et al. 113
Figure 24. Figure 24.

Relationship of plasma arginine vasopressin (AVP) to plasma osmolality (Posm) in isolated, sitting adult monkeys during water loading or dehydration. PAVP (μU/ml) = 0.19 (Posm − 292).

From Hayward et al. 66
Figure 25. Figure 25.

A: responses of an anesthetized monkey to a 3‐min bilateral intracarotid infusion of hypertonic NaCl (45 μmol · kg−1 · min−1 per artery). Total volume infused was 3 ml (1.5 ml per artery). B: responses of an anesthetized monkey to the same infusion administered intravenously. , urine flow; PAVP, plasma arginine vasopressin; PNa, plasma sodium; UNa, sodium excretion; Cosm, osmolal clearance; , free‐water clearance. (From A. Wu and J. P. Gilmore, unpublished observations.)

Figure 26. Figure 26.

Renal responses of a monkey to intravenous injection of monkey atrial (atria) and ventricular (vent) extract. , urine flow; UNa, sodium excretion; UK, potassium excretion; CCr, creatinine clearance; Cosm, osmolal clearance; , free‐water clearance. (From L. Huffman and J. P. Gilmore, unpublished observations.)

Figure 27. Figure 27.

Renal responses of a monkey to intravenous injection of human atrial extract and furosemide (furos). , urine flow; UNa, sodium excretion; UK, potassium excretion; CCr, creatinine clearance; Cosm, osmolal clearance; , free‐water clearance. (From M. Nemeh and J. P. Gilmore, unpublished observations.)



Figure 1.

Renal responses to increase in circulating blood volume in the dog. ADH, antidiuretic hormone; BF, blood flow; GFR, glomerular filtration rate.

From Gilmore and Zucker 57


Figure 2.

Atrial receptor endings (stained with methylene blue; X 200) from dog (A), macaque (B), and human (C). Left atrium in C is close to pulmonary junction where nerve‐ending density is greatest. (From A. Earle, I. H. Zucker, and J. P. Gilmore, unpublished observations.)



Figure 3.

Tracing of original recording from type B left atrial receptor in open‐chest rhesus monkey. Control (A); after intravenous infusion of 20 ml (B) and 50 ml (C) of isotonic saline. Spikes, electrogram; ECG, electrocardiogram; AoP, aortic pressure; LAP, left atrial pressure.

From Zucker and Gilmore 141


Figure 4.

Relationship between change in discharge (spikes/cycle) and change in left atrial or central venous pressure for dog (n = 24) and monkey (n = 24). Vertical bars indicate SEM.

From Zucker and Gilmore 141


Figure 5.

Influence of balloon inflation in left atrium on renal function in the dog and monkey. , urine flow; UNa, sodium excretion; Ccr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; , free‐water clearance; LAP, left atrial pressure; MABP, mean arterial blood pressure; * P < 0.05.

Data from Gilmore and Zucker 56


Figure 6.

Hemodynamic effects of tightening a snare around left atrioventricular groove in the conscious monkey. Snare was tightened between 2 vertical arrows.

From Cornish and Gilmore 20


Figure 7.

Mean hemodynamic responses to atrioventricular groove snaring in the monkey. Snare was tightened between 2 arrows. LVEDP, left ventricular end‐diastolic pressure; *P < 0.05; **P <0.01.

From Cornish and Gilmore 20


Figure 8.

Renal responses to atrioventricular groove snaring in the monkey. , urine flow; UNa, sodium excretion; UK, potassium excretion; , free‐water excretion; *P < 0.05; **P < 0.01.

From Cornish and Gilmore 20


Figure 9.

Renal responses to atrioventricular groove snaring in the monkey; Cosm, osmolal clearance; FLE, filtered load excreted; Ccr, creatinine clearance; *P < 0.05; **P <0.01.

From Cornish and Gilmore 20


Figure 10.

Hemodynamic and renal responses to snaring of the atrioventricular groove in a conscious dog. LAP, left atrial pressure; Uosm, osmolal excretion; UNa, sodium excretion; , urine flow

From Cornish and Gilmore 20


Figure 11.

A: effect of left atrial balloon inflation on efferent renal nerve activity (RNA) in the intact monkey; B: after bilateral vagotomy; C: after bilateral vagotomy and sinoaortic denervation. IRNA, integrated renal nerve activity; AP, arterial pressure; LAP, left atrial pressure.

From Gilmore et al. 51


Figure 12.

Summary of data showing effect on the monkey of various interventions on relationship between change in renal nerve activity (RNA) and change in left atrial pressure (LAP) during atrial balloon inflation.

From Gilmore et al. 51


Figure 13.

Renal responses of the seated anesthetized monkey to head‐out water immersion. C, control; I, immersion; , urine flow; Cosm, osmolal clearance; , free‐water clearance; UNa, sodium excretion; FNa, fractional sodium excretion; *P < 0.05.

Data from Gilmore and Zucker 55


Figure 14.

Technique used to immerse recumbent anesthetized monkey.

From Peterson, Gilmore, and Zucker 108


Figure 15.

Renal responses of recumbent anesthetized monkey to water immersion. ABP, arterial blood pressure; , urine flow; CCr, creatinine clearance; CPAH, P‐aminohippuric acid clearance; UNa, sodium excretion; , free‐water clearance; CVP, central venous pressure.

From Peterson, Gilmore, and Zucker 108


Figure 16.

Renal and hemodynamic responses of bilateral vagotomized monkey to head‐out water immersion. Animal on positive‐pressure respiration throughout. AP, mean arterial blood pressure; , urine flow; CCr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; UNa, sodium excretion; , free‐water clearance.

From Gilmore and Zucker 55, by permission of the American Heart Association, Inc


Figure 17.

Hemodynamic (A) and renal (B, C) responses of the anesthetized, sympathectomized (stellate ganglion T7) monkey to head‐out water immersion. (From K. Cornish and J. P. Gilmore, unpublished observations.)



Figure 18.

Renal responses of anesthetized monkey to intravenous high‐molecular‐weight dextran in saline equaling 15% of estimated blood volume. , urine flow; UNa, sodium excretion; UK, potassium excretion; , free‐water clearance; CCr, creatinine clearance; CPAH, p‐aminohippuric acid clearance; MAP, mean arterial pressure; LVEDP, left ventricular end‐diastolic pressure.

From Gilmore, Peterson, and Zucker 54, by permission of the American Heart Association, Inc


Figure 19.

Response of anesthetized cardiac‐denervated monkey to same infusion as in Fig. 18. Cosm, osmolal clearance. (From T. Peterson and C. E. Jones, unpublished observations.)



Figure 20.

Response of anesthetized, cardiac‐denervated, vagotomized, sinoaortic‐denervated monkey to the same infusion as in Fig. 18. (From T. Peterson and C. E. Jones, unpublished observations.)



Figure 21.

Effect of a 2‐step blood volume (BV) expansion on arterial pressure (AP), left ventricular end‐diastolic pressure (LVEDP), plasma antidiuretic hormone (PADH), and plasma osmolality (Posm) in the anesthetized monkey (see Fig. 22).

Data from Gilmore et al. 58


Figure 22.

Relationship between change in arterial pressure (ΔAP) and change in plasma antidiuretic hormone (ΔPADH) in response to volume expansion in the anesthetized monkey (see Fig. 21).

From Gilmore et al. 58


Figure 23.

Relationship of plasma arginine vasopressin (PAVP) to plasma osmolality (Posm) in healthy adults in varying states of water balance. Posm, was changed by acute water loading and/or variable periods of dehydration. Above a Posm of 280 mmol/kg, PAVP (pg/ml) = 0.38 (Posm − 280) where 0.38 is slope of regression line.

From Robertson et al. 113


Figure 24.

Relationship of plasma arginine vasopressin (AVP) to plasma osmolality (Posm) in isolated, sitting adult monkeys during water loading or dehydration. PAVP (μU/ml) = 0.19 (Posm − 292).

From Hayward et al. 66


Figure 25.

A: responses of an anesthetized monkey to a 3‐min bilateral intracarotid infusion of hypertonic NaCl (45 μmol · kg−1 · min−1 per artery). Total volume infused was 3 ml (1.5 ml per artery). B: responses of an anesthetized monkey to the same infusion administered intravenously. , urine flow; PAVP, plasma arginine vasopressin; PNa, plasma sodium; UNa, sodium excretion; Cosm, osmolal clearance; , free‐water clearance. (From A. Wu and J. P. Gilmore, unpublished observations.)



Figure 26.

Renal responses of a monkey to intravenous injection of monkey atrial (atria) and ventricular (vent) extract. , urine flow; UNa, sodium excretion; UK, potassium excretion; CCr, creatinine clearance; Cosm, osmolal clearance; , free‐water clearance. (From L. Huffman and J. P. Gilmore, unpublished observations.)



Figure 27.

Renal responses of a monkey to intravenous injection of human atrial extract and furosemide (furos). , urine flow; UNa, sodium excretion; UK, potassium excretion; CCr, creatinine clearance; Cosm, osmolal clearance; , free‐water clearance. (From M. Nemeh and J. P. Gilmore, unpublished observations.)

References
 1. Abraham, A. Microscopic Innervation of the Heart and Blood Vessels in Vertebrates Including Man. New York: Pergamon, 1969.
 2. Agostoni, E., G. Gurtner, G. Torri, and H. Rahn. Respiratory mechanics during submersion and negative‐pressure breathing. J. Appl. Physiol. 21: 251–258, 1966.
 3. Arborelius, M., Jr., U. I. Balldin, B. Lilja, and C. E. Lundgren. Hemodynamic changes in man during immersion with head above water. Aerosp. Med. 43: 592–598, 1972.
 4. Arnauld, E., P. Czernichow, F. Fumoux, and J.‐D. Vincent. The effects of hypotension and hypovolaemia on the liberation of vasopressin during haemorrhage in the unanaes‐thetized monkey (Macaca mulatto.). Pfluegers Arch. 371: 193–200, 1977.
 5. Aurell, M. Renal response in man to plasma volume expansion and angiotensin. Scand. J. Clin. Lab. Invest. Suppl. 112: 3–59, 1969.
 6. Baisset, A., and P. Montastruc. Polyurie par distension auriculaire chez le chien: rôle de l'hormone antidiuretique. J. Physiol. Paris 49: 33–36, 1957.
 7. Behn, C., O. H. Gauer, K. Kirsch, and P. Eckert. Effects of sustained intrathoracic vascular distension on body fluid distribution and renal excretion in man. Pfluegers Arch. 313: 123–135, 1969.
 8. Bergström, J., H. Bucht, J. Ek, B. Josephson, and L. Werkö. The effect of intravenous infusion of large quantities of dextran solution on kidney function in man. Scand. J. Clin. Lab. Invest. 11: 82–96, 1959.
 9. Bernard, C. Leçons sur les propriétes physiologiques et les altérations pathologiques des liquides de l'organisme. Paris: Ballière, 1859.
 10. Bie, P. Osmoreceptors, vasopressin, and control of renal water excretion. Physiol. Rev. 60: 961–1048, 1980.
 11. Boasberg, P. D., A. Rosenbloom, and J. P. Henry. Intrathoracic volume receptors: control of vasopressin, and sodium and water excretion (Abstract). Clin. Res. 23: 92A, 1975.
 12. Böning, D., and W. Skipka. Renal blood volume regulation in trained and untrained subjects during immersion. Eur. J. Appl. Physiol. Occup. Physiol. 42: 247–254, 1979.
 13. Boylan, J. W., and D. E. Antkowiak. Mechanism of diuresis during negative pressure breathing. J. Appl. Physiol. 14: 116–120, 1959.
 14. Bricker, N. S., R. W. Schmidt, H. Favre, L. Fine, and J. J. Bourgoignie. On the biology of sodium excretion: the search for a natriuretic hormone. Yale J. Biol. Med. 48: 293–303, 1975.
 15. Brown, M., S. Pyzik, and J. R. Finkle. Causes of polyuria and polydipsia in patients with injuries of the cervical spinal cord. Neurology 9: 877–882, 1959.
 16. Cannon, W. B. The Wisdom of the Body. New York: Norton, 1932.
 17. Clarkson, E. M., S. M. Raw, M. R. Sheelagh, and H. E. De Wardener. Further observations on a low‐molecular‐weight natriuretic substance in the urine of normal man. Kidney Int. 16: 710–721, 1979.
 18. Cora, D., S. Debiasi, A. Maggia, and S. Cortesi. The circulating blood volume as a factor regulating salt excretion in man. Clin. Sci. 22: 239–248, 1962.
 19. Cornish, K. G., and J. P. Gilmore. The role of cardiopulmonary sympathetic afferents (C‐PSAs) in the renal response to head‐out immersion in the non‐human primate (Abstract). Federation Proc. 39: 1085A, 1980.
 20. Cornish, K. G., and J. P. Gilmore. Increased left atrial pressure does not alter renal function in the conscious primate. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R119–R124, 1982.
 21. Cort, J. H. Cerebral salt wasting. Lancet 1: 752–754, 1954.
 22. Craig, A. B., Jr., and M. Dvorak. Expiratory reserve volume and vital capacity of the lungs during immersion in water. J. Appl. Physiol. 38: 5–9, 1975.
 23. Davis, J. T., and A. B. Du Bois. Immersion diuresis in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 915–922, 1977.
 24. De Bold, A. J. Heart atria granularity effects of changes in water‐electrolyte balance. Proc. Soc. Exp. Biol. Med. 161: 508–511, 1979.
 25. De Bold, A. J. Natriuretic factor (NF) of the rat heart atria. Studies on isolation and properties (Abstract). Federation Proc. 40: 554, 1981.
 26. De Bold, A. J. Tissue fractionation studies on the relationship between an atrial natriuretic factor and specific atrial granules. Can. J. Physiol. Pharmacol. 60: 324–330, 1982.
 27. De Bold, A. J., H. B. Borenstein, A. T. Veress, and H. Sonnenberg. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28: 89–94, 1981.
 28. De Bold, A. J., J. J. Raymond, and S. A. Bencosme. Atrial specific granules of the heart. Light microscopic staining and histochemical reactions. J. Histochem. Cytochem. 26: 1094–1102, 1978.
 29. De Torrente, A., G. L. Robertson, K. M. McDonald, and R. W. Schrier. Mechanism of diuretic response to increased left atrial pressure in the anesthetized dog. Kidney Int. 8: 355–361, 1975.
 30. Echtenkamp, S., and J. P. Gilmore. Left atrial balloon induced changes in efferent renal nerve activity in the non‐human primate (Abstract). Federation Proc. 38: 1201A, 1979.
 31. Echtenkamp, S., I. H. Zucker, and J. P. Gilmore. Characterization of high and low pressure baroreceptor influences on renal nerve activity in the primate Macaca fascicularis. Circ. Res. 46: 726–730, 1980.
 32. Epstein, F. H. Renal excretion of sodium and the concept of a volume receptor. Yale J. Biol. Med. 29: 282–298, 1956‐57.
 33. Epstein, F. H., R. S. Post, and M. McDowell. The effects of an arteriovenous fistula on renal hemodynamics and electrolyte excretion. J. Clin. Invest. 32: 233–241, 1953.
 34. Epstein, M. Cardiovascular and renal effects of head‐out water immersion in man. Circ. Res. 39: 619–928, 1976.
 35. Epstein, M. Renal effects of head‐out water immersion in man: implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581, 1978.
 36. Epstein, M., N. S. Bricker, and J. J. Bourgoignie. Presence of a natriuretic factor in urine of normal man undergoing water immersion. Kidney Int. 13: 152–158, 1978.
 37. Epstein, M., D. C. Duncan, and L. M. Fishman. Characterization of the natriuresis caused in normal man by immersion in water. Clin. Sci. 43: 275–287, 1972.
 38. Epstein, M., M. D. Lifschitz, D. S. Hoffman, and J. H. Stein. Relationship between renal prostaglandin E and renal sodium handling during water immersion in normal man. Circ. Res. 45: 71–80, 1979.
 39. Epstein, M., D. S. Pins, R. Arrington, A. G. Denunzio, and R. Engstrom. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man. J. Appl. Physiol. 39: 66–70, 1975.
 40. Epstein, M., D. S. Pins, and M. Miller. Suppression of ADH during water immersion in normal man. J. Appl. Physiol. 38: 1038–1044, 1975.
 41. Epstein, M., D. S. Pins, J. Sancho, and E. Haber. Suppression of plasma renin and plasma aldosterone during water immersion in normal man. J. Clin. Endocrinol. Metab. 41: 618–625, 1975.
 42. Epstein, M., R. Re, S. Preston, and E. Haber. Comparison of the suppressive effects of water immersion and saline administration on renin‐aldosterone in normal man. J. Clin. Endocrinol. Metab. 49: 358–363, 1979.
 43. Epstein, M., R. A. Stone, A. G. De Nunzio, and R. P. Frigon. Relationship between urinary kallikrein and renal sodium handling during water immersion in normal man. J. Clin. Endocrinol. Metab. 50: 122–127, 1980.
 44. Epstein, S., and E. Braunwald. The effect of beta‐adrenergic blockade on patterns of urinary sodium excretion. Ann. Int. Med. 65: 2027, 1966.
 45. Freeman, S. W., G. W. Mitchell, J. S. Wilson, F. W. Fitzhugh, and A. J. Merrill. Renal hemodynamics, sodium and water excretion in supine exercising normal and cardiac patients. J. Clin. Invest. 34: 1109–1113, 1955.
 46. Gauer, O. H., and J. P. Henry. Neurohormonal control of plasma volume. In: Cardiovascular Physiology II, edited by A. C. Guyton and A. W. Cowley. Baltimore, MD: University Park, 1976, vol. 9, p. 145–190. (Int. Rev. Physiol. Ser.).
 47. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 48. Ghose, R. R., A. M. Joekes, and E. H. Hyriacou. Renal response to paroxysmal tachycardia. Br. Heart J. 27: 684–687, 1965.
 49. Gill, J. R., Jr. The role of the sympathetic nervous system in the regulation of sodium excretion by the kidney. In: Frontiers in Neuroendocrinology, edited by W. F. Ganong and L. Martini. Oxford, UK: Oxford Univ. Press, 1969, chapt. 8, p. 289–305.
 50. Gill, J. R., and F. C. Bartter. Adrenergic nervous system in sodium metabolism. II. Effects of guanethidine on the renal response to sodium deprivation in normal man. N. Engl. J. Med. 275: 1466–1471, 1966.
 51. Gilmore, J. P., S. Echtenkamp, C. R. Wesley, and I. H. Zucker. Atrial receptor modulation of renal nerve activity in the nonhuman primate. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F592–F598, 1982.
 52. Gilmore, J. P., C. Gilmore, J. Dietz, and I. H. Zucker. Influence of chronic cervical vagotomy on salt gland secretion in the goose. Comp. Biochem. Physiol. A 57: 119–221, 1977.
 53. Gilmore, J. P., and L. L. Michaelis. Influence of anesthesia on renal responses of the foxhound to intravascular volume expansion. Am. J. Physiol. 216: 1367–1369, 1969.
 54. Gilmore, J. P., T. V. Peterson, and I. H. Zucker. Neither dorsal root nor baroreceptor afferents are necessary for eliciting the renal responses to acute intravascular volume expansion in the primate Macaca fascicularis. Circ. Res. 45: 95–99, 1979.
 55. Gilmore, J. P., and I. H. Zucker. Contribution of vagal pathways to the renal responses to head‐out immersion in the nonhuman primate. Circ. Res. 42: 263–267, 1978.
 56. Gilmore, J. P., and I. H. Zucker. Failure of left atrial distension to alter renal function in the nonhuman primate. Circ. Res. 42: 267–270, 1978.
 57. Gilmore, J. P., and I. H. Zucker. The contribution of neural pathways to blood volume homeostasis in the subhuman primate. Basic Res. Cardiol. 75: 281–288, 1980.
 58. Gilmore, J. P., I. H. Zucker, M. J. Ellington, M. A. Richards, and L. Share. Failure of acute intravascular volume expansion to alter plasma vasopressin in the nonhuman primate, Macaca fascicularis. Endocrinology 106: 979–982, 1980.
 59. Ginn, E., Jr., A. M. Unger, D. M. Hume, and J. A. Schilling. Human renal transplantation: an investigation of the functional status of the denervated kidney after successful homotransplantation in identical twins. J. Lab. Clin. Med. 56: 1–13, 1960.
 60. Goetz, K. L., G. C. Bond, and W. E. Smith. Effect of moderate hemorrhage in humans on plasma ADH and renin (37792). Proc. Soc. Exp. Biol. Med. 145: 277–280, 1974.
 61. Goodyer, A. V. N., E. R. Peterson, and A. S. Relman. Some effects of albumin infusion on renal function and electrolyte excretion in normal man. J. Appl. Physiol. 1: 671–682, 1949.
 62. Agrantham, J. J., and A. M. Chonko. The physiological basis and clinical use of diuretics. In: Sodium and Water Homeostasis, edited by B. M. Bremmer and J. H. Stein. New York: Livingstone, 1978, 187 p.
 63. Guyton, A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology II: Dynamics and Control of the Body Fluids. Philadelphia, PA: Saunders, 1975.
 64. Hanwell, A., J. L. Linzell, and M. Peaker. Nature and location of the receptors for salt‐gland secretion in the goose. J. Physiol. London 226: 453–472, 1972.
 65. Hayward, J. N., and D. P. Jennings. Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J. Physiol. London 232: 545–572, 1973.
 66. Hayward, J. N., K. Pavasuthipaisit, F. R. Perez‐Lopez, and M. V. Sofroniew. Radioimmunoassay of arginine vasopressin in rhesus monkey plasma. Endocrinology 98: 975–981, 1976.
 67. Henry, J. P., O. H. Gauer, and J. L. Reeves. Evidence of the atrial location of receptors influencing urine flow. Circ. Res. 4: 85–90, 1956.
 68. Henry, J. P., and J. W. Pearce. The possible role of cardiac atrial stretch receptors in the induction of changes in urine flow. J. Physiol. London 131: 572–585, 1956.
 69. Hess, B., A. C. Bollerup, and K. H. Olesen. The influence of beta‐blocking agents on plasma volume and extracellular volume in ischaemic heart disease. Scand. J. Clin. Lab. Invest. 34: 215–217, 1974.
 70. Hess, B., I. Nielsen, H. Ring‐Larsen, and J. F. Hansen. The influence of acute blood volume changes on plasma renin activity in man. Scand. J. Clin. Lab. Invest. 38: 155–161, 1978.
 71. Hinman, A. T., B. T. Engel, and A. F. Bickford. Portable blood pressure recorder: accuracy and preliminary use in evaluating intradaily variations in pressure. Am. Heart J. 63: 663–668, 1962.
 72. Hohimer, A. R., and 0. A. Smith. Decreased renal blood flow in the baboon during mild dynamic leg exercise. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H141–H150, 1979.
 73. Hollenberg, N. K. Set point for sodium homeostasis: surfeit, deficit, and their implications. Kidney Int. 17: 423–429, 1980.
 74. Imai, M., and J. P. Kokko. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proximal tubules. J. Clin. Invest. 51: 314–325, 1972.
 75. Jamieson, J. D., and G. E. Palade. Specific granules in atrial muscle cells. J. Cell Biol. 23: 151–172, 1964.
 76. Johnston, B. D. Nerve endings in the human endocardium. Am. J. Anat. 122: 621–630, 1968.
 77. Jones, C. E., M. D. Devous, J. X. Thomas, Jr., and E. DuPont. The effect of chronic cardiac denervation on infarct size following acute coronary occlusion. Am. Heart J. 95: 738–746, 1978.
 78. Jones, D. R., W. K. Milsom, and N. H. West. Cardiac receptors in ducks: the effect of their stimulation and blockade on diving bradycardia. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R50–R56, 1980.
 79. Julius, S., A. V. Pascual, P. H. Abbrecht, and R. London. Effect of beta‐adrenergic blockade on plasma volume in human subjects. Proc. Soc. Exp. Biol. Med. 140: 982–985, 1972.
 80. Kappagoda, C. T., R. L. Linden, and H. M. Snow. Effect of stimulating right atrial receptors on urine flow in the dog. J. Physiol. London 235: 493–502, 1973.
 81. Karim, F., C. Kidd, C. M. Malpus, and P. E. Penna. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J. Physiol. London 227: 243–260, 1972.
 82. Kass, D. A., F. M. Sulzman, C. A. Fuller, and M. C. Moore‐Ede. Renal responses to central vascular expansion are suppressed at night in conscious primates. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F343–F351, 1980.
 83. Kisch, B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp. Med. Surg. 14: 99–112, 1956.
 84. Klahr, S., and H. J. Rodriguez. Natriuretic hormone. Nephron 15: 387–408, 1975.
 85. Kramer, H. J., and K. Kruck (editors). Natriuretic Hormone. New York: Springer‐Verlag, 1976.
 86. Leaf, A., F. C. Bartter, R. F. Santos, and O. Wrong. Evidence in man that urinary electrolyte loss induced by Pitressin is a function of water retention. J. Clin. Invest. 32: 868–878, 1953.
 87. Leaf, A., and W. T. Coutier. Evidence that renal sodium excretion by normal human subjects is regulated by adrenal cortical activity. J. Clin. Invest. 28: 1076–1081, 1949.
 88. Ledsome, J. R., and R. J. Linden. The effect of distending a pouch of the left atrium on the heart rate. J. Physiol. London 193: 121–129, 1967.
 89. Ledsome, J. R., R. J. Linden, and W. J. O'Connor. The mechanisms by which distension of the left atrium produces diuresis in anaesthetized dogs. J. Physiol. London 159: 87–100, 1961.
 90. Lefebvre, J., P. Fossati, J. L. Christiaens, J. P. Dessaint, E. Laine, and M. Linquette. Perte de sel d'origine centrale probable après plaie cranio‐cérébrale par balle. Ann. Endocrinol. Paris 33: 73–82, 1972.
 91. Linkenbach, H. J., P. Eckert, and O. H. Gauer. Nachweis eines diuretischen Faktors im menschlichen Serum während der durch Expansion des intrathorakalen Blutvolumens ausgelösten Diurese. Pfluegers Arch. 293: 107–114, 1967.
 92. Luria, M. H. Selected clinical features of paroxysmal tachycardia. A prospective study in 120 patients. Br. Heart J. 33: 351–357, 1971.
 93. Luria, M. H., E. I. Adelson, and S. Lochaya. Paroxysmal tachycardia with polyuria. Ann. Int. Med. 65: 461–470, 1966.
 94. Lydtin, H., and W. F. Hamilton. Effect of acute changes in left atrial pressure on urine flow in unanesthetized dogs. Am. J. Physiol. 207: 530–536, 1964.
 95. Marie, J.‐P., H. Guillemot, and P.‐Y. Hatt. Le degré de granulation des cardiocytes auriculaires. Étude planimétrique au cours de différents apports d'eau et de sodium chez le rat. Pathol. Biol. 24: 549–554, 1976.
 96. Massry, S. G., J. W. Coburn, R. M. Friedler, K. Kurokawa, and F. R. Singer. Relation between the kidney and parathyroid hormone. Nephron 15: 197–222, 1975.
 97. Maynard, F. M., and K. Imai. Immobilization hypercalcemia in spinal cord injury. Arch. Phys. Med. Rehabil. 58: 16–24, 1977.
 98. McCance, R. A., and W. F. Young. The secretion of urine during dehydration and rehydration. J. Physiol. London 102: 415–428, 1944.
 99. Miles, A. I., and M. A. Needle. Fixed hyponatremia with normal responses to varying salt and water intakes. N. Engl. J. Med. 284: 26–28, 1971.
 100. Millard, R. W., C. B. Higgins, D. Franklin, and S. F. Vatner. Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circ. Res. 31: 881–888, 1972.
 101. Moses, A. M., M. Miller, and D. H. P. Streeten. Quantitative influence of blood volume expansion on the osmotic threshold for vasopressin release. J. Clin. Endocrinol. 27: 655–662, 1967.
 102. Murdaugh, H. V., Jr., H. O. Sieke, and F. Manfredi. Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J. Clin. Invest. 38: 834–842, 1959.
 103. Nonidez, J. F. Identification of the receptor areas in the vena cava and the pulmonary veins which initiate reflex cardiac acceleration (Bainbridge's reflex). Am. J. Anat. 61: 203–231, 1937.
 104. Papper, S., L. Saxon, J. D. Rosenbaum, and H. W. Cohen. The effects of isotonic and hypertonic salt solutions on the renal excretion of sodium. J. Lab. Clin. Med. 47: 776–782, 1956.
 105. Peaker, M., and J. L. Linzell. Salt Glands in Birds and Reptiles. London: Cambridge Univ. Press, 1975.
 106. Peters, J. P., L. G. Welt, E. A. H. Sims, J. Orloff, and J. Needham. A salt‐wasting syndrome associated with cerebral disease. Trans. Assoc. Am. Physicians 63: 57–64, 1950.
 107. Petersdorf, R. G., and L. G. Welt. The effect of an infusion of hyperoncotic albumin on the excretion of water and solutes. J. Clin. Invest. 32: 283–291, 1953.
 108. Peterson, T. V., J. P. Gilmore, and I. H. Zucker. Renal responses of the recumbent nonhuman primate total body water immersion. Proc. Soc. Exp. Biol. Med. 161: 260–265, 1979.
 109. Peterson, T. V., J. P. Gilmore, and I. H. Zucker. Initial renal responses of nonhuman primate to immersion and intravascular volume expansion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 243–248, 1980.
 110. Prosnitz, E. H., and G. F. DiBona. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F557–F563, 1978.
 111. Risch, W. D., H.‐J. Koubenec, O. H. Gauer, and S. Lange. Time course of cardiac distension with rapid immersion in a thermo‐neutral bath. Pfluegers Arch. 374: 119–120, 1978.
 112. Robertson, G. L., and S. Athar. The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J. Clin. Endocrinol. Metab. 42: 613–620, 1971.
 113. Robertson, G. L., S. Athar, and R. L. Shelton. Osmotic control of vasopressin function. In: Disturbances in Body Fluid Osmolality, edited by T. E. Andreoli, J. J. Grantham, and F. C. Rector, Jr. Bethesda, MD: Am. Physiol. Soc, 1977, chapt. 6, p. 125–148.
 114. Robertson, G., and E. Mahr. The importance of plasma osmolality in regulating antidiuretic hormone secretion in man (Abstract). J. Clin. Invest. 51: 261A, 1972.
 115. Robertson, G. L., E. A. Mahr, S. Athar, and T. Sinha. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52: 2340–2352, 1973.
 116. Rosenbaum, J. D., S. Papper, and M. M. Ashley. Variations in renal excretion of sodium independent of change in adrenocortical hormone dosage in patients with Addison's disease. J. Clin. Endocrinol. Metab. 15: 1459–1473, 1955.
 117. Rowell, L. B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 54: 75–159, 1974.
 118. Sanghvi, V. R., F. Khaja, A. L. Mark, and J. O. Parker. Effects of blood volume expansion on left ventricular hemodynamics in man. Circulation 46: 780–787, 1972.
 119. Schwartz, W. B., W. Bennett, and S. Curelop. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am. J. Med. 23: 529–542, 1957.
 120. Selkurt, E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circ. Res. 4: 541–551, 1951.
 121. Selkurt, E. E., I. Womack, and W. N. Dailey. Mechanism of natriuresis and diuresis during elevated renal arterial pressure. Am. J. Physiol. 209: 95–99, 1965.
 122. Sieker, H. O., O. H. Gauer, and J. P. Henry. The effect of continuous negative pressure breathing on water and electrolyte excretion by the human kidney. J. Clin. Invest. 33: 572–577, 1954.
 123. Smith, H. W. Salt and water volume receptors: an exercise in physiologic apologetics. Am. J. Med. 23: 623–652, 1957.
 124. Sonnenberg, H., C. K. Chong, and A. T. Veress. Cardiac atrial factor—an endogenous diuretic? Can. J. Physiol. Pharmacol. 59: 1278–1279, 1981.
 125. Strauss, M. B. The acquisition and maintenance of the body fluids. In: Body Water in Man. Boston, MA: Little, Brown, 1957.
 126. Strauss, M. B., R. K. Davis, J. D. Rosenbaum, and E. C. Rossmeisi. Production of increased renal sodium excretion by the hypotonic expansion of extracellular fluid volume in recumbent subjects. J. Clin. Invest. 31: 80–86, 1952.
 127. Strauss, M. B., E. Lamdin, W. P. Smith, and D. J. Bleifer. Surifet and deficit of sodium. Arch. Intern. Med. 102: 527–536, 1958.
 128. Swaminathan, S. Osmoreceptors or sodium receptors: an investigation into ADH release in the rhesus monkey. J. Physiol. London 307: 71–83, 1980.
 129. Tarazi, R. C., E. D. Frohlich, and H. P. Dustan. Plasma volume changes with long‐term beta‐adrenergic blockade. Am. Heart J. 82: 770–776, 1971.
 130. Tisher, C. C., R. W. Schrier, and J. S. McNeil. Nature of urine concentrating mechanism in the macaque monkey. Am. J. Physiol. 223: 1128–1137, 1972.
 131. Ulrych, M., J. Hofman, and Z. Hejl. Cardiac and renal hyperresponsiveness to acute plasma volume expansion in hypertension. Am. Heart J. 68: 193–203, 1964.
 132. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. London Ser. B 135: 25–105, 1947‐48.
 133. Von Diringshofen, H. Die Wirkungen des hydrostatischen Druckes des Wasserbades auf den Blutdruck in den Kapillaren und die Bindegewebsentwässerung. Z. Kreislaufforsch. 37: 382–390, 1948.
 134. Wagner, H. N., Jr. Influence of autonomic vasoregulatory reflexes on rate of sodium and water excretion in man. J. Clin. Invest. 36: 1319–1327, 1957.
 135. Watson, J. F., and R. M. Rapp. Effect of forward acceleration on renal function. J. Appl. Physiol. 17: 413–416, 1962.
 136. Welt, L. G., and J. Orloff. The effects of an increase in plasma volume on the metabolism and excretion of water and electrolytes by normal subjects. J. Clin. Invest. 30: 751–761, 1951.
 137. Welt, L. G., D. W. Seldin, W. P. Nelson III, W. J. German, and J. P. Peters. Role of the central nervous system in metabolism of electrolytes and water. Arch. Intern. Med. 90: 355–378, 1952.
 138. Wesson, L. G., Jr. Physiology of the Human Kidney. New York: Grune & Stratton, 1969.
 139. Wood, P. Polyuria in paroxysmal tachycardia and paroxysmal atrial flutter and fibrillation. Br. Heart J. 25: 273–282, 1963.
 140. Zehr, J. E., J. A. Hasbargen, and K. D. Kurz. Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Circ. Res. 38: 232–239, 1976.
 141. Zucker, I. H., and J. P. Gilmore. Responsiveness of type B atrial receptors in the monkey. Brain Res. 95: 159–165, 1975.
 142. Zucker, I. H., and J. P. Gilmore. Cardiopulmonary vagal afferents in the monkey: a survey of receptor activity. Basic Res. Cardiol. 72: 392–401, 1977.
 143. Zucker, I. H., L. Share, and J. P. Gilmore. Renal effects of left atrial distension in dogs with chronic congestive heart failure. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H554–H560, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Joseph P. Gilmore. Neural Control of Extracellular Volume in the Human and Nonhuman Primate. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 885-915. First published in print 1983. doi: 10.1002/cphy.cp020324