References |
1. |
Mayer B,
John M and
Böhme E.
Purification of a calcium/calmodulin‐dependent nitric oxide synthase from porcine cerebellum. Cofactor role of tetrahydrobiopterin.
FEBS Lett
277:
215–219,
1990.
|
2. |
Bredt DS and
Snyder SH.
Isolation of nitric oxide synthetase a calmodulin‐requiring enzyme.
Proc Natl Acad Sci USA
87:
682–685,
1990.
|
3. |
Schmidt HHHW,
Pollock JS,
Nakane M,
Gorsky LD,
Förstermann U and
Murad F.
Purification of a soluble isoform of guanylyl cyclase‐activating‐factor synthase.
Proc Natl Acad Sci USA
88:
365–369,
1991.
|
4. |
Yun HY,
Dawson VL and
Dawson TM.
Nitric oxide in health and disease of the nervous system.
Mol Psychiatry
2:
300–310,
1997.
|
5. |
Förstermann U,
Boissel JP and
Kleinen H.
Expressional control of the “constitutive” isoforms of nitric oxide synthase (NOS I and NOS III).
FASEB J
12:
773–790,
1998.
|
6. |
Xie Q‐W,
Cho HJ,
Calaycay J,
Mumford RA,
Swiderek KM,
Lee TD,
Ding A,
Troso T and
Nathan C.
Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.
Science
256:
225–228,
1992.
|
7. |
Nishida CR and
deMontellano PR.
Electron transfer and catalytic activity of nitric oxide synthases ‐ Chimeric constructs of the neuronal, inducible, and endothelial isoforms.
J Biol Chem
273:
5566–5571,
1998.
|
8. |
Busse R and
Mülsch A.
Calcium‐dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin.
FEBS Lett
265:
133–136,
1990.
|
9. |
Dimmeler S,
Fleming I,
Fisslthaler B,
Hermann C,
Busse R and
Zeiher AM.
Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation.
Nature
399:
601–605,
1999.
|
10. |
Fulton D,
Gratton J‐P,
Mccabe TJ,
Fontana J,
Fujio Y,
Walsh K,
Franke TF,
Papapetropoulos A and
Sessa WC.
Regulation of endothelium‐derived nitric oxide production by the protein kinase Akt.
Nature
399:
597–601,
1999.
|
11. |
Garcin ED,
Bruns CM,
Lloyd SJ,
Hosfield DJ,
Tiso M,
Gachhui R,
Stuehr DJ,
Tainer JA and
Getzoff ED.
Structural basis for isozyme‐specific regulation of electron transfer in nitric‐oxide synthase.
J Biol Chem
279:
37918–37927,
2004.
|
12. |
Siddhanta U,
Presta A,
Fan BC,
Wolan D,
Rousseau DL and
Stuehr DJ.
Domain swapping in inducible nitric‐oxide synthase ‐ Electron transfer occurs between flavin and heme groups located on adjacent sub‐units in the dimmer.
J Biol Chem
273:
18950–18958,
1998.
|
13. |
Nishida CR and
de Montellano PR.
Control of electron transfer in nitric‐oxide synthases. Swapping of autoinhibitory elements among nitric‐oxide synthase isoforms.
J Biol Chem
276:
20116–20124,
2001.
|
14. |
Li H,
Raman CS,
Glaser CB,
Blasko E,
Young TA,
Parkinson JF,
Whitlow M and
Poulos TL.
Crystal structures of zine‐free‐bound heme domain of human inducible nitric oxide synthase. Implications for dimer stability comparison with endothelial nitric oxide synthase.
J Biol Chem
274:
21276–21284,
1999.
|
15. |
Raman CS,
Li H,
Martásek P,
Král V,
Masters BS and
Poulos TL.
Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center.
Cell
95:
939–950,
1998.
|
16. |
Crane BR,
Rosenfeld RJ,
Arvai AS,
Ghosh DK,
Ghosh S,
Tainer JA,
Stuehr DJ and
Getzoff ED.
N‐terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.
EMBO J
18:
6271–6281,
1999.
|
17. |
Abu‐Soud HM and
Stuehr DJ.
Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer.
Proc Natl Acad Sci USA
90:
10769–10772,
1993.
|
18. |
Knudsen GM,
Nishida CR,
Mooney SD and
de Montellano PRO.
Nitric‐oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin‐dependent activity.
J Biol Chem
278:
31814–31824,
2003.
|
19. |
Stuehr DJ,
Santolini J,
Wang ZQ,
Wei CC and
Adak S.
Update on mechanism and catalytic regulation in the NO synthases.
J Biol Chem
279:
36167–36170,
2004.
|
20. |
Lane P and
Gross SS.
The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity.
Acta Physiol Scand
168:
53–63,
2000.
|
21. |
Salerno JC,
Harris DE,
Irizarry K,
Patel B,
Morales AJ,
Smith SM,
Martasek P,
Roman LJ,
Masters BS,
Jones CL,
Weissman BA,
Lane P,
Liu Q and
Gross SS.
An autoinhibitory control element defines calcium‐regulated isoforms of nitric oxide synthase.
J Biol Chem
272:
29769–29777,
1997.
|
22. |
Roman LJ,
Miller RT,
de La Garza MA,
Kim JJ and
Siler Master BS.
The C terminus of mouse macrophage inducible nitric‐oxide synthase attenuates electron flow through the flavin domain.
J Biol Chem
275:
21914–21919,
2000.
|
23. |
Roman LJ,
Martasek P,
Miller RT,
Harris DE,
de La Garza MA,
Shea TM,
Kim JJ and
Masters BS.
The C termini of constitutive nitric‐oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin.
J Biol Chem
275:
29225–29232,
2000.
|
24. |
Lane P and
Gross SS.
Disabling a C‐terminal autoinhibitory control element in endotelial NO synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli.
J Biol Chem,
2002.
|
25. |
Werner ER,
Gorren ACF,
Heller R,
Werner‐Felmayer G and
Mayer B.
Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects.
Proc Soc Exp Biol Med
228:
1291–1302,
2003.
|
26. |
Stuehr D,
Pou S and
Rosen GM.
Oxygen reduction by nitric‐oxide synthases.
J Biol Chem
276:
14533–14536,
2001.
|
27. |
Wei CC,
Crane BR and
Stuehr DJ.
Tetrahydrobiopterin radical enzymology.
Chem Rev
103:
1365–2383,
2003.
|
28. |
Bec N,
Gorren AC,
Voelker C,
Mayer B and
Lange R.
Reaction of neuronal nitric‐oxide synthase with oxygen at low temperature. Evidence for reductive activation of the oxy‐ferrous complex by tetrahydrobiopterin.
J Biol Chem
273:
13502–13508,
1998.
|
29. |
Hurshman AR,
Krebs C,
Edmondson DE,
Huynh BH and
Marietta MA.
Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen.
Biochemistry
8:
15689–15696,
1999.
|
30. |
Bec N,
Gorren AFC,
Mayer B,
Schmidt PP,
Andersson KK and
Lange R.
The role of tetrahydrobiopterin in the activation of oxygen by nitric‐oxide synthase.
J Inorg Biochem
81:
207–211,
2000.
|
31. |
Kuzkaya N,
Weissmann N,
Harrison DG and
Dikalov S.
Interactions of peroxynitrite. tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric‐oxide synthase.
J Biol Chem
278:
22546–22554,
2003.
|
32. |
Wei CC,
Wang ZQ,
Durra D,
Hemann C,
Hille R,
Garcin ED,
Getzoff ED and
Stuehr DJ.
The three nitric‐oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme‐dioxy reduction, and arginine hydroxylation.
J Biol Chem
280:
8929–8935,
2005.
|
33. |
Wei CC,
Wang ZQ,
Wang Q,
Meade AL,
Hemann C,
Hille R and
Stuehr DJ.
Rapid kinetic studies link tetrahydrobiopterin radical formation to heme‐dioxy reduction and arginine hydroxylation in inducible nitric‐oxide synthase.
J Biol Chem
276:
315–319,
2001.
|
34. |
Zou MH,
Shi C and
Cohen RA.
Oxidation of the zinc‐thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite.
J Clin Invest
109:
817–826,
2002.
|
35. |
Heinzel B,
John M,
Klatt P and
Böhme E.
B. Mayer. Ca2+/calmodulin‐dependent formation of hydrogen peroxide by brain nitric oxide synthase.
Biochem J
281
(Pt 3):
627–630,
1992.
|
36. |
Miller RT,
Martasek P,
Roman LJ,
Nishimura JS and
Masters BS.
Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production.
Biochemistry
36:
15277–15284,
1997.
|
37. |
Xia Y,
Roman LJ,
Masters BS and
Zweier JL.
Inducible nitric‐oxide synthase generates superoxide from the reductase domain.
J Biol Chem
273:
22635–22639,
1998.
|
38. |
Creager MA,
Girerd XL,
Gallagher SJ,
Coleman S,
Dzau VJ and
Cooke JP.
L‐Arginine improves endothelium‐dependent vasodilation in hypercholesterolemic humans.
J Clin Invest
90:
1168–1172,
1992.
|
39. |
Dubios‐Randé J‐L,
Zelinsky R,
Roudot F,
Chabrier PE,
Castaigne A,
Geschwind H and
Adnot S.
Effects of infusion of L‐arginine into the left anterior descending coronary artery on acetylcholine‐induced vasoconstriction of human atheromatous coronary arteries.
Am J Cardiol
70:
1269–1275,
1992.
|
40. |
Zhang C,
Hein TW,
Wang W,
Miller MW,
Fossum TW,
McDonald MM,
Humphrey JD and
Kuo L.
Upregulation of vascular arginase in hypertension decreases nitric oxide‐mediated dilation of coronary arterioles.
Hypertension
44:
935–943,
2004.
|
41. |
Leiper J and
Vallance P.
Biological significance of endogenous methylarginines that inhibit nitric oxide synthases.
Cardiovasc Res
43:
542–548,
1999.
|
42. |
Vallance P and
Leiper J.
Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway.
Arterioscler Thromb Vasc Biol
24:
1023–1030,
2004.
|
43. |
Cardounel AJ,
Xia Y and
Zweier JL.
Endogenous methylarginines modulate superoxide as well as nitric oxide generation from neuronal nitric oxide synthase: differences in the effects of monomethyl‐ and dimethylarginines in the presence and absence of tetrahydrobiopterin.
J Biol Chem
280:
7540–7549,
2005.
|
44. |
Shang T,
Kotamraju S,
Kalivendi SV,
Hillard CJ and
Kalyanaraman B.
1‐Methyl‐4‐phenylpyridinium‐induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron‐dependent depletion of tetrahydrobiopterin and neuronal nitric‐oxide synthase‐derived superoxide.
J Biol Chem
279:
19099–19112,
2004.
|
45. |
Miller RT.
Dinitrobenzene‐mediated production of peroxynitrite by neuronal nitric oxide synthase.
Chem Res Toxicol
15:
927–934,
2002.
|
46. |
Schulz JB,
Matthews RT,
Klockgether T,
Dichgans J and
Beal MF.
The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases.
Mol Cell Biochem
174:
193–197,
1997.
|
47. |
Dawson VL and
Dawson TM.
Nitric oxide in neurodegeneration.
Prog Brain Res
118:
215–229,
1998.
|
48. |
Zanetti M,
d'Uscio LV,
Kovesdi I,
Katusic ZS and
O'Brien T.
In vivo gene transfer of inducible nitric oxide synthase to carotid arteries from hypercholesterolemic rabbits.
Stroke
34:
1293–1298,
2003.
|
49. |
Huang A,
Vita JA,
Venema RC and
Keaney JF, Jr.
Ascorbic acid enhances endothelial nitric‐oxide synthase activity by increasing intracellular tetrahydrobiopterin.
J Biol Chem
275:
17399–17406,
2000.
|
50. |
Smith AR,
Visioli F and
Hagen TM.
Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid.
FASEB J
16:
1102–1104,
2002.
|
51. |
Cosentino F and
Katusic ZS.
Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries.
Circulation
91:
139–144,
1995.
|
52. |
Shinozaki K,
Kashiwagi A,
Nishio Y,
Okamura T,
Yoshida Y,
Masada M,
Toda N and
Kikkawa R.
Abnormal biopterin metabolism is a major cause of impaired endothelium‐dependent relaxation through nitric oxide/O2− imbalance in insulin‐ resistant rat aorta.
Diabetes
48:
2437–2445,
1999.
|
53. |
Shinozaki K,
Nishio Y,
Okamura T,
Yoshida Y,
Maegawa H,
Kojima H,
Masada M,
Toda N,
Kikkawa R and
Kashiwagi A.
Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin‐resistant rats.
Circ Res
87:
566–573,
2000.
|
54. |
Bagi Z and
Koller A.
Lack of nitric oxide mediation of flow‐dependent arteriolar dilation in type 1 diabetes is restored by sepiapterin.
J Vasc Res
40:
47–57,
2003.
|
55. |
Ihlemann N,
Rask‐Madsen C,
Perner A,
Dominguez H,
Hermann T,
Kober L and
Torp‐Pedersen C.
Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects.
Am J Physiol Heart Circ Physiol
285:
H875,
2003.
|
56. |
Stroes E,
Kastelein J,
Cosentino F,
Erkelens W,
Wever R,
Koomans H,
Lüscher T and
Rabelink T.
Tetrahydrobiopterin restores endothelial function in hypercholesterolemia.
J Clin Invest
99:
41–46,
1998.
|
57. |
d'Uscio LV,
Milstien S,
Richardson D,
Smith L and
Katusic ZS.
Long‐term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.
Circ Res
92:
88–95,
2003.
|
58. |
Gokce N,
Keaney JF, Jr.,
Frei B,
Holbrook M,
Olesiak M,
Zachariah BJ,
Leeuwenburgh C,
Heinecke JW and
Vita JA.
Long‐term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary atery disease.
Circulation
99:
3234–3240,
1999.
|
59. |
Lassegue B and
Griendling KK.
Reactive oxygen species in hypertension: an update.
Am J Hypertens
17:
852–860,
2004.
|
60. |
Landmesser U,
Dikalov S,
Price SR,
McCann L,
Fukai T,
Holland SM,
Mitch WE and
Harrison DG.
Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.
J Clin Invest
111:
1201–1209,
2003.
|
61. |
Laursen JB,
Somers M,
Kurz S,
McCann L,
Warnholtz A,
Freeman BA,
Tarpey M,
Fukai T and
Harrison DG.
Endothelial regulation of vaso‐motion in apoE‐deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin.
Circulation
103:
1282–1288,
2001.
|
62. |
Mayer B and
Werner ER.
In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide.
Naunyn Schmiedebergs Arch Pharmacol
351:
453–463,
1995.
|
63. |
Tiefenbacher CP,
Chilian WM,
Mitchell M and
DeFily DV.
Restoration of endothelium‐dependent vasodilation after reperfusion injury by tetrahydrobiopterin.
Circulation
94:
1423–1429,
1996.
|
64. |
Alp NJ,
Mussa S,
Khoo J,
Cai S,
Guzik T,
Jefferson A,
Goh N.
Rockett KA and Channon KM. Tetrahydrobiopterin‐dependent preservation of nitric oxide‐mediated endothelial function in diabetes by targeted transgenic GTP‐cyclohydrolase I overexpression.
J Clin Invest
1
12:
725–735,
2003.
|
65. |
Alp NJ,
McAteer MA,
Khoo J,
Choudhury RP and
Channonr KM.
In creased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP‐cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE‐knockout mice.
Arterioscler Thromb Vasc Biol
24:
445–450,
2004.
|
66. |
Pritchard KA, Jr.,
Ackerman AW,
Gross ER,
Stepp DW,
Shi Y,
Fontana JT,
Baker JE and
Sessa WC.
Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric‐oxide synthase.
J Biol Chem
276:
17621–17624,
2001.
|
67. |
Ou J,
Ou Z,
Ackerman AW,
Oldham KT and
Pritchard KA, Jr.
Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity.
Free Radic Biol Med
34:
269–276,
2003.
|
68. |
Lin MI,
Fulton D,
Babbitt R,
Fleming I,
Busse R,
Pritchard KA, Jr and
Sessa WC.
Phosphorylation of threonine 497 in endothelial nitric‐oxide synthase coordinates the coupling of L‐arginine metabolism to efficient nitric oxide production.
J Biol Chem
278:
44719–44726,
2003.
|
69. |
Fleming I,
Mohamed A,
Galle J,
Turchanowa L,
Brandes RP,
Fisslthaler B and
Busse R.
Oxidized low density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCα.
Cardiovasc Res
65:
897–906,
2005.
|
70. |
Yuan Z,
Liu B,
Yuan L,
Zhang Y,
Dong X and
Lu J.
Evidence of nuclear localization of neuronal nitric oxide synthase in cultured astrocytes of rats.
Life Sci
74:
3199–3209,
2004.
|
71. |
Chang WJ,
Iannaccone ST,
Lau KS,
Masters BS,
Mccabe TJ,
McMillan K,
Padre RC,
Spencer MJ,
Tidball JG and
Stull JT,
Neuronal nitric oxide synthase and dystrophin‐deficient muscular dystrophy.
Proc Natl Acad Sci USA
93:
9142–9147,
1996.
|
72. |
Ponting CP,
Phillips C,
Davies KE and
Blake DJ.
PDZ domains: targeting signalling molecules to sub membranous sites.
BioEssays
19:
469–479,
1997.
|
73. |
Schepens J,
Cuppen E,
Wieringa B and
Hendriks W.
The neuronal nitric oxide synthase PDZ motif binds to ‐G(DE)XV* carboxyterminal sequences.
FEBS Lett
409:
53–56,
1997.
|
74. |
Sears CE,
Ashley EA and
Casadei B.
Nitric oxide control of cardiac function: Is neuronal nitric oxide synthase a key component?
Philos Trans R Soc Lond
359:
1021–1044,
2004.
|
75. |
Damy T,
Ratajczak P,
Robidel E,
Bendall JK,
Oliviero P,
Boczkowski J,
Ebrahimian T,
Marotte F,
Samuel JL and
Heymes C.
Up‐regulation of cardiac nitric oxide synthase 1‐derived nitric oxide after myocardial infarction in senescent rats.
FASEB J
17:
1934–1936,
2003.
|
76. |
Webb JL,
Harvey MW,
Holden DW and
Evans TJ.
Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes.
Infect Immun
69:
6391–6400.
2001.
|
77. |
Stolz DB,
Zamora R,
Vodovotz Y,
Loughran PA,
Billiar TR,
Kim YM,
Simmons RL and
Watkins SC.
Peroxisomal localization of inducible nitric oxide synthase in hepatocytes.
Hepatology
36:
81–93,
2002.
|
78. |
Sessa WC,
García‐Cardena G,
Liu J,
Keh A,
Pollock JS,
Bradley J,
Thiru S,
Braverman IM and
Desai KM.
The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide.
J Biol Chem
270:
17641–17644,
1995.
|
79. |
O'Brien AJ,
Young HM,
Povey JM and
Furness JB.
Nitric oxide synthase is localized predominantly in the Golgi apparatus and cytoplasmic vesicles of vascular endothelial cells.
Histochemistry
103:
221–225,
1995.
|
80. |
Liu J,
Hughes TE and
Sessa WC.
The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study.
J Cell Biol
137:
1525–1535,
1997.
|
81. |
Hecker M,
Mülsch A,
Bassenge E,
Förstermann U and
Busse R.
Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications.
Biochem J
299:
247–252,
1994.
|
82. |
Shaul PW,
Smart EJ,
Robinson LJ,
German Z,
Yuhanna IS,
Ying YS,
Anderson RGW and
Michel T.
Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae.
J Biol Chem
271:
6518–6522,
1996.
|
83. |
Feron O,
Belhassen L,
Kobzik L,
Smith TW,
Kelly RA and
Michel T.
Endothelial nitric oxide synthase targeting to caveolae: specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells.
J Biol Chem
271:
22810–22814,
1996.
|
84. |
Liu J,
García‐Cardena G and
Sessa WC.
Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization.
Biochemistry
35:
13277–13281,
1996.
|
85. |
García‐Cardena G,
Oh P,
Liu J,
Schnitzer JE and
Sessa WC.
Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling.
Proc Natl Acad Sci USA
93:
6448–6453,
1996.
|
86. |
Segal SS,
Brett SE and
Sessa WC.
Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters.
Am J Physiol Heart Circ Physiol
277:
H1167–H1177,
1999.
|
87. |
Feng Y,
Venema VJ,
Venema RC,
Tsai N and
Caldwell RB.
VEGF induces nuclear translocation of Flk‐1/KDR, endothleial nitric oxide synthase, and caveolin‐1 in vascular endothleial cells.
Biochem Biophys Res Commun
256:
192–197,
1999.
|
88. |
Giordano A,
Tonello C,
Bulbarelli A,
Cozzi V,
Cinti S,
Carruba MO and
Nisoli E.
Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus.
FEBS Lett
514:
135–140,
2002.
|
89. |
McNaughton L,
Puttagunta L,
Martinez‐Cuesta MA,
Kneteman N,
Mayers I,
Moqbel R,
Hamid Q and
Radomski MW.
Distribution of nitric oxide synthase in normal and cirrhotic human liver.
Proc Natl Acad Sci USA
99:
17161–17166,
2002.
|
90. |
Fulton D,
Fontana J,
Sowa G,
Gratton JP,
Lin M,
Li KX,
Michell B,
Kemp BE,
Rodman D and
Sessa WC.
Localization of endothelial nitric‐oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme.
J Biol Chem
277:
4277–4284,
2002.
|
91. |
Robinson LJ,
Busconi L and
Michel T.
Agonist‐modulated palmitoylation of endothelial nitric oxide synthase.
J Biol Chem
270:
995–998,
1995.
|
92. |
Liu J,
García‐Cardena G and
Sessa WC.
Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines‐15 and/or ‐26 argues against depalmitoylation‐induced translocation of the enzyme.
Biochemistry
34:
12333–12340,
1995.
|
93. |
Prabhakar P,
Thatte HS,
Goetz RM,
Cho MR,
Golan DE and
Michel T.
Receptor‐regulated translocation of endothelial nitric oxide synthase.
J Biol Chem
273:
27383–27388,
1998.
|
94. |
Reiner M,
Bloch W and
Addicks K.
Functional interaction of caveolin‐1 and eNOS in myocardial capillary endothelium revealed by immunoelectron microscopy.
J Histochem Cytochem
49:
1605–1610,
2001.
|
95. |
Chatterjee S,
Cao S,
Peterson TE,
Simari RD and
Shah V.
Inhibition of GTP‐dependent vesicle trafficking impairs internalization of plasmalemmal eNOS and cellular nitric oxide production.
J Cell Sci
116:
3645–3655,
2003.
|
96. |
Schilling K,
Opitz N,
Wiesenthal A,
Oess S,
Tikkanen R,
Muller‐Esterl W and
Icking A.
Translocation of endothelial nitric‐oxide synthase involves a ternary complex with caveolin‐1 and NOSTRIN.
Mol Biol Cell
17:
3870–3880.
2006.
|
97. |
Gerzanich V,
Ivanova S,
Zhou H and
Simard JM.
Mislocalization of eNOS and upregulation of cerebral vascular Ca2+ channel activity in angiotensin‐hypertension.
Hypertension
41:
1124–1130.
2003.
|
98. |
Bauersachs J,
Fleming I,
Scholz D,
Popp R and
Busse R.
Endothelium‐derived hyperpolarizing factor but not nitric oxide is reversibly inhibited by brefeldin A.
Hypertension
30:
1598–1605,
1997.
|
99. |
Blair A,
Shaul PW,
Yuhanna IS,
Conrad PA and
Smart EJ.
Oxidized low density lipoprotein displaces endothelial nitric‐oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation.
J Biol Chem
274:
32512–32519,
1999.
|
100. |
Feron O,
Dessy C,
Moniotte S,
Desager JP and
Balligand JL.
Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase.
J Clin invest
103:
897–905,
1999.
|
101. |
Lungu AO,
Jin ZG,
Yamawaki H,
Tanimoto T,
Wong C and
Berk BC.
Cyclosporin A inhibits flow‐mediated activation of endothelial nitric oxide synthase by altering cholesterol content in caveolae.
J Biol Chem
279:
48794–48800,
2004.
|
102. |
Govers R,
Der SP,
Van Donselaar E,
Slot JW and
Rabelink TJ.
Endothelial nitric oxide synthase and its negative regulator caveolin‐1 localize to distinct perinuclear organelles.
J Histochem Cytochem
50:
779–788,
2002.
|
103. |
Fulton D,
Babbitt R,
Zoellner S,
Fontana J,
Acevedo L,
McCabe TJ,
Iwakiri Y and
Sessa WC.
Targeting of endothelial nitric‐oxide synthase to the cytoplasmic face of the golgi complex or plasma membrane regulates Akt‐ versus calcium‐dependent mechanisms for nitric oxide release.
J Biol Chem
279:
30349–30357,
2004.
|
104. |
Gonzalez E,
Kou R,
Lin AJ,
Golan DE and
Michel T.
Subcellular targeting and agonist‐induced site‐specific phosphorylation of eNOS.
J Biol Chem,
2002.
|
105. |
Daniel EE,
Jury J and
Wang YF
nNOS in canine lower esophageal sphincter: colocalized with Cav‐1 and Ca2+‐handling proteins?
Am J Physiol Gastrointest Liver Physiol
281:
G1101–G1114,
2001.
|
106. |
Sato Y,
Sagami I and
Shimizu T.
Identification of caveolin‐1‐interacting sites in neuronal nitric oxide synthase: molecular mechanism for inhibition of NO formation.
J Biol Chem
279:
8827–8836,
2004.
|
107. |
Song KS,
Scherer PE,
Tang ZL,
Okamoto T,
Li SW,
Chafel M,
Chu C,
Kohtz DS and
Lisanti MP.
Expression of caveolin‐3 in skeletal, cardiac, and smooth muscle cells: caveolin‐3 is a component of the sarcolemma and co‐ fractionates with dystrophin and dystrophin‐associated glycoproteins.
J Biol Chem
271:
15160–15165,
1996.
|
108. |
Venema VJ,
Ju H,
Zou R and
Venema RC.
Interaction of neuronal nitric‐oxide synthase with caveolin‐3 in skeletal muscle: Identification of a novel caveolin scaffolding/inhibitory domain.
J Biol Chem
272:
28187–28190,
1997.
|
109. |
Sunada Y,
Ohi H,
Hase A,
Ohi H,
Hosono T,
Arata S,
Higuchi S,
Matsumura K and
Shimizu T.
Transgenic mice expressing mutant caveolin‐3 show severe myopathy associated with increased nNOS activity.
Hum Mol Genet
10:
173–178,
2001.
|
110. |
Brenman JE,
Chao DS,
Gee SH,
McGee AW,
Craven SE,
Santillano DR,
Wu ZQ,
Huang F,
Xia HH,
Peters MF,
Froehner SC and
Bredt DS.
Interaction of nitric oxide synthase with the postsynaptic density protein PSD‐95 and α1‐syntrophin mediated by PDZ domains.
Cell
84:
757–767,
1996.
|
111. |
Brenman JE,
Christopherson KS,
Craven SE,
McGee AW and
Bredt DS.
Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein.
J Neurosci
16:
7407–7415,
1996.
|
112. |
Brenman JE,
Chao DS,
Xia H,
Aldape K and
Bredt DS.
Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy.
Cell
82:
743–752,
1995.
|
113. |
Jaffrey SR,
Snowman AM,
Eliasson MJ,
Cohen NA and
Snyder SH.
CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95.
Neuron
20:
115–124,
1998.
|
114. |
Jaffrey SR,
Benfenati F,
Snowman AM,
Czernik AJ and
Snyder SH.
Neuronal nitric‐oxide synthase localization mediated by a ternary complex with synapsin and CAPON.
Proc Natl Acad Sci USA
99:
3199–3204,
2002.
|
115. |
Fang M,
Jaffrey SR,
Sawa A,
Ye K,
Luo X and
Snyder SH.
Dexras I : a G protein specifically coupled to neuronal nitric oxide synthase via CAPON.
Neuron
28:
183–193,
2000.
|
116. |
Jaffrey SR,
Fang M and
Snyder SH.
Nitrosopeptide mapping: a novel methodology reveals S‐nitrosylation of dexrasl on a single cysteine residue.
Chem Biol
9:
1329–1335,
2002.
|
117. |
Jaffrey SR and
Snyder SH.
PIN: an associated protein inhibitor of neuronal nitric oxide synthase.
Science
274:
114–111,
1996.
|
118. |
Rodriguez‐Crespo I,
Straub W,
Gavilanes F and
Ortiz de Montellano PR.
Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition.
Arch Biochem Biophys
359:
297–304,
1998.
|
119. |
Yu J,
Yu L,
Chen Z,
Zheng L,
Chen X,
Wang X,
Ren D and
Zhao S.
Protein inhibitor of neuronal nitric oxide synthase interacts with protein kinase A inhibitors.
Brain Res Mol Brain Res
99:
145–149,
2002.
|
120. |
Russwurm M,
Wittau N and
Koesling D.
Guanylyl cyclase/PSD‐95 interaction: targeting of the nitric oxide‐sensitive α2β1 guanylyl cyclase to synaptic membranes.
J Biol Chem
276:
44647–44652,
2001.
|
121. |
Feussner M,
Richter H,
Baum O and
Gossrau R.
Association of soluble guanylate cyclase with the sarcolemma of mammalian skeletal muscle fibers.
Acta Histochem
103:
265–277,
2001.
|
122. |
Song Y,
Zweier JL and
Xia Y.
Determination of the enhancing action of HSP90 on neuronal nitric oxide synthase by EPR spectroscopy.
Am J Physiol Cell Physiol
281:
C1819–C1824,
2001.
|
123. |
Song Y,
Zweier JL and
Xia Y.
Heat‐shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding.
Biochem J
355:
357–360,
2001.
|
124. |
Song Y,
Cardounel AJ,
Zweier JL and
Xia Y.
Inhibition of superoxide generation from neuronal nitric oxide synthase by heat shock protein 90: implications in NOS regulation.
Biochemistry
41:
10616–10622,
2002.
|
125. |
Khan SA,
Lee K,
Minhas KM,
Gonzalez DR,
Raju SV,
Tejani AD,
Li D,
Berkowitz DE and
Hare JM.
Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation‐contraction coupling.
Proc Natl Acad Sci USA
101:
15944–15948,
2004.
|
126. |
Dedio J,
Konig P,
Wohlfart P,
Schroeder C,
Kummer W and
Müller‐Esterl W.
NOSIP. a novel modulator of endothelial nitric oxide synthase activity.
FASEB J
15:
79–89,
2001.
|
127. |
Dreyer J,
Schleicher M,
Tappe A,
Schilling K,
Kuner T,
Kusumawidijaja G.
Muller‐Esterl W,
Oess S and
Kuner R.
Nitric‐oxide synthase (NOS)‐interacting protein interacts with neuronal NOS and regulates its distribution and activity.
J Neurosci
24:
10454–10465,
2004.
|
128. |
Dreyer J,
Hirlinger D,
Muller‐Esterl W,
Oess S and
Kuner R.
Spinal upregulation of the nitric oxide synthase‐interacting protein NOSIP in a rat model of inflammatory pain.
Neurosci Lett
350:
13–16,
2003.
|
129. |
Zhang W,
Kuncewicz T,
Yu ZY,
Zou L,
Xu X and
Kone BC.
Protein‐protein interactions involving inducible nitric oxide synthase.
Acta Physiol Scand
179:
137–142,
2003.
|
130. |
Crane BR,
Arvai AS,
Ghosh DK,
Wu CQ,
Getzoff ED,
Stuehr DJ and
Tainer JA.
Structure of nitric oxide synthase oxygenase dimer with pterin and substrate.
Science
279:
2121–2126,
1998.
|
131. |
García‐Cardena G,
Martasek P,
Masters BS,
Skidd PM,
Couet J,
Li S,
Lisanti MP and
Sessa WC.
Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo.
J Biol Chem
272:
25437–25440,
1997.
|
132. |
Felley‐Bosco E,
Bender FC,
Courjault‐Gautier F,
Bron C and
Quest AF.
Caveolin‐1 down‐regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells.
Proc Natl Acad Sci USA
97:
14334–14339,
2000.
|
133. |
Glynne PA,
Darling KE,
Picot J and
Evans TJ.
Epithelial inducible nitric‐oxide synthase is an apical EBP50‐binding protein that directs vectorial nitric oxide output.
J Biol Chem
277:
33132–33138,
2002.
|
134. |
Ratovitski EA,
Bao C,
Quick RA,
McMillan A,
Kozlovsky C and
Lowenstein CJ.
An inducible nitric oxide synthase (NOS)‐associated protein inhibits NOS dimerisation and activity.
J Biol Chem
274:
30250–30257,
1999.
|
135. |
Ratovitski EA,
Alam MR,
Quick RA,
McMillan A,
Bao C,
Kozlovsky C,
Hand TA,
Johnson RC,
Mains RE,
Eipper BA and
Lowenstein CJ.
Kalirin inhibition of inducible nitric‐oxide synthase.
J Biol Chem
274:
993–999,
1999.
|
136. |
Fleming I,
Fisslthaler B,
Dimmeler S,
Kemp BE and
Busse R.
Phosphorylation of Thr495 regulates Ca2+/calmodulin‐dependent endothelial nitric oxide synthase activity.
Circ Res
88:
e68–e75,
2001.
|
137. |
Aoyagi M,
Arvai AS,
Tainer JA and
Getzoff ED.
Structural basis for endothelial nitric oxide synthase binding to calmodulin.
EMBO J
22:
766–775,
2003.
|
138. |
Gratton J‐P,
Fontana J,
O'Connor DS,
García‐Cardena G,
Mccabe TJ and
Sessa WC
Reconstitution of an endothelial nitric oxide synthase. hsp90 and caveolin‐1 complex in vitro: evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin‐1.
J Biol Chem.
2000.
|
139. |
Greif DM,
Sacks DB and
Michel T.
Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis.
Proc Natl Acad Sci USA
101:
1165–1170,
2004.
|
140. |
Lisanti MP,
Scherer PE,
Tang Z and
Sargiacomo M.
Caveolae, caveolin and caveolin‐rich membrane domains: a signalling hypothesis.
Trends Cell Biol
4:
231–235,
1994.
|
141. |
Rothberg KG,
Heuser JE,
Donzell WC,
Ying Y‐S,
Glenney JR and
Anderson RGW.
Caveolin. a protein component of caveolae membrane coats.
Cell
68:
673–682,
1992.
|
142. |
Okamoto T,
Schlegel A,
Scherer PE and
Lisanti MP.
Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane.
J Biol Chem
273:
5419–5422,
1998.
|
143. |
Bucci M,
Gratton JP,
Rudic RD,
Acevedo L,
Roviezzo F,
Cirino G and
Sessa WC.
In vivo delivery of the caveolin‐1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation.
Nat Med
6:
1362–1367,
2000.
|
144. |
Drab M,
Verkade P,
Elger M,
Kasper M,
Lohn M,
Lauterbach B,
Menne J,
Lindschau C,
Mende F,
Luft FC,
Schedl A,
Haller H and
Kurzchalia TV.
Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin‐1 gene‐disrupted mice.
Science
293;
2449–2452,
2001.
|
145. |
Razani B,
Engelman JA,
Wang XB,
Schubert W,
Zhang XL,
Marks CB,
Macaluso F,
Russell RG,
Li M,
Pestell RG,
Di Vizio D,
Hou H, Jr.,
Kneitz B,
Lagaud G,
Christ GJ,
Edelmann W and
Lisanti MP.
Caveolin‐1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities.
J Biol Chem
276:
38121–38138,
2001.
|
146. |
Caplan AJ.
Hsp90's secrets unfold: new insights from structural and functional studies.
Trends Cell Biol
9:
262–268,
1999.
|
147. |
Billecke SS,
Bender AT,
Kanelakis KC,
Murphy PJ,
Lowe ER,
Kamada Y,
Pratt WB and
Osawa Y.
HSP90 is required for heme binding and activation of APO‐neuronal nitric‐oxide synthatse: Geldanamycin‐mediated oxidant generation is unrelated to any action of HSP90.
J Biol Chem,
2002.
|
148. |
García‐Cardena G,
Fan R,
Shah V,
Sorrentino R,
Cirino G,
Papapetropoulos A and
Sessa WC.
Dynamic activation of endothelial nitric oxide synthase by Hsp90.
Nature
292:
821–824,
1998.
|
149. |
Russell KS,
Haynes MP,
Caulin‐Glaser T,
Rosneck J,
Sessa WC and
Bender JR.
Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release.
J Biol Chem
275:
5026–5030,
2000.
|
150. |
Harris MB,
Ju H,
Venema VJ,
Blackstone M and
Venema RC.
Role of heat shock protein 90 in bradykinin‐stimulated endothelial nitric oxide release.
Gen Pharmacol
35:
165–170,
2000.
|
151. |
Fontana J,
Fulton D,
Chen Y,
Fairchild TA,
Mccabe TJ,
Fujita N,
Tsuruo T and
Sessa WC.
Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt‐dependent phosphorylation of endothelial nitric oxide synthase and NO release.
Circ Res
90:
866–873,
2002.
|
152. |
Jiang J,
Cyr D,
Babbitt RW,
Sessa WC and
Patterson C.
Chaperone‐dependent regulation of endothelial nitric oxide synthase intracellular trafficking by the co‐chaperone/ubiquitin ligase CHIP.
J Biol Chem
278:
49332–49341,
2003.
|
153. |
Lin LY,
Lin CY,
Su TC and
Liau CS.
Angiotensin II‐induced apoptosis in human endothelial cells is inhibited by adiponectin through restoration of the association between endothelial nitric oxide synthase and heat shock protein 90.
FEBS Lett
574:
106–110,
2004.
|
154. |
Lin LY,
Lin CY,
Ho FM and
Liau CS.
Up‐regulation of the association between heat shock protein 90 and endothelial nitric oxide synthase prevents high glucose‐induced apoptosis in human endothelial cells.
J Cell Biochem
94:
194–201,
2005.
|
155. |
Shah V,
Wiest R,
García‐Cardena G,
Cadelina G,
Groszmann RJ and
Sessa WC.
Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension.
Am J Physiol
277:
G463–G468,
1999.
|
156. |
Murata T,
Sato K,
Hori M,
Ozaki H and
Karaki H.
Decreased eNOS activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia‐induced pulmonary hypertension.
J Biol Chem.
2002.
|
157. |
Zabel U,
Hausler C,
Weeger M and
Schmidt HH.
Homodimerization of soluble guanylyl cyclase subunits. Dimerization analysis using a glutathione s‐transferase affinity tag.
J Biol Chem
174:
18149–18152,
1999.
|
158. |
Venema RC,
Venema VJ,
Ju H,
Harris MB,
Snead C,
Jilling T,
Dimitropoulou C,
Maragoudakis ME and
Catravas JD.
Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase.
Am J Physiol Heart Circ Physiol
285:
H669–H678,
2003.
|
159. |
Chatterjee S,
Cao S,
Peterson TE,
Simari RD and
Shah V.
Inhibition of GTP‐dependent vesicle trafficking impairs internalization of plasmalemmal eNOS and cellular nitric oxide production.
J Cell Sci
116:
3645–3655,
2003.
|
160. |
Cao S,
Yao J,
Mccabe TJ,
Yao Q,
Katusic ZS,
Sessa WC and
Shah V.
Direct interaction between endothelial nitric‐oxide synthase and dynamin‐2. Implications for nitric‐oxide synthase function.
J Biol Chem
276:
14249–14256,
2001.
|
161. |
Cao S,
Yao J and
Shah V.
The proline‐rich domain of dynamin‐2 is responsible for dynamin‐dependent in vitro potentiation of endothelial nitric‐oxide synthase activity via selective effects on reductase domain function.
J Biol Chem
278:
5894–5901,
2003.
|
162. |
Ju H,
Venema VJ,
Marrero MB and
Venema RC.
Inhibitiory interactions of the bradykinin B2 receptor with endothelial nitric oxide synthase.
J Biol Chem
273:
24025–24029,
1998.
|
163. |
Marrero MB,
Venema VJ,
Ju H,
He H,
Liang H,
Caldwell RB and
Venema RC.
Endothelial nitric oxide synthase interactions with G‐protein‐coupled receptors.
Biochem J
343:
335–340,
1999.
|
164. |
Golser R,
Gorren ACF,
Leber A,
Andrew P,
Habisch H‐J,
Werner ER,
Schmidt K,
Venema RC and
Mayer B.
Interaction of endothelial and neuronal nitric oxide synthases with the bradykinin B2 receptor. Binding of an inhibitory peptide to the oxygenase domain blocks uncoupled NADPH oxidation.
J Biol Chem
275:
5291–5296,
2000.
|
165. |
Su Y,
Edwards‐Bennett S,
Bubb MR and
Block ER.
Regulation of endothelial nitric oxide synthase by the actin cytoskeleton.
Am J Physiol Cell Physiol
284:
C1542,
2003.
|
166. |
Govers R,
Bevers L,
de Bree P and
Rabelink TJ.
Endothelial nitric oxide synthase activity is linked to its presence at cell‐cell contacts.
Biochem J
361:
193–201,
2002.
|
167. |
Sun J and
Liao JK.
Functional interaction of endothelial nitric oxide synthase with a voltage‐dependent anion channel.
Proc Natl Acad Sci USA
99:
13108–13113,
2002.
|
168. |
Zimmermann K,
Opitz N,
Dedio J,
Renne C,
Müller‐Esterl W and
Oess S.
NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase.
Proc Natl Acad Sci USA
99:
17167–17172,
2002.
|
169. |
Bredt DS,
Ferris CD and
Snyder SH.
Nitric oxide synthase regulatory sites.
J Biol Chem
267:
10976–10984,
1992.
|
170. |
Dinerman JL,
Steiner JP,
Dawson TM,
Dawson V and
Snyder SH.
Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity.
Neuropharmacology
33:
1245–1251,
1994.
|
171. |
Zoche M,
Beyermann M and
Koch KW.
Introduction of a phosphate at serine741 of the calmodulin‐binding domain of the neuronal nitric oxide synthase (NOS‐I) prevents binding of calmodulin.
Biol Chem
378:
851–857,
1997.
|
172. |
Hayashi Y,
Nishio M,
Naito Y,
Yokokura Y,
Hidaka H and
Watanabe Y
Regulation of neuronal nitric‐oxide synthase by calmodulin kinases.
J Biol Chem
274:
20597–20602,
1999.
|
173. |
Komeima K,
Hayashi Y,
Naito Y and
Watanabe Y.
Inhibition of neuronal nitric‐oxide synthase by calcium/calmodulin‐dependent protein kinase IIα through Ser847 phosphorylation in NG108‐15 neuronal cells.
J Biol Chem
275:
28139–28143,
2000.
|
174. |
Osuka K,
Watanabe Y,
Usuda N,
Nakazawa A,
Fukunaga K,
Miyamoto E,
Takayasu M,
Tokuda M and
Yoshida J.
Phosphorylation of neuronal nitric oxide synthase at SerS47 by CaM‐KII in the hippocampus of rat brain after transient forebrain ischemia.
J Cereb Blood Flow Metab
22:
1098–1106,
2002.
|
175. |
Watanabe Y,
Song T,
Sugimoto K,
Horii M,
Araki N,
Tokumitsu H,
Tezuka T,
Yamamoto T and
Tokuda M.
Post‐synaptic density‐95 promotes calcium/calmodulin‐dependent protein kinase II‐mediated Ser847 phosphorylation of neuronal nitric oxide synthase.
Biochem J
372:
465–471,
2003.
|
176. |
Yan XB,
Song B and
Zhang GY.
Postsynaptic density protein 95 mediates Ca2+/calmodulin‐dependent protein kinase Il‐activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus.
Neurosci Lett
355:
197–200,
2004.
|
177. |
Agostino PV,
Ferreyra GA,
Murad AD,
Watanabe Y and
Golombek DA.
Diurnal, circadian and photic regulation of calcium/calmodulin‐dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei.
Neurochem Int
44:
617–625,
2004.
|
178. |
Golombek DA,
Agostino PV,
Plano SA and
Ferreyra GA.
Signaling in the mammalian circadian clock: the NO/cGMP pathway.
Neurochem Int
45:
929–936,
2004.
|
179. |
Rameau GA,
Chiu LY and
Ziff EB.
Bidirectional regulation of neuronal nitric‐oxide synthase phosphorylation at Serine 847 by the N‐methyl‐D‐aspartate receptor.
J Biol Chem
279:
14307–14314,
2004.
|
180. |
Song T,
Hatano N,
Horii M,
Tokumitsu H,
Yamaguchi F,
Tokuda M and
Watanabe Y
Calcium/calmodulin‐dependent protein kinase I inhibits neuronal nitric‐oxide synthase activity through serine 741 phosphorylation.
FEBS Lett
570:
133–137,
2004.
|
181. |
Silvagno F,
Xia H and
Bredt DS.
Neuronal nitric‐oxide synthase‐μ. an alternatively spliced isoform expressed in differentiated skeletal muscle.
J Biol Chem
271:
11204–11208,
1996.
|
182. |
Chen ZP,
McConell GK,
Michell BJ,
Snow RJ,
Canny BJ and
Kemp BE.
AMPK signaling in contracting human skeletal muscle: acetyl‐CoA carboxylase and NO synthase phosphorylation.
Am J Physiol Endocrinol Metab
279:
E1202–E1206,
2000.
|
183. |
Stephens TJ,
Chen ZP,
Canny BJ,
Michell BJ,
Kemp BE and
McConell GK.
Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise.
Am J Physiol Endocrinol Metab
282:
E688–E694,
2002.
|
184. |
Chen ZP,
Stephens TJ,
Murthy S,
Canny BJ,
Hargreaves M,
Witters LA,
Kemp BE and
McConell GK.
Effect of exercise intensity on skeletal muscle AMPK signaling in humans.
Diabetes
52:
2205–2212,
2003.
|
185. |
Colasanti M,
Persichini T,
Cavalieri E,
Fabrizi C,
Mariotto S,
Menegazzi M,
Lauro GM and
Suzuki H.
Rapid inactivation of NOS‐I by lipopolysaccharide plus interferon‐gamma‐induced tyrosine phosphorylation.
J Biol Chem
274:
9915–9917,
1998.
|
186. |
Cordelier P,
Esteve JP,
Rivard N,
Marietta M,
Vaysse N,
Susini C and
Buscail L.
The activation of neuronal NO synthase is mediated by G‐protein subunit and the tyrosine phosphatase SHP‐2.
FASEB J
13:
2037–2050,
1999.
|
187. |
Lopez F,
Ferjoux G,
Cordelier P,
Saint‐Laurent N,
Esteve JP,
Vaysse N,
Buscail L and
Susini C.
Neuronal nitric oxide synthase: a substrate for SHP‐1 involved in sst2 somatostatin receptor growth inhibitory signaling.
FASEB J
15:
2300–2302,
2001.
|
188. |
Aktan F.
iNOS‐mediated nitric oxide production and its regulation.
Life Sci
75:
639–653,
2004.
|
189. |
Salh B,
Wagey R,
Marotta A,
Tao JS and
Pelech S.
Activation of phosphatidylinositol 3‐kinase, protein kinase B. and p70 S6 kinases in lipopolysaccharide‐stimulated raw 264.7 cells: differential effects of rapamycin. LY294002. and wortmannin on nitric oxide production.
J Immunol
161:
6947–6954,
1998.
|
190. |
Pan JM,
Burgher KL,
Szczepanik AM and
Ringheim GE.
Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post‐translational regulation.
Biochem J
314:
889–894,
1996.
|
191. |
Fleming I,
Bauersachs J,
Fisslthaler B and
Busse R.
Ca2+‐independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress.
Circ Res
82:
686–695,
1998.
|
192. |
Gallis B,
Corthals GL,
Goodlett DR,
Ueba H,
Kim F,
Presnell SR,
Figeys D,
Harrison DG,
Berk BC,
Aebersold R and
Corson MA.
Identification of flow‐dependent endothelial nitric oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3‐kinase inhibitor LY294002.
J Biol Chem
274:
30101–30108,
1999.
|
193. |
Boo YC,
Sorescu G,
Boyd N,
Shiojima I,
Walsh K,
Du J and
Jo H.
Shear stress stimulates phosphorylation of endothelial nitric‐oxide synthase at Ser1179 by Akt‐independent mechanisms: role of protein kinase A.
J Biol Chem
277:
3388–3396,
2002.
|
194. |
Haynes MP,
Sinha D,
Russell KS,
Collinge M,
Fulton D,
Morales‐Ruiz M,
Sessa WC and
Bender JR.
Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the P13‐kinase‐Akt pathway in human endothelial cells.
Circ Res
87:
677–682,
2000.
|
195. |
Michell BJ,
Chen Z,
Tiganis T,
Stapleton D,
Katsis F,
Power DA,
Sim AT and
Kemp BE.
Coordinated control of endothelial nitric‐oxide synthase phosphorylation by protein kinase C and the cAMP‐dependent protein kinase.
J Biol Chem
276:
17625–17628,
2001.
|
196. |
Kim F,
Gallis B and
Corson MA.
TNF‐alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells.
Am J Physiol Cell Physiol
280:
C1057–C1065,
2001.
|
197. |
Schneider JC,
El Kebir D,
Chereau C,
Lanone S,
Huang XL,
Buys Roessingh AS,
Mercier JC,
Dall'Ava‐Santucci J and
Dinh‐Xuan AT.
Involvement of Ca2+/calmodulin‐dependent protein kinase II in endothelial NO production and endothelium‐dependent relaxation.
Am J Physiol Heart Circ Physiol
284:
H2311–H2319,
2003.
|
198. |
Mccabe TJ,
Fulton D,
Roman LJ and
Sessa WC.
Enhanced electron flux and reduced calmodulin dissociation may explain “calcium‐independent” eNOS activation by phosphorylation.
J Biol Chem
275:
6123–6128.
2000.
|
199. |
Du XL,
Edelstein D,
Dimmeler S,
Ju Q,
Sui C and
Brownlee M.
Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site.
J Clin Invest
108:
1341–1348,
2001.
|
200. |
Xu B,
Chibber R,
Ruggerio D,
Kohner E,
Ritter J and
Ferro A.
Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products.
FASEB J
17:
1289–1291,
2003.
|
201. |
Federici M,
Menghini R,
Mauriello A,
Hribal ML,
Ferrelli F,
Lauro D,
Sbraccia P,
Spagnoli LG,
Sesti G and
Lauro R.
Insulin‐dependent activation of endothelial nitric oxide synthase is impaired by O‐linked glycosylation modification of signaling proteins in human coronary endothelial cells.
Circulation
106:
466–472,
2002.
|
202. |
Butt E,
Bernhardt M,
Smolenski A,
Kotsonis P,
Frohlich LG,
Sickmann A,
Meyer HE and
Lohmann SM.
Schmidt HHHW. Endothelial nitric‐oxide synthase (Type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide‐dependent protein kinases.
J Biol Chem
275:
5179–5187,
2000.
|
203. |
Boo YC,
Hwang J,
Sykes M,
Michell BJ,
Kemp BE,
Lum H and
Jo H.
Shear stress stimulates phosphorylation of eNOS at Ser635 by a protein kinase A‐dependent mechanism.
Am J Physiol Heart Circ Physiol
283:
H1819–H1828,
2002.
|
204. |
Michell BJ,
Harris MB,
Chen Z,
Ju H,
Venema VJ,
Blackstone MA,
Huang W,
Venema RC and
Kemp BE.
Identification of regulatory sites of phosphorylation of the bovine endothelial nitric‐oxide synthase at serine 617 and serine 635.
J Biol Chem
277:
42344,
2002.
|
205. |
Bauer PM,
Fulton D,
Boo YC,
Sorescu GP,
Kemp BE,
Jo H and
Sessa WC.
Compensatory phosphorylation and protein‐protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric oxide synthase.
J Biol Chem,
2003.
|
206. |
Kou R,
Prabhakar P and
Michel T.
Phosphorylation of the endothelial isoform of nitric oxide synthase at serine 116: identification of a novel path for eNOS regulation by lysophosphatidic acid.
Circulation
104:
509,
2001.
|
207. |
Kou R,
Greif D and
Michel T.
Dephosphorylation of endothelial nitric oxide synthase by vascular endothelial growth factor: Implications for the vascular responses to cyclosporin A.
J Biol Chem,
2002.
|
208. |
Harris MB,
Ju H,
Venema VJ,
Liang H,
Zou R,
Michell BJ,
Chen Z‐P,
Kemp BE and
Venema RC.
Reciprocal phosphorylation and regulation of the endothelial nitric oxide synthase in response to bradykinin stimulation.
J Biol Chem
19:
16587–16591,
2001.
|
209. |
Matsubara M,
Titani K and
Taniguchi H.
Interaction of calmodulin‐binding domain peptides of nitric oxide synthase with membrane phospholipids: regulation by protein phosphorylation and Ca2+‐calmodulin.
Biochemistry
35:
14651–14658,
1996.
|
210. |
Davda RK,
Chandler LJ and
Guzman NJ.
Protein kinase C modulates receptor‐independent activation of endothelial nitric oxide synthase.
Eur J Pharmacol
266:
237–244,
1994.
|
211. |
Hirata K,
Kuroda R,
Sakoda T,
Katayama M,
Inoue N,
Suematsu M,
Kawashima S and
Yokoyama M.
Inhibition of endothelial nitric‐oxide synthase activity by protein kinase C.
Hypertension
25:
180–185,
1995.
|
212. |
Lenasi H,
Kohlstedt K,
Fichtlscherer B,
Mülsch A,
Busse R and
Fleming I.
Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr493.
Cardiovasc Res
59:
844–853,
2003.
|
213. |
Zhang J,
Baines CP,
Zong C,
Cardwell EM,
Wang G,
Vondriska TM and
Ping P.
Functional proteomic analysis of a three‐tier PKCot‐Akt‐eNOS signaling module in cardiac protection.
Am J Physiol Heart Circ Physiol
288:
H954–H961,
2005.
|
214. |
Partovian C,
Zhuang Z,
Moodie K,
Lin M,
Ouchi N,
Sessa WC,
Walsh K and
Simons M.
PKCα activates eNOS and increases arterial blood flow in vivo.
Circ Res
97:
482–487,
2005.
|
215. |
Motley ED,
Eguchi K,
Patterson MM,
Palmer PD,
Suzuki H and
Eguchi S.
Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin.
Hypertension
49:
577–583,
2007.
|
216. |
Naruse K,
Rask‐Madsen C,
Takahara N,
Ha S‐w.
Suzuma K,
Way KJ,
Jacobs JRC,
Clermont AC,
Ueki K,
Ohshiro Y.
Zhang J,
Goldfine AB and
King GL.
Activation of vascular protein kinase C‐β inhibits Akt‐dependent endothelial nitric oxide synthase function in obesity‐associated insulin resistance.
Diabetes
55:
691–698,
2006.
|
217. |
Chu S and
Bohlen HG.
High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.
Am J Physiol Renal Physiol
287:
F384–F392,
2004.
|
218. |
Hink U,
Li H,
Mollnau H,
Oelze M,
Matheis E,
Hartmann M,
Skatchkov M,
Thaiss F,
Stahl RA,
Warnholtz A,
Meinertz T,
Griendling K,
Harrison DG,
Förstermann U and
Münzel T.
Mechanisms underlying endothelial dysfunction in diabetes mellitus.
Circ Res
88:
E14–E22,
2001.
|
219. |
Beckman JA,
Goldfine AB,
Gordon MB,
Garrett LA and
Creager MA.
Inhibition of protein kinase Cβ prevents impaired endothelium‐dependent vasodilation caused by hyperglycemia in humans.
Circ Res
90:
107–111,
2002.
|
220. |
Guzik TJ,
Mussa S,
Gastaldi D,
Sadowski J,
Ratnatunga C,
Pillai R and
Channon KM.
Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase.
Circulation
105:
1656–1662,
2002.
|
221. |
Lagaud GJ,
Masih‐Khan E,
Kai S,
van Breemen C and
Dube GP.
Influence of type II diabetes on arterial tone and endothelial function in murine mesenteric resistance arteries.
J Vasc Res
38:
578–589,
2001.
|
222. |
Cosentino F,
Eto M,
De Paolis P,
van der LB,
Bachschmid M,
Ullrich V,
Kouroedov A,
delli GC,
Joch H,
Volpe M and
Luscher TF.
High glucose causes upregulation of cyclooxygenase‐2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species.
Circulation
107:
1017–1023,
2003.
|
223. |
Fleming I,
Bara A and
Busse R.
Calcium signalling and autacoid production in endothelial cells are modulated by changes in tyrosine kinase and phosphatase activity.
J Vasc Res
33:
225–234,
1996.
|
224. |
Takenouchi Y,
Oo ML,
Senga T,
Watanabe Y,
Machida K,
Miyazaki K,
Nimura Y and
Hamaguchi M.
Tyrosine phosphorylation of NOS3 in a breast cancer cell line and Src‐transformed cells.
Oncol Rep
11:
1059–1062,
2004.
|
225. |
Ayajiki K,
Kindermann M,
Hecker M,
Fleming I and
Busse R.
Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress‐induced nitric oxide production in native endothelial cells.
Circ Res
78:
750–758,
1996.
|
226. |
Corson MA,
James NL,
Latta SE,
Nerem RM,
Berk BC and
Harrison DG.
Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress.
Circ Res
79:
984–991,
1996.
|
227. |
Chen KD,
Li YS,
Kim M,
Li S,
Yuan S,
Chien S and
Shyy JYJ.
Mechanotransduction in response to shear stress: roles of receptor tyrosine kinases, integrins, and Shc.
J Biol Chem
274:
18393–18400,
1999.
|
228. |
Busse R and
Fleming I.
Regulation of endothelium‐derived vasoactive autacoid production by hemodynamic forces.
Trends Pharmacol Sci
24:
24–29,
2003.
|
229. |
Fleming I,
Fisslthaler B and
Busse R.
Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells.
J Biol Chem
271:
11009–11015,
1996.
|
230. |
Fleming I and
Busse R.
Tyrosine phosphorylation and bradykinin‐induced signaling in endothelial cells.
Am J Cardiol
80:
102A–109A,
1997.
|
231. |
Papapetropoulos A,
Fulton D,
Lin MI,
Fontana J,
McCabe TJ,
Zoellner S,
García‐Cardena G,
Zhou Z,
Gratton JP and
Sessa WC.
Vanadate is a potent activator of endothelial nitric oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90‐kDa heat shock protein.
Mol Pharmacol
65:
407–415,
2004.
|
232. |
García‐Cardena G,
Fan G,
Stern DF,
Liu J and
Sessa WC.
Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin‐1.
J Biol Chem
271:
27237–27240,
1996.
|
233. |
Fulton D,
Church JE,
Ruan L,
Li C,
Sood SG,
Kemp BE,
Jennings IG and
Venema RC.
Src kinase activates endothelial nitric‐oxide synthase by phosphorylating Tyr‐83.
J Biol Chem
280:
35943–35952,
2005.
|
234. |
Fisslthaler B,
Dimmeler S,
Hermann C,
Busse R and
Fleming I.
Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress.
Acta Physiol Scand
168:
81–88,
2000.
|
235. |
Fisslthaler B,
Mohamed A,
Loot A,
Busse R and
Fleming I.
Tyrosine phosphorylation of the nitric oxide synthase by PYK2 attenuates enzyme activity.
Nitric Oxide
14:
77,
2006.
|
236. |
Schlossmann J,
Ammendola A,
Ashman K,
Zong X,
Huber A,
Neubauer G,
Wang GX,
Allescher HD,
Korth M,
Wilm M,
Hofmann F and
Ruth P.
Regulation of intracellular calcium by a signalling complex of IRAG. TP3 receptor and cGMP kinase Ibeta.
Nature
404:
197–201,
2000.
|
237. |
Fritsch RM,
Saur D,
Kurjak M,
Oesterle D,
Schlossmann J,
Geiselhoringer A,
Hofmann F and
Allescher HD.
InsP3R‐associated cGMP kinase substrate (IRAG) is essential for nitric oxide‐induced inhibition of calcium signaling in human colonic smooth muscle.
J Biol Chem.
2004,
M313365200.
|
238. |
Plane F,
Wiley KE,
Jeremy JY,
Cohen RA and
Garland CJ.
Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery.
Br J Pharmacol
123:
1351–1358,
1998.
|
239. |
Dudzinski DM,
Igarashi J,
Greif D and
Michel T.
The regulation and pharmacology of endothelial nitric oxide synthase.
Annu Rev Pharmacol Toxicol
46:
235–276,
2006.
|
240. |
Handy DE and
Loscalzo J.
Nitric oxide and posttranslational modification of the vascular proteome: S‐nitrosation of reactive thiols.
Arterioscler Thromb Vasc Biol
26:
1207–1214,
2006.
|
241. |
Mannick JB.
Regulation of apoptosis by protein 5‐nitrosylation.
Amino Acids
32:
523–526,
2007.
|
242. |
Adachi T,
Weisbrod RM,
Pimentel DR,
Ying J,
Sharov VS,
Schoneich C and
Cohen RA.
S‐Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide.
Nat Med
10:
1200–1207,
2004.
|
243. |
Barrett DM,
Black SM,
Todor H,
Schmidt‐Ullrich RK,
Dawson KS and
Mikkelsen RB.
Inhibition of protein‐tyrosine phosphatases by mild oxidative stresses is dependent on S‐nitrosylation.
J Biol Chem
280:
14453–14461,
2005.
|
244. |
Park HS,
Yu JW,
Cho JH,
Kim MS,
Huh SH,
Ryoo K and
Choi EJ.
Inhibition of apoptosis signal‐regulating kinase 1 by nitric oxide through a thiol redox mechanism.
J Biol Chem
279:
7584–7590.
2004.
|
245. |
Park HS,
Huh SH,
Kim MS,
Lee SH and
Choi EJ.
Nitric oxide negatively regulates c‐Jun N‐terminal kinase/stress‐activated protein kinase by means of S‐nitrosylation.
Proc Natl Acad Sci USA
97:
14382–14387,
2000.
|
246. |
Clavreul N,
Adachi T,
Pimental DR,
Ido Y,
Sehoneich C and
Cohen RA.
S‐glutathiolation by peroxynitrite of p21ras at cysteine‐118 mediates its direct activation and downstream signaling in endothelial cells.
FASEB J
20:
518–520,
2006.
|
247. |
Hammoud L,
Xiang F,
Lu X,
Brunner F,
Leco K and
Feng Q.
Endothelial nitric oxide synthase promotes neonatal cardiomyocyte proliferation by inhibiting tissue inhibitor of metalloproteinase‐3 expression.
Cardiovasc Res
75:
359–368,
2007.
|
248. |
Carver DJ,
Gaston B,
deRonde K and
Palmer LA.
Akt‐mediated activation of HIF‐1 in pulmonary vascular endothelial cells by S‐nitrosoglutathione.
Am J Respir Cell Mol Biol.
2007,
2006‐0289SM.
|
249. |
Matsushita K,
Morrell CN,
Cambien B,
Yang SX,
Yamakuchi M,
Bao C,
Hara MR,
Quick RA,
Cao W,
O'Rourke B.
Lowenstein JM, Pevsner J, Wagner DD and Lowenstein CJ. Nitric oxide regulates exocytosis by S‐nitrosylation of N‐ethylmaleimide‐sensitive factor.
Cell
115:
139–150,
2003.
|
250. |
Xu L,
Eu JP,
Meissner G and
Stamler JS.
Activation of the cardiac calcium release channel (ryanodine receptor) by poly‐S‐nitrosylation.
Science
279:
234–237,
1998.
|
251. |
Seiemidis S,
Dusting GJ,
Peshavariya H,
Kemp‐Harper BK and
Drummond GR.
Nitric oxide suppresses NADPH oxidase‐dependent superoxide production by S‐nitrosylation in human endothelial cells.
Cardiovasc Res
75:
349–358,
2007.
|
252. |
Singel DJ and
Stamler JS.
Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S‐nitrosohemoglobin.
Annu Rev Physiol
67:
99–145,
2005.
|
253. |
Iwakiri Y,
Satoh A,
Chatterjee S,
Toomre DK,
Chalouni CM,
Fulton D,
Groszmann RJ,
Shah VH and
Sessa WC.
Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S‐nitrosylation and protein trafficking.
Proc Natl Acad Sci USA
103:
19777–19782,
2006.
|
254. |
Zou AP,
Imig JD,
Kaldunski M,
Ortiz de Montellano PR,
Sui Z and
Roman RJ.
Inhibition of renal vascular 20‐HETE production impairs autoregulation of renal blood flow.
Am J Physiol
266:
F275–F282,
1994.
|
255. |
Gebremedhin D,
Lange AR,
Lowry TF,
Taheri MR,
Birks EK,
Hudetz AG,
Narayanan J,
Falck JR,
Okamoto H,
Roman RJ,
Nithipatikom K,
Campbell WB and
Harder DR.
Production of 20‐HETE and its role in autoregulation of cerebral blood flow.
Circ Res
87:
60–65,
2000.
|
256. |
Wang MH,
Zhang F,
Marji J,
Zand BA,
Nasjletti A and
Laniado‐Schwartzman M.
CYP4A1 antisense oligonucleotide reduces mesenteric vascular reactivity and blood pressure in SHR.
Am J Physiol Regul Integr Comp Physiol
280:
R255–R261,
2001.
|
257. |
Fleming I.
Cytochrome P450 and vascular homeostasis.
Circ Res
89:
753–762,
2001.
|
258. |
Capdevila JH and
Falck JR.
The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation.
Biochem Biophys Res Commun
285:
571–576,
2001.
|
259. |
Roman RJ.
P‐450 metabolites of arachidonic acid in the control of cardiovascular function.
Physiol Rev
82:
131–185,
2002.
|
260. |
Harder DR,
Lange AR,
Gebremedhin D,
Birks EK and
Roman RJ.
Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue.
J Vasc Res
34:
237–243,
1997.
|
261. |
Randriamboavonjy V,
Busse R and
Fleming I.
20‐HETE‐induced contraction of small coronary arteries depends on the activation of Rho‐kinase.
Hypertension
41:
801–806,
2003.
|
262. |
Lopez B,
Moreno C,
Salom MG,
Roman RJ and
Fenoy FJ.
Role of guanylyl cyclase and cytochrome P‐450 on renal response to nitric oxide.
Am J Physiol Renal Physiol
281:
F420–F427,
2001.
|
263. |
Alonso‐Galicia M,
Drummond HA,
Reddy KK,
Falck JR and
Roman RJ.
Inhibition of 20‐HETE production contributes to the vascular responses to nitric oxide.
Hypertension
29:
320–325,
1997.
|
264. |
Sun CW,
Falck JR,
Okamoto H,
Harder DR and
Roman RJ.
Role of cGMP versus 20‐HETE in the vasodilator response to nitric oxide in rat cerebral arteries.
Am J Physiol Heart Circ Physiol
279:
H339–H350,
2000.
|
265. |
Boulanger CM,
Heymes C,
Benessiano J,
Geske RS,
Levy BI and
Vanhoutte PM.
Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension.
Circ Res
83:
1271–1278,
1998.
|
266. |
Brophy CM,
Knoepp L,
Xin J and
Pollock JS.
Functional expression of NOS 1 in vascular smooth muscle.
Am J Physiol Heart Circ Physiol
278:
H991–H997,
2000.
|
267. |
Huang A,
Sun D,
Shesely EG,
Levee EM,
Koller A and
Kaley G.
Neuronal NOS‐dependent dilation to flow in coronary arteries of male eNOS‐KO mice.
Am J Physiol Heart Circ Physiol
282:
H429–H436,
2002.
|
268. |
Schuh K,
Uldrijan S,
Telkamp M,
Rothlein N and
Neyses L.
The plasmamembrane calmodulin‐dependent calcium pump: a major regulator of nitric oxide synthase I.
J Cell Biol
155:
201–205,
2001.
|
269. |
Gros R,
Afroze T,
You XM,
Kabir G,
Van Wert R,
Kalair W,
Hoque AE,
Mungrue IN and
Husain M.
Plasma membrane calcium ATPase over‐expression in arterial smooth muscle increases vasomotor responsiveness and blood pressure.
Circ Res
93:
614–621,
2003.
|
270. |
Fleming I.
Brain in the brawn: the neuronal nitric oxide synthase as a regulator of myogenic tone.
Circ Res
93:
586–588,
2003.
|
271. |
Huang PL,
Huang Z,
Mashimo H,
Bloch KD,
Moskowitz MA,
Bevan JA and
Fishman MC.
Hypertension in mice lacking the gene for endothelial nitric oxide synthase.
Nature
377:
239–242,
1995.
|
272. |
Shesely EG,
Maeda N,
Kim HS,
Desai KM,
Krege JH,
Laubach VE,
Sherman PA,
Sessa WC and
Smithies O.
Elevated blood pressures in mice lacking endothelial nitric oxide synthase.
Proc Natl Acad Sci USA
93:
13176–13181,
1996.
|
273. |
Ohashi Y,
Kawashima S,
Hirata K,
Yamashita T,
Ishida T,
Inoue N,
Sakoda T,
Kurihara H,
Yazaki Y and
Yokoyama M.
Hypotension and reduced nitric oxide‐elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase.
J Clin Invest
102:
2061–2071,
1999.
|
274. |
Ortiz PA and
Garvin JL.
Cardiovascular and renal control in NOS‐deficient mouse models.
Am J Physiol Regul Integr Comp Physiol
284:
R628–R638,
2003.
|
275. |
Kurihara N,
Alfie ME,
Sigmon DH,
Rhaleb NE,
Shesely EG and
Carretero OA.
Role of nNOS in blood pressure regulation in eNOS null mutant mice.
Hypertension
32:
856–861,
1998.
|
276. |
Fleming I,
Gray GA,
Julou‐Schaeffer G,
Parratt JR and
Stoclet J‐C.
Incubation with endotoxin activates the L‐arginine pathway in vascular tissue.
Biochem Biophys Res Commun
171:
562–568,
1990.
|
277. |
Julou‐Schaeffer G,
Gray GA,
Fleming I,
Schott C,
Parratt JR and
Stoclet J‐C.
Loss of vascular responsiveness induced by endotoxin involves the L‐arginine pathway.
Am J Physiol
259:
H1038–H1043,
1990.
|
278. |
Thiemermann C and
Vane J.
Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo.
Eur J Pharmacol
182:
591–595,
1990.
|
279. |
Ann S and
Timothy RB.
Inducible nitric oxide synthase: from cloning to therapeutic applications.
World J Surg
26:
772–778,
2002.
|
280. |
Wallerath T,
Gath I,
Aulitzky WE,
Pollock JS,
Kleinen H and
Förstermann U.
Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets.
Thromb Haemost
77:
163–167,
1997.
|
281. |
Berkels R,
Bertsch A,
Zuther T,
Dhein S,
Stockklauser K,
Rosen P and
Rosen R.
Evidence for a NO synthase in porcine platelets which is stimulated during activation/aggregation.
Eur J Haematol
58:
307–313,
1997.
|
282. |
Gambaryan S,
Kobsar A,
Hartmann S,
Burschmann I,
Kuhllencordt PJ,
Müller‐Esterl W,
Lohmann SM and
Walter U.
NO‐synthase‐/NO‐independent regulation of human and murine platelet soluble guanylyl cyclase activity.
J Thromb Haemostasis
2008 (In Press).
|
283. |
Fisslthaler B,
Benzing T,
Busse R and
Fleming I.
Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP‐1.
Nitric Oxide
8:
253–261,
2003.
|
284. |
Randriamboavonjy V,
Schrader J,
Busse R and
Fleming I.
Insulin induces the release of vasodilator compounds from platelets by a nitric oxide‐G kinase‐VAMP‐3‐dependent pathway.
J Exp Med
199:
347–356,
2004.
|
285. |
Trovati M,
Massucco P,
Mattiello L,
Piretto V,
Cavalot F,
Mularoni E and
Anfossi G.
The insulin‐induced increase of guano‐sine‐3′,5′‐cyclic monophosphate in human platelets is mediated by nitric oxide.
Diabetes
45:
768–770,
1996.
|
286. |
Rao GH,
Krishnamurthi S,
Raij L and
White JG.
Influence of nitric oxide on agonist‐mediated calcium mobilization in platelets.
Biochem Med Metab Biol
43:
271–275,
1990.
|
287. |
Fleming I,
Schulz C,
Fichtlscherer B,
Kemp BE,
Fisslthaler B and
Busse R.
AMP‐activated protein kinase (AMPK) regulates the insulin‐induced activation of the nitric oxide synthase in human platelets.
Thromb Haemost
90:
863–867,
2003.
|
288. |
Lantoine F,
Brunnet A,
Bedioui F,
Devnck J and
Devynck M‐A.
Direct measurement of nitric oxide production in platelets: relationship with cytosolic Ca2+ concentration.
Biochem Biophys Res Commun
215:
842–848,
1995.
|
289. |
Guibert C,
Loirand G,
Vigne P,
Savineau JP and
Pacaud P.
Dependence of P2‐nucleotide receptor agonist‐mediated endothelium‐independent relaxation on ectonucleotidase activity and A2A‐receptors in rat portal vein.
Br J Pharmacol
123:
1732–1740,
1998.
|
290. |
Coade SB and
Pearson JD.
Metabolism of adenine nucleotides in human blood.
Circ Res
65:
531–537,
1989.
|
291. |
Erga KS,
Seubert CN,
Liang HX,
Wu L,
Shryock JC and
Belardinelli L.
Role of A2A‐adenosine receptor activation for ATP‐mediated coronary vasodilation in guinea‐pig isolated heart.
Br J Pharmacol
130:
1065–1075,
2000.
|
292. |
Abbink‐Zandbergen EJ,
Vervoort G,
Tack CJ,
Lutterman JA,
Schaper NC and
Smits P.
The role of adenosine in insulin‐induced vasodilation.
J Cardiovasc Pharmacol
34:
374–380,
1999.
|
293. |
De Caterina R,
Libby P,
Peng H‐B,
Thannickal VJ,
Rajavashisth TB,
Gimbrone MA,
Shin WS and
Liao JK.
Nitric oxide decreases cytokine‐induced endothelial activation.
J Clin Invest
96:
60–68,
1995.
|
294. |
Spiecker M,
Darius H,
Kaboth K,
Hubner F and
Liao JK.
Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants.
J Leukoc Biol
63:
732–739,
1998.
|
295. |
Rösen P,
Schwippert P,
Kaufman B and
Tschope D.
Expression of adhesion molecules on the surface of activated platelets is diminished by PGI2‐analogues and an NO (EDRF)‐donor: a comparison between platelets of healthy subjects and diabetic subjects.
Platelets
11:
42–57,
1994.
|
296. |
Gauthier TW,
Davenpeck KL and
Lefer AM.
Nitric oxide attenuates leukocyte and endothelial interaction via P‐selectin in splanchnic ischemia‐reperfusion.
Am J Physiol
267:
G562–G568,
1994.
|
297. |
Biffl WL,
Moore EE,
Moore FA and
Barnett C.
Nitric oxide reduces endothelial expression of intercellular adhesion molecule (ICAM)‐1.
J Surg Res
63:
328–332,
1996.
|
298. |
Khan BV,
Harrison DG,
Olbrych MT,
Alexander RW and
Medford RM.
Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox‐sensitive transcriptional events in human vascular endothelial cells.
Proc Natl Acad Sci USA
93:
9114–9119,
1996.
|
299. |
Zeiher AM,
Fisslthaler B,
Schray‐Utz B and
Busse R.
Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells.
Circ Res
76:
980–986,
1995.
|
300. |
Taddei S,
Virdis A,
Mattei P,
Ghiadoni L,
Sudano I and
Salvetti A.
Defective L‐arginine‐nitric oxide pathway in offspring of essential hypertensive patients.
Circulation
94:
1298–1303,
1996.
|
301. |
Zeiher AM,
Drexler H,
Wollschläger H and
Just H.
Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis.
Circulation
84:
1984–1992,
1991.
|
302. |
Egashira K,
Inou T,
Hirooka Y,
Yamada A,
Maruoka Y,
Kai H,
Sugimachi M,
Suzuki S and
Takeshita A.
Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions.
J Clin Invest
91:
29–37,
1993.
|
303. |
Egashira K,
Inou T,
Hirooka Y,
Yamada A,
Urabe Y and
Takeshita A.
Evidence of impaired endothelium‐dependent coronary vasodilation in patients with angina pectoris and normal angiograms.
N Engl J Med
328:
1659–1664,
1993.
|
304. |
Reddy KG,
Nair RN,
Sheehan HM and
Hodgson JM.
Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis.
J Am Coll Cardiol
23:
833–843,
1994.
|
305. |
Ghafourifar P and
Cadenas E.
Mitochondrial nitric oxide synthase.
Trends Pharmacol Sci
26:
190–195,
2005.
|
306. |
Giulivi C,
Kato K and
Cooper CE.
Nitric oxide regulation of mitochondrial oxygen consumption 1: cellular physiology.
Am J Physiol Cell Physiol
291:
C1225–C1231,
2006.
|
307. |
Gao S,
Chen J,
Brodsky SV,
Huang H,
Adler S,
Lee JH,
Dhadwal N,
Cohen‐Gould L,
Gross SS and
Goligorsky MS.
Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane: a pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a protein kinase K‐cleavable peptide on the cytoplasmic face of mitochondria.
J Biol Chem
279:
15968–15974,
2004.
|
308. |
Lacza Z,
Pankotai E,
Csordas A,
Gero D,
Kiss L,
Horvath EM,
Kollai M,
Busija DW and
Szabo C.
Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist?
Nitric Oxide
14:
162–168,
2006.
|
309. |
Bates TE,
Loesch A,
Burnstock G and
Clark JB.
Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver.
Biochem Biophys Res Commun
213:
896–900,
1995.
|
310. |
Kobzik L,
Stringer B,
Balligand JL,
Reid MB and
Stamler JS.
Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships.
Biochem Biophys Res Commun
211:
375–381,
1995.
|
311. |
Kanai A,
Epperly M,
Pearce L,
Birder L,
Zeidel M,
Meyers S,
Greenberger J,
de Groat E,
Apodaca G and
Peterson J.
Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells.
Am J Physiol Heart Circ Physiol
286:
H13–H21,
2004.
|
312. |
Ghafourifar P and
Richter C.
Nitric oxide synthase activity in mitochondria.
FEBS Lett
418:
291–296,
1997.
|
313. |
Giulivi C,
Poderoso JJ and
Boveris A.
Production of nitric oxide by mitochondria.
J Biol Chem
273:
11038–11043,
1998.
|
314. |
Baris O,
Savagner F,
Nasser V,
Loriod B,
Granjeaud S,
Guyetant S,
Franc B,
Rodien P,
Rohmer V,
Bertucci F,
Birnbaum D,
Malthiery Y,
Reynier P and
Houlgatte R.
Transcriptional profiling reveals coordinated up‐regulation of oxidative metabolism genes in thyroid oncocytic tumors.
J Clin Endocrinol Metab
89:
994–1005,
2004.
|
315. |
Nisoli E,
Clementi E,
Paolucci C,
Cozzi V,
Tonello C,
Sciorati C,
Bracale R,
Valerio A,
Francolini M,
Moncada S and
Carruba MO.
Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide.
Science
299:
896–899,
2003.
|
316. |
Zou MH,
Kirkpatrick SS,
Davis BJ,
Nelson JS,
Wiles IV WG,
Schlattner U,
Neumann D,
Brownlee M,
Freeman MB and
Goldman MH.
Activation of the AMP‐activated protein kinase by the anti‐diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species.
J Biol Chem
279:
43940–43951,
2004.
|
317. |
Fisslthaler B,
Fleming I,
Keserü B,
Walsh K and
Busse R.
Fluid shear stress and NO decrease the activity of the hydroxy‐methylglutaryl coenzyme A reductase in endothelial ceils via the AMP‐activated protein kinase and FoxO1.
Circ Res
100:
e12–e21,
2007.
|
318. |
Reznick RM and
Shulman GI.
The role of AMP‐activated protein kinase in mitochondrial biogenesis.
J Physiol Online
574:
33–39,
2006.
|
319. |
Towler MC and
Hardie DG.
AMP‐activated protein kinase in metabolic control and insulin signaling.
Circ Res
100:
328–341,
2007.
|
320. |
Nisoli E,
Clementi E,
Carruba MO and
Moneada S.
Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome?
Circ Res
100:
795–806,
2007.
|
321. |
Cook S,
Hugli O,
Egli M,
Menard B,
Thalmann S,
Sartori C,
Perrin C,
Nicod P,
Thorens B,
Vollenweider P,
Scherrer U and
Burcelin R.
Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high‐fat diet‐induced insulin resistance and arterial hypertension.
Diabetes
53:
2067–2072,
2004.
|