Comprehensive Physiology Wiley Online Library

Biology of Nitric Oxide Synthases

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Characteristics of NOS Enzymes
1.1 nNOS
1.2 iNOS
1.3 eNOS
2 Basic Reaction Mechanism for no Production
2.1 Tetrahydrobiopterin (H4B)
3 When is A NOS not A no Synthase? The Uncoupling Phenomenon and the Generation of Reactive Oxygen Species
4 Regulation of NOS Function by Localization
4.1 nNOS
4.2 iNOS
4.3 eNOS
5 Regulation of NOS Function by Associated Proteins
5.1 nNOS
5.2 iNOS
5.3 eNOS
5.4 Calmodulin
5.5 Caveolin
5.6 Hsp90
5.7 Soluble Guanylyl Cyclase
5.8 Dynamin
5.9 G‐Protein‐Coupled Receptors
6 Regulation of NOS Function by Phosphorylation
6.1 nNOS
6.2 iNOS
6.3 eNOS
7 NOS and the Regulation of Vascular Tone
7.1 The NO/Cyclic GMP Pathway
7.2 S‐Nitrosylation
7.3 Inhibition of 20‐HETE formation
7.4 Blood Pressure Regulation
7.5 NO in Platelets
8 NO and Gene Expression in Vascular Cells
9 Outlook
Figure 1. Figure 1.

The eNOS molecule, showing binding sites for NADPH, FAD, and FMN in the carboxy terminal (reductase) domain and binding sites for CaM. heme and L‐arginine at the amino terminal (reductase) domain, (for further explanation see text).

Figure 2. Figure 2.

Phosphorylation sites on eNOS and the kinases reported to elicit phosphorylation in response to specific stimuli, that is, VEGF, fluid shear stress and receptor‐dependent agonists. (+) indicates that phosphorylation is associated with enzyme activation and (−) indicates that phosphorylation is associated with eNOS inactivation. AMPK. AMP‐activated protein kinase: PGI2, prostacyclin; PI 3‐K. Phosphatidylinositol 3‐kinase; PKA, Protein kinase A; PKC, Protein kinase C; PKG, Protein kinase G.

Figure 3. Figure 3.

NO effector mechanisms in endothelial cells, platelets, and smooth muscle cells. The classical NO/guanylyl cyclase (sGC)/cyclic GMP (cGMP) pathway regulates vascular smooth muscle contraction by decreasing [Ca2+]i at the same time as NO inhibits the generation of the vasoconstrictor prostanoid 20‐hydroxyeicosatetraenoic acid (20‐HETE) by CYP4A enzymes. S‐nitrosylation also regulates cellular signaling and the S‐nitrosylation (S‐NO) of caspase‐3 and thioredoxin have been linked to the inhibition of apoptosis. In platelets an increase in NOS activity attenuates aggregation by decreasing [Ca2+]i and elicits the discrete exocytosis of the contents of dense granules (ATP/ADP and serotonin/5‐HT). In endothelial cells, NO contributes to the cells antiatherogenic properties largely by regulating the activity of transcription factors, such as nuclear factor KB (NF‐KB), and the subsequent expression of genes, such as E‐selectin, monocyte chemoattractant protein‐1 (MCP‐1) and vascular cell adhesion molecule‐1 (VCAM‐1).



Figure 1.

The eNOS molecule, showing binding sites for NADPH, FAD, and FMN in the carboxy terminal (reductase) domain and binding sites for CaM. heme and L‐arginine at the amino terminal (reductase) domain, (for further explanation see text).



Figure 2.

Phosphorylation sites on eNOS and the kinases reported to elicit phosphorylation in response to specific stimuli, that is, VEGF, fluid shear stress and receptor‐dependent agonists. (+) indicates that phosphorylation is associated with enzyme activation and (−) indicates that phosphorylation is associated with eNOS inactivation. AMPK. AMP‐activated protein kinase: PGI2, prostacyclin; PI 3‐K. Phosphatidylinositol 3‐kinase; PKA, Protein kinase A; PKC, Protein kinase C; PKG, Protein kinase G.



Figure 3.

NO effector mechanisms in endothelial cells, platelets, and smooth muscle cells. The classical NO/guanylyl cyclase (sGC)/cyclic GMP (cGMP) pathway regulates vascular smooth muscle contraction by decreasing [Ca2+]i at the same time as NO inhibits the generation of the vasoconstrictor prostanoid 20‐hydroxyeicosatetraenoic acid (20‐HETE) by CYP4A enzymes. S‐nitrosylation also regulates cellular signaling and the S‐nitrosylation (S‐NO) of caspase‐3 and thioredoxin have been linked to the inhibition of apoptosis. In platelets an increase in NOS activity attenuates aggregation by decreasing [Ca2+]i and elicits the discrete exocytosis of the contents of dense granules (ATP/ADP and serotonin/5‐HT). In endothelial cells, NO contributes to the cells antiatherogenic properties largely by regulating the activity of transcription factors, such as nuclear factor KB (NF‐KB), and the subsequent expression of genes, such as E‐selectin, monocyte chemoattractant protein‐1 (MCP‐1) and vascular cell adhesion molecule‐1 (VCAM‐1).

References
 1. Mayer B, John M and Böhme E. Purification of a calcium/calmodulin‐dependent nitric oxide synthase from porcine cerebellum. Cofactor role of tetrahydrobiopterin. FEBS Lett 277: 215–219, 1990.
 2. Bredt DS and Snyder SH. Isolation of nitric oxide synthetase a calmodulin‐requiring enzyme. Proc Natl Acad Sci USA 87: 682–685, 1990.
 3. Schmidt HHHW, Pollock JS, Nakane M, Gorsky LD, Förstermann U and Murad F. Purification of a soluble isoform of guanylyl cyclase‐activating‐factor synthase. Proc Natl Acad Sci USA 88: 365–369, 1991.
 4. Yun HY, Dawson VL and Dawson TM. Nitric oxide in health and disease of the nervous system. Mol Psychiatry 2: 300–310, 1997.
 5. Förstermann U, Boissel JP and Kleinen H. Expressional control of the “constitutive” isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 12: 773–790, 1998.
 6. Xie Q‐W, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T and Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228, 1992.
 7. Nishida CR and deMontellano PR. Electron transfer and catalytic activity of nitric oxide synthases ‐ Chimeric constructs of the neuronal, inducible, and endothelial isoforms. J Biol Chem 273: 5566–5571, 1998.
 8. Busse R and Mülsch A. Calcium‐dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265: 133–136, 1990.
 9. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R and Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation. Nature 399: 601–605, 1999.
 10. Fulton D, Gratton J‐P, Mccabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A and Sessa WC. Regulation of endothelium‐derived nitric oxide production by the protein kinase Akt. Nature 399: 597–601, 1999.
 11. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA and Getzoff ED. Structural basis for isozyme‐specific regulation of electron transfer in nitric‐oxide synthase. J Biol Chem 279: 37918–37927, 2004.
 12. Siddhanta U, Presta A, Fan BC, Wolan D, Rousseau DL and Stuehr DJ. Domain swapping in inducible nitric‐oxide synthase ‐ Electron transfer occurs between flavin and heme groups located on adjacent sub‐units in the dimmer. J Biol Chem 273: 18950–18958, 1998.
 13. Nishida CR and de Montellano PR. Control of electron transfer in nitric‐oxide synthases. Swapping of autoinhibitory elements among nitric‐oxide synthase isoforms. J Biol Chem 276: 20116–20124, 2001.
 14. Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M and Poulos TL. Crystal structures of zine‐free‐bound heme domain of human inducible nitric oxide synthase. Implications for dimer stability comparison with endothelial nitric oxide synthase. J Biol Chem 274: 21276–21284, 1999.
 15. Raman CS, Li H, Martásek P, Král V, Masters BS and Poulos TL. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95: 939–950, 1998.
 16. Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ and Getzoff ED. N‐terminal domain swapping and metal ion binding in nitric oxide synthase dimerization. EMBO J 18: 6271–6281, 1999.
 17. Abu‐Soud HM and Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 90: 10769–10772, 1993.
 18. Knudsen GM, Nishida CR, Mooney SD and de Montellano PRO. Nitric‐oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin‐dependent activity. J Biol Chem 278: 31814–31824, 2003.
 19. Stuehr DJ, Santolini J, Wang ZQ, Wei CC and Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279: 36167–36170, 2004.
 20. Lane P and Gross SS. The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. Acta Physiol Scand 168: 53–63, 2000.
 21. Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, Weissman BA, Lane P, Liu Q and Gross SS. An autoinhibitory control element defines calcium‐regulated isoforms of nitric oxide synthase. J Biol Chem 272: 29769–29777, 1997.
 22. Roman LJ, Miller RT, de La Garza MA, Kim JJ and Siler Master BS. The C terminus of mouse macrophage inducible nitric‐oxide synthase attenuates electron flow through the flavin domain. J Biol Chem 275: 21914–21919, 2000.
 23. Roman LJ, Martasek P, Miller RT, Harris DE, de La Garza MA, Shea TM, Kim JJ and Masters BS. The C termini of constitutive nitric‐oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin. J Biol Chem 275: 29225–29232, 2000.
 24. Lane P and Gross SS. Disabling a C‐terminal autoinhibitory control element in endotelial NO synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem, 2002.
 25. Werner ER, Gorren ACF, Heller R, Werner‐Felmayer G and Mayer B. Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Proc Soc Exp Biol Med 228: 1291–1302, 2003.
 26. Stuehr D, Pou S and Rosen GM. Oxygen reduction by nitric‐oxide synthases. J Biol Chem 276: 14533–14536, 2001.
 27. Wei CC, Crane BR and Stuehr DJ. Tetrahydrobiopterin radical enzymology. Chem Rev 103: 1365–2383, 2003.
 28. Bec N, Gorren AC, Voelker C, Mayer B and Lange R. Reaction of neuronal nitric‐oxide synthase with oxygen at low temperature. Evidence for reductive activation of the oxy‐ferrous complex by tetrahydrobiopterin. J Biol Chem 273: 13502–13508, 1998.
 29. Hurshman AR, Krebs C, Edmondson DE, Huynh BH and Marietta MA. Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen. Biochemistry 8: 15689–15696, 1999.
 30. Bec N, Gorren AFC, Mayer B, Schmidt PP, Andersson KK and Lange R. The role of tetrahydrobiopterin in the activation of oxygen by nitric‐oxide synthase. J Inorg Biochem 81: 207–211, 2000.
 31. Kuzkaya N, Weissmann N, Harrison DG and Dikalov S. Interactions of peroxynitrite. tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric‐oxide synthase. J Biol Chem 278: 22546–22554, 2003.
 32. Wei CC, Wang ZQ, Durra D, Hemann C, Hille R, Garcin ED, Getzoff ED and Stuehr DJ. The three nitric‐oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme‐dioxy reduction, and arginine hydroxylation. J Biol Chem 280: 8929–8935, 2005.
 33. Wei CC, Wang ZQ, Wang Q, Meade AL, Hemann C, Hille R and Stuehr DJ. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme‐dioxy reduction and arginine hydroxylation in inducible nitric‐oxide synthase. J Biol Chem 276: 315–319, 2001.
 34. Zou MH, Shi C and Cohen RA. Oxidation of the zinc‐thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109: 817–826, 2002.
 35. Heinzel B, John M, Klatt P and Böhme E. B. Mayer. Ca2+/calmodulin‐dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 281 (Pt 3): 627–630, 1992.
 36. Miller RT, Martasek P, Roman LJ, Nishimura JS and Masters BS. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry 36: 15277–15284, 1997.
 37. Xia Y, Roman LJ, Masters BS and Zweier JL. Inducible nitric‐oxide synthase generates superoxide from the reductase domain. J Biol Chem 273: 22635–22639, 1998.
 38. Creager MA, Girerd XL, Gallagher SJ, Coleman S, Dzau VJ and Cooke JP. L‐Arginine improves endothelium‐dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90: 1168–1172, 1992.
 39. Dubios‐Randé J‐L, Zelinsky R, Roudot F, Chabrier PE, Castaigne A, Geschwind H and Adnot S. Effects of infusion of L‐arginine into the left anterior descending coronary artery on acetylcholine‐induced vasoconstriction of human atheromatous coronary arteries. Am J Cardiol 70: 1269–1275, 1992.
 40. Zhang C, Hein TW, Wang W, Miller MW, Fossum TW, McDonald MM, Humphrey JD and Kuo L. Upregulation of vascular arginase in hypertension decreases nitric oxide‐mediated dilation of coronary arterioles. Hypertension 44: 935–943, 2004.
 41. Leiper J and Vallance P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 43: 542–548, 1999.
 42. Vallance P and Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 24: 1023–1030, 2004.
 43. Cardounel AJ, Xia Y and Zweier JL. Endogenous methylarginines modulate superoxide as well as nitric oxide generation from neuronal nitric oxide synthase: differences in the effects of monomethyl‐ and dimethylarginines in the presence and absence of tetrahydrobiopterin. J Biol Chem 280: 7540–7549, 2005.
 44. Shang T, Kotamraju S, Kalivendi SV, Hillard CJ and Kalyanaraman B. 1‐Methyl‐4‐phenylpyridinium‐induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron‐dependent depletion of tetrahydrobiopterin and neuronal nitric‐oxide synthase‐derived superoxide. J Biol Chem 279: 19099–19112, 2004.
 45. Miller RT. Dinitrobenzene‐mediated production of peroxynitrite by neuronal nitric oxide synthase. Chem Res Toxicol 15: 927–934, 2002.
 46. Schulz JB, Matthews RT, Klockgether T, Dichgans J and Beal MF. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174: 193–197, 1997.
 47. Dawson VL and Dawson TM. Nitric oxide in neurodegeneration. Prog Brain Res 118: 215–229, 1998.
 48. Zanetti M, d'Uscio LV, Kovesdi I, Katusic ZS and O'Brien T. In vivo gene transfer of inducible nitric oxide synthase to carotid arteries from hypercholesterolemic rabbits. Stroke 34: 1293–1298, 2003.
 49. Huang A, Vita JA, Venema RC and Keaney JF, Jr. Ascorbic acid enhances endothelial nitric‐oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275: 17399–17406, 2000.
 50. Smith AR, Visioli F and Hagen TM. Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid. FASEB J 16: 1102–1104, 2002.
 51. Cosentino F and Katusic ZS. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91: 139–144, 1995.
 52. Shinozaki K, Kashiwagi A, Nishio Y, Okamura T, Yoshida Y, Masada M, Toda N and Kikkawa R. Abnormal biopterin metabolism is a major cause of impaired endothelium‐dependent relaxation through nitric oxide/O2− imbalance in insulin‐ resistant rat aorta. Diabetes 48: 2437–2445, 1999.
 53. Shinozaki K, Nishio Y, Okamura T, Yoshida Y, Maegawa H, Kojima H, Masada M, Toda N, Kikkawa R and Kashiwagi A. Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin‐resistant rats. Circ Res 87: 566–573, 2000.
 54. Bagi Z and Koller A. Lack of nitric oxide mediation of flow‐dependent arteriolar dilation in type 1 diabetes is restored by sepiapterin. J Vasc Res 40: 47–57, 2003.
 55. Ihlemann N, Rask‐Madsen C, Perner A, Dominguez H, Hermann T, Kober L and Torp‐Pedersen C. Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol 285: H875, 2003.
 56. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Lüscher T and Rabelink T. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99: 41–46, 1998.
 57. d'Uscio LV, Milstien S, Richardson D, Smith L and Katusic ZS. Long‐term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 92: 88–95, 2003.
 58. Gokce N, Keaney JF, Jr., Frei B, Holbrook M, Olesiak M, Zachariah BJ, Leeuwenburgh C, Heinecke JW and Vita JA. Long‐term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary atery disease. Circulation 99: 3234–3240, 1999.
 59. Lassegue B and Griendling KK. Reactive oxygen species in hypertension: an update. Am J Hypertens 17: 852–860, 2004.
 60. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE and Harrison DG. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111: 1201–1209, 2003.
 61. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T and Harrison DG. Endothelial regulation of vaso‐motion in apoE‐deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103: 1282–1288, 2001.
 62. Mayer B and Werner ER. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 351: 453–463, 1995.
 63. Tiefenbacher CP, Chilian WM, Mitchell M and DeFily DV. Restoration of endothelium‐dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation 94: 1423–1429, 1996.
 64. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N. Rockett KA and Channon KM. Tetrahydrobiopterin‐dependent preservation of nitric oxide‐mediated endothelial function in diabetes by targeted transgenic GTP‐cyclohydrolase I overexpression. J Clin Invest 1 12: 725–735, 2003.
 65. Alp NJ, McAteer MA, Khoo J, Choudhury RP and Channonr KM. In creased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP‐cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE‐knockout mice. Arterioscler Thromb Vasc Biol 24: 445–450, 2004.
 66. Pritchard KA, Jr., Ackerman AW, Gross ER, Stepp DW, Shi Y, Fontana JT, Baker JE and Sessa WC. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric‐oxide synthase. J Biol Chem 276: 17621–17624, 2001.
 67. Ou J, Ou Z, Ackerman AW, Oldham KT and Pritchard KA, Jr. Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity. Free Radic Biol Med 34: 269–276, 2003.
 68. Lin MI, Fulton D, Babbitt R, Fleming I, Busse R, Pritchard KA, Jr and Sessa WC. Phosphorylation of threonine 497 in endothelial nitric‐oxide synthase coordinates the coupling of L‐arginine metabolism to efficient nitric oxide production. J Biol Chem 278: 44719–44726, 2003.
 69. Fleming I, Mohamed A, Galle J, Turchanowa L, Brandes RP, Fisslthaler B and Busse R. Oxidized low density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCα. Cardiovasc Res 65: 897–906, 2005.
 70. Yuan Z, Liu B, Yuan L, Zhang Y, Dong X and Lu J. Evidence of nuclear localization of neuronal nitric oxide synthase in cultured astrocytes of rats. Life Sci 74: 3199–3209, 2004.
 71. Chang WJ, Iannaccone ST, Lau KS, Masters BS, Mccabe TJ, McMillan K, Padre RC, Spencer MJ, Tidball JG and Stull JT, Neuronal nitric oxide synthase and dystrophin‐deficient muscular dystrophy. Proc Natl Acad Sci USA 93: 9142–9147, 1996.
 72. Ponting CP, Phillips C, Davies KE and Blake DJ. PDZ domains: targeting signalling molecules to sub membranous sites. BioEssays 19: 469–479, 1997.
 73. Schepens J, Cuppen E, Wieringa B and Hendriks W. The neuronal nitric oxide synthase PDZ motif binds to ‐G(DE)XV* carboxyterminal sequences. FEBS Lett 409: 53–56, 1997.
 74. Sears CE, Ashley EA and Casadei B. Nitric oxide control of cardiac function: Is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond 359: 1021–1044, 2004.
 75. Damy T, Ratajczak P, Robidel E, Bendall JK, Oliviero P, Boczkowski J, Ebrahimian T, Marotte F, Samuel JL and Heymes C. Up‐regulation of cardiac nitric oxide synthase 1‐derived nitric oxide after myocardial infarction in senescent rats. FASEB J 17: 1934–1936, 2003.
 76. Webb JL, Harvey MW, Holden DW and Evans TJ. Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 69: 6391–6400. 2001.
 77. Stolz DB, Zamora R, Vodovotz Y, Loughran PA, Billiar TR, Kim YM, Simmons RL and Watkins SC. Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36: 81–93, 2002.
 78. Sessa WC, García‐Cardena G, Liu J, Keh A, Pollock JS, Bradley J, Thiru S, Braverman IM and Desai KM. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem 270: 17641–17644, 1995.
 79. O'Brien AJ, Young HM, Povey JM and Furness JB. Nitric oxide synthase is localized predominantly in the Golgi apparatus and cytoplasmic vesicles of vascular endothelial cells. Histochemistry 103: 221–225, 1995.
 80. Liu J, Hughes TE and Sessa WC. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol 137: 1525–1535, 1997.
 81. Hecker M, Mülsch A, Bassenge E, Förstermann U and Busse R. Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J 299: 247–252, 1994.
 82. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying YS, Anderson RGW and Michel T. Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae. J Biol Chem 271: 6518–6522, 1996.
 83. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA and Michel T. Endothelial nitric oxide synthase targeting to caveolae: specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271: 22810–22814, 1996.
 84. Liu J, García‐Cardena G and Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry 35: 13277–13281, 1996.
 85. García‐Cardena G, Oh P, Liu J, Schnitzer JE and Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93: 6448–6453, 1996.
 86. Segal SS, Brett SE and Sessa WC. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol Heart Circ Physiol 277: H1167–H1177, 1999.
 87. Feng Y, Venema VJ, Venema RC, Tsai N and Caldwell RB. VEGF induces nuclear translocation of Flk‐1/KDR, endothleial nitric oxide synthase, and caveolin‐1 in vascular endothleial cells. Biochem Biophys Res Commun 256: 192–197, 1999.
 88. Giordano A, Tonello C, Bulbarelli A, Cozzi V, Cinti S, Carruba MO and Nisoli E. Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Lett 514: 135–140, 2002.
 89. McNaughton L, Puttagunta L, Martinez‐Cuesta MA, Kneteman N, Mayers I, Moqbel R, Hamid Q and Radomski MW. Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci USA 99: 17161–17166, 2002.
 90. Fulton D, Fontana J, Sowa G, Gratton JP, Lin M, Li KX, Michell B, Kemp BE, Rodman D and Sessa WC. Localization of endothelial nitric‐oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J Biol Chem 277: 4277–4284, 2002.
 91. Robinson LJ, Busconi L and Michel T. Agonist‐modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem 270: 995–998, 1995.
 92. Liu J, García‐Cardena G and Sessa WC. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines‐15 and/or ‐26 argues against depalmitoylation‐induced translocation of the enzyme. Biochemistry 34: 12333–12340, 1995.
 93. Prabhakar P, Thatte HS, Goetz RM, Cho MR, Golan DE and Michel T. Receptor‐regulated translocation of endothelial nitric oxide synthase. J Biol Chem 273: 27383–27388, 1998.
 94. Reiner M, Bloch W and Addicks K. Functional interaction of caveolin‐1 and eNOS in myocardial capillary endothelium revealed by immunoelectron microscopy. J Histochem Cytochem 49: 1605–1610, 2001.
 95. Chatterjee S, Cao S, Peterson TE, Simari RD and Shah V. Inhibition of GTP‐dependent vesicle trafficking impairs internalization of plasmalemmal eNOS and cellular nitric oxide production. J Cell Sci 116: 3645–3655, 2003.
 96. Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Muller‐Esterl W and Icking A. Translocation of endothelial nitric‐oxide synthase involves a ternary complex with caveolin‐1 and NOSTRIN. Mol Biol Cell 17: 3870–3880. 2006.
 97. Gerzanich V, Ivanova S, Zhou H and Simard JM. Mislocalization of eNOS and upregulation of cerebral vascular Ca2+ channel activity in angiotensin‐hypertension. Hypertension 41: 1124–1130. 2003.
 98. Bauersachs J, Fleming I, Scholz D, Popp R and Busse R. Endothelium‐derived hyperpolarizing factor but not nitric oxide is reversibly inhibited by brefeldin A. Hypertension 30: 1598–1605, 1997.
 99. Blair A, Shaul PW, Yuhanna IS, Conrad PA and Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric‐oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274: 32512–32519, 1999.
 100. Feron O, Dessy C, Moniotte S, Desager JP and Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin invest 103: 897–905, 1999.
 101. Lungu AO, Jin ZG, Yamawaki H, Tanimoto T, Wong C and Berk BC. Cyclosporin A inhibits flow‐mediated activation of endothelial nitric oxide synthase by altering cholesterol content in caveolae. J Biol Chem 279: 48794–48800, 2004.
 102. Govers R, Der SP, Van Donselaar E, Slot JW and Rabelink TJ. Endothelial nitric oxide synthase and its negative regulator caveolin‐1 localize to distinct perinuclear organelles. J Histochem Cytochem 50: 779–788, 2002.
 103. Fulton D, Babbitt R, Zoellner S, Fontana J, Acevedo L, McCabe TJ, Iwakiri Y and Sessa WC. Targeting of endothelial nitric‐oxide synthase to the cytoplasmic face of the golgi complex or plasma membrane regulates Akt‐ versus calcium‐dependent mechanisms for nitric oxide release. J Biol Chem 279: 30349–30357, 2004.
 104. Gonzalez E, Kou R, Lin AJ, Golan DE and Michel T. Subcellular targeting and agonist‐induced site‐specific phosphorylation of eNOS. J Biol Chem, 2002.
 105. Daniel EE, Jury J and Wang YF nNOS in canine lower esophageal sphincter: colocalized with Cav‐1 and Ca2+‐handling proteins? Am J Physiol Gastrointest Liver Physiol 281: G1101–G1114, 2001.
 106. Sato Y, Sagami I and Shimizu T. Identification of caveolin‐1‐interacting sites in neuronal nitric oxide synthase: molecular mechanism for inhibition of NO formation. J Biol Chem 279: 8827–8836, 2004.
 107. Song KS, Scherer PE, Tang ZL, Okamoto T, Li SW, Chafel M, Chu C, Kohtz DS and Lisanti MP. Expression of caveolin‐3 in skeletal, cardiac, and smooth muscle cells: caveolin‐3 is a component of the sarcolemma and co‐ fractionates with dystrophin and dystrophin‐associated glycoproteins. J Biol Chem 271: 15160–15165, 1996.
 108. Venema VJ, Ju H, Zou R and Venema RC. Interaction of neuronal nitric‐oxide synthase with caveolin‐3 in skeletal muscle: Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272: 28187–28190, 1997.
 109. Sunada Y, Ohi H, Hase A, Ohi H, Hosono T, Arata S, Higuchi S, Matsumura K and Shimizu T. Transgenic mice expressing mutant caveolin‐3 show severe myopathy associated with increased nNOS activity. Hum Mol Genet 10: 173–178, 2001.
 110. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu ZQ, Huang F, Xia HH, Peters MF, Froehner SC and Bredt DS. Interaction of nitric oxide synthase with the postsynaptic density protein PSD‐95 and α1‐syntrophin mediated by PDZ domains. Cell 84: 757–767, 1996.
 111. Brenman JE, Christopherson KS, Craven SE, McGee AW and Bredt DS. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci 16: 7407–7415, 1996.
 112. Brenman JE, Chao DS, Xia H, Aldape K and Bredt DS. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 743–752, 1995.
 113. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA and Snyder SH. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20: 115–124, 1998.
 114. Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ and Snyder SH. Neuronal nitric‐oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc Natl Acad Sci USA 99: 3199–3204, 2002.
 115. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X and Snyder SH. Dexras I : a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28: 183–193, 2000.
 116. Jaffrey SR, Fang M and Snyder SH. Nitrosopeptide mapping: a novel methodology reveals S‐nitrosylation of dexrasl on a single cysteine residue. Chem Biol 9: 1329–1335, 2002.
 117. Jaffrey SR and Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274: 114–111, 1996.
 118. Rodriguez‐Crespo I, Straub W, Gavilanes F and Ortiz de Montellano PR. Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys 359: 297–304, 1998.
 119. Yu J, Yu L, Chen Z, Zheng L, Chen X, Wang X, Ren D and Zhao S. Protein inhibitor of neuronal nitric oxide synthase interacts with protein kinase A inhibitors. Brain Res Mol Brain Res 99: 145–149, 2002.
 120. Russwurm M, Wittau N and Koesling D. Guanylyl cyclase/PSD‐95 interaction: targeting of the nitric oxide‐sensitive α2β1 guanylyl cyclase to synaptic membranes. J Biol Chem 276: 44647–44652, 2001.
 121. Feussner M, Richter H, Baum O and Gossrau R. Association of soluble guanylate cyclase with the sarcolemma of mammalian skeletal muscle fibers. Acta Histochem 103: 265–277, 2001.
 122. Song Y, Zweier JL and Xia Y. Determination of the enhancing action of HSP90 on neuronal nitric oxide synthase by EPR spectroscopy. Am J Physiol Cell Physiol 281: C1819–C1824, 2001.
 123. Song Y, Zweier JL and Xia Y. Heat‐shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding. Biochem J 355: 357–360, 2001.
 124. Song Y, Cardounel AJ, Zweier JL and Xia Y. Inhibition of superoxide generation from neuronal nitric oxide synthase by heat shock protein 90: implications in NOS regulation. Biochemistry 41: 10616–10622, 2002.
 125. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE and Hare JM. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation‐contraction coupling. Proc Natl Acad Sci USA 101: 15944–15948, 2004.
 126. Dedio J, Konig P, Wohlfart P, Schroeder C, Kummer W and Müller‐Esterl W. NOSIP. a novel modulator of endothelial nitric oxide synthase activity. FASEB J 15: 79–89, 2001.
 127. Dreyer J, Schleicher M, Tappe A, Schilling K, Kuner T, Kusumawidijaja G. Muller‐Esterl W, Oess S and Kuner R. Nitric‐oxide synthase (NOS)‐interacting protein interacts with neuronal NOS and regulates its distribution and activity. J Neurosci 24: 10454–10465, 2004.
 128. Dreyer J, Hirlinger D, Muller‐Esterl W, Oess S and Kuner R. Spinal upregulation of the nitric oxide synthase‐interacting protein NOSIP in a rat model of inflammatory pain. Neurosci Lett 350: 13–16, 2003.
 129. Zhang W, Kuncewicz T, Yu ZY, Zou L, Xu X and Kone BC. Protein‐protein interactions involving inducible nitric oxide synthase. Acta Physiol Scand 179: 137–142, 2003.
 130. Crane BR, Arvai AS, Ghosh DK, Wu CQ, Getzoff ED, Stuehr DJ and Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121–2126, 1998.
 131. García‐Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP and Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272: 25437–25440, 1997.
 132. Felley‐Bosco E, Bender FC, Courjault‐Gautier F, Bron C and Quest AF. Caveolin‐1 down‐regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci USA 97: 14334–14339, 2000.
 133. Glynne PA, Darling KE, Picot J and Evans TJ. Epithelial inducible nitric‐oxide synthase is an apical EBP50‐binding protein that directs vectorial nitric oxide output. J Biol Chem 277: 33132–33138, 2002.
 134. Ratovitski EA, Bao C, Quick RA, McMillan A, Kozlovsky C and Lowenstein CJ. An inducible nitric oxide synthase (NOS)‐associated protein inhibits NOS dimerisation and activity. J Biol Chem 274: 30250–30257, 1999.
 135. Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA and Lowenstein CJ. Kalirin inhibition of inducible nitric‐oxide synthase. J Biol Chem 274: 993–999, 1999.
 136. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE and Busse R. Phosphorylation of Thr495 regulates Ca2+/calmodulin‐dependent endothelial nitric oxide synthase activity. Circ Res 88: e68–e75, 2001.
 137. Aoyagi M, Arvai AS, Tainer JA and Getzoff ED. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22: 766–775, 2003.
 138. Gratton J‐P, Fontana J, O'Connor DS, García‐Cardena G, Mccabe TJ and Sessa WC Reconstitution of an endothelial nitric oxide synthase. hsp90 and caveolin‐1 complex in vitro: evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin‐1. J Biol Chem. 2000.
 139. Greif DM, Sacks DB and Michel T. Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. Proc Natl Acad Sci USA 101: 1165–1170, 2004.
 140. Lisanti MP, Scherer PE, Tang Z and Sargiacomo M. Caveolae, caveolin and caveolin‐rich membrane domains: a signalling hypothesis. Trends Cell Biol 4: 231–235, 1994.
 141. Rothberg KG, Heuser JE, Donzell WC, Ying Y‐S, Glenney JR and Anderson RGW. Caveolin. a protein component of caveolae membrane coats. Cell 68: 673–682, 1992.
 142. Okamoto T, Schlegel A, Scherer PE and Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273: 5419–5422, 1998.
 143. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G and Sessa WC. In vivo delivery of the caveolin‐1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6: 1362–1367, 2000.
 144. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H and Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin‐1 gene‐disrupted mice. Science 293; 2449–2452, 2001.
 145. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Jr., Kneitz B, Lagaud G, Christ GJ, Edelmann W and Lisanti MP. Caveolin‐1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276: 38121–38138, 2001.
 146. Caplan AJ. Hsp90's secrets unfold: new insights from structural and functional studies. Trends Cell Biol 9: 262–268, 1999.
 147. Billecke SS, Bender AT, Kanelakis KC, Murphy PJ, Lowe ER, Kamada Y, Pratt WB and Osawa Y. HSP90 is required for heme binding and activation of APO‐neuronal nitric‐oxide synthatse: Geldanamycin‐mediated oxidant generation is unrelated to any action of HSP90. J Biol Chem, 2002.
 148. García‐Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A and Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 292: 821–824, 1998.
 149. Russell KS, Haynes MP, Caulin‐Glaser T, Rosneck J, Sessa WC and Bender JR. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release. J Biol Chem 275: 5026–5030, 2000.
 150. Harris MB, Ju H, Venema VJ, Blackstone M and Venema RC. Role of heat shock protein 90 in bradykinin‐stimulated endothelial nitric oxide release. Gen Pharmacol 35: 165–170, 2000.
 151. Fontana J, Fulton D, Chen Y, Fairchild TA, Mccabe TJ, Fujita N, Tsuruo T and Sessa WC. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt‐dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90: 866–873, 2002.
 152. Jiang J, Cyr D, Babbitt RW, Sessa WC and Patterson C. Chaperone‐dependent regulation of endothelial nitric oxide synthase intracellular trafficking by the co‐chaperone/ubiquitin ligase CHIP. J Biol Chem 278: 49332–49341, 2003.
 153. Lin LY, Lin CY, Su TC and Liau CS. Angiotensin II‐induced apoptosis in human endothelial cells is inhibited by adiponectin through restoration of the association between endothelial nitric oxide synthase and heat shock protein 90. FEBS Lett 574: 106–110, 2004.
 154. Lin LY, Lin CY, Ho FM and Liau CS. Up‐regulation of the association between heat shock protein 90 and endothelial nitric oxide synthase prevents high glucose‐induced apoptosis in human endothelial cells. J Cell Biochem 94: 194–201, 2005.
 155. Shah V, Wiest R, García‐Cardena G, Cadelina G, Groszmann RJ and Sessa WC. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol 277: G463–G468, 1999.
 156. Murata T, Sato K, Hori M, Ozaki H and Karaki H. Decreased eNOS activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia‐induced pulmonary hypertension. J Biol Chem. 2002.
 157. Zabel U, Hausler C, Weeger M and Schmidt HH. Homodimerization of soluble guanylyl cyclase subunits. Dimerization analysis using a glutathione s‐transferase affinity tag. J Biol Chem 174: 18149–18152, 1999.
 158. Venema RC, Venema VJ, Ju H, Harris MB, Snead C, Jilling T, Dimitropoulou C, Maragoudakis ME and Catravas JD. Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase. Am J Physiol Heart Circ Physiol 285: H669–H678, 2003.
 159. Chatterjee S, Cao S, Peterson TE, Simari RD and Shah V. Inhibition of GTP‐dependent vesicle trafficking impairs internalization of plasmalemmal eNOS and cellular nitric oxide production. J Cell Sci 116: 3645–3655, 2003.
 160. Cao S, Yao J, Mccabe TJ, Yao Q, Katusic ZS, Sessa WC and Shah V. Direct interaction between endothelial nitric‐oxide synthase and dynamin‐2. Implications for nitric‐oxide synthase function. J Biol Chem 276: 14249–14256, 2001.
 161. Cao S, Yao J and Shah V. The proline‐rich domain of dynamin‐2 is responsible for dynamin‐dependent in vitro potentiation of endothelial nitric‐oxide synthase activity via selective effects on reductase domain function. J Biol Chem 278: 5894–5901, 2003.
 162. Ju H, Venema VJ, Marrero MB and Venema RC. Inhibitiory interactions of the bradykinin B2 receptor with endothelial nitric oxide synthase. J Biol Chem 273: 24025–24029, 1998.
 163. Marrero MB, Venema VJ, Ju H, He H, Liang H, Caldwell RB and Venema RC. Endothelial nitric oxide synthase interactions with G‐protein‐coupled receptors. Biochem J 343: 335–340, 1999.
 164. Golser R, Gorren ACF, Leber A, Andrew P, Habisch H‐J, Werner ER, Schmidt K, Venema RC and Mayer B. Interaction of endothelial and neuronal nitric oxide synthases with the bradykinin B2 receptor. Binding of an inhibitory peptide to the oxygenase domain blocks uncoupled NADPH oxidation. J Biol Chem 275: 5291–5296, 2000.
 165. Su Y, Edwards‐Bennett S, Bubb MR and Block ER. Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284: C1542, 2003.
 166. Govers R, Bevers L, de Bree P and Rabelink TJ. Endothelial nitric oxide synthase activity is linked to its presence at cell‐cell contacts. Biochem J 361: 193–201, 2002.
 167. Sun J and Liao JK. Functional interaction of endothelial nitric oxide synthase with a voltage‐dependent anion channel. Proc Natl Acad Sci USA 99: 13108–13113, 2002.
 168. Zimmermann K, Opitz N, Dedio J, Renne C, Müller‐Esterl W and Oess S. NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 99: 17167–17172, 2002.
 169. Bredt DS, Ferris CD and Snyder SH. Nitric oxide synthase regulatory sites. J Biol Chem 267: 10976–10984, 1992.
 170. Dinerman JL, Steiner JP, Dawson TM, Dawson V and Snyder SH. Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. Neuropharmacology 33: 1245–1251, 1994.
 171. Zoche M, Beyermann M and Koch KW. Introduction of a phosphate at serine741 of the calmodulin‐binding domain of the neuronal nitric oxide synthase (NOS‐I) prevents binding of calmodulin. Biol Chem 378: 851–857, 1997.
 172. Hayashi Y, Nishio M, Naito Y, Yokokura Y, Hidaka H and Watanabe Y Regulation of neuronal nitric‐oxide synthase by calmodulin kinases. J Biol Chem 274: 20597–20602, 1999.
 173. Komeima K, Hayashi Y, Naito Y and Watanabe Y. Inhibition of neuronal nitric‐oxide synthase by calcium/calmodulin‐dependent protein kinase IIα through Ser847 phosphorylation in NG108‐15 neuronal cells. J Biol Chem 275: 28139–28143, 2000.
 174. Osuka K, Watanabe Y, Usuda N, Nakazawa A, Fukunaga K, Miyamoto E, Takayasu M, Tokuda M and Yoshida J. Phosphorylation of neuronal nitric oxide synthase at SerS47 by CaM‐KII in the hippocampus of rat brain after transient forebrain ischemia. J Cereb Blood Flow Metab 22: 1098–1106, 2002.
 175. Watanabe Y, Song T, Sugimoto K, Horii M, Araki N, Tokumitsu H, Tezuka T, Yamamoto T and Tokuda M. Post‐synaptic density‐95 promotes calcium/calmodulin‐dependent protein kinase II‐mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372: 465–471, 2003.
 176. Yan XB, Song B and Zhang GY. Postsynaptic density protein 95 mediates Ca2+/calmodulin‐dependent protein kinase Il‐activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 355: 197–200, 2004.
 177. Agostino PV, Ferreyra GA, Murad AD, Watanabe Y and Golombek DA. Diurnal, circadian and photic regulation of calcium/calmodulin‐dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem Int 44: 617–625, 2004.
 178. Golombek DA, Agostino PV, Plano SA and Ferreyra GA. Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem Int 45: 929–936, 2004.
 179. Rameau GA, Chiu LY and Ziff EB. Bidirectional regulation of neuronal nitric‐oxide synthase phosphorylation at Serine 847 by the N‐methyl‐D‐aspartate receptor. J Biol Chem 279: 14307–14314, 2004.
 180. Song T, Hatano N, Horii M, Tokumitsu H, Yamaguchi F, Tokuda M and Watanabe Y Calcium/calmodulin‐dependent protein kinase I inhibits neuronal nitric‐oxide synthase activity through serine 741 phosphorylation. FEBS Lett 570: 133–137, 2004.
 181. Silvagno F, Xia H and Bredt DS. Neuronal nitric‐oxide synthase‐μ. an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 271: 11204–11208, 1996.
 182. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ and Kemp BE. AMPK signaling in contracting human skeletal muscle: acetyl‐CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279: E1202–E1206, 2000.
 183. Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE and McConell GK. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282: E688–E694, 2002.
 184. Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, Kemp BE and McConell GK. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52: 2205–2212, 2003.
 185. Colasanti M, Persichini T, Cavalieri E, Fabrizi C, Mariotto S, Menegazzi M, Lauro GM and Suzuki H. Rapid inactivation of NOS‐I by lipopolysaccharide plus interferon‐gamma‐induced tyrosine phosphorylation. J Biol Chem 274: 9915–9917, 1998.
 186. Cordelier P, Esteve JP, Rivard N, Marietta M, Vaysse N, Susini C and Buscail L. The activation of neuronal NO synthase is mediated by G‐protein subunit and the tyrosine phosphatase SHP‐2. FASEB J 13: 2037–2050, 1999.
 187. Lopez F, Ferjoux G, Cordelier P, Saint‐Laurent N, Esteve JP, Vaysse N, Buscail L and Susini C. Neuronal nitric oxide synthase: a substrate for SHP‐1 involved in sst2 somatostatin receptor growth inhibitory signaling. FASEB J 15: 2300–2302, 2001.
 188. Aktan F. iNOS‐mediated nitric oxide production and its regulation. Life Sci 75: 639–653, 2004.
 189. Salh B, Wagey R, Marotta A, Tao JS and Pelech S. Activation of phosphatidylinositol 3‐kinase, protein kinase B. and p70 S6 kinases in lipopolysaccharide‐stimulated raw 264.7 cells: differential effects of rapamycin. LY294002. and wortmannin on nitric oxide production. J Immunol 161: 6947–6954, 1998.
 190. Pan JM, Burgher KL, Szczepanik AM and Ringheim GE. Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post‐translational regulation. Biochem J 314: 889–894, 1996.
 191. Fleming I, Bauersachs J, Fisslthaler B and Busse R. Ca2+‐independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 82: 686–695, 1998.
 192. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R and Corson MA. Identification of flow‐dependent endothelial nitric oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3‐kinase inhibitor LY294002. J Biol Chem 274: 30101–30108, 1999.
 193. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J and Jo H. Shear stress stimulates phosphorylation of endothelial nitric‐oxide synthase at Ser1179 by Akt‐independent mechanisms: role of protein kinase A. J Biol Chem 277: 3388–3396, 2002.
 194. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales‐Ruiz M, Sessa WC and Bender JR. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the P13‐kinase‐Akt pathway in human endothelial cells. Circ Res 87: 677–682, 2000.
 195. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT and Kemp BE. Coordinated control of endothelial nitric‐oxide synthase phosphorylation by protein kinase C and the cAMP‐dependent protein kinase. J Biol Chem 276: 17625–17628, 2001.
 196. Kim F, Gallis B and Corson MA. TNF‐alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol 280: C1057–C1065, 2001.
 197. Schneider JC, El Kebir D, Chereau C, Lanone S, Huang XL, Buys Roessingh AS, Mercier JC, Dall'Ava‐Santucci J and Dinh‐Xuan AT. Involvement of Ca2+/calmodulin‐dependent protein kinase II in endothelial NO production and endothelium‐dependent relaxation. Am J Physiol Heart Circ Physiol 284: H2311–H2319, 2003.
 198. Mccabe TJ, Fulton D, Roman LJ and Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium‐independent” eNOS activation by phosphorylation. J Biol Chem 275: 6123–6128. 2000.
 199. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C and Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108: 1341–1348, 2001.
 200. Xu B, Chibber R, Ruggerio D, Kohner E, Ritter J and Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J 17: 1289–1291, 2003.
 201. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G and Lauro R. Insulin‐dependent activation of endothelial nitric oxide synthase is impaired by O‐linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106: 466–472, 2002.
 202. Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE and Lohmann SM. Schmidt HHHW. Endothelial nitric‐oxide synthase (Type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide‐dependent protein kinases. J Biol Chem 275: 5179–5187, 2000.
 203. Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H and Jo H. Shear stress stimulates phosphorylation of eNOS at Ser635 by a protein kinase A‐dependent mechanism. Am J Physiol Heart Circ Physiol 283: H1819–H1828, 2002.
 204. Michell BJ, Harris MB, Chen Z, Ju H, Venema VJ, Blackstone MA, Huang W, Venema RC and Kemp BE. Identification of regulatory sites of phosphorylation of the bovine endothelial nitric‐oxide synthase at serine 617 and serine 635. J Biol Chem 277: 42344, 2002.
 205. Bauer PM, Fulton D, Boo YC, Sorescu GP, Kemp BE, Jo H and Sessa WC. Compensatory phosphorylation and protein‐protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric oxide synthase. J Biol Chem, 2003.
 206. Kou R, Prabhakar P and Michel T. Phosphorylation of the endothelial isoform of nitric oxide synthase at serine 116: identification of a novel path for eNOS regulation by lysophosphatidic acid. Circulation 104: 509, 2001.
 207. Kou R, Greif D and Michel T. Dephosphorylation of endothelial nitric oxide synthase by vascular endothelial growth factor: Implications for the vascular responses to cyclosporin A. J Biol Chem, 2002.
 208. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen Z‐P, Kemp BE and Venema RC. Reciprocal phosphorylation and regulation of the endothelial nitric oxide synthase in response to bradykinin stimulation. J Biol Chem 19: 16587–16591, 2001.
 209. Matsubara M, Titani K and Taniguchi H. Interaction of calmodulin‐binding domain peptides of nitric oxide synthase with membrane phospholipids: regulation by protein phosphorylation and Ca2+‐calmodulin. Biochemistry 35: 14651–14658, 1996.
 210. Davda RK, Chandler LJ and Guzman NJ. Protein kinase C modulates receptor‐independent activation of endothelial nitric oxide synthase. Eur J Pharmacol 266: 237–244, 1994.
 211. Hirata K, Kuroda R, Sakoda T, Katayama M, Inoue N, Suematsu M, Kawashima S and Yokoyama M. Inhibition of endothelial nitric‐oxide synthase activity by protein kinase C. Hypertension 25: 180–185, 1995.
 212. Lenasi H, Kohlstedt K, Fichtlscherer B, Mülsch A, Busse R and Fleming I. Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr493. Cardiovasc Res 59: 844–853, 2003.
 213. Zhang J, Baines CP, Zong C, Cardwell EM, Wang G, Vondriska TM and Ping P. Functional proteomic analysis of a three‐tier PKCot‐Akt‐eNOS signaling module in cardiac protection. Am J Physiol Heart Circ Physiol 288: H954–H961, 2005.
 214. Partovian C, Zhuang Z, Moodie K, Lin M, Ouchi N, Sessa WC, Walsh K and Simons M. PKCα activates eNOS and increases arterial blood flow in vivo. Circ Res 97: 482–487, 2005.
 215. Motley ED, Eguchi K, Patterson MM, Palmer PD, Suzuki H and Eguchi S. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertension 49: 577–583, 2007.
 216. Naruse K, Rask‐Madsen C, Takahara N, Ha S‐w. Suzuma K, Way KJ, Jacobs JRC, Clermont AC, Ueki K, Ohshiro Y. Zhang J, Goldfine AB and King GL. Activation of vascular protein kinase C‐β inhibits Akt‐dependent endothelial nitric oxide synthase function in obesity‐associated insulin resistance. Diabetes 55: 691–698, 2006.
 217. Chu S and Bohlen HG. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am J Physiol Renal Physiol 287: F384–F392, 2004.
 218. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Förstermann U and Münzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88: E14–E22, 2001.
 219. Beckman JA, Goldfine AB, Gordon MB, Garrett LA and Creager MA. Inhibition of protein kinase Cβ prevents impaired endothelium‐dependent vasodilation caused by hyperglycemia in humans. Circ Res 90: 107–111, 2002.
 220. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R and Channon KM. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105: 1656–1662, 2002.
 221. Lagaud GJ, Masih‐Khan E, Kai S, van Breemen C and Dube GP. Influence of type II diabetes on arterial tone and endothelial function in murine mesenteric resistance arteries. J Vasc Res 38: 578–589, 2001.
 222. Cosentino F, Eto M, De Paolis P, van der LB, Bachschmid M, Ullrich V, Kouroedov A, delli GC, Joch H, Volpe M and Luscher TF. High glucose causes upregulation of cyclooxygenase‐2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107: 1017–1023, 2003.
 223. Fleming I, Bara A and Busse R. Calcium signalling and autacoid production in endothelial cells are modulated by changes in tyrosine kinase and phosphatase activity. J Vasc Res 33: 225–234, 1996.
 224. Takenouchi Y, Oo ML, Senga T, Watanabe Y, Machida K, Miyazaki K, Nimura Y and Hamaguchi M. Tyrosine phosphorylation of NOS3 in a breast cancer cell line and Src‐transformed cells. Oncol Rep 11: 1059–1062, 2004.
 225. Ayajiki K, Kindermann M, Hecker M, Fleming I and Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress‐induced nitric oxide production in native endothelial cells. Circ Res 78: 750–758, 1996.
 226. Corson MA, James NL, Latta SE, Nerem RM, Berk BC and Harrison DG. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79: 984–991, 1996.
 227. Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S and Shyy JYJ. Mechanotransduction in response to shear stress: roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274: 18393–18400, 1999.
 228. Busse R and Fleming I. Regulation of endothelium‐derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24: 24–29, 2003.
 229. Fleming I, Fisslthaler B and Busse R. Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. J Biol Chem 271: 11009–11015, 1996.
 230. Fleming I and Busse R. Tyrosine phosphorylation and bradykinin‐induced signaling in endothelial cells. Am J Cardiol 80: 102A–109A, 1997.
 231. Papapetropoulos A, Fulton D, Lin MI, Fontana J, McCabe TJ, Zoellner S, García‐Cardena G, Zhou Z, Gratton JP and Sessa WC. Vanadate is a potent activator of endothelial nitric oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90‐kDa heat shock protein. Mol Pharmacol 65: 407–415, 2004.
 232. García‐Cardena G, Fan G, Stern DF, Liu J and Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin‐1. J Biol Chem 271: 27237–27240, 1996.
 233. Fulton D, Church JE, Ruan L, Li C, Sood SG, Kemp BE, Jennings IG and Venema RC. Src kinase activates endothelial nitric‐oxide synthase by phosphorylating Tyr‐83. J Biol Chem 280: 35943–35952, 2005.
 234. Fisslthaler B, Dimmeler S, Hermann C, Busse R and Fleming I. Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168: 81–88, 2000.
 235. Fisslthaler B, Mohamed A, Loot A, Busse R and Fleming I. Tyrosine phosphorylation of the nitric oxide synthase by PYK2 attenuates enzyme activity. Nitric Oxide 14: 77, 2006.
 236. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F and Ruth P. Regulation of intracellular calcium by a signalling complex of IRAG. TP3 receptor and cGMP kinase Ibeta. Nature 404: 197–201, 2000.
 237. Fritsch RM, Saur D, Kurjak M, Oesterle D, Schlossmann J, Geiselhoringer A, Hofmann F and Allescher HD. InsP3R‐associated cGMP kinase substrate (IRAG) is essential for nitric oxide‐induced inhibition of calcium signaling in human colonic smooth muscle. J Biol Chem. 2004, M313365200.
 238. Plane F, Wiley KE, Jeremy JY, Cohen RA and Garland CJ. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 123: 1351–1358, 1998.
 239. Dudzinski DM, Igarashi J, Greif D and Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46: 235–276, 2006.
 240. Handy DE and Loscalzo J. Nitric oxide and posttranslational modification of the vascular proteome: S‐nitrosation of reactive thiols. Arterioscler Thromb Vasc Biol 26: 1207–1214, 2006.
 241. Mannick JB. Regulation of apoptosis by protein 5‐nitrosylation. Amino Acids 32: 523–526, 2007.
 242. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C and Cohen RA. S‐Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10: 1200–1207, 2004.
 243. Barrett DM, Black SM, Todor H, Schmidt‐Ullrich RK, Dawson KS and Mikkelsen RB. Inhibition of protein‐tyrosine phosphatases by mild oxidative stresses is dependent on S‐nitrosylation. J Biol Chem 280: 14453–14461, 2005.
 244. Park HS, Yu JW, Cho JH, Kim MS, Huh SH, Ryoo K and Choi EJ. Inhibition of apoptosis signal‐regulating kinase 1 by nitric oxide through a thiol redox mechanism. J Biol Chem 279: 7584–7590. 2004.
 245. Park HS, Huh SH, Kim MS, Lee SH and Choi EJ. Nitric oxide negatively regulates c‐Jun N‐terminal kinase/stress‐activated protein kinase by means of S‐nitrosylation. Proc Natl Acad Sci USA 97: 14382–14387, 2000.
 246. Clavreul N, Adachi T, Pimental DR, Ido Y, Sehoneich C and Cohen RA. S‐glutathiolation by peroxynitrite of p21ras at cysteine‐118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J 20: 518–520, 2006.
 247. Hammoud L, Xiang F, Lu X, Brunner F, Leco K and Feng Q. Endothelial nitric oxide synthase promotes neonatal cardiomyocyte proliferation by inhibiting tissue inhibitor of metalloproteinase‐3 expression. Cardiovasc Res 75: 359–368, 2007.
 248. Carver DJ, Gaston B, deRonde K and Palmer LA. Akt‐mediated activation of HIF‐1 in pulmonary vascular endothelial cells by S‐nitrosoglutathione. Am J Respir Cell Mol Biol. 2007, 2006‐0289SM.
 249. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O'Rourke B. Lowenstein JM, Pevsner J, Wagner DD and Lowenstein CJ. Nitric oxide regulates exocytosis by S‐nitrosylation of N‐ethylmaleimide‐sensitive factor. Cell 115: 139–150, 2003.
 250. Xu L, Eu JP, Meissner G and Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly‐S‐nitrosylation. Science 279: 234–237, 1998.
 251. Seiemidis S, Dusting GJ, Peshavariya H, Kemp‐Harper BK and Drummond GR. Nitric oxide suppresses NADPH oxidase‐dependent superoxide production by S‐nitrosylation in human endothelial cells. Cardiovasc Res 75: 349–358, 2007.
 252. Singel DJ and Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S‐nitrosohemoglobin. Annu Rev Physiol 67: 99–145, 2005.
 253. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH and Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S‐nitrosylation and protein trafficking. Proc Natl Acad Sci USA 103: 19777–19782, 2006.
 254. Zou AP, Imig JD, Kaldunski M, Ortiz de Montellano PR, Sui Z and Roman RJ. Inhibition of renal vascular 20‐HETE production impairs autoregulation of renal blood flow. Am J Physiol 266: F275–F282, 1994.
 255. Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, Narayanan J, Falck JR, Okamoto H, Roman RJ, Nithipatikom K, Campbell WB and Harder DR. Production of 20‐HETE and its role in autoregulation of cerebral blood flow. Circ Res 87: 60–65, 2000.
 256. Wang MH, Zhang F, Marji J, Zand BA, Nasjletti A and Laniado‐Schwartzman M. CYP4A1 antisense oligonucleotide reduces mesenteric vascular reactivity and blood pressure in SHR. Am J Physiol Regul Integr Comp Physiol 280: R255–R261, 2001.
 257. Fleming I. Cytochrome P450 and vascular homeostasis. Circ Res 89: 753–762, 2001.
 258. Capdevila JH and Falck JR. The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun 285: 571–576, 2001.
 259. Roman RJ. P‐450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82: 131–185, 2002.
 260. Harder DR, Lange AR, Gebremedhin D, Birks EK and Roman RJ. Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 34: 237–243, 1997.
 261. Randriamboavonjy V, Busse R and Fleming I. 20‐HETE‐induced contraction of small coronary arteries depends on the activation of Rho‐kinase. Hypertension 41: 801–806, 2003.
 262. Lopez B, Moreno C, Salom MG, Roman RJ and Fenoy FJ. Role of guanylyl cyclase and cytochrome P‐450 on renal response to nitric oxide. Am J Physiol Renal Physiol 281: F420–F427, 2001.
 263. Alonso‐Galicia M, Drummond HA, Reddy KK, Falck JR and Roman RJ. Inhibition of 20‐HETE production contributes to the vascular responses to nitric oxide. Hypertension 29: 320–325, 1997.
 264. Sun CW, Falck JR, Okamoto H, Harder DR and Roman RJ. Role of cGMP versus 20‐HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am J Physiol Heart Circ Physiol 279: H339–H350, 2000.
 265. Boulanger CM, Heymes C, Benessiano J, Geske RS, Levy BI and Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83: 1271–1278, 1998.
 266. Brophy CM, Knoepp L, Xin J and Pollock JS. Functional expression of NOS 1 in vascular smooth muscle. Am J Physiol Heart Circ Physiol 278: H991–H997, 2000.
 267. Huang A, Sun D, Shesely EG, Levee EM, Koller A and Kaley G. Neuronal NOS‐dependent dilation to flow in coronary arteries of male eNOS‐KO mice. Am J Physiol Heart Circ Physiol 282: H429–H436, 2002.
 268. Schuh K, Uldrijan S, Telkamp M, Rothlein N and Neyses L. The plasmamembrane calmodulin‐dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155: 201–205, 2001.
 269. Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN and Husain M. Plasma membrane calcium ATPase over‐expression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res 93: 614–621, 2003.
 270. Fleming I. Brain in the brawn: the neuronal nitric oxide synthase as a regulator of myogenic tone. Circ Res 93: 586–588, 2003.
 271. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA and Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242, 1995.
 272. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC and Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93: 13176–13181, 1996.
 273. Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y and Yokoyama M. Hypotension and reduced nitric oxide‐elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102: 2061–2071, 1999.
 274. Ortiz PA and Garvin JL. Cardiovascular and renal control in NOS‐deficient mouse models. Am J Physiol Regul Integr Comp Physiol 284: R628–R638, 2003.
 275. Kurihara N, Alfie ME, Sigmon DH, Rhaleb NE, Shesely EG and Carretero OA. Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension 32: 856–861, 1998.
 276. Fleming I, Gray GA, Julou‐Schaeffer G, Parratt JR and Stoclet J‐C. Incubation with endotoxin activates the L‐arginine pathway in vascular tissue. Biochem Biophys Res Commun 171: 562–568, 1990.
 277. Julou‐Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR and Stoclet J‐C. Loss of vascular responsiveness induced by endotoxin involves the L‐arginine pathway. Am J Physiol 259: H1038–H1043, 1990.
 278. Thiemermann C and Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182: 591–595, 1990.
 279. Ann S and Timothy RB. Inducible nitric oxide synthase: from cloning to therapeutic applications. World J Surg 26: 772–778, 2002.
 280. Wallerath T, Gath I, Aulitzky WE, Pollock JS, Kleinen H and Förstermann U. Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 77: 163–167, 1997.
 281. Berkels R, Bertsch A, Zuther T, Dhein S, Stockklauser K, Rosen P and Rosen R. Evidence for a NO synthase in porcine platelets which is stimulated during activation/aggregation. Eur J Haematol 58: 307–313, 1997.
 282. Gambaryan S, Kobsar A, Hartmann S, Burschmann I, Kuhllencordt PJ, Müller‐Esterl W, Lohmann SM and Walter U. NO‐synthase‐/NO‐independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemostasis 2008 (In Press).
 283. Fisslthaler B, Benzing T, Busse R and Fleming I. Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP‐1. Nitric Oxide 8: 253–261, 2003.
 284. Randriamboavonjy V, Schrader J, Busse R and Fleming I. Insulin induces the release of vasodilator compounds from platelets by a nitric oxide‐G kinase‐VAMP‐3‐dependent pathway. J Exp Med 199: 347–356, 2004.
 285. Trovati M, Massucco P, Mattiello L, Piretto V, Cavalot F, Mularoni E and Anfossi G. The insulin‐induced increase of guano‐sine‐3′,5′‐cyclic monophosphate in human platelets is mediated by nitric oxide. Diabetes 45: 768–770, 1996.
 286. Rao GH, Krishnamurthi S, Raij L and White JG. Influence of nitric oxide on agonist‐mediated calcium mobilization in platelets. Biochem Med Metab Biol 43: 271–275, 1990.
 287. Fleming I, Schulz C, Fichtlscherer B, Kemp BE, Fisslthaler B and Busse R. AMP‐activated protein kinase (AMPK) regulates the insulin‐induced activation of the nitric oxide synthase in human platelets. Thromb Haemost 90: 863–867, 2003.
 288. Lantoine F, Brunnet A, Bedioui F, Devnck J and Devynck M‐A. Direct measurement of nitric oxide production in platelets: relationship with cytosolic Ca2+ concentration. Biochem Biophys Res Commun 215: 842–848, 1995.
 289. Guibert C, Loirand G, Vigne P, Savineau JP and Pacaud P. Dependence of P2‐nucleotide receptor agonist‐mediated endothelium‐independent relaxation on ectonucleotidase activity and A2A‐receptors in rat portal vein. Br J Pharmacol 123: 1732–1740, 1998.
 290. Coade SB and Pearson JD. Metabolism of adenine nucleotides in human blood. Circ Res 65: 531–537, 1989.
 291. Erga KS, Seubert CN, Liang HX, Wu L, Shryock JC and Belardinelli L. Role of A2A‐adenosine receptor activation for ATP‐mediated coronary vasodilation in guinea‐pig isolated heart. Br J Pharmacol 130: 1065–1075, 2000.
 292. Abbink‐Zandbergen EJ, Vervoort G, Tack CJ, Lutterman JA, Schaper NC and Smits P. The role of adenosine in insulin‐induced vasodilation. J Cardiovasc Pharmacol 34: 374–380, 1999.
 293. De Caterina R, Libby P, Peng H‐B, Thannickal VJ, Rajavashisth TB, Gimbrone MA, Shin WS and Liao JK. Nitric oxide decreases cytokine‐induced endothelial activation. J Clin Invest 96: 60–68, 1995.
 294. Spiecker M, Darius H, Kaboth K, Hubner F and Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 63: 732–739, 1998.
 295. Rösen P, Schwippert P, Kaufman B and Tschope D. Expression of adhesion molecules on the surface of activated platelets is diminished by PGI2‐analogues and an NO (EDRF)‐donor: a comparison between platelets of healthy subjects and diabetic subjects. Platelets 11: 42–57, 1994.
 296. Gauthier TW, Davenpeck KL and Lefer AM. Nitric oxide attenuates leukocyte and endothelial interaction via P‐selectin in splanchnic ischemia‐reperfusion. Am J Physiol 267: G562–G568, 1994.
 297. Biffl WL, Moore EE, Moore FA and Barnett C. Nitric oxide reduces endothelial expression of intercellular adhesion molecule (ICAM)‐1. J Surg Res 63: 328–332, 1996.
 298. Khan BV, Harrison DG, Olbrych MT, Alexander RW and Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox‐sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93: 9114–9119, 1996.
 299. Zeiher AM, Fisslthaler B, Schray‐Utz B and Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76: 980–986, 1995.
 300. Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I and Salvetti A. Defective L‐arginine‐nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94: 1298–1303, 1996.
 301. Zeiher AM, Drexler H, Wollschläger H and Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 84: 1984–1992, 1991.
 302. Egashira K, Inou T, Hirooka Y, Yamada A, Maruoka Y, Kai H, Sugimachi M, Suzuki S and Takeshita A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 91: 29–37, 1993.
 303. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y and Takeshita A. Evidence of impaired endothelium‐dependent coronary vasodilation in patients with angina pectoris and normal angiograms. N Engl J Med 328: 1659–1664, 1993.
 304. Reddy KG, Nair RN, Sheehan HM and Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 23: 833–843, 1994.
 305. Ghafourifar P and Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26: 190–195, 2005.
 306. Giulivi C, Kato K and Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption 1: cellular physiology. Am J Physiol Cell Physiol 291: C1225–C1231, 2006.
 307. Gao S, Chen J, Brodsky SV, Huang H, Adler S, Lee JH, Dhadwal N, Cohen‐Gould L, Gross SS and Goligorsky MS. Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane: a pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a protein kinase K‐cleavable peptide on the cytoplasmic face of mitochondria. J Biol Chem 279: 15968–15974, 2004.
 308. Lacza Z, Pankotai E, Csordas A, Gero D, Kiss L, Horvath EM, Kollai M, Busija DW and Szabo C. Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist? Nitric Oxide 14: 162–168, 2006.
 309. Bates TE, Loesch A, Burnstock G and Clark JB. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213: 896–900, 1995.
 310. Kobzik L, Stringer B, Balligand JL, Reid MB and Stamler JS. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 211: 375–381, 1995.
 311. Kanai A, Epperly M, Pearce L, Birder L, Zeidel M, Meyers S, Greenberger J, de Groat E, Apodaca G and Peterson J. Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am J Physiol Heart Circ Physiol 286: H13–H21, 2004.
 312. Ghafourifar P and Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 418: 291–296, 1997.
 313. Giulivi C, Poderoso JJ and Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 273: 11038–11043, 1998.
 314. Baris O, Savagner F, Nasser V, Loriod B, Granjeaud S, Guyetant S, Franc B, Rodien P, Rohmer V, Bertucci F, Birnbaum D, Malthiery Y, Reynier P and Houlgatte R. Transcriptional profiling reveals coordinated up‐regulation of oxidative metabolism genes in thyroid oncocytic tumors. J Clin Endocrinol Metab 89: 994–1005, 2004.
 315. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S and Carruba MO. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896–899, 2003.
 316. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles IV WG, Schlattner U, Neumann D, Brownlee M, Freeman MB and Goldman MH. Activation of the AMP‐activated protein kinase by the anti‐diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species. J Biol Chem 279: 43940–43951, 2004.
 317. Fisslthaler B, Fleming I, Keserü B, Walsh K and Busse R. Fluid shear stress and NO decrease the activity of the hydroxy‐methylglutaryl coenzyme A reductase in endothelial ceils via the AMP‐activated protein kinase and FoxO1. Circ Res 100: e12–e21, 2007.
 318. Reznick RM and Shulman GI. The role of AMP‐activated protein kinase in mitochondrial biogenesis. J Physiol Online 574: 33–39, 2006.
 319. Towler MC and Hardie DG. AMP‐activated protein kinase in metabolic control and insulin signaling. Circ Res 100: 328–341, 2007.
 320. Nisoli E, Clementi E, Carruba MO and Moneada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100: 795–806, 2007.
 321. Cook S, Hugli O, Egli M, Menard B, Thalmann S, Sartori C, Perrin C, Nicod P, Thorens B, Vollenweider P, Scherrer U and Burcelin R. Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high‐fat diet‐induced insulin resistance and arterial hypertension. Diabetes 53: 2067–2072, 2004.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ingrid Fleming. Biology of Nitric Oxide Synthases. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 56-80. First published in print 2008. doi: 10.1002/cphy.cp020403