References |
1. |
Poiseuille JLM.
Recherches sur la force du coeur aortique, Dissertation, Paris: Didot le Jenne.
1828.
|
2. |
Poiseuille JLM.
Recherches sur les causes du mouvement du sang dans les veins.
J Physiol Exp Pathol
10:
277–295,
1830.
|
3. |
Landis EM.
Micro‐injection studies of capillary blood pressure in human skin.
Heart
15:
209–228,
1930.
|
4. |
Pappenheimer M.
Contributions to microvascular research of Jean Léonard Marie Poiseuille. In:
Handbook of Physiology — The cardiovascular system IV. Part I.
eds Renkin EM and
Michel CC.
Betheda, MD:
American Physiological Society,
1984,
pp. 1–10.
|
5. |
Poiseuille JLM.
Recherches expérimentelles sur le mouvement des liquids dans les tubes de très petits diamétres.
Comples Rendus
11;
961–967,
1840, Ref Type: Generic.
|
6. |
McDonald KM and
Fung YC.
Biodynamics: Circulation.
New York:
Springer‐Verlag,
1984.
|
7. |
Kamiya A,
Ando J,
Shibata M and
Masuda H.
Roles of fluid shear stress in physiological regulation of vascular structure and function.
Biorheology
25:
271–278,
1988.
|
8. |
Kamiya A,
Bukhari R and
Togawa T.
Adaptive regulation of wall shear stress optimizing vascular tree function.
Bull Math Biol
46:
127–137,
1984.
|
9. |
Koller A and
Kaley G.
Flow‐dependent regulation in the microcirculation: Role of shear stress and endothelial prostaglandins. In:
Resistance Arteries. Structure and Function,
eds Mulvany MJ,
Aalkjaer C,
Heagerty AM,
Nyborg NCB and
Strandgaard S.
Amsterdam, New York, Oxford:
Elsevier Science Publishers B.V., Excerpta Medica,
1991,
pp. 208–212.
|
10. |
Papadaki M and
Eskin SG.
Effects of fluid shear stress on gene regulation of vascular cells.
Biotechnol Prog
13:
209–221,
1997.
|
11. |
Pries AR,
Reglin B and
Secomb TW.
Structural response of micro‐circulatory networks to changes in demand: Information transfer by shear stress.
Am J Physiol
284:
H2204–H2212,
2003.
|
12. |
Resnick N,
Yahav H,
Khachigian LM,
Collins T,
Anderson KR,
Dewey FC and
Gimbrone MA, Jr.
Endothelial gene regulation by laminar shear stress.
Adv Exp Med Biol
430:
155–164,
1997.
|
13. |
Rodbard S.
Vascular caliber.
Cardiology
60:
4–49,
1975.
|
14. |
Zarins CK,
Zatina MA,
Giddens DP,
Ku DN and
Glagov S.
Shear stress regulation of artery lumen diameter in experimental atherogenesis.
J Vasc Surg
5:
413–420.
1987.
|
15. |
Chien S,
Usami S,
Taylor HM,
Lundberg JL and
Gregersen MI.
Effects of hematocrit and plasma proteins on human blood rheology at low shear rates.
J Appl Physiol
21:
81–87,
1966.
|
16. |
Chien S.
Biophysical behaviour of red cells in suspensions. In:
The Red Blood Cell.
Vol. II,
ed. Surgenor DMN.
New York:
Academic Press,
1975,
pp. 1031–1133.
|
17. |
Goldsmith HL,
Cokelet GR and
Gaehtgens P.
Robin Fahraeus: Evolution of his concepts in cardiovascular physiology.
Am J Physiol
257:
H1005–H1015,
1989.
|
18. |
Goldsmith HL and
Mason SG.
Axial migration of particles in Poiseuille flow.
Nature
190:
1095–1096,
1961.
|
19. |
Fahraeus R.
Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäβsystem, Zur Frage der Bedeutung der intravasculären Erythrocytenaggregation.
Klin Wochenschr
7:
100–106,
1928.
|
20. |
Fahraeus R.
The suspension stability of the blood.
Physiol Rev
9:
241–274,
1929.
|
21. |
Pries AR,
Kanzow G and
Gaehtgens P.
Microphotometric determination of hematocrit in small vessels.
Am J Physiol
245:
H167–H177,
1983.
|
22. |
Long DS,
Smith ML,
Pries AR,
Ley K and
Damiano ER.
Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.
Proc Natl Acad Sci USA
101:
10060–10065,
2004.
|
23. |
Albrecht KH,
Gaehtgens P,
Pries AR and
Heuser M.
The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 um).
Microvasc Res
18:
33–47,
1979.
|
24. |
Pries AR,
Secomb TW,
Gaehtgens P and
Gross JF.
Blood flow in microvascular networks — experiments and simulation.
Circ Res
67:
826–834,
1990.
|
25. |
Pries AR,
Secomb TW and
Gaehtgens P.
Structural adaptation and stability of microvascular networks: Theory and simulations.
Am J Physiol
215:
H349–H360,
1998.
|
26. |
Martini P,
Pierach A and
Schreyer E.
Die Strömung des Blutes in engen Gefäβen. Eine Abweichung vom Poiseuille'schen Gesetz.
Dtsch Arch Klin Med
169:
212–222,
1930.
|
27. |
Fahraeus R and
Lindqvist T.
The viscosity of the blood in narrow capillary tubes.
Am J Physiol
96:
562–568,
1931.
|
28. |
Azelvandre F and
Oiknine C.
Effet Fahraeus et effet Fahraeus‐Lindqvist: Résultats expérimentaux et modèles théoriques.
Biorheology
13:
325–335,
1976.
|
29. |
Barbee JH.
The effect of temperature on the relative viscosity of human blood.
Biorheology
10:
1–5,
1973.
|
30. |
Barbee JH and
Cokelet GR.
Prediction of blood flow in lubes with diameters as small as 29 u.
Microvasc Res
3:
17–21,
1971.
|
31. |
Barbee JH and
Cokelet GR.
The Fahraeus effect.
Microvasc Res
3:
6–16,
1971.
|
32. |
Bayliss LE.
The axial drift of the red cells when blood flows in a narrow tube.
J Physiol
149:
593–613,
1959.
|
33. |
Braasch D.
The missing negative effect of red cell aggregation upon blood flow in small capillaries at low shear forces.
Biorheology
1:
227–230,
1984.
|
34. |
Braasch D and
Jenett W.
Erythrozytenflexibilität, Hämokonzentration und Reibungswiderstand in Glaskapillaren mit Durchmessern zwischen 6 bis 50 um.
Pflügers Arch
302:
245–254,
1968.
|
35. |
Gerbstädt H,
Vogtmann C,
Rüth P and
Schöntube E.
Die Scheinviskosität von Blut in Glaskapillaren kleinster Durchmesser.
Naturwissenschaften
53:
526,
1966.
|
36. |
Gupta BB and
Seshadri V.
Flow of red blood cell suspensions through narrow tubes,
Biorheology
14:
133–143,
1977.
|
37. |
Halikas G and
Sheppard CW.
The viscosity of water and of blood in small diameter capillary tubes. Anomalous viscosity of blood.
Biorheology
6:
137–142,
1969.
|
38. |
Haynes RH.
Physical basis of the dependence of blood viscosity on tube radius.
Am J Physiol
198:
1193–1200,
1960.
|
39. |
Haynes RH and
Burton F.
Role of the non‐Newtonian behavior of blood in hemodynamics.
Am J Physiol
197:
943–950,
1959.
|
40. |
McKay CB and
Meiselman HJ.
Osmolality‐ and hematocrit‐mediated flow behavior of RBC suspensions in 33um ID tubes.
Biorheology
26:
863–874,
1989.
|
41. |
McKay CB and
Meiselman HJ.
Osmolality‐mediated Fahraeus and Fahraeus‐Lindqvist effects for human RBC suspensions.
Am J Physiol
254:
H238–H249,
1988.
|
42. |
Reinke W,
Gaehtgens P and
Johnson PC.
Blood viscosity in small tubes: Effect of shear rate, aggregation, and sedimentation.
Am J Physiol
253:
H540–H547,
1987.
|
43. |
Reinke W,
Johnson PC and
Gaehtgens P.
Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 um diameter.
Circ Res
59:
124–132,
1986.
|
44. |
Stadler A and
Linderkamp O.
Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
Microvasc Res
37:
267–279,
1989.
|
45. |
Stadler AA,
Zilow EP and
Linderkamp O.
Blood viscosity and optimal hematocrit in narrow tubes.
Biorheology
27:
779–788,
1990.
|
46. |
Voss R.
Entwicklung einer kapillarviskosimetrischen Methode zur Untersuchung der Schubspannungsabhängigkeit des Fahraeus‐LIndqvist‐Effektes. Dissertation, University of Cologue,
1983.
|
47. |
Pries AR,
Neuhaus D and
Gaehtgens P.
Blood viscosity in tube flow: Dependence on diameter and hematocrit.
Am J Physiol
263:
H1770–H1778,
1992.
|
48. |
Secomb TW.
Mechanics of blood flow in the microcirculation.
Symp Soc Exp Biol
49:
305–321,
1995.
|
49. |
Secomb TW.
Flow‐dependent rheological properties of blood in capillaries.
Microvasc Res
34:
46–58,
1987.
|
50. |
Secomb TW,
Skalak R,
Özkaya N and
Gross JF.
Flow of axisymmetric red blood cells in narrow capillaries.
J Fluid Mech
163:
405–423,
1986.
|
51. |
Chien S,
Usami S and
Skalak R.
Blood flow in small lubes. In:
Handbook of Physiology. The Cardiovascular System IV, Part I, Microcirculation, Section 2,
eds Renkin EM,
Michel CC and
Geiger SR.
Bethesda, MD:
American Physiological Society,
1984,
pp. 217–249.
|
52. |
Chien S and
Jan K.
Ultrastructural basis of the mechanism of rouleaux formation.
Microvasc Res
5:
155–166,
1973.
|
53. |
Baumler H,
Donath E,
Krabi A,
Knippel W,
Budde A and
Kiesewetter H.
Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran.
Biorheology
33:
333–351,
1996.
|
54. |
Neu B and
Meiselman HJ.
Depletion‐mediated red blood cell aggregation in polymer solutions.
Biophys J
83:
2482–2490,
2002.
|
55. |
Alonso C,
Pries AR,
Kiesslich O,
Lerche D and
Gaehtgens P.
Transient rheological behavior of blood in low‐shear tube flow: Velocity profiles and effective viscosity.
Am J Physiol
268:
H25–H32,
1995.
|
56. |
Cabel M,
Meiselman HJ,
Popel AS and
Johnson PC.
Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle.
Am J Physiol
272:
H1020–H1032,
1997.
|
57. |
Bishop JJ,
Nance PR,
Popel AS,
Intaglietta M and
Johnson PC.
Effect of erythrocyte aggregation on velocity profiles in venules.
Am J Physiol Heart Circ Physiol
280:
H222–H236,
2001.
|
58. |
Pries AR,
Secomb TW and
Gaehtgens P.
The endothelial surface layer.
Pflugers Arch
440:
653–666,
2000.
|
59. |
Pries AR and
Kuebler WM.
Normal endothelium.
Handb Exp Pharmacol:
1‐40,
2006.
|
60. |
Reitsma S,
Slaaf DW,
Vink H,
van Zandvoort MA and
oude Egbrink MG.
The endothelial glycocalyx: Composition, functions, and visualization.
Pflugers Arch
454:
345–359,
2007.
|
61. |
Vink H and
Duling BR.
Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries.
Circ Res
79:
581–589,
1996.
|
62. |
Weinbaum S,
Tarbell JM and
Damiano ER.
The structure and function of the endothelial glycocalyx layer.
Annu Rev Biomed Eng
9:
121–167,
2007.
|
63. |
Pries AR,
Secomb TW,
Sperandio M and
Gaehtgens P.
Blood flow resistance during hemodilution: Effect of plasma composition.
Cardiovasc Res
37:
225–235,
1998.
|
64. |
Klitzman B and
Duling BR.
Microvascular hematocrit and red cell flow in resting and contracting striated muscle.
Am J Physiol
237:
H481–H490,
1979.
|
65. |
Desjardins C and
Duling BR.
Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit.
Am J Physiol
258:
H647–H654,
1990.
|
66. |
Henry CB and
Duling BR.
Permeation of the luminal capillary glycocalyx is determined by hyaluronan.
Am J Physiol
277:
H508–H514,
1999.
|
67. |
Henry CBS,
Durán WN and
DeFouw DO.
Permselectivity of angiogenic microvessels following alteration of the endothelial fiber matrix by oligosaccharides.
Microvasc Res
53:
150–155,
1997.
|
68. |
Osterloh K,
Ewert U and
Pries AR.
Interaction of albumin with the endothelial cell surface.
Am J Physiol
283:
H398–H405,
2002.
|
69. |
Smith ML,
Long DS,
Damiano ER and
Ley K.
Near‐wall micro‐PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo.
Biophys J
85:
637–645,
2003.
|
70. |
Rehm M,
Haller M,
Orth V,
Kreimeier U,
Jacob M,
Dressel H,
Mayer S,
Brechtelsbauer H and
Finsterer U.
Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy.
Anesthesiology
95:
849–856,
2001.
|
71. |
Nieuwdorp M,
Mooij HL,
Kroon J,
Atasever B,
Spaan JA,
Ince C,
Holleman F,
Diamant M,
Heine RJ,
Hoekstra JB,
Kastelein JJ,
Stroes ES and
Vink H.
Endothelial glycocalyx damage coincides with microalbuminuria in type I diabetes.
Diabetes
55:
1127–1132,
2006.
|
72. |
Nieuwdorp M,
van Haeften TW,
Gouverneur MC,
Mooij HL,
van Lieshout MH,
Levi M,
Meijers JC,
Holleman F,
Hoekstra JB,
Vink H,
Kastelein JJ and
Stroes ES.
Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo.
Diabetes
55:
480–486,
2006.
|
73. |
Pries AR and
Secomb TW.
Microvascular blood viscosity in vivo and the endothelial surface layer.
Am J Physiol Heart Circ Physiol
289:
H2657–H2664,
2005.
|
74. |
Damiano ER.
The effect of the endothelial‐cell glycocalyx on the motion of red blood cells through capillaries.
Microvasc Res
55:
77–91,
1998.
|
75. |
Secomb TW,
Hsu R and
Pries AR.
Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.
Biorheology
38:
143–150,
2001.
|
76. |
Secomb TW,
Hsu R and
Pries AR.
A model for red blood cell motion in glycocalyx‐lined capillaries.
Am J Physiol
274:
H1016–H1022,
1998.
|
77. |
Feng J and
Weinbaum S.
Lubrication theory in highly compressible porous media: The mechanics of skiing, from red cells to humans.
J Fluid Mech
422:
281–317,
2000.
|
78. |
Secomb TW,
Hsu R and
Pries AR.
Motion of red blood cells in a capillary with an endothelial surface layer: Effect of flow velocity.
Am J Physiol
281:
H629–H636.
2001.
|
79. |
Secomb TW,
Hsu R and
Pries AR.
Blood flow and red blood cell deformation in nonuniform capillaries: Effects of the endothelial surface layer.
Microcirculation
9:
189–196,
2002.
|
80. |
Zhao Y,
Chien S and
Weinbaum S.
Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx.
Biophys J
80:
1124–1140,
2001.
|
81. |
Weinbaum S,
Zhang X,
Han Y,
Vink H and
Cowin SC.
Mechanotransduction and flow across the endothelial glycocalyx.
Proc Natl Acad Sci USA
100:
7988–7995,
2003.
|
82. |
Bennett HS.
Morphological aspects of extracellular polysaccharides.
J Histochem Cytochem:
14–23,
1963.
|
83. |
Baldwin AL and
Winlove CP.
Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium.
J Histochem Cytochem
32:
259–266,
1984.
|
84. |
Haldenby KA,
Chappell DC,
Winlove CP,
Parker KH and
Firth JA.
Focal and regional variations in the composition of the glycocalyx of large vessel endothelium.
J Vasc Res
31:
2–9,
1994.
|
85. |
Luft JH.
Fine structure of capillary and endocapillary layer as revealed by ruthenium red.
Fed Proc
25:
1773–1783,
1966.
|
86. |
Squire JM,
Chew M,
Nneji G,
Neal C,
Barry J and
Michel C.
Quasi‐periodic substructure in the microvessel endothelial glycocalyx: A possible explanation for molecular filtering?
J Struct Biol
136:
239–255,
2001.
|
87. |
Henry CBS and
Duling BR.
Hyaluronidase treatment suggests a role for cell surface hyaluronan in determining vascular permeability.
FASEB J
12
(4, Pt. 1): Nr. 139,
1998, Ref Type: Abstract.
|
88. |
Platts SH and
Duling BR.
Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx.
Circ Res
94:
77–82,
2004.
|
89. |
Suzuki K,
Yamamoto T,
Usui T,
Suzuki K,
Heldin P and
Yamashita H.
Expression of hyaluronan synthase in intraocular proliferative diseases: Regulation of expression in human vascular endothelial cells by transforming growth factor‐beta.
Jpn J Ophthalmol
47:
557–564,
2003.
|
90. |
Saegusa S,
Isaji S and
Kawarada Y.
Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats.
World J Surg
26:
694–699,
2002.
|
91. |
McCourt PA,
Smedsrod BH,
Melkko J and
Johansson S.
Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors.
Hepatology
30:
1276–1286,
1999.
|
92. |
Nandi A,
Estess P and
Siegelman MH.
Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44.
J Biol Chem
275:
14939–14948,
2000.
|
93. |
Rehm M.
Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M and Becker BF. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed.
Anesthesiology
100:
1211–1223,
2004.
|
94. |
van den Berg BM,
Vink H and
Spaan JA.
The endothelial glycocalyx protects against myocardial edema.
Circ Res
92:
592–594,
2003.
|
95. |
Lipowsky HH,
Usami S and
Chien S.
In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat.
Microvasc Res
19:
297–319,
1980.
|
96. |
Lipowsky HH and
Zweifach BW.
Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for Theological studies.
Microvasc Res
14:
345–361,
1977.
|
97. |
Pries AR,
Secomb TW,
Gessner T,
Sperandio MB,
Gross JF and
Gaehtgens P.
Resistance to blood flow in microvessels in vivo.
Circ Res
75:
904–915,
1994.
|
98. |
Lipowsky HH,
Kovalcheck S and
Zweifach BW.
The distribution of blood rheological parameters in the mirovasculature of the cat mesentery.
Circ Res
43:
738–749,
1978.
|
99. |
Pries AR,
Secomb TW and
Gaehtgens P.
Biophysical aspects of blood flow in the microvasculature.
Cardiovasc Res
32:
654–667,
1996.
|
100. |
Kiani MF,
Cokelet GR and
Sarelius IH.
Effect of diameter variability along a microvessel segment on pressure drop.
Microvasc Res
45:
219–232,
1993.
|
101. |
Pries AR,
Schönfeld D,
Gaehtgens P,
Kiani MF and
Cokelet GR.
Diameter variability and microvascular flow resistance.
Am J Physiol
272:
H2716–H2725,
1997.
|
102. |
Pries AR,
Secomb TW,
Jacobs H,
Sperandio M,
Osterloh K and
Gaehtgens P.
Microvascular blood flow resistance: Role of endothelial surface layer.
Am J Physiol
273:
H2272–H2279,
1997.
|
103. |
Pries AR,
Secomb TW and
Gaehtgens P.
Structure and hemodynamics of microvascular networks: Heterogeneity and correlations.
Am J Physiol
269:
H1713–H1722,
1995.
|
104. |
Duling BR.
Is red cell flow heterogeneity a critical variable in the regulation and limitation of oxygen transport to tissue?
Adv Exp Med Biol
361:
237–247,
1994.
|
105. |
Duling BR and
Damon DH.
An examination of the measurement of flow heterogeneity in striated muscle.
Circ Res
60:
1–13,
1987.
|
106. |
Gonzalez F and
Bassingthwaighte JB.
Heterogeneities in regional volumes of distribution and flows in rabbit heart.
Am J Physiol
258:
H1012–H1024,
1990.
|
107. |
Hertz MM and
Paulson OB.
Heterogeneity of cerebral capillary flow in man and its consequences for estimation of blood‐brain barrier permeability.
J Clin Invest
65:
1145–1151,
1980.
|
108. |
Klitzman B and
Johnson PC.
Capillary network geometry and red cell distribution in hamster cremaster muscle.
Am J Physiol
242:
H211–H219,
1982.
|
109. |
Kuhnle GEH,
Pries AR and
Goetz AE.
Distribution of microvascular pressure in arteriolar vessel trees of the ventilated rabbit lung.
Am J Physiol 265:
H1510–H1515,
1993.
|
110. |
Sarelius IH.
An analysis of microcirculatory flow heterogeneity using measurements of transit time.
Microvasc Res
40:
88–98,
1990.
|
111. |
Schmid‐Schönbein GW,
Zweifach BW and
Kovalcheck S.
The application of stereological principles to morphometry of the microcirculation in different tissues.
Microvasc Res
14:
303–317,
1977.
|
112. |
Sweeney TE and
Sarelius IH.
Spatial heterogeneity in striated muscle arteriolar tone, cell flow, and capillarity.
Am J Physiol
259:
H124–H136,
1990.
|
113. |
Vogel J,
Waschke KF and
Kuschinsky W.
Flow‐independent heterogeneity of brain capillary plasma perfusion after blood exchange with a Newtonian fluid.
Am J Physiol
272:
H1833–H1837,
1997.
|
114. |
Zheng L,
Golub AS and
Pittman RN.
Determination of PO2 and its heterogeneity in single capillaries.
Am J Physiol
271:
H365–H372,
1996.
|
115. |
Zuurbier CJ,
van Iterson M and
Ince C.
Functional heterogeneity of oxygen supply‐consumption ratio in the heart.
Cardiovasc Res
44:
488–497,
1999.
|
116. |
Pries AR,
Ley K and
Gaehtgens P.
Generalization of the Fahraeus principle for microvessel networks.
Am J Physiol
251:
H1324–H1332,
1986.
|
117. |
Chen II and
Battarbee HD.
The quantitative estimation of microvessels in microvascular networks.
J Theor Biol
127:
315–320,
1987.
|
118. |
Engelson ET,
Schmid‐Schönbein GW and
Zweifach BW.
The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats.
Int J Microcirc Clin Exp
4:
229–248,
1985.
|
119. |
Engelson ET,
Schmid‐Schonbein GW and
Zweifach BW.
The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and spontaneously hypertensive rats.
Microvasc Res
31:
356–374,
1986.
|
120. |
Hill MA,
Trippe KM,
Li QX and
Meininger GA.
Arteriolar arcades and pressure distribution in cremaster muscle microcirculation.
Microvasc Res
44:
117–124,
1992.
|
121. |
Price R,
Less JR,
Van Gieson EJ and
Skalak T.
Hemodynamic stresses and structural remodeling of anastomosing arteriolar networks: Design principles of collateral arterioles.
Microcirculation
9:
111–124,
2002.
|
122. |
Schmid‐Schönbein GW,
Skalak TC and
Firestone G.
The microvasculature in skeletal muscle. V. Arcades in normotensive and hypertensive rats.
Microvasc Res
34:
385–393.
1987.
|
123. |
Schmid‐Schönbein GW and
Zweifach BW.
Biophysical framework of the microcirculation as an organized functional unit in skeletal muscle: Topology, pressure, tone, resistance. In:
Resistance Arteries, Structure and Function,
eds Mulvany MJ.
Aalkjaer C,
Heagerty AM,
Nyborg NCB and
Strandgaard S.
Amsterdam. New York. Oxford:
Elsevier Science Publishers B.V., Excerpta Medica,
1991,
pp. 65–68.
|
124. |
Torres FI,
Cyrino FZ,
Popel AS,
Bouskela E and
Johnson PC.
Morphometric analysis of the anastomosing arteriolar network in cat sartorius muscle.
Int J Microcirc Clin Exp
14:
3–13,
1994.
|
125. |
Baish JW and
Jain RK.
Fractals and cancer.
Cancer Res
60:
3683–3688,
2000.
|
126. |
Griffith TM.
Temporal chaos in the microcirculation.
Cardiovasc
31:
342–358,
1996.
|
127. |
Bassingthwaighte JB,
King RB and
Roger SA.
Fractal nature of regional myocardial blood flow heterogeneity.
Circ Res
65:
578–590,
1989.
|
128. |
Deussen A.
Blood flow heterogeneity in the heart.
Basic Res Cardiol
93:
430–438,
1998.
|
129. |
King RB,
Bassingthwaighte JB,
Hales JRS and
Rowell LB.
Stability of heterogeneity of myocardial blood flow in normal awake baboons.
Circ Res
57:
285–295.
1985.
|
130. |
Decking UK,
Skwirba S,
Zimmermann MF,
Preckel B,
Thamer V,
Deussen A and
Schrader J.
Spatial heterogeneity of energy turnover in the heart.
Pflugers Arch
441:
663–673,
2001.
|
131. |
Schwanke U,
Deussen A,
Heusch G and
Schipke JD.
Heterogeneity of local myocardial flow and oxidative metabolism.
Am J Physiol
279:
H1029–H1035,
2000.
|
132. |
Engelson ET,
Skalak TC and
Schmid‐Schönbein GW.
The microvasculature in skeletal muscle. I. Arteriolar network in rat spinotrapezius muscle.
Microvasc Res
30:
29–44,
1985.
|
133. |
Fenton BM and
Zweifach BW.
Microcirculatory model relating geometrical variation to changes in pressure and flow rate.
Ann Biomed Eng
9:
303–321,
1981.
|
134. |
Fick A.
Über den Druck in den Blutkapillaren.
Pflügers Arch
42:
482–488,
1888.
|
135. |
Ley K,
Pries AR and
Gaehtgens P.
Topological structure of rat mesenteric microvessel networks.
Microvasc Res
32:
315–332,
1986.
|
136. |
Wiedeman MP.
Blood flow through terminal arterial vessels after denervation of the bat wing.
Circ Res
22:
83–89,
1968.
|
137. |
Krogh A.
The supply of oxygen to the tissues and the regulation of the capillary circulation.
J Physiol (Land)
52:
457–474,
1919.
|
138. |
McGuire BJ and
Secomb TW.
Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates.
Am J Physiol Heart Circ Physiol
285:
H2382–H2391,
2003.
|
139. |
McGuire BJ and
Secomb TW.
Theoretical predictions of maximal oxygen consumption in hypoxia; Effects of transport limitations.
Respir Physiol Neurobiol
143:
87–97,
2004.
|
140. |
Baish JW and
Jain RK.
Cancer, angiogenesis and fractals.
Nat Med
4:
984,
1988.
|
141. |
Gaehtgens P,
Ley K and
Pries AR.
Topological approach to the analysis of microvessel structure and hematocrit distribution. In:
Microvascular Networks: Experimental and Theoretical Studies,
eds Popel AS and
Johnson PC.
Basel:
Karger,
1986,
pp. 52–60.
|
142. |
Kassab OS and
Fung YC.
Topology and dimensions of pig coronary capillary network.
Am J Physiol
267:
H319–H325,
1994.
|
143. |
Cayley A.
On the analytical forms called trees. Part II.
Phil Mag
18:
374–378,
1859.
|
144. |
Mauroy B,
Filoche M,
Weibel ER and
Sapoval B.
An optimal bronchial tree may be dangerous.
Nature
427:
633–636.
2004.
|
145. |
Weibel ER.
Morphometry of the human lung: The state of the art after two decades.
Bull Eur Physiopathol Respir
15:
999–1013,
1979.
|
146. |
Berry M and
Bradley PM.
The application of network analysis to the study of branching patterns of large dendritic fields.
Brain Res
109:
111–132,
1976.
|
147. |
Berry M,
Sadler M and
Flinn R.
Vertex analysis of neural tree structures containing trichotomous nodes.
J Neurosci Methods
18:
167–177.
1986.
|
148. |
Jiang ZL,
Kassab GS and
Fung YC.
Diameter‐defined Strahler system and connectivity matrix of the pulmonary arterial tree.
J Appl Physiol
76:
882–892,
1994.
|
149. |
Toroczkai Z.
Topological classification of binary trees using the Horton‐Strahler index.
Phys Rev E Stat Nonlin Soft Matter Phys
65:
016130,
2002.
|
150. |
Horsfield K.
Some mathematical properties of branching trees with application to the respiratory system.
Bull Math Biol
38:
305–315,
1976.
|
151. |
Horsfield K and
Thurlbeck A.
Computer simulation of the geometry of the human bronchial tree.
Bull Math Biol
46:
389–398,
1984.
|
152. |
Horsfield K and
Woldenberg MJ.
Branching ratio and growth of tree‐like structures.
Respir Physiol
63:
97–107,
1986.
|
153. |
Horsfield K.
Diameters, generations, and orders of branches in the bronchial tree.
J Appl Physiol
68;
457–461,
1990.
|
154. |
Schroder S,
Brab M,
Schmid‐Schonbein GW,
Reim M and
Schmid‐Schonbein H.
Microvascular network topology of the human retinal vessels.
Fortschr Ophthalmol
87:
52–58,
1990.
|
155. |
Jarvis RS and
Werritty A.
Some comments on testing random topology stream network models.
Water Resour Res
11:
309–318,
1975.
|
156. |
Wahl EM,
Daniels FH,
Leonard EF,
Levinthal C and
Cortell S.
A graph theory model of the glomerular capillary network and its development.
Microvasc Res
27:
96–109,
1984.
|
157. |
Wahl EM,
Quintas LV,
Lurie LL and
Gargano ML.
A graph theory analysis of renal glomerular microvascular networks.
Microvasc Res
67:
223–230,
2004.
|
158. |
le Noble FA,
Stassen FR,
Hacking WJ and
Struijker Boudier HA.
Angiogenesis and hypertension.
J Hypertens
16:
1563–1572,
1998.
|
159. |
Wirth N.
Algorithms and Data Structures.
Englewood Cliffs, NJ;
Prentice‐Hall.
1986.
|
160. |
Werner C and
Smart JS.
Some new methods of topologic classification of channel networks.
Geog Analysis
5:
271–295,
1973.
|
161. |
van Pelt J and
Verwer RWH.
Growth models (including terminal and segmental branching) for topological binary trees.
Bull Math Biol
47:
323–336,
1985.
|
162. |
van Pelt J,
Woldenberg MJ and
Verwer RWH.
Two generalized topological models of stream network growth.
J Geol
97:
281–299,
1989.
|
163. |
Clark ER and
Clark EL.
Microscopic observations on the growth of blood capillaries in the living mammal.
Am J Anat
64:
251–301,
1939.
|
164. |
Gerhardt H,
Golding M,
Fruttiger M,
Ruhrberg C,
Lundkvist A,
Abramsson A,
Jeltsch M,
Mitchell C,
Alitalo K,
Shima D and
Betsholtz C.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.
J Cell Biol
161;
1163–1177,
2003.
|
165. |
Lawson ND and
Weinstein BM.
Arteries and veins: Making a difference with zebrafish.
Nat Rev Genet
3:
674–682,
2002.
|
166. |
Torres‐Vazquez J,
Kamei M and
Weinstein BM.
Molecular distinction between arteries and veins.
Cell Tissue Res
314:
43–59,
2003.
|
167. |
van Pelt J and
Verwer RWH.
Topological properties of binary trees grown with order‐dependent branching probabilities.
Bull Math Biol
48:
197–211,
1986.
|
168. |
le Noble F,
Fleury V,
Pries A,
Corvol R
Eichmann A and
Reneman RS.
Control of arterial branching morphogenesis in embryo‐genesis: Go with the flow.
Cardiovasc Res
65:
619–628,
2005.
|
169. |
le Noble F,
Moyon D,
Pardanaud L,
Yuan L,
Djonov V,
Matthijsen R,
Breant C,
Fleury V and
Eichmann A.
Flow regulates arterial‐venous differentiation in the chick embryo yolk sac.
Development
131:
361–375,
2004.
|
170. |
Burri PH,
Hlushchuk R and
Djonov V.
Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance.
Dev Dyn
231:
474–488,
2004.
|
171. |
Carmeliet P.
Angiogenesis in life, disease and medicine.
Nature
438:
932–936,
2005.
|
172. |
Djonov V,
Baum O and
Burri PH.
Vascular remodeling by intussusceptive angiogenesis.
Cell Tissue Res
314:
107–117,
2003.
|
173. |
Kassab GS,
Lin DH and
Fung YC.
Consequences of pruning in morphometry of coronary vasculature.
Ann Biomed Eng
22:
398–403,
1994.
|
174. |
Kurz H,
Burri PH and
Djonov VG.
Angiogenesis and vascular remodeling by intussusception; From form to function.
News Physiol Sci
18:
65–70,
2003.
|
175. |
Pries AR,
Reglin B and
Secomb TW.
Structural adaptation of microvascular networks: Functional roles of adaptive responses.
Am J Physiol
281:
H1015–H1025,
2001.
|
176. |
Secomb TW,
Hsu R and
Dewhirst MW.
Synergistic effects of hyperoxic gas breathing and reduced oxygen consumption on tumor oxygenation: A theoretical model.
Int J Radiat Oncol Biol Phys
59:
572–578,
2004.
|
177. |
Secomb TW,
Hsu R,
Park EY and
Dewhirst MW.
Green's function methods for analysis of oxygen delivery to tissue by microvascular networks.
Ann Biomed Eng
32:
1519–1529,
2004.
|
178. |
Pries AR,
Reglin B and
Secomb TW.
Remodeling of blood vessels: Responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
Hypertension
46:
726–731,
2005.
|
179. |
Pries AR,
Secomb TW and
Gaehtgens P.
Design principles of vascular beds.
Circ Res
77:
1017–1023,
1995.
|
180. |
Zakrzewicz A,
Secomb TW and
Pries AR.
Angioadaptation: Keeping the vascular system in shape.
News Physiol Sci
17:
197–201,
2002.
|
181. |
Duling BR,
Sarelius IH and
Jackson WF.
A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow.
Int J Microcirc Clin Exp
1:
409–424,
1982.
|
182. |
Honig CR,
Feldstein ML and
Frierson JL.
Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle.
Am J Physiol
233:
H122–H129,
1977.
|
183. |
Iversen PO and
Nicolaysen G.
High correlation of fractals for regional blood flows among resting and exercising skeletal muscles.
Am J Physiol
269:
H7–H13,
1995.
|
184. |
Popel AS.
Effect of heterogeneity of capillary flow on the capillary hematocrit.
Proc Am Soc Mech Eng
32;
83–84,
1979.
|
185. |
Vicaut E.
Statistical estimation of parameters in microcirculation.
Microvasc Res
32:
244–247,
1986.
|
186. |
Kiani MP,
Pries AR,
Hsu LL,
Sarelius IH and
Cokelet GR.
Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms.
Am J Physiol
266:
H1822–H1828,
1994.
|
187. |
Popel AS.
A model of pressure and flow distribution in branching networks.
J Appl Mechan
47:
247–253,
1980.
|
188. |
Pries AR,
Secomb TW and
Gaehtgens P.
Relationship between structural and hemodynamic heterogeneity in microvascular networks.
Am J Physiol
270:
H545–H553,
1996.
|
189. |
Griffith TM and
Edwards DH.
Basal EDRF activity helps to keep the geometrical configuration of arterial bifurcations close to the Murray optimum.
J Theor Biol
146:
545–573,
1990.
|
190. |
Murray CD.
The physiological principle of minimum work. I. The vascular system and the cost of blood volume.
Proc Natl Acad Sci USA
12:
207–214,
1926.
|
191. |
Sherman TF.
On connecting large vessels to small. The meaning of Murray's law.
J Gen Physiol
78:
431–453,
1981.
|
192. |
Zhou Y,
Kassab GS and
Molloi S.
On the design of the coronary arterial tree: A generalization of Murray's law.
Phys Med Biol
44:
2929–2945,
1999.
|
193. |
Pries AR,
Reglin B and
Secomb TW.
Structural adaptation of vascular networks: Role of the pressure response.
Hypertension
38:
1476–1479,
2001.
|
194. |
Pries AR,
Secomb TW and
Gaehtgens P.
Structural autoregulation of terminal vascular beds: Vascular adaptation and development of hypertension.
Hypertension
33:
153–161,
1999.
|
195. |
Bohlen HG and
Niggl BA.
Adult microvascular disturbances as a result of juvenile onset diabetes in Db/Db mice.
Blood Vessels
16:
269–276,
1979.
|
196. |
Gore RW.
Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure.
Circ Res
34:
581–591,
1974.
|
197. |
Harper SL and
Bohlen HG.
Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats.
Hypertension
6:
408–419,
1984.
|
198. |
Hashimoto H and
Prewitt RL.
Arteriolar dimensions from unanesthetized rabbits.
Jpn Circ J
50:
449–454,
1986.
|
199. |
Lang DJ and
Johns BL.
Rat venule mechanical characteristics during venous pressure elevation.
Am J Physiol
252:
H704–H713,
1987.
|
200. |
Lee RMKW,
Garfield RE,
Forrest JB and
Daniel EE.
Morphometric study of structural changes in the mesenteric blood vessels of spontaneously hypertensive rats.
Blood Vessels
20:
57–71,
1983.
|
201. |
Miller BG,
Connors BA,
Bohlen HG and
Evan AP.
Cell and wall morphology of intestinal arterioles from 4‐ to 6‐ and 17‐ to 19‐week‐old Wistar‐Kyoto and spontaneously hypertensive rats.
Hypertension
9:
59–68,
1987.
|
202. |
Rakusan K and
Wicker P.
Morphometry of the small arteries and arterioles in the rat heart: Effects of chronic hypertension and exercise.
Cardiovasc Res
24:
278–284,
1990.
|
203. |
Rhodin JAG.
The ultrastructure of mammalian arterioles and precapillary sphincters.
J Ultrastruct Res
18:
181–223,
1967.
|
204. |
Rhodin JAG.
Ultrastructure of mammalian venous capillaries, venules, and small collecting veins.
J Ultrastruct Res
25:
452–500,
1968.
|
205. |
Tomanek RJ,
Palmer PJ,
Peiffer GL,
Schreiber KL,
Eastham CL and
Marcus ML.
Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy.
Circ Res
58;
38–46,
1986.
|
206. |
Audet DM and
Olbricht WL.
The motion of model cells at capillary bifurcation,
Microvasc Res
33:
377–396,
1987.
|
207. |
Bugliarello G and
Hsiao GCC.
Phase separation in suspensions flowing through bifurcations: A simplified hemodynamic model.
Science
143:
469–4711,
1964.
|
208. |
Carr RT and
Wickham LL.
Plasma skimming in serial microvascular bifurcations.
Microvasc Res
40:
179–190,
1990.
|
209. |
Carr RT and
Wickham LL.
Influence of vessel diameter on red cell distribution at microvascular bifurcations.
Microvasc Res
41:
184–196,
1991.
|
210. |
Carr RT and
Xiao J.
Plasma skimming in vascular trees: Numerical estimates of symmetry recovery lengths.
Microcirculation
2:
345–353,
1995.
|
211. |
Chien S,
Tvetenstrand CD,
Epstein MAP and
Schmid‐Schönbein GW.
Model studies on distributions of blood cells at microvascular bifurcations.
Am J Physiol
248:
H568–H576,
1985.
|
212. |
Dellimore JW,
Dunlop MJ and
Canham PB.
Ratio of cells and plasma in blood flowing past branches in small plastic channels.
Am J Physiol
244:
H635–H643,
1983.
|
213. |
Fenton BM,
Carr RT and
Cokelet GR.
Nonuniform red cell distribution in 20 to 100 um bifurcations.
Microvasc Res
29:
103–126,
1985.
|
214. |
Jodal M and
Lundgren O.
Plasma skimming in the intestinal tract.
Acta Physiol Scand
80:
50–60,
1970.
|
215. |
Johnson PC.
Red cell separation in the mesenteric capillary network.
Am J Physiol
221:
99–104,
1971.
|
216. |
Levine R and
Goldsmith HL.
Particle behavior in flow through small bifurcations.
Microvasc Res
14:
319–344,
1977.
|
217. |
Mchedlishvili G and
Varazashvili M.
Flow conditions of red cells and plasma in microvascular bifurcations.
Biorheology
19:
613–620,
1982.
|
218. |
Ofjord ES and
Clausen G.
Intrarenat flow of microspheres and red blood cells: Skimming in slit and tube models.
Am J Physiol
245:
H429–H436,
1983.
|
219. |
Ofjord ES,
Clausen G and
Aukland K.
Skimming of micropheres in vitro: Implications for measurement of intrarenal blood flow.
Am J Physiol
241:
H342–H347,
1981.
|
220. |
Perkkiö J,
Hokkanen J and
Keskinen R.
Theoretical model of phase separation of erythrocytes, platelets, and plasma at branches,
Med Phys
13:
882–886,
1986.
|
221. |
Perkkiö J and
Keskinen R.
Hematocrit reduction in bifurcations due to plasma skimming.
Bull Math Biol
45:
41–50,
1983.
|
222. |
Perkkiö J,
Wurzinger LJ and
Schmid‐Schönbein H.
Plasma and platelet skimming at T‐junction.
Thromb Res
45:
517–526,
1987.
|
223. |
Pries AR,
Ley K,
Claassen M and
Gaehtgens P.
Red cell distribution at microvascular bifurcations.
Microvasc Res
38:
81–101,
1989.
|
224. |
Rong FW and
Carr RT.
Dye studies on flow through branching tubes.
Microvasc Res
39:
186–202,
1990.
|
225. |
Yen RT and
Fung YC.
Effect of velocity distribution on red cell distribution in capillary blood vessels.
Am J Physiol
235:
H251–H257,
1978.
|
226. |
Pries AR,
Albrecht KH and
Gaehtgens P.
Model studies on phase separation at a capillary orifice.
Biorheology
18:
355–367,
1981.
|
227. |
Duling BR and
Desjardins C.
Capillary hematocrit‐what does it mean?
News Physiol Sci
2:
66–69,
1987.
|
228. |
Pries AR,
Fritzsche A,
Ley K and
Gaehtgens P.
Redistribution of red blood cell flow in microcirculatory networks by hemodilution.
Circ Res
70:
1113–1121,
1992.
|
229. |
Pries AR and
Gaehtgens P.
Dispersion of blood cell flow in microvascular networks. In:
Microvascular Mechanics. Hemodynamics of Systemic and Pulmonary Microcirculation.
eds Lee JS and
Skalak TC.
New York:
Springer.
1989,
pp. 39–49.
|
230. |
Secomb TW,
Hsu R,
Dewhirst MW,
Klitzman B and
Gross JF.
Analysis of oxygen transport to tumor tissue by microvascular networks.
Int J Radiat Oncol Biol Phys
25:
481–489,
1993.
|
231. |
McGuire BJ and
Secomb TW,
A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.
J Appl Physiol
91:
2255–2265,
2001.
|
232. |
Popel AS.
Theory of oxygen transport to tissue.
Crit Rev Biomed Eng
17:
257–321,
1989.
|
233. |
Roy TK and
Popel AS.
Theoretical predictions of end‐capillary PO2 in muscles of athletic and nonathletic animals at VO2max.
Am J Physiol
271 :
H721–H737,
1996.
|
234. |
Deussen A,
Flesche CW,
Lauer T,
Sonntag M and
Schrader J.
Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation.
Pflugers Arch
432:
451–461,
1996.
|
235. |
Deussen A,
Lauer T,
Loncar R and
Kropp J.
Heterogeneity of metabolic parameters in the left ventricular myocardium and its relation to local blood flow.
Basic Res Cardiol
96:
564–574,
2001.
|
236. |
Gewirtz H.
Tawakol A and Bacharach SL. Heterogeneity of myocardial blood flow and metabolism: Review of physiologic principles and implications for radionuclide imaging of the heart.
J Nucl Cardiol
9:
534–541,
2002.
|
237. |
Hoffman JI.
Heterogeneity of myocardial blood flow.
Basic Res Cardiol
90:
103–111,
1995.
|
238. |
Muehling OM,
Jerosch‐Herold M,
Panse P,
Zenovich A,
Wilson BV,
Wilson RF and
Wilke N.
Regional heterogeneity of myocardial perfusion in healthy human myocardium: Assessment with magnetic resonance perfusion imaging. J.
Cardiovasc Magn Reson
6:
499–507.
2004.
|
239. |
Bassingthwaighte JB.
Physiological heterogeneity: Fractals link determinism and randomness in structures and functions.
News Physiol Sci
3:
5–10,
1988.
|
240. |
Balaban RS and
Aral A.
Function, metabolic, and flow heterogeneity of the heart: The view is getting better.
Circ Res
88:
265–267.
2001.
|
241. |
Bassingthwaighte JB,
Beard DA and
Li Z.
The mechanical and metabolic basis of myocardial blood flow heterogeneity.
Basic Res Cardiol
96:
582–594.
2001.
|
242. |
Decking UK.
Spatial heterogeneity in the heart: Recent insights and open questions.
News Physiol Sci
17:
246–250.
2002.
|
243. |
Delashaw JB and
Duling BR.
Heterogeneity in conducted arteriolar vasomotor response is agonist dependent.
Am J Physiol
260:
H1276–H1282,
1991.
|
244. |
Lo A,
Fuglevand AJ and
Secomb TW.
Oxygen delivery to skeletal muscle fibers: Effects of microvascular unit structure and control mechanisms.
Am J Physiol Heart Circ Physiol
285:
H955–H963,
2003.
|
245. |
Hu X and
Weinbaum S.
A new view of Starling's hypothesis at the microstructural level.
Microvasc Res
58:
281–304,
1999.
|
246. |
Levick JR.
Fluid exchange across endothelium.
Int J Microcirc Clin Exp
17:
241–247,
1997.
|
247. |
Michel CC.
Starling: The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years.
Exp Physiol
82:
1–30,
1997.
|
248. |
Renkin EM.
Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered.
Am J Physiol
250:
H706–H710,
1986.
|
249. |
Jung U and
Ley K.
Regulation of E‐selectin, P‐selectin, and intercellular adhesion molecule 1 expression in mouse cremaster muscle vasculature.
Microcirculation
4:
311–319,
1997.
|
250. |
Ley K.
Molecular mechanisms of leukocyte recruitment in the inflammatory process.
Cardiovasc Res
32:
733–742,
1996.
|
251. |
Ley K.
Adhesion molecules and the recruitment of leukocytes in postcapillary venules. In:
Microvascular Research: Biology and Pathology,
ed. Shepro D.
Burlington; MA:
Elsevier
1:
321–325.
2005.
|
252. |
Secomb TW,
Konerding MA,
West CA,
Su M,
Young AJ and
Mentzer SJ.
Microangiectasias: Structural regulators of lymphocyte transmigration.
Proc Natl Acad Sci USA
100:
7231–7234,
2003.
|
253. |
Segal SS.
Integration of blood flow control to skeletal muscle: Key role of feed arteries.
Acta Physiol Scand
168:
511–518,
2000.
|
254. |
Segal SS and
Jacobs TL.
Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle.
J Physiol
536:
937–946,
2001.
|
255. |
Bongrazio M,
Baumann C,
Zakrzewicz A,
Pries AR and
Gaehtgens P.
Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress.
Cardiovasc Res
47;
384–393,
2000.
|
256. |
Fillinger MP,
Cronenwett JL,
Besso S,
Walsh DB and
Zwolak RM.
Vein adaptation to the hemodynamic environment of infrainguinal grafts.
J Vasc Surg
19:
970–978,
1994.
|
257. |
Monos E,
Lorant M and
Feher E.
Mechanisms of vascular adaptation to long‐term orthostatic gravitational loading.
J Gravit Physiol
4:
39–40,
1997.
|
258. |
Sun D,
Huang A,
Koller A and
Kaley G.
Adaptation of flow‐induced dilation of arterioles to daily exercise.
Microvasc Res
56;
54–61,
1998.
|
259. |
Unthank JL,
Nixon JC and
Lash JM.
Early adaptations in collateral and microvascular resistances after ligation of the rat femoral artery.
J Appl Physiol
79;
73–82,
1995.
|
260. |
Jacobsen JC,
Gustafsson P and
Holstein‐Rathlou NH.
A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension.
Physiol Meas
24;
891–912,
2003.
|
261. |
Skalak TC,
Price RJ and
Zeller PJ.
Where do new arterioles come from? Mechanical forces and microvessel adaptation.
Microcirculation
5;
91–94,
1998.
|
262. |
Ellsworth ML.
The red blood cell as an oxygen sensor: What is the evidence?
Acta Physiol Scand
168:
551–559,
2000.
|
263. |
Jagger JE,
Bateman RM,
Ellsworth ML and
Ellis CG.
Role of erythrocyte in regulating local O2delivery mediated by hemoglobin oxygenation.
Am J Physiol
280:
H2833–H2839,
2001.
|
264. |
Stamler JS,
Jia L,
Eu JP,
McMahon TJ,
Demchenko IT,
Bonaventura J,
Gernert K and
Piantadosi CA.
Blood flow regulation by S‐nitrosohemoglobin in the physiological oxygen gradient.
Science
276:
2034–2037,
1997.
|
265. |
Barbee JH and
Cokelet GR.
In‐vitro capillary flow data. Personal communication.
1990.
|
266. |
Bayliss LE.
Rheology of blood and lymph. In:
Deformation and Flow in Biological Systems,
ed. Prey‐Wissling A.
North‐Holland:
Amsterdam.
1952,
pp. 355–418.
|
267. |
Neuhaus D,
Fedde MR and
Gaehtgens P.
Changes in haemorheology in the racing greyhound as related to oxygen delivery.
Eur J Appl Physiol
65:
278–285.
1992.
|